万有引力与航天公式总结归纳
高中物理知识点万有引力与航天知识点总结
![高中物理知识点万有引力与航天知识点总结](https://img.taocdn.com/s3/m/7f2952cddbef5ef7ba0d4a7302768e9950e76e69.png)
《高中物理万有引力与航天知识点总结》一、引言从远古时代人类对星空的仰望与好奇,到现代航天技术的飞速发展,万有引力与航天始终是人类探索宇宙的重要基石。
在高中物理中,万有引力与航天这一章节不仅涵盖了丰富的物理知识,还能激发同学们对宇宙奥秘的探索热情。
通过对这部分知识点的学习,我们可以更好地理解天体运动的规律,感受宇宙的宏大与神秘。
二、万有引力定律1. 内容万有引力定律是由牛顿发现的,其内容为:自然界中任何两个物体都相互吸引,引力的大小与这两个物体的质量的乘积成正比,与它们之间距离的平方成反比。
用公式表示为:F = Gm₁m₂/r²,其中F 是两个物体之间的引力,m₁、m₂分别是两个物体的质量,r 是两个物体之间的距离,G 是万有引力常量。
2. 万有引力常量 GG 的值是由卡文迪许通过扭秤实验测定的,其数值为 G =6.67×10⁻¹¹ N·m²/kg²。
万有引力常量的测定在物理学中具有重要意义,它使万有引力定律能够进行定量计算。
3. 适用范围万有引力定律适用于质点间的相互作用。
当两个物体间的距离远大于物体本身的大小时,物体可视为质点。
对于质量分布均匀的球体,也可以将其视为质量集中于球心的质点,此时两个球体间的万有引力可以用万有引力定律计算。
三、天体运动1. 开普勒行星运动定律(1)开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(3)开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
用公式表示为:a³/T² = k,其中 a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个与行星无关的常量,只与中心天体(太阳)的质量有关。
万有引力与航天公式
![万有引力与航天公式](https://img.taocdn.com/s3/m/c8189d5478563c1ec5da50e2524de518974bd350.png)
万有引力与航天公式
嘿,让我来给你讲讲万有引力与航天公式那些超厉害的公式呀!
首先就是那个大名鼎鼎的万有引力公式:F=GMm/r²。
比如说,就像地球和月球,地球的质量很大,月球的质量也有那么一些,它们之间的距离也确定,哇塞,那它们之间的引力就可以通过这个公式算出来啦!这就好像是一个神秘的纽带把它们紧紧联系在一起呢!
还有向心加速度公式a=v²/r。
想象一下,卫星在绕着地球转呀转,它的速度和轨道半径决定了它的向心加速度呢,如果速度很快很快,轨道又比较小,那向心加速度不就超大啦,卫星可就得超快地转啦!
再有向心力公式F=mv²/r。
就好比一辆赛车在弯道上飞驰,车速和弯道半径就决定了它需要多大的向心力来保持不飞出去呀!
哎呀,这些公式是不是超级神奇呀!它们可是打开航天世界大门的钥匙呢,让我们能更好地探索宇宙的奥秘呀!你说是不是很了不起呢?。
(完整版)万有引力与航天重点知识归纳
![(完整版)万有引力与航天重点知识归纳](https://img.taocdn.com/s3/m/4a7c667c3a3567ec102de2bd960590c69ec3d806.png)
(完整版)万有引力与航天重点知识归纳万有引力与航天重点知识归纳考点一、万有引力定律1. 开普勒行星运动定律(1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动;③k TR =23,R ——轨道半径。
2. 万有引力定律(1)内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2)公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ??=-。
(3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4)两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =?=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=?=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=?=,再根据32333,34R GT r V M R Vπρρπ=?==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22==,再根据GRg VM R V πρρπ43,343=?==3.v 、r 法:Grv M r v m r Mm G 222=?=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=?==考点三、星体表面及某高度处的重力加速度1、星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =?=。
万有引力与航天公式总结
![万有引力与航天公式总结](https://img.taocdn.com/s3/m/411c7f5402d276a201292e01.png)
万有引力与航天重点规律方法总结一. 三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二. 两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三. 两个定律1.幵普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期T的二次方的比值都相等。
表达式为: 3 R-K(K GM )k只与中心天体质量T 4 二2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:F万二G Mm mr⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r为两球心间的距离)b.当r > 0时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当r > 0时,引力F—;•匚的说法是错误的⑷.对定律的理解a. 普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b. 相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力 关系。
c. 宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d. 特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G: ① 大小:G = 6.67 10J1N m 2/kg 2,由英国科学家卡文迪许利用扭秤测出② 意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:6.671QJ1N四. 两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F 万二F向即: F 万=G Mm ^ =ma “ =ml =mr 4l_ =mrco 22. 天体对其表面物体的万有引力近似等于重力:即GM =gR 2(又叫黄金代换式)2③ 关系:gJ g (R+h )五. 万有引力定律的应用1. 计算天体运动的线速度、角速度、 c.周期:T =2二、和2. 计算中心天体的质量: 方法一:根据转动天体运动周期 T 和转动半径r 计算:234nr M 占 GT方法二:根据中心天体半径 R 和其表面的重力加速度g 计算:2M 二9R(适合于没有行星、卫星转动的中心天体) G注意:转动天体的质量是求不出来的。
(完整版)万有引力与航天公式总结
![(完整版)万有引力与航天公式总结](https://img.taocdn.com/s3/m/cd0254e685254b35eefdc8d376eeaeaad1f31612.png)
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴 R 的三次方跟公转周期 T 的二次方的比值都相等。
表达式为:R3 = K(K = GM ) k 只与中心天体质量有关的24π2T定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的 .两个物体间引力的方向在它们的连线上 ,引力的大小跟它们的质量的乘积成正比 ,跟它们之间的距离的二次方成反比 .Mm⑵.数学表达式 : F万= G r2⑶.适用条件 :a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当r 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当r 0 时,引力F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义 .d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关 .与所在空间的性质无关 ,与周期及有无其它物体无关 .(5)引力常数G:①大小: G = 6.67 x 10一11N . m 2 / kg 2,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 x10一11N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万= F 向 即: F 万 = G = ma n = m r v 2= mr= mr 负22. 天体对其表面物体的万有引力近似等于重力:Mm G = m gR 2即 GM = gR 2 (又叫黄金代换式)注意:①地面物体的重力加速度: g =R≈9.8m/s 2②高空物体的重力加速度: g '= (R)2〈 9.8m/s 2g'R 2③关系: — =g (R + h)2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
物理万有引力与航天重点知识归纳
![物理万有引力与航天重点知识归纳](https://img.taocdn.com/s3/m/f0314780b52acfc788ebc972.png)
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
万有引力与航天公式总结
![万有引力与航天公式总结](https://img.taocdn.com/s3/m/f836577cbcd126fff6050b12.png)
万有引力与航天公式总结Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期T 的二次方的比值都相等。
表达式为:)4(223πGM K K TR== k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵.数学表达式:rF MmG 2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:FF 向万= 即:222224n Mm v F G ma m mr mr r r Tπω=====万 2.天体对其表面物体的万有引力近似等于重力:即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2③关系:22')(h R g Rg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力及航天重点学习知识、公式总结.docx
![万有引力及航天重点学习知识、公式总结.docx](https://img.taocdn.com/s3/m/74804ffe69eae009591bec43.png)
万有引力与航天重点规律方法总结一. 三种模型1.匀速圆周运动模型:无论是自然天体 ( 如地球、月亮 ) 还是人造天体 ( 如宇宙飞船、人造卫星 ) 都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 , 它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/ 日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期 T 的二次方的比值都相等。
3GM k 只与中心天体质量有关的表达式为: R K (K2 2 )T4定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴ . 内容 : 宇宙间的一切物体都是相互吸引的. 两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比, 跟它们之间的距离的二次方成反比.⑵ . 数学表达式 :F 万G Mm2r⑶ . 适用条件 :a. 适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b.当r0 时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当r0 时,引力 F的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间 , 它的存在才有实际意义.d. 特殊性 : 两个物体间的万有引力只与它们本身的质量、它们之间的距离有关. 与所在空间的性质无关, 与周期及有无其它物体无关.( 5)引力常数G:1011 2 2①大小: G6.67Nm / kg ,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为 1kg 的物体,相距为1 米时相互作用力为:11N6.67 10 四. 两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F万F向即: F 万 GMmma nm v 2mr42mr2r 2rT 22.天体对其表面物体的万有引力近似等于重力:GMmm gR 2gR 2 (又叫黄金代换式)即 GM注意:g GM2①地面物体的重力加速度: 2≈ 9.8m/sR②高空物体的重力加速度:g 'GM29.8m/s( Rh ) 2g'2③关系 :( R Rgh) 2五 . 万有引力定律的应用1. 计算天体运动的线速度、角速度、周期、向心加速度。
(完整版)万有引力与航天重点知识归纳
![(完整版)万有引力与航天重点知识归纳](https://img.taocdn.com/s3/m/21f28c81866fb84ae55c8d18.png)
万有引力与航天重点知识归纳考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
(2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。
(3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式:k Ta =23。
其中k 值与太阳有关,与行星无关。
中学阶段对天体运动的处理办法:①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k TR =23,R ——轨道半径。
2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。
(2) 公式:221rm m G F =,G 叫万有引力常量,2211/1067.6kg m N G ⋅⨯=-。
(3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。
(4) 两个物体间的万有引力也遵循牛顿第三定律。
3. 万有引力与重力的关系(1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。
①在赤道上,F=F 向+mg ,即R m R Mm G mg 22ω-=;②在两极F=mg ,即mg R Mm G =2;故纬度越大,重力加速度越大。
由以上分析可知,重力和重力加速度都随纬度的增加而增大。
(2) 物体受到的重力随地面高度的变化而变化。
在地面上,22R GM g mg R Mm G =⇒=;在地球表面高度为h 处:22)()(h R GM g mg h R Mm Gh h +=⇒=+,所以g h R R g h 22)(+=,随高度的增加,重力加速度减小。
考点二、万有引力定律的应用——求天体质量及密度1.T 、r 法:232224)2(GTr M T mr r Mm G ππ=⇒=,再根据32333,34R GT r V M R Vπρρπ=⇒==,当r=R 时,23GT πρ=2.g 、R 法:GgR Mmg RMm G 22=⇒=,再根据GRg VM R V πρρπ43,343=⇒==3.v 、r 法:Grv M r v m r Mm G 222=⇒=4.v 、T 法:G T v M T mr r Mm G r v m r Mm G ππ2)2(,32222=⇒==考点三、星体表面及某高度处的重力加速度1、 星球表面处的重力加速度:在忽略星球自转时,万有引力近似等于重力,则22R GM g mg R Mm G =⇒=。
(完整版)万有引力与航天重点知识、公式总结.docx
![(完整版)万有引力与航天重点知识、公式总结.docx](https://img.taocdn.com/s3/m/381ec19f5901020206409c9e.png)
万有引力与航天重点规律方法总结一 .三种模型1.匀速圆周运动模型:无论是自然天体 (如地球、月亮 )还是人造天体 (如宇宙飞船、人造卫星 )都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星 ,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公转周期 T 的二次方的比值都相等。
3表达式为: R K (K GM k 只与中心天体质量有关的2 2 )T4定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴ .内容 : 宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.⑵ .数学表达式 :F 万G Mm2r⑶ . 适用条件 :a. 适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b.当r0 时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当r0 时,引力 F的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间 ,它的存在才有实际意义..与所在d.特殊性 :两个物体间的万有引力只与它们本身的质量、它们之间的距离有关空间的性质无关,与周期及有无其它物体无关.( 5)引力常数G:11 2 2①大小: G6.6710Nm / kg ,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1 米时相互作用力为:116.6710N四.两条思路:即解决天体运动的两种方法m v 2 mr 4 21. 万有引力提供向心力:F万F向即: F 万G Mmma n mr 2r 2rT 22.天体对其表面物体的万有引力近似等于重力:Mm m gGR 2gR 2 (又叫黄金代换式)即 GM注意:gGM2①地面物体的重力加速度:2≈ 9.8m/sR②高空物体的重力加速度:'GM2g( Rh ) 2 9.8m/s'2g③关系 :Rg(Rh) 2五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力与航天重点知识、公式总结
![万有引力与航天重点知识、公式总结](https://img.taocdn.com/s3/m/9133d05052d380eb62946d9e.png)
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。
表达式为:)4(223πGM K K T R == k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式:rF MmG2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F F 向万= 即:222224n Mm v F Gma m mr mr r r Tπω=====万2.天体对其表面物体的万有引力近似等于重力:g m R MmG=2即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g9.8m/s 2③关系:22')(h R gRg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力与航天公式总结(可编辑修改word版)
![万有引力与航天公式总结(可编辑修改word版)](https://img.taocdn.com/s3/m/a284e4bb5acfa1c7ab00cc8a.png)
一.三种模型万有引力与航天重点规律方法总结1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密2/日心说:代表人物是波兰天文学家哥白尼三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。
3表达式为:RT 2 =K (K =GM)4 2k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687 年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.Mm⑵.数学表达式: F万=G r2⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b.当r → 0 时,物体不可以处理为质点,不能直接用万有引力公式计算c.认为当r → 0 时,引力F →∞的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G:GMr-11-2'①大小: G = 6.67 ⨯10N ⋅ m/ kg ,由英国科学家卡文迪许利用扭秤测出 ②意义:表示两个质量均为 1kg 的物体,相距为 1 米时相互作用力为: 6.67 ⨯10N四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力: = 即: = Mm = =v2 =42 = 2F万F向F 万 Gr2ma n m rmrT 2mr2. 天体对其表面物体的万有引力近似等于重力:MmG = m g R2注意:即 GM = gR 2 (又叫黄金代换式)①地面物体的重力加速度: g =GM ≈9.8m/s 2R2②高空物体的重力加速度: g ' =GM (R + h ) 2〈 9.8m/s 2③关系:g R 2g =(R + h )2五.万有引力定律的应用1. 计算天体运动的线速度、角速度、周期、向心加速度。
高中物理必修二《万有引力与航天》知识点总结
![高中物理必修二《万有引力与航天》知识点总结](https://img.taocdn.com/s3/m/ae2d156f59fafab069dc5022aaea998fcc224065.png)
一、开普勒行星运动定律〔1〕、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,〔2〕、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积,〔3〕、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1、内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比、2、公式:F=Gr2m1m2,其中G=6.67某10-11 N·m2/kg2,称为引力常量、3、适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离、对于均匀的球体,r是两球心间的距离、三、万有引力定律的应用1、解决天体(卫星)运动问题的根本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:Gr2Mm=mrv2=mω2r=mT2π2r.(2)在地球外表或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=GR2Mm,gR2=GM.2、天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即Gr2Mm=mT24π2r,得出天体质量M=GT24π2r3.(1)假设天体的半径R,那么天体的密度ρ=VM=πR34=GT2R33πr3(2)假设天体的卫星环绕天体外表运动,其轨道半径r等于天体半径R,那么天体密度ρ=GT23π可见,只要测出卫星环绕天体外表运动的周期,就可求得天体的密度、3、人造卫星(1)研究人造卫星的根本方法:看成匀速圆周运动,其所需的向心力由万有引力提供、Gr2Mm=mrv2=mrω2=mrT24π2=ma向、(2)卫星的线速度、角速度、周期与半径的关系①由Gr2Mm=mrv2得v=rGM,故r越大,v越小、②由Gr2Mm=mrω2得ω=r3GM,故r越大,ω越小、③由Gr2Mm=mrT24π2得T=GM4π2r3,故r越大,T越大(3)人造卫星的'超重与失重①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态、②人造卫星在沿圆轨道运动时,由于万有引力提供向心力,所以处于完全失重状态、在这种情况下但凡与重力有关的力学现象都会停止发生、(4)三种宇宙速度①第一宇宙速度(环绕速度)v1=7.9 km/.这是卫星绕地球做圆周运动的最大速度,也是卫星的最小发射速度、假设7.9 km/≤v<11.2 km/,物体绕地球运行、②第二宇宙速度(脱离速度)v2=11.2 km/.这是物体挣脱地球引力束缚的最小发射速度、假设11.2 km/≤v<16.7 km/,物体绕太阳运行、③第三宇宙速度(逃逸速度)v3=16.7 km/这是物体挣脱太阳引力束缚的最小发射速度、假设v≥16.7 km/,物体将脱离太阳系在宇宙空间运行、题型:1、求星球外表的重力加速度在星球外表处万有引力等于或近似等于重力,那么:GR2Mm=mg,所以g=R2GM(R为星球半径,M为星球质量)、由此推得两个不同天体外表重力加速度的关系为:g2g1=R12R22·M2M1.2、求某高度处的重力加速度假设设离星球外表高h处的重力加速度为gh,那么:G(R+h)2Mm=mgh,所以gh=(R+h)2GM,可见随高度的增加重力加速度逐渐减小、ggh=(R+h)2R2.3、近地卫星与同步卫星(1)近地卫星其轨道半径r近似地等于地球半径R,其运动速度v=RGM==7.9 km/,是所有卫星的最大绕行速度;运行周期T=85 min,是所有卫星的最小周期;向心加速度a=g=9.8 m/2是所有卫星的最大加速度、(2)地球同步卫星的五个“一定”①周期一定T=24 h. ②距离地球外表的高度(h)一定③线速度(v)一定④角速度(ω)一定⑤向心加速度(a)一定。
万有引力与航天重点知识、公式总结
![万有引力与航天重点知识、公式总结](https://img.taocdn.com/s3/m/36f773f669dc5022aaea0056.png)
万有引力与航天重点规律方法总结一.三种模型1.匀速圆周运动模型:无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。
3.“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。
二.两种学说1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律1.开普勒定律:第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值都相等。
表达式为:)4(223πGM K K T R == k 只与中心天体质量有关的定值与行星无关2.牛顿万有引力定律1687年在《自然哲学的数学原理》正式提出万有引力定律⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式:rF MmG2=万⑶.适用条件:a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算c. 认为当0→r 时,引力∞→F 的说法是错误的⑷.对定律的理解a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有实际意义.d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有无其它物体无关.(5)引力常数G :①大小:kg m N G 2211/67.610⋅⨯=-,由英国科学家卡文迪许利用扭秤测出②意义:表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯四.两条思路:即解决天体运动的两种方法1. 万有引力提供向心力:F F 向万= 即:222224n Mm v F Gma m mr mr r r Tπω=====万2.天体对其表面物体的万有引力近似等于重力:g m R MmG=2即 2gR GM =(又叫黄金代换式)注意:②高空物体的重力加速度:〈+=2')(h R GM g9.8m/s 2③关系:22')(h R gRg+=五.万有引力定律的应用1.计算天体运动的线速度、角速度、周期、向心加速度。
万有引力与航天知识点总结
![万有引力与航天知识点总结](https://img.taocdn.com/s3/m/904126716f1aff00bed51ef8.png)
万有引力与航天知识点总结————————————————————————————————作者:————————————————————————————————日期:ﻩ332T=2.GM GM GM r M v a Gr r r ωπ=== , , ,万有引力定律①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r 的二次方成反比。
即: 其中G =6. 67×10-11N·m 2/kg 2②适用条件1.可看成质点的两物体间,r 为两个物体质心间的距离。
2.质量分布均匀两球体间,r为两球体球心间距离。
③运用万有引力与重力的关系:重力是万有引力的一个分力,一般情况下, 可认为重力和万有引力相等。
忽略地球自转可得:二. 重力和地球的万有引力:1.地球对其表面物体的万有引力产生两个效果:(1)物体随地球自转的向心力: F 向=m ·R ·(2π/T 0)2,很小。
由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。
(2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m R GMm F F mg 22自向ω-=-=,因地球自转角速度很小,R m R GMm 22自ω>>,所以2R GM g =。
说明:如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。
如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。
在地球的同一纬度处,g 随物体离地面高度的增大而减小,即2)('h R GM g +=。
强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。
2.绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。
万有引力与航天知识点
![万有引力与航天知识点](https://img.taocdn.com/s3/m/bc707722178884868762caaedd3383c4bb4cb494.png)
万有引力与航天知识点在我们生活的这个广袤宇宙中,万有引力定律如同一只无形的大手,掌控着天体的运动轨迹,而航天事业则是人类对这一神秘力量的勇敢探索和应用。
接下来,让我们一同深入了解万有引力与航天的相关知识点。
首先,什么是万有引力?简单来说,万有引力是指任何两个物体之间都存在相互吸引的力。
这个力的大小与两个物体的质量成正比,与它们之间距离的平方成反比。
用公式表示就是:F = G (m1 m2) / r²,其中 F 表示两个物体之间的引力,G 是万有引力常量,m1 和 m2 分别是两个物体的质量,r 是它们之间的距离。
想象一下,地球能够吸引着我们,让我们不至于飘向太空,这就是万有引力的作用。
同样,太阳凭借着强大的引力,牵制着太阳系中的各大行星,使它们围绕着太阳做有规律的公转。
在航天领域,对万有引力的理解和运用至关重要。
当我们要将卫星发射到太空中时,就必须考虑地球的万有引力。
卫星要达到预定的轨道,需要以足够的速度克服地球的引力。
这个速度被称为第一宇宙速度,约为 79 千米每秒。
当卫星达到这个速度时,它就能够围绕地球做匀速圆周运动。
如果我们想要让卫星摆脱地球的引力束缚,前往其他星球,那么它的速度就需要进一步提高,达到第二宇宙速度,约为 112 千米每秒。
而要让卫星完全脱离太阳系的引力,奔向更遥远的宇宙深处,则需要达到第三宇宙速度,约为 167 千米每秒。
在卫星的运行轨道方面,也有很多有趣的知识点。
常见的卫星轨道有地球同步轨道、太阳同步轨道等。
地球同步轨道上的卫星,其运行周期与地球自转周期相同,从地面上看,它好像是静止在天空中的某一个位置。
这种卫星在通信、气象等领域有着广泛的应用。
而太阳同步轨道上的卫星,其轨道平面与太阳始终保持相对固定的取向,这使得卫星在经过同一地点时,当地的太阳光照条件基本相同,有利于对地球进行观测和监测。
在航天任务中,如何计算卫星的轨道参数也是一项关键工作。
这需要综合考虑万有引力、卫星的初始速度、发射角度等多种因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
万有引力与航天重点规律方法总结
一.三种模型
1.匀速圆周运动模型:
无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动
2.双星模型:
将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。
3.“天体相遇”模型:
两天体相遇,实际上是指两天体相距最近。
二.两种学说
1.地心说:代表人物是古希腊科学家托勒密
2/日心说:代表人物是波兰天文学家哥白尼
三.两个定律
1.开普勒定律:
第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公转周期T 的二次方的比值
都相等。
表达式为:)4(223π
GM K K T R ==k 只与中心天体质量有关的定值与行星无关
2.牛顿万有引力定律
1687年在《自然哲学的数学原理》正式提出万有引力定律
⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比.
⑵.数学表达式:r F Mm G 2=万
⑶.适用条件:
a.适用于两个质点或者两个均匀球体之间的相互作用。
(两物体为均匀球体时,r 为两球心间的距离)
b.当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算
c.认为当0→r 时,引力∞→F 的说法是错误的
⑷.对定律的理解
a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力
b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。
c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附近的物体间,它的存在才有
实际意义.
d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在空间的性质无关,与周期及有
无其它物体无关.
(5)引力常数G :
①大小:kg m N G 2211/67.610⋅⨯
=-,由英国科学家卡文迪许利用扭秤测出 ②意义:
表示两个质量均为1kg 的物体,相距为1米时相互作用力为:N 101167.6-⨯
四.两条思路:即解决天体运动的两种方法
1.万有引力提供向心力:F F
向万=即:222224n Mm v F G ma m mr mr r r T πω=====万 2.天体对其表面物体的万有引力近似等于重力: 即2gR GM =(又叫黄金代换式)
注意:
①地面物体的重力加速度:R GM g 2=≈9.8m/s 2 ②高空物体的重力加速度:〈+=2')(h R GM g 9.8m/s 2 ③关系:22')(h R g R g +=
五.万有引力定律的应用
1.计算天体运动的线速度、角速度、周期、向心加速度。
a.线速度:r GM v =
b.角速度:r
GM 3=ω c.周期:GM T r 3
2π= d.向心加速度:r a GM 2=向
2.计算中心天体的质量:
方法一:根据转动天体运动周期T 和转动半径r 计算:
T r
G M 2324π=(适合于有行星、卫星转动的中心天体)
方法二:根据中心天体半径R 和其表面的重力加速度g 计算:
G g M R
2=(适合于没有行星、卫星转动的中心天体)
注意:转动天体的质量是求不出来的。
只能求中心天体的质量。
3.计算中心天体的密度:
方法一:根据转动天体运动周期T 、转动半径r 和中心天体半径R 计算:
R T r
G 3233πρ=(适合于有行星、卫星转动的中心天体)
方法二:根据中心天体半径R 和其表面的重力加速度g 计算:
GR
g πρ43=(适合于没有行星、卫星转动的天体) 4.计算第一宇宙速度(环绕速度)
简单说就是卫星或行星贴近中心天体表面的飞行速度,这时卫星或行星高度忽略r ≈R
方法一。
根据中心天体质量M 和半径R 计算:
由→=R
m Mm
G v R 22R GM v = 方法二。
根据中心天体半径R 和表面重力加速度计算:
由→==R
m mg v F 2万gR v = 5.预测未知天体:
6.研究天体运动,发射人造卫星
(1)分类:主要有:侦察卫星、通信卫星、导航卫星、气象卫星、地球资源卫星、勘测科学研究卫星、预警卫
星、测地卫星等种类。
(2)轨道:
由于是万有引力提供向心力,所以所有卫星都是围绕地心在转。
轨道有三种:
a.赤道平面内(如同步卫星)叫赤道轨道。
b.与赤道平面垂直,通过地球两极,叫极地轨道。
c.可以和赤道平面成任一角度,叫一般轨道。
注意:没有跟某一经度或某一纬度重合的轨道(除赤道平面)
(3)发射:由于卫星运动的分析是针对地心这个参考系的,故火箭发射时的初速度不等于零(自转速度),要
充分利用地球的自转的惯性,就必须自西向东发射。
这样可以更多地节省燃料和推力。
发射可分为三个阶段:
①发射长空阶段
②漂移进入轨道阶段
③在预定轨道上绕地球运行阶段
(4)运行:
稳定运行时,由万有引力提供向心力。
①由公式:线速度:r GM v =角速度:r GM 3=ω周期:GM T r 32π=向心加速度:r a GM 2=向分析可知:在同一中心天体做匀速圆周运动的所有卫星的v 、ω、T 、a 各量都只与轨道半径r 有关。
②离地面越高即r 越大,则卫星的v 、ω、a 、越小,T 越大。
(5)变轨:
卫星的变轨实质是通过短时间内启动加速或减速火箭以改变卫星的速度,而使万有引力与所需向心力不再相等。
当F F 向引〉,卫星将做近心运动,轨道半径将减小;当F
F 向引〈时,卫星将做离心运动,轨道半径将增大。
(6)对接:
交会对接指两个航天器(宇宙飞船、航天飞机等)在太空轨道会合并连接成一个整体.它是实现太空装配、回收、补给、维修、航天员交换等过程的先决条件.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.
注意:
同轨道上对接应先让后者减速使其在低轨道运行,然后再加速速度增大去跟高轨道上的对接。
不能在同轨道上加速对接,跟地面上同一直线上的运动不同。
(7)超重和失重:
①“超重”是卫星进入轨道的加速上升过程和回收时的减速下降过程,此情景与“升降机”中物体超重相同. ②“失重”是卫星进入轨道后正常运转时,卫星上的物体完全“失重”(因为重力提供向心力),此时,在卫
星上的仪器,凡是制造原理与重力有关的均不能正常使用.如天平、水银气压计、单摆、密度计等。
(8)返回:
当卫星返回时,只要推进器向前喷气即可使人造卫星减速,卫星即可从圆形轨
道落入椭圆轨道向地球靠近,当卫星运行到椭圆轨道的近地点时推进器再次火箭发动机点火减速,即可从椭圆轨道运行到较低的圆形轨道。
(9)两种特殊的卫星
ⅰ.近地卫星:
卫星轨道半径约为地球半径,受到的万有引力等于重力.速度为第一宇宙速度.
ⅱ.同步卫星(又叫通信卫星):(四定)
①定周期:等于地球自转周期T =24小时
②定轨道:在赤道的正上方即赤道平面
③定高度:h =3.6×107(m)
④定线速度:v =3.1km/s
注意:三颗同步卫星就能覆盖地球,实现全球通讯。
六.三个宇宙速度:
①第一宇宙速度:v 1=7.9km/s ,它是地球卫星的最大环绕速度,也是卫星的最小发射速度.
②第二宇宙速度(脱离速度):v 2=11.2km/s ,使物体挣脱地球引力束缚的最小发射速度.
③第三宇宙速度(逃逸速度):v 3=16.7km/s ,使物体挣脱太阳引力束缚的最小发射速度.
七.双星、三星、多星
1.双星:
(1)定义:将两颗彼此距离较近的恒星称为双星
(2)向心力来源:
在它们之间的万有引力作用下,绕两球连线上某点做匀速圆周运动.
(3).特点:
①周期、角速度相同 ②表达式:222121221r m r m L
m m G ωω==;21r r L += ③质量与半径成反比:
r r m m 1221=
2.三星及多星: 分析方法同双星问题一样,关键是分析它们万有引力的合力提供向心力。
八.容易混淆的几个问题:
1.万有引力与重力
2.随地球自转的向心加速度和环绕运行的向心加速度
3.运行速度和发射速度 4.两个半径:天体半径和卫星轨道半径
5.两种周期:自转周期和公转周期
6.丙类运行:稳定运行和变轨运行
7.同步卫星和一般卫星
8.赤道上物体和近地卫星
九.月球的特点:
1.离地距离一定,轨道半径r=38万千米
2.周期约为27天
3.速度约为1 km/s。