填料塔的设计

合集下载

填料塔设计标准及规范最新

填料塔设计标准及规范最新

填料塔设计标准及规范最新1. 设备设计基础填料塔的设计应基于详细的工艺流程和操作条件,包括但不限于流体的性质、流量、压力、温度以及所需的分离效率。

2. 材料选择材料的选择应考虑到介质的化学性质、温度、压力以及可能的腐蚀性。

常用的材料包括不锈钢、碳钢、塑料和陶瓷等。

3. 填料类型选择填料塔的效率和性能很大程度上取决于所选填料的类型。

常见的填料类型包括散堆填料、规整填料和金属网填料等。

4. 流体力学设计填料塔的流体力学设计应确保气体和液体在塔内均匀分布,避免局部过载或死区。

设计时需考虑流体的流速、压降和湍流程度。

5. 塔体结构设计塔体结构设计应保证足够的强度和刚度,以承受操作过程中可能产生的各种载荷,包括静载荷、动载荷和热应力。

6. 塔内附件设计塔内附件包括分布器、收集器、支撑结构等,它们的设计应确保流体的均匀分布和有效收集。

7. 安全与环保要求填料塔的设计应符合当地的安全和环保法规,包括排放标准、防火防爆要求以及紧急排放系统的设计。

8. 控制与监测系统填料塔应配备必要的控制和监测系统,以实现过程的自动控制和实时监测,确保操作的稳定性和安全性。

9. 维护与清洗设计时应考虑到设备的维护和清洗方便性,确保在必要时可以快速进行清洗和维护工作。

10. 经济性评估在满足工艺要求的前提下,填料塔的设计应考虑成本效益,包括材料成本、制造成本和运行成本。

11. 规范和标准遵循设计过程中应遵循国际和国内的相关行业标准,如API、ASME、GB等,确保设计的合规性。

结语填料塔的设计是一个综合性的工程活动,需要综合考虑工艺、材料、结构、安全、环保和经济等多方面因素。

随着技术的发展和行业标准的更新,填料塔的设计标准和规范也在不断进步,以适应不断变化的工业需求。

填料塔设计完全版

填料塔设计完全版

由该点的纵坐标得为计算方便,采用与液体喷淋密度无关的泛点填料因子平均值,查表(散装交,由该点的纵坐标得(Dg38)k G a=0.0367×(2900×1.178)0.72×4699.60.38=319.3kmol/(m3·h.Pa) k L a=0.027×4699.60.78=19.75 h -1选择塔径为700mm的数据。

4.除雾沫器选择折流板式除雾器,它是利用惯性原理设计的最简单的除雾装置。

除雾板由50mm ×50mm ×3mm 的角钢组成.板间横向距离为25mm ,如图所示。

除雾器的结构简单、有效,常和塔器构成一个整体,阻力小,不易堵塞,能除去50μm 以下的雾滴,压力降一般为50~I00Pa 。

5.管口结构一般管道为圆形,d 为内径,水流速0.5~1.5m/s,常压下气体流速则气体进口管直径 d 1=u V 4π=1836004.1329004×××=0.239m 气体出口管直径 d 2=0.239m查国家标准规格,圆整直径为273×6u=π23V 4d =s /m 06.153600261.0900242=×××π 吸收剂进口直径 d 3=u V 4π=.503600.29984.13699.644××××=0.0577m8.液体进口管液体的进口管直接通向喷淋装置,若喷淋装置进塔处为直管,其结构和有关尺寸见图和表,若喷淋器为其他结构,则管门结构需根据具体情况而定。

液体进口管选择尺寸76×4,见上表。

9.液体的出口装置液体出口装置的设计应便于塔内液体的排放,防止破碎的瓷环堵塞出口,并且要保证塔内有一定的液封高度,防止气体短路。

常见的液体出口结构如图所示。

10.接管长度填料塔上各股物料的进出门管留在设备外边的长度h,可参照下表确定。

填料塔设计

填料塔设计
8
(2)液体再分布装置 )
实践表明,当喷淋液体沿填料层向下流动时, 实践表明,当喷淋液体沿填料层向下流动时,不 能保持喷淋装置所提供的原始均匀分布状态, 能保持喷淋装置所提供的原始均匀分布状态,液 体有向塔壁流动的趋势。因而导致壁流增加、 体有向塔壁流动的趋势。因而导致壁流增加、填 料主体的流量减小, 料主体的流量减小,影响了流体沿塔横截面分布 的均匀性,降低传质效率。所以,设置再分布装 的均匀性,降低传质效率。所以, 置是十分重要的。可选用多孔盘式再分布器。 置是十分重要的。可选用多孔盘式再分布器。分 布盘上的孔数按喷淋点数确定,孔径为3.6mm。 布盘上的孔数按喷淋点数确定,孔径为 。
Z = H OG ⋅ N OG
Z ′ = 1.20 × Z
设计取填料层高度为(取整数) 设计取填料层高度为(取整数) 查表:对于××填料, ××填料 查表:对于××填料, h = D 将填料层分为×段设置,每段× , 将填料层分为×段设置,每段×m,段间设置一个液体 再分布器。 再分布器。
6
4.4 填料层压降计算: 填料层压降计算: 利用课本78页的例题 利用课本 页的例题
qn ,V
min
Y1 − Y2 Y1 − Y2 = ∗ = X 1 − X 2 Y1 − X 2 m
3
取实际液气比为最小液气比的1.1—2.0倍,则可得 倍 取实际液气比为最小液气比的 吸收剂用量为
qn , L = nqn ,V ( qn , L qn ,V ) min = nqn ,V Y1 − Y2 Y1 − Y2 = nqn ,V ∗ Y1 X1 − X 2 − X2 m
9
(3)填料支撑装置 )
填料支撑装置对于保证填料塔的操作性能具有重 大作用。采用结构简单、自由截面较大、 大作用。采用结构简单、自由截面较大、金属耗 用量较小的栅板作为支撑板。为了改善边界状况, 用量较小的栅板作为支撑板。为了改善边界状况, 可采用大间距的栅条,然后整砌一、 可采用大间距的栅条,然后整砌一、二层按正方 形排列的瓷质十字环,作为过渡支撑,以取得较 形排列的瓷质十字环,作为过渡支撑, φ 38mm 大的孔隙率。 的填料, 大的孔隙率。由于采用的是 的填料,所以 可用 的十字环。 的十字环。

填料塔器设计资料

填料塔器设计资料

6 填料塔的结构设计I. 塔径计算计算公式: D =① 塔填料选择须知:相对处理能力:拉西环<矩鞍<鲍尔环<阶梯环<环鞍(填料尺寸相同,压降相同)对于规整填料,分离能力:丝网类填料>板波纹类填料,板波纹填料较丝网类有较大的处理量和较小的压降。

250Y ——250指的是填料的比表面积,Y 指的是波纹倾角为45o ,X Y 指的是波纹倾角为30o填料选择的三步骤:选材质→选类型→选尺寸(径比应保持不低于某一下限值,以防止产生较大的壁效应,造成塔的分离效率下降。

)选尺寸说明:填料尺寸大,成本低,处理量大,但效率低。

一般大塔常使用50mm 的填料。

塔径/mm 填料尺寸/mm D<300 20~25 300<D<900 25~38D>90050~80② 计算方法泛点气速法 ----散堆填料(0.5~0.8) f u u =a. Eckert 关联图法20.50.2f u ()() Y=G G L V L LW X W g ρφϕρμρρ=由X 值和泛点压降线查取Y 值进而求得液泛气速 b. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L LL V LW A g W ρραμερρ=- 填料特性:比表面积、空隙率、泛点压降因子 ---规整填料a. Bain-Hougen 泛点关联式20.20.250.125f 3u log[] 1.75()() G G L L L V LW A g W ρραμερρ=- 250Y 金属板波纹填料:A=0.297,CY 型丝网填料:A=0.30 b. 泛点压降法Kister and Gill 等压降曲线(匡国柱.化工单元过程与设备课程设计.北京:化学工业出版社.2002,264-265)泛点压降与填料因子间的关系:0.7/40.9p Z Fp∆= Pa/m; Fp —填料因子等压降曲线: 0.50.50.50.05p u ()() Y=() F ()0.277G G L V L L G W X W ρρμρρρρ=- 气相负荷因子法——用于规整填料塔的计算0.5[/()]S G L G C u ρρρ=-max 0.8 S S C C =0.5max =f() ( )G L S G LW C W ρψψρ=填料手册中给出Csmax 与ψ(流动参数)的关系图。

填料塔设计详细计算过程

填料塔设计详细计算过程

第一章设计任务依据和要求一、设计任务及操作条件:1、混合气体(空气中含SO2气体的混合气)处理量为:106Kmol/h2、混合气组成:SO2含量为6.7% (mol% ),空气为:93.3 %(mol%)3、要求出塔净化气含SO2为:0.148 %(mol%),H2O为:1.172 kmol/h4、吸收剂为水,不含SO25、常压,气体入塔温度为25℃,水入塔温度为20℃。

二、设计内容:1、设计方案的确定。

2、填料吸收塔的塔径、填料层高度及填料层压降的计算。

3、填料塔附属结构的选型与设计。

4、填料塔工艺条件图。

三、H2O-SO2在常压20℃下的平衡数据X Y X Y0.00281 0.0776 0.000423 0.007630.001965 0.00513 0.000281 0.00420.001405 0.0342 0.0001405 0.001580.000845 0.0185 0.0000564 0.000660.000564 0.0112四、气体及液体的物性数据1、气体的物性:气体粘度()0.0652/G u kg m h =⋅气体扩散系数20.0393/G D m s = 气体密度31.383/G kg m ρ=2、液体的物性:液体粘度µL =3.6 kg /(m ·h); 液体扩散系数D L =5.3×10-6m 2/s; 密度ρL =998.2 kg /m 3;液体表面张力 4273/92.7110/L dyn cm kg h σ==× 五、 设计要求1、设计计算说明书一份2、填料塔图(2号图)一张第二章 SO 2净化技术和设备 一、SO 2的来源、性质及其危害二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。

主要有自然来源和人为来源两大类:自然来源主要是火山活动,喷出的火山气体中含有大量的二氧化硫气体,地质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫,随火山灰一起喷射到大气中。

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

在填料的上方安装填料压板,以限制填料随上升气流的运动。

液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。

填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。

二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。

填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。

三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。

?四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。

填料塔的设计.docx

填料塔的设计.docx

.-目录一.设计任务书 (2)1.设计目的 (2)2.设计任务 (2)3.设计内容和要求 (2)二.设计资料 (3)1.工艺流程 (3)2.进气参数 (3)3.吸收液参数 (3)4.操作条件 (3)5.填料性能 (4)三.设计计算书 (5)1.填料塔主体的计算 (5)1.1 吸收剂用量的计算51.2 塔径的计算61.3 填料层高度的计算81.4.填料塔压降的计算122.填料塔附属结构的类型与设计 (13)2.1 支承板132.2 填料压紧装置132.3 液体分布器装置132.4 除雾装置142.5 气体分布装置142.6 排液装置152.7 防腐蚀设计152.8 气体进料管152.9 液体进料管:162.10 封头的选择162.11 总塔高计算163.填料塔设计参数汇总 (18)四.填料塔装配图(见附录) (19)五.总结 (19)六.参考文献 (19)附录 (20).-前言世界卫生组织和联合国环境组织发表的一份报告说:“空气污染已成为全世界城市居民生活中一个无法逃避的现实。

”如果人类生活在污染十分严重的空气里,那就将在几分钟内全部死亡。

工业文明和城市发展,在为人类创造巨大财富的同时,也把数十亿吨计的废气和废物排入大气之中,人类赖以生存的大气圈却成了空中垃圾库和毒气库。

因此,大气中的有害气体和污染物达到一定浓度时,就会对人类和环境带来巨大灾难,对有害气体的控制更必不可少。

一.设计任务书1.设计目的通过对气态污染物净化系统的工艺设计,初步掌握气态污染物净化系统设计的基本方法。

培养学生利用所学理论知识,综合分析问题和解决实际问题的能力、绘图能力、以及正确使用设计手册和相关资料的能力。

2.设计任务试设计一个填料塔,常压,逆流操作,操作温度为 25℃,以清水为吸收剂,3吸收脱除混合气体中的 NH3,气体处理量为 1500m/h ,其中含氨 1.9%(体积分数),要求吸收率达到 99%,相平衡常数 m=0.95。

化工原理课程设计填料塔的设计

化工原理课程设计填料塔的设计

06 结论与展望
课程设计的总结与收获
01
02
03
04
设计流程掌握
通过填料塔的设计,掌握了从 需求分析、方案设计、详细设 计到最终实现的完整流程。
理论知识应用
将所学的化工原理知识应用于 实际设计中,加深了对理论知
识的理解和应用能力。
团队协作能力
在小组合作中,提高了团队协 作和沟通能力,学会了如何在
热力学第一定律
能量守恒定律,表示系统 能量的转化和守恒。
热力学第二定律
熵增加原理,表示自发反 应总是向着熵增加的方向 进行。
理想气体定律
描述气体状态变化的基本 规律。
填料塔的热量平衡与效率
热量平衡
填料塔在操作过程中,需要保持 热量平衡,即进料和出料的热量 与热源和冷源的热量交换达到平 衡状态。
效率计算
填料的作用
填料在填料塔中起到关键作用,它能够提供足够大的表面 积以促进气液间的接触,从而实现高效的传质和传热。
填料塔的工作原理
在填料塔中,液体从顶部淋下,通过填料层时与气体充分 接触,实现传质和传热。气体在填料的缝隙中流动,与液 体进行逆流接触,完成传质和传热过程。
02 填料塔的工艺设计
工艺流程
提高解决问题能力
面对实际工程问题,学生需要 独立思考、分析和解决问题, 提高解决实际问题的能力。
培养团队协作精神
课程设计通常以小组形式进行 ,学生需要分工合作、相互配
合,培养团队协作精神。
填料塔的基本概念和原理
填料塔的定义
填料塔是一种常用的化工设备,主要用于气液传质和传热 过程。它由塔体、填料、液体分布器、气体分布器和再分 布器等组成。
填料塔的流体力学性能
流体阻力

化工原理课程设计填料塔

化工原理课程设计填料塔

目录第1章概述 (3)1.1吸收技术概况 (3)1.2吸收设备的发展 (3)1.3吸收在工业生产中的应用 (4)1.4丙酮的性质 (5)第2章方案比选 (7)2.1方案选择与对比 (7)2.2吸收剂的比选 (8)2.3填料的作用以及选择 (9)2.4操作参数的选择 (12)2.5流向选择 (12)2.6吸收剂再生方法的选择 (12)2.7操作参数的选择 (13)第3章吸收塔的工艺计算 (14)3.1基础物性数据 (14)3.1.1 气液相物性数据 (14)3.1.2物料计算 (14)3.2塔径计算 (15)3.3填料层高度确定 (18)3.3.1. 传质单元数计算 (18)3.3.2 传质单元高度计算 (18)3.3.3填料层高度的计算 (20)第四章塔的结构设计 (21)4.1筒体的设计 (21)4.2封头设计 (21)4.3除沫器设计 (21)4.4液体进料管的设计 (22)4.5液体出料管的设计 (22)4.6气体进料管的设计 (22)4.7气体出料管的设计 (23)4.8填料支撑板设计 (23)4.9填料压板 (23)4.10体分布装置 (23)4.11再分布器 (24)4.12气体入塔分布器 (24)4.13法兰的设计 (25)4.14手孔的设计 (25)4.15吸收塔支座的设计 (25)4.16泵的选择 (26)4.17吸收塔高度的计算 (26)填料吸收塔主要尺寸 (27)课程设计心得 (28)参考文献 (29)第1章概述1.1吸收技术概况气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。

在化工生产中,原料气的净化,气体产品的精制,治理有害气体保护环境等方面得到了广泛的应用。

在研究和开发吸收过程中,在方法上多从吸收过程的传质速率着手,希望在整个设备中,气液两相为连续微分接触过程,这一特点则与填料塔得到了较好的结合。

填料塔的设计与计算

填料塔的设计与计算
2020/6/13
填料名称
丝网波纹填料
孔板波纹填料
金属Intalox 金属鞍形环 金属阶梯环 金属鲍尔环 瓷Intalox
瓷鞍形环 瓷拉西环
2020/6/13
评估值 0.86
0.61 0.59 0.57 0.53 0.51 0.41 0.38 0.36
语言值 很好
相当好 相当好 相当好 一般好 一般好 较好 略好 略好
2020/6/13
4、填料类型
(1)散装填料
散装填料是一个个具有一定几何形状和尺寸的颗
粒体,一般以随机的方式堆积在塔内,又称为乱堆
填料或颗粒填料。
散装填料根据结构特点不同,可分为:
拉西环 鲍尔环
阶梯环
弧鞍形
矩鞍形 金属环矩鞍形
球形
2020/6/13
(2)规整填料 【定义】按一定的几何构形排列,整齐堆砌的填料 。
2020/6/13
【填料层压降ΔP/Z与空塔气速u的关系曲线图】
【构成】将不同液体 喷淋量下的单位高度 填料层的压降ΔP/Z与 空塔气速u的关系标绘 在对数坐标纸上,所 得到的曲线簇。
空塔气速
【空塔气速】气体的体积流量除以塔截面积所得的 流速。
2020/6/13
(1)干填料压降线
在图中,直线0表 示无液体喷淋(L=0 )时,干填料的
2020/6/13
6、填料的性能评价 【评价依据】填料性能的优劣通常根据效率、通量 及压降三要素衡量。 (1)效率要高。在相同的操作条件下,填料的比表 面积越大,气液分布越均匀,表面的润湿性能越好 ,则传质效率越高; (2)通量(处理量)要大,压降要小。填料的空隙 率越大,结构越开敞,则通量越大,压降亦越低。
2020/6/13

填料塔设计

填料塔设计

填料塔设计1000字填料塔(也称为吸附塔、萃取塔、蒸馏塔等)是化工工业中常见的塔式设备,用于分离和提取混合物中的组分。

填料塔设计的目标是实现有效的传质和反应,同时最小化能量消耗和成本开销。

本文将介绍填料塔设计的基本流程和注意事项。

一、设计流程1. 确定塔的物理性质和流量任何填料塔的设计首先需要确认其物理性质和流量。

这将决定了塔的大小、填料类型、流体速度等各种参数。

物理性质包括塔的直径、高度、壁厚等。

流量包括进料量、空气量、气体流量、液体流量等。

2. 选择填料填料是填料塔的核心组件,它可以有效增加反应表面积和物质传递速率。

填料的种类很多,包括塑料、金属、陶瓷、玻璃等材料。

常见的填料包括环形塔填料、球形塔填料、骨架填料等。

我们需要根据所需要处理的物质和填料性能来选取填料。

3. 确定反应机理填料塔的工作原理基于物质分离和反应过程。

在设计塔之前,需要加深对所需处理的物质的反应机理的了解,包括化学反应、传质、相变等。

这将有助于确定合适的填料、塔高度等参数。

4. 计算填料密度填料密度是液相和气相之间传质的决定性因素。

在设计填料塔时,我们需要对填料的密度进行计算。

这可以帮助我们确定塔的高度、填料体积等参数。

5. 选择塔板塔板是塔式设备中流体分离和传质的重要组成部分。

常用的塔板有单孔板、多孔板和节流板等。

选定塔板的种类和数量取决于所需处理的物质和塔的物理尺寸。

6. 确定工艺流程填料塔的设计需要确定完整的工艺流程。

我们需要确认现有流程的适用性,并着手设计流程概要、工艺流程图等。

7. 设计并检验填料塔完成上述步骤后,我们需要开始具体的设计工作。

填料塔设计需要考虑许多因素,包括结构强度、塔的散热、氢气脆化等。

我们需要对设计方案进行校验,以确保它符合现行规定和安全标准。

二、设计注意事项1. 确定填料尺寸填料尺寸直接影响到塔体积,进而影响到设备成本和能量消耗。

因此,我们需要选用最小的填料尺寸,以减小设备尺寸和成本。

2. 考虑气液流量比填料塔中的气液流量比会直接影响反应效率和传质速率。

填料塔设计完全版

填料塔设计完全版

由该点的纵坐标得为计算方便,采用与液体喷淋密度无关的泛点填料因子平均值,查表(散装交,由该点的纵坐标得(Dg38)k G a=0.0367×(2900×1.178)0.72×4699.60.38=319.3kmol/(m3·h.Pa) k L a=0.027×4699.60.78=19.75 h -1选择塔径为700mm的数据。

4.除雾沫器选择折流板式除雾器,它是利用惯性原理设计的最简单的除雾装置。

除雾板由50mm ×50mm ×3mm 的角钢组成.板间横向距离为25mm ,如图所示。

除雾器的结构简单、有效,常和塔器构成一个整体,阻力小,不易堵塞,能除去50μm 以下的雾滴,压力降一般为50~I00Pa 。

5.管口结构一般管道为圆形,d 为内径,水流速0.5~1.5m/s,常压下气体流速则气体进口管直径 d 1=u V 4π=1836004.1329004×××=0.239m 气体出口管直径 d 2=0.239m查国家标准规格,圆整直径为273×6u=π23V 4d =s /m 06.153600261.0900242=×××π 吸收剂进口直径 d 3=u V 4π=.503600.29984.13699.644××××=0.0577m8.液体进口管液体的进口管直接通向喷淋装置,若喷淋装置进塔处为直管,其结构和有关尺寸见图和表,若喷淋器为其他结构,则管门结构需根据具体情况而定。

液体进口管选择尺寸76×4,见上表。

9.液体的出口装置液体出口装置的设计应便于塔内液体的排放,防止破碎的瓷环堵塞出口,并且要保证塔内有一定的液封高度,防止气体短路。

常见的液体出口结构如图所示。

10.接管长度填料塔上各股物料的进出门管留在设备外边的长度h,可参照下表确定。

填料塔的设计范文

填料塔的设计范文

填料塔的设计范文
填料塔是一种常用的化工设备,主要用于气体的物质转移和反应过程中的质量传递。

设计一个填料塔需要考虑到塔的结构设计、填料的选择和布置、气液分布的优化以及安全性等因素。

首先,填料塔的结构设计是一个关键的环节。

塔的高度和直径直接影响着塔的流体力学性能和传质传热效果。

对于普通的填料塔来说,一般采用塔径比为3-6,高径比为10-20的设计参数。

此外,填料塔还应设计合理的进出料口,以便更好地控制进出料的速度和流量。

其次,填料的选择和布置也是填料塔设计的重要一环。

不同的物质需要选择不同的填料来达到预期的传质和传热效果。

常用的填料有旋流板、环状填料、网格填料、管状填料等。

填料的布置应考虑到填料与气相和液相之间的接触面积和流动的通路。

通常,填料的布置越密集,接触面积越大,传质传热效果越好。

气液分布的优化也是设计填料塔的一个关键问题。

不同物质的分布方式也会影响填料塔的传质效果。

常用的气液分布方式有平板液面、喷洒液面、液滴液面等。

优化气液分布的方式可以使得液相和气相更加均匀地流过填料床,提高传质传热效果。

填料塔的设计还需要考虑到其安全性能。

安全是设计的首要考虑因素之一、必须保证填料塔的结构稳定,能够承受内部和外部的力。

此外,还需要设置相应的安全装置,如压力传感器、温度传感器、液位控制器等,以及紧急停机装置,以保障塔的安全运行。

总之,填料塔的设计需要综合考虑结构设计、填料选择和布置、气液分布的优化以及安全性等因素。

通过合理的设计和优化,填料塔可以实现更好的传质和传热效果,提高化工生产的效率和质量。

填料塔设计

填料塔设计

填料塔的设计本章符号说明英文字母a——填料的有效比表面积,m2/m3a t——填料的总比表面积,m2/m3a W——填料的润湿比表面积,m2/m3A T——塔截面积,m2;C——计算u max时的负荷系数,m/s;C s——气相负荷因子,m/s;d——填料直径,m;D——塔径,m;DL——液体扩散系数,m2/s;Dv——气体扩散系数,m2/s ;ev——液沫夹带量,kg(液)/kg(气);E——液流收缩系数,无因次;E T——总板效率,无因次;g——重力加速度,9.81 m/s2;h——填料层分段高度,m;HETP关联式常数;h max——允许的最大填料层高度,m;H B——塔底空间高度,m;H D——塔顶空间高度,m;H oG——气相总传质单元高度,m;H1——封头高度,m;H2——裙座高度,m;HETP——等板高度,m;k G——气膜吸收系数,kmol/(m2·s·kPa);k L——液膜吸收系数,m/s;K G——气相总吸收系数,kmol/(m2·s·kPa);l W——堰长,m;L b——液体体积流量,m3/h;L S——液体体积流量,m3/s;L W——润湿速率,m3/(m·s);m——相平衡常数,无因次;n——筛孔数目;N OG——气相总传质单元数;P——操作压力,Pa;△P——压力降,Pa;u——空塔气速,m/s;u F——泛点气速,m/su0.min——漏液点气速,m/s;u′0——液体通过降液管底隙的速度,m/s;U——液体喷淋密度,m3/(m2·h)U L——液体质量通量,kg/(m2·h)U min——最小液体喷淋密度,m3/(m2·h)U v——气体质量通量,kg/(m2·h)V h——气体体积流量,m3/h;V S——气体体积流量,kg/s;w L——液体质量流量,kg/s;w V——气体质量流量,kg/s;x——液相摩尔分数;X——液相摩尔比Zy——气相摩尔分数;Y——气相摩尔比;Z——板式塔的有效高度,m;填料层高度,m。

填料塔设计

填料塔设计

填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。

填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。

在填料的上方安装填料压板,以限制填料随上升气流的运动。

液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。

气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。

填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。

二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。

填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。

散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。

三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。

四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。

应尽量选用技术资料齐备,适用性能成熟的新型填料。

对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。

填料塔设计

填料塔设计

填料塔设计1.填料塔的一般构造填料塔可用于气体吸收等。

填料塔主要构件为:流体分布器、填料压板或床层限制板、填料、填料支撑、液体收集器,液体再分布器等。

2.填料塔的设计步骤(1)确定气、液负荷,气、液物性参数及特性气体出口从工艺需求确定以上参数(2)选择填料填料的正确选择,对塔的经济效果有重要的影响。

对于给定的设计条件,常有多种填料可供选择。

故对各类的填料作一综合比较,床层限制以便选择较理想的填料(3)计算塔径根据填料特性数据、系统物性参数及液气比等计算液泛气速,乘以适当的系数作液体收集器为设计的空塔气速,用以计算塔径;或者直接采用由经验得出的气体动能因子设计值来计算塔径。

(4)计算填料高度应用传质单元高度法或等板高度法计算填料层的总高度。

(5)计算填料层压降如果压力降超过限定值,需调整填料的类型、尺寸或降低操作气速后重复计算,直至满足条件为止。

(6)填料塔其他内构件(分布器、填料支承、再分布器、填料限制板等)的设计正确的结构是保证填料塔达到预期性能的必要条件。

结构设计包括塔体设计及塔的内构件设计两部分。

填料塔的内构件包括:液体分布装置、液体再分布装置、填料支撑装置、填料压板或床层限制板等。

这些内构件设计得是否合理是保证正常操作和达料预期性能的重要条件。

昆山源和环保科技有限公司致力于工业空气污染治理服务,为客户提供设计-设备制造-安装-售后服务的一条龙废气处理制造企业。

公司现有员工80余人,其中专业设计人员15人,年产废气处理成套设备500余套。

主导产品:废气洗涤设备、集尘设备脉冲式滤袋集尘机、废气(NOX、SO2酸、碱、VOC、PECVD硅烷等废气)、静电油烟机、浓缩转轮、ROT (储热式热力焚化炉)、NMP回收装置, FRP、PP风机、风管配制(FRP、PP、PVC、铁件)等环保相关产品。

产品广泛应用于太阳能、PCB、橡胶、半导体、电子、电镀、化工、计算机、机械、卫浴、涂料、树脂、铸造、DOP、VOC废气,抛光打磨等行业。

高效规整填料塔的设计及精馏节能技术

高效规整填料塔的设计及精馏节能技术

02
03
自适应控制
智能控制
根据精馏过程的实时数据,自动 调整控制参数,使系统始终处于 最佳运行状态。
结合人工智能和机器学习技术, 实现精馏过程的智能控制和优化。
案例分析:成功降低能耗
1 2
案例一
某化工厂通过采用热能回收技术和优化操作条件, 成功将精馏过程的能耗降低了20%。
案例二
某石化企业采用新型填料和塔内件对精馏塔进行 改造,传质效率提高了30%,能耗降低了15%。
02 高效规整填料技术
规整填料概念及优势
规整填料定义
规整填料是一种在塔内按一定几何构形均匀排列,整齐堆砌的填料,具有特定的 几何形状和尺寸。
规整填料优势
相较于散装填料,规整填料具有更高的传质效率和更低的压降,能够提供更好的 流体分布和更大的比表面积。
高效规整填料种类介绍
金属规整填料
陶瓷规整填料
维护保养周期及内容
制定合理的维护保养计划, 定期对填料塔进行全面检 查和维护保养。
检查并更换损坏的液体分 布器、气体分布器和密封 件等易损件。
清洗填料表面的污垢和沉 积物,保持填料的清洁和 良好的传质性能。
对设备的腐蚀情况进行检 查,并采取必要的防腐措 施。
故障诊断与排除方法
01 02 03 04
热能回收
通过热交换器回收塔顶和塔底的余热,用于预热原料 或产生蒸汽,从而减少热能消耗。
优化操作条件
通过调整操作参数,如温度、压力、回流比等,使精 馏过程在最佳状态下运行,降低能耗。
新型填料与塔内件
采用高效规整填料和新型塔内件,提高传质效率,降 低能耗。
先进控制策略在精馏中应用
01
模型预测控制
通过建立精馏过程的数学模型, 预测未来状态并优化控制策略, 实现节能降耗。

填料塔的设计

填料塔的设计
4、液体收集及再分布装置
液体再分布器:截锥式分布器(最常用)——无液体收集作用; 液体收集器:斜板式液体收集器,与液体再分布器联用。
(二)塔内件的设计
1、液体分布器设计的基本要求 (1)液体分布均匀——足够的分布点密度(见表19,20);分布点的 几何均匀;降液点间的流量均匀性。 (2)操作弹性大——液体分布器的操作弹性为2~4 (3)自由截面大——自由截面积为50%~70%。 (4)其他——结构紧凑、占空间小、制作容易、调整和维修方便。
Z' (1.2~1.5)Z
2、填料层的分段
因液体向下流动时,通过一定的距离,易发生偏集流现象,造成气液 分布不均,降低传质效率。设计中,应每隔一定的填料层高度,进行分段, 同时加装液体再分布器。
(1)散装填料的分段 以h/D(分段高度与塔径之比)作为基本分段比例,h max 为允许最
大填料层高度。见表16。
ln(H ETP)h1.292lnL1.47lnL 式 中 :L 液 体 表 面 张 力 ,N /m ;L 液 体 黏 度 , Pas
h 常 数 , 其 值 见 表 15。
注 : 该 公 式 适 用 范 围 :
10-3 L 36*103N/m ;0.08*103 L 0.83*103Pas
上述方法计算的填料层高度,在实际应用 中应留有一定的余量,其经验公式为:
注意:用埃克特通用关联式计算压降时,填料因子为湿填料因子,简称压 降填料因子。因其与液体喷淋密度有关,为工程计算方便,常采用与液体 喷淋密度无关的压降填料因子平均值。部分散装填料因子压降填料因子平 均值见表18 :
2、由填料压降曲线查得
(二)规整填料压降的计算
1、由填料的压降关联式计算
P/Z=(uV)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

( 4 )弧鞍填料 弧鞍填料属鞍形填料的一种,其形状如同马鞍,一般 采用瓷质材料制成。弧鞍填料的特点是表面全部敞开,不分内外,液体 在表面两侧均匀流动,表面利用率高,流道呈弧形,流动阻力小。其缺 点是易发生套叠,致使一部分填料表面被重合,使传质效率降低。弧鞍 填料强度较差,容易破碎,工业生产中应用不多。 ( 5 )矩鞍填料 将弧鞍填料两端的弧形面改为矩形面,且两面大小 不等,即成为矩鞍填称若鞍填料堆积时不会套叠,液体分布较均匀。矩 鞍填料一般采用瓷质材料制成,其性能优于拉西环。目前,国内绝大多 数应用瓷拉西环的场合,均已被瓷矩鞍填料所取代。 (6)环矩鞍填料 是兼顾环形和鞍形结构特点而设计出的一种新型 填料,该填料一般以金属材质制成,故又称为金属环矩鞍填料。环矩鞍 填料将环形填料和鞍形填料两者的优点集于一体,其综合性能能优于鲍 尔环和阶梯环,是工业应用最为普遍的一种金属散装填料。
表 5-8 工业常用吸收剂
3 .操作温度与压力的确定
( 1 )操作温度的确定 由吸收过程的气液平衡关系可知,温度 降低可增加组分的溶解度,即低温有利于吸牧,但操作温度的低限 应由吸收系统的具体情况而定。例如水吸收 CO2的操作中用水量极 大,吸收温度主要由水温决定,而水温又取决于大气温度,故应考 虑夏季循环水温高时补充一定量地下水以维持适宜温度。
② 根据设计任务和工艺要求,合理地选择填料; ③ 确定塔径、填料层高度等工艺尺寸; ④ 计算填料层的压降; ⑤ 进行填料塔塔内件的设计与选型
填料塔总体结构简图
1-气体出口 2-液体入口 3-液体分布装置 4-塔壳 5-填料 6-液体再分布器 7-填料 8-支承栅板 9气体入口 10-液体出口
2 .吸收剂的选择
吸收过程是依靠气体溶质在吸收剂中的溶解来实现的,因此,吸收剂性能的优劣,
是决定吸收操作效果的关键之一,选择吸收剂时应着重考虑以下几方面。 1、溶解度 需用量。 吸收剂对溶质组分的溶解度要大,以提高吸收速率并减少吸收剂的
2、选择性
吸收剂对溶质组分要有良好地吸收能力,而对混合气体中的其他组
操作温度下吸收剂的蒸气压要低,以减少吸收和再生过程中吸
分不吸收或吸收Байду номын сангаас微,否则不能直接实现有效的分离。 3、挥发度要低 收剂的挥发损失。
4、粘度
吸收剂在操作温度下的粘度越低,其在塔内的流动性越好,有助于传
质速率和传热速率的提高 5、其他所选用的吸收剂宜尽可能满足无毒性、无腐蚀性、不易燃易爆、不发泡、 冰点低、价廉易得以及化学性质稳定等要求:一般说来,任何一种吸收剂都难以满 足以上所有要求,选用时应针对具体情况和主要矛盾,既考虑工艺要求又兼顾到经 济合理性。
金属板波纹填料是板波纹填料的主要形式。该填料的波纹板片 上冲压有许多Φ4mm-Φ6mm的小孔,可起到粗分配板片上的液体、 加强横向混合的作用。波纹板片上轧成细小沟纹,可起到细分配板 片上的液体、增强表面润湿性能的作用。金属孔板波纹填料强度高, 耐腐蚀性强,特别适用于大直径塔及气液负荷较大的场合。
波纹填料的优点是结构紧凑,阻力小,传质效率高,处理能力大, 比表面积大。其缺点是不适于处理粘度大、易聚合或有悬浮物的物 料,且装卸、清理困难,造价高。
2.规整填料
规整填料是按一定的几何图形排列,整齐堆砌的填料。规整填料 种类很多,根据其几何结构可分为格栅填科、波纹填料、脉冲填料等, 工业上应用的规整填料绝大部分为波纹填料。波纹填料按结构分为网 波纹填料和板波纹填料两大类.可用淘瓷、塑料、金属等材质制造。 加工中,波纹与塔轴的倾角有300和450两种,倾角为300以代号Bx (或x)表示,倾角为45 0以代号CY(或Y)表示。 金属丝网波纹填料是网波纹填料的主要形式,是由金属丝网制成 的。其特点是压降低、分离效率高,特别适用于精密精馏及真空精馏 装置,为难分离物系、热敏性物系的精馏提供了有效的手段。尽管其 造价高,但因性能优良仍得到了广泛的应用。
(3)填料层的压降 填料层的压降是填料的主要应用性能,填料层的 压降愈低,动力消耗越低,操作费用愈小。选择低压降的填料对热敏性物 系的分离尤为重要。比较填料的压降有两种方法,一是比较填料层单位高 度的压降△P/Z;另一是比较填料层单位传质效率的比压降 △P/NT.填料 层的压降可用经验公式计算,亦可从有关图表中查出
规整填料
Corrugated Metal Plates Packings 6400金属板波纹规整填料
300脉冲规整填料
各种陶瓷规整填料
(二)填料的选择
填料的选择包括确定填料的种类、规格及材质等。所 选填料既要满足生产工艺的要求,又要使设备投资和操 作费月较低. 1 .填料种类的选怪 填料种类的选择要考虑分离工艺的要求,通常考虑 以下几个方面。
通过课程设计,主要提高学生以下能力:
熟悉查阅文献资料、收集有关数据、正确选用公式。当缺乏必要 数据时,尚需要自己通过实验测定或到生产现场进行实际查定。 在兼顾技术上先进性、可行性,经济上合理性的前提下,综合分 析设计任务要求,确定化工工艺流程,进行设备选型,并提出保证过 程正常、安全运行所需的检测和计量参数,同时还要考虑改善劳动条 件和环境保护的有效措施。 准确而迅速地进行过程计算及主要设备的工艺设计计算。 用精练的语言、简洁的文字、清晰的图表来表达自己的设计思想 和计算结果。
(4)填料的操作性能 填料的操作性能主要指操作弹性、抗污堵性及 抗热敏性等。所选填料应具有较大的操作弹性,以保证塔内气液负荷发生 波动时维持操作稳定。同时,还应具有一定的抗污堵、抗热敏能力,以适 应物料的变化及塔内温度的变化。 此外,所选的填料要便于安装、拆卸和检修。
2 .填料规格的选择
通常,散装填料与规整填料的规格表示方法不同,选择的方 法亦不尽相同,现分别加以介绍。 ( l )散装填料规格的选择 散装填料的规格通常是指填料的公 称直径。工业塔常用的散装填料主要有DN16、DN25、DN38、DN50、 DN76 等几种规格。同类填料,尺寸越小,分离效率越高,但阻力 增加,通量减小,填料费用也增加很多。而大尺寸的填料应用于小 直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率 降低。因此,对塔径与填料尺寸的比值要有一规定,常用填料的塔 径与填料公称直径比值D/d的推荐值列于表 5-9 。
规整填料 规整填料一般由波纹状的金属网丝或多孔板重叠而成。 使用时根据填料塔的结构尺寸,叠成圆筒形整块放入塔内或分块拼成圆 筒形在塔内砌装。 优点:空隙大,故生产能力大,压降小,且因流道规则,所以只要液体 初始分布均匀,则在全塔中分布也均匀,因此规整填料几乎无放 大效应,通常具有很高的传质效率。 缺点:造价较高,易堵塞难清洗,因此工业上一般用于较难分离或分离 要求很高的情况。
( 3 )吸收剂部分再循环操作
在逆流操作系统中,用泵将吸收塔排出液体的一部分冷却后与 补充的新鲜吸收剂一同送回塔内,即为部分再循环操作。通常用于 以下情况:当吸收剂用量较小,为提高塔的液体喷淋密度;对于非 等温吸收过程,为控制塔内的温升.需取出一部分热量。该流程特 别适宜于相平衡常数m值很小的情况,通过吸收液的部分再循环, 提高吸收剂的使用效率。应予指出,吸报剂部分再循环操作较逆流 操作平均推动力要低,且需设置循环泵,操作费用增加。
( 2 )操作压力的确定 由吸收过程的汽液平衡关系可知,压力 升高可增加溶质组分的溶解度,即加压有利于吸收。但随着操作压 力的升高,对设备的加工制造要求提高,且能耗增加,因此需结合 具体工艺条件综合考虑,以确定操作压力。
二、填料的类型与选择
塔填料(简称为填料)是填料塔中气液接触的 基本构件,其性能的优劣是决定填料塔操作性能的 主要因素,因此,塔填料的选择是填科塔设计的重 要环节。
拉西环填料 拉西环填料是最早提出的工业填料, 其结构为外径与高度相等的圆环,可用陶瓷、塑料、金属 等材质制造。拉西环填料的气液分布较差,传质效率低, 阻力大,通量小,目前工业上已很少应用。
几种实体填料的形状
几种网体填料的形状
拉西环
勒辛环
鲍尔环
金属环矩鞍
阶梯环
弧鞍环
混堆填料
( 2 )鲍尔环填料 鲍尔环是在拉西环的基础上改进而得。鲍尔环由 于环壁开孔,大大提高了环内空间及环内表面的利用率.气流阻力小, 液体分布均匀。与拉西环相比,其通量可增加 50 %以上.传质效率提高 30%左右。鲍尔环是目前应用较广的填料之一。 ( 3 )阶梯环填料 阶梯环是对鲍尔环的改进,与鲍尔环相比,阶梯 环高度减少了一半,并在一端增加了一个锥形翻边。这样不但增加了填 料间的空隙,同时成为液体沿填料表面流动的汇集分散点,可以促进液 膜的表面更新,有利于传质效率的提高。阶梯环的综合性能优于鲍尔环, 成为目前所使用的环形填料中最为优良的一种。
一、设计方案的确定
(一)填料吸收塔设计方案的确定
1.装置流程的确定
吸收装置的流程主要有以下几种: (1)逆流操作 气相自塔底进人由塔顶排出,液相自塔顶进人 由塔底排出。逆流操作的特点是,传质平均推动力大,传质速率快, 分离效率高,吸收剂利用率高。 (2)并流操作 气液两相均从塔顶流向塔底。并流操作的特点 是,系统不受液流限制,可提高操作气速,以提高生产能力。并流 操作通常用于以下情况:易溶气体的吸收或处理的气体不需吸收很 完全;吸收剂用量特别大,逆流操作易引起泛液。
( 4 )多塔串联操作 若设计的填料层高度过大,或由于所处理物理 等原因需经常清理填料,为便于维修,可把填料层分装在几个串联的塔 内,每个吸收塔通过的吸收剂和气体量都相等,即为多塔串联操作。此 种操作因塔内需留较大空间,输液、喷淋、支承板等辅助装置增加,使 设备投资加大。 ( 5 )串联一并联混合操作 若吸收过程处理的液量很大,如果用 通常的流程,则液体在塔内的喷淋密度过大,操作气速势必很小(否则 易引起塔的液泛),塔的生产能力很低。实际生产中可采用气相作串联、 液相作并联的混合流程;若吸收过程处理的液量不大而气相流量很大时, 可采用液相作串联、气相作并联的混合流程总之,在实际应用中,应根 据生产任务、工艺特点,结合各种流程的优缺点选择适宜的流程布置。
相关文档
最新文档