海淀区2019年第二学期期末八年级数学试题及答案
北京市海淀区2018-2019年八年级下期末学业数学试题含答案
海淀区20 1 8年八年级学业发展水平评价数学一、选择题(本题共30分,每小题3分) 在下列各题的四个备选答案中,只有一个.是正确的1 •下列各点中,在直线y= 2x 上的点是A • (1 , 1)B • (2 , 1)C • (1 , 2)D . (2 , 2)2.如图,在△ ABC 中,/ ACB= 90,点D 为AB 的中点,若 AB =4,则CD 的长为6. 如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到 一个正方形,剪口与折痕所成锐角的大小为 A. 300 B . 450 C . 600 D . 90°7. 小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小3•以下列长度的二条线段为边,能组成直角二角形的是 A. 6,7,8B.2,3,4C.3,4,6 D .6, 8. 10A . 52=2 .3B . 3.3-.,3 =3C . 2+七=2、、3 D.5. 如图,一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加1.5 m/s ,则小球速度v (单位:m/s )关于时间t(A. 2 B . 3 C . 4 D . 5单位:s )的函数图象是张离家的距离s (单位:米)与时间t (单位:分钟)的对应关系如图所示,则文具店与小张家的距离为A. 600米B . 800 米C. 900米D . 1000米8. 为了了解班级同学的家庭用水情况,小明在全班50名同学中,随机调查了10名同学家庭中一年的月平均用水量(单位:吨),绘制了条形统计图如图所示.这10名同学家庭中一年的月平均用水量的中位数是A. 6 B . 6.5C. 7.5 D . 89. 如图,在平面直角坐标系xOy中,菱形ABCD勺顶点D在x轴上,边BC在y轴上,若点A的坐标为(12 ,13),则点C的坐标是A. (0,-5)B . (0,-6)C. (0,-7)D . (0,-8)10. 教练记录了甲、乙两名运动员在一次1500米长跑比赛中的成绩,他们的速度v (单位:米/秒)与路程s (单位:米)的关系如图所示,下列说法错误的是A. 最后50米乙的速度比甲快B. 前500米乙一直跑在甲的前面C. 第500米至第1450米阶段甲的用时比乙短D. 第500米至第1450米阶段甲一直跑在乙的前面二、填空题(本题共18分,每小题3分)11. 如图,在△ ABC中, D, E分别为AB AC的中点,若BC=10, 则DE 的长月平均用加为.12. 如图,在平面直角坐标系xOy中,若4点的坐标为(1, 73 ), 2非1・再)则OA的长为Ol 1 2x13. 若A(2, y i), B(3,範是一次函数y=-3x+1的图象上的两个点则y i与y2的大小关系是y i亠 2.(填“ >”,“二”或“<”)14. 甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较小的是•(填“甲”或“乙”)15•《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺•引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺•牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽•问绳索长是多少?设绳索长为x尺,可列方程为.16. 计算机可以帮助我们又快又准地画出函数的图象•用“几何画板”软件画出的函数y=x2(x-3 )和y=x-3的图象如图所示.根据图象可知方程x2(x-3 )=x-3的解的个数为_—若m n 分别为方程x2(x-3 )=1和x-3=1的解,则m n的大小关系是三、解答题(本题共22分,第17-19题每小题4分,第20-21题每小题5 分)17. 计(.8-、2 )x算:18. 如图,四边形ABC助平行四边形,E, F是直线BD上两点,且BE=DF,连接AF, CE19. 已知x = 2 - -、3, y = 2 • 3,求代数式x2 xy y2的值20. 直线h,过点A( -6,0),且与直线12: y=2x相交于点B(m, 4)(1) 求直线h的解析式;⑵过动点P(n,0)且垂直于x轴的直线与h,J的交点分别为C, D,当点C位于点D上方时,直接写出n的取值范围.y*4-寸2| 2 1 4 Jf-6 -5 -4^-3 -2 -1 & -1亠丿*21. 如图,口ABC冲,以B为圆心,BA的长为半径画弧,交BC于点F,作/ ABC勺角平分线,交AD于点E,连接EF.⑴求证:四边形ABFE是菱形;⑵若AB=4 / ABC= 60,求四边形ABFE的面积四、解答题(本题共14分,第22题8分,第23题6分)22. 近年来,越来越多的人们加入到全民健身的热潮中来。
2018-2019学年北京市海淀区八年级(下)期末数学试卷(解析版)
2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x 2+2x +k ﹣4=0有实数根 (1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+6k ﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB =AD =5m ,∠A =60°,BC =12m ,∠ABC =150°小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.2018-2019学年北京市海淀区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.4【分析】先把方程化为x2=4,方程两边开平方得到x=±=±2,即可得到方程的两根.【解答】解:移项得x2=4,开方得x=±2,∴x1=2,x2=﹣2.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0),ax2=b(a,b同号且a≠0),(x+a)2=b(b≥0),a (x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”;2.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.10【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB===10,故选:D.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.3.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直【分析】根据平行四边形的判定定理逐个判断即可.【解答】解:A、两组对边分别平行的四边形是平行四边形,故本选项符合题意;B、一组对边平行且另一组对边相等的四边形是等腰梯形,不是平行四边形,故本选项不符合题意;C、两组邻边相等的四边形不一定是平行四边形,故本选项不符合题意;D、对角线互相平分的四边形才是平行四边形,故本选项不符合题意;故选:A.【点评】本题考查了平行四边形的判定定理,能熟记平行四边形的判定定理的内容是解此题的关键,注意:平行四边形的判定定理有:①两组对边分别平行的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③两组对角分别平行的四边形是平行四边形,④一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.【分析】设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.根据函数的意义即可求出答案.【解答】解:显然A、B、D选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;C选项对于x取值时,y都有2个值与之相对应,则y不是x的函数;故选:C.【点评】本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和5【分析】根据平均数和众数的概念求解.【解答】解:这组数据的平均数是:(2+6+4+5+4+3)=4;∵4出现了2次,出现的次数最多,∴这组数据的众数是4;故选:B.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.6.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【解答】解:x2﹣8x=1,x2﹣8x+16=17,(x﹣4)2=17.故选:D.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小【分析】先根据直线y=x+2判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=x+2,k=>0,∴y随x的增大而增大,又∵﹣3<1,∴y1<y2.故选:A.【点评】本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y 随x的增大而增大;当k<0,y随x的增大而减小.8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.2【分析】利用正方形的性质得到OB=OC=BC=1,OB⊥OC,则OE=2,然后根据勾股定理计算BE的长.【解答】解:∵正方形ABCD的边长为,∴OB=OC=BC=×=1,OB⊥OC,∵CE=OC,∴OE=2,在Rt△OBE中,BE==.故选:C.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.9.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.14【分析】经过观察5组自变量和相应的函数值得(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,(2,12)不符合,即可判定.【解答】解:∵(﹣1,2),(0,5),(1,8),(3,14)符合解析式y=3x+5,当x=2时,y=11≠12∴这个计算有误的函数值是12,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.10.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②【分析】根据条形统计图中的信息对4个结论矩形判断即可.【解答】解:①2012年到2018年,我国博物馆参观人数持续增,正确;②10.08×(1+)=10.45,故2019年末我国博物馆参观人数估计将达到10.45亿人次;故错误;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;正确;④设平均年增长率为x,则8.50(1+x)2=10.08,解得:x=0.0889,故2016年到2018年,我国博物馆参观人数平均年增长率是8.89%,故错误;故选:A.【点评】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=110°.【分析】直接利用平行四边形的对角相等即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D=110°.故答案为:110.【点评】此题主要考查了平行四边形的性质,正确得出对角相等是解题关键.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是甲.【分析】根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【解答】解:甲==8,乙==8,=[(8﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2]=0.4,=[(9﹣8)2+(8﹣8)2+(7﹣8)2+(9﹣8)2+(7﹣8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点评】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=9.【分析】利用判别式的意义得到△=62﹣4m≥0,解不等式得到m的范围,在此范围内取m=0即可.【解答】解:△=62﹣4m≥0,解得m≤9;当m=0时,方程变形为x2+6x=0,解得x1=0,x2=﹣6,所以m=9满足条件.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是南偏东30°.【分析】由题意得:P与O重合,得出OA2+OB2=AB2,由勾股定理的逆定理得出△PAB 是直角三角形,∠AOB=90°,求出∠COP=30°,即可得出答案.【解答】解:由题意得:P与O重合,如图所示:OA=12nmile,OB=16nmile,AB=20nmile,∵122+162=202,∴OA2+OB2=AB2,∴△PAB是直角三角形,∴∠AOB=90°,∵∠DOA=60°,∴∠COP=180°﹣90°﹣60°=30°,∴“长峰”号航行的方向是南偏东30°,故答案为:南偏东30°.【点评】此题主要考查了直角三角形的判定、勾股定理的逆定理及方向角的理解及运用.利用勾股定理的逆定理得出△PAB为直角三角形是解题的关键.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为(38﹣x)2=38x.【分析】设AD为xm,根据“矩形的长边的平方等于短边与其周长一半的积”列出列出方程即可.【解答】解:设AD的长为x米,则AB的长为(38﹣x)m,根据题意得:(38﹣x)2=38x,故答案为:(38﹣x)2=38x.【点评】考查了由实际问题抽象出一元二次方程的知识,解题的关键是表示出另一边的长,难度不大.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为±.【分析】根据菱形的性质知AB=5,由一次函数图象的性质和两点间的距离公式解答.【解答】解:令y=0,则x=﹣,即A(﹣,0).令x=0,则y=3,即B(0,3).∵将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,∴AB=5,则AB2=25.∴(﹣)2+32=25.解得k=±.故答案是:±.【点评】考查了菱形的性质和一次函数图象与几何变换,解题的关键是根据菱形的性质得到AB=5.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)【分析】(1)根据配方法的步骤,可得答案;(2)根据公式法,可得答案.【解答】解:(1)移项,得x2+2x=3配方,得x2+2x+1=3+1即(x+1)2=3开方得x+1=±2,x1=1,x2=﹣3;(2)a=2,b=5,c=﹣1,△=b2﹣4ac=25﹣4×2×(﹣1)=33>0,x==,x1=,x2=.【点评】本题考查了解一元二次方程,配方得出完全平方公式是解题关键.18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.【分析】(1)根据函数y=kx+b的图象与直线y=2x平行,且经过点A(1,6),即可得出k和b的值,即得出了函数解析式.(2)先求出与x轴及y轴的交点坐标,然后根据三角形面积公式求解即可.【解答】解:(1)∵函数y=kx+b的图象与直线y=2x平行,∴k=2,又∵函数y=2x+b的图象经过点A(1,6),∴6=2+b,解得b=4,∴一次函数的解析式为y=2x+4;(2)在y=2x+4中,令x=0,则y=4;令y=0,则x=﹣2;∴一次函数y=kx+b的图象与坐标轴交于(0,4)和(﹣2,0),∴一次函数y=kx+b的图象与坐标轴围成的三角形的面积为×2×4=4.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,关键是正确得出函数解析式及坐标与线段长度的转化.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形)【分析】(1)根据要求画出图形即可.(2)根据有一个角是直角的平行四边形是矩形即可证明.【解答】解:(1)如图,矩形ABCD即为所求.(2)理由:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形(对角线互相平分的四边形是平行四边形)∵∠ABC=90°,∴▱ABCD为矩形(有一个角是直角的平行四边形是矩形).故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形【点评】本题考查作图﹣复杂作图,矩形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.【分析】(1)根据判别式的意义得到△=22﹣4(k﹣4)≥0,然后解不等式即可;(2)利用方程解的定义得到k2+3k=4,再变形得到2k2+6k﹣5=2(k2+3k)﹣5,然后利用整体代入的方法计算.【解答】解:(1)△=22﹣4(k﹣4)≥0,解得k≤5;(2)把x=k代入方程得k2+2k+k﹣4=0,即k2+3k=4,所以2k2+6k﹣5=2(k2+3k)﹣5=2×4﹣5=3.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.【分析】直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【解答】解:同意小明的说法.理由:连接BD,∵AB=AD=5m,∠A=60°,∴△ABD是等边三角形,∴BD=5m,∠ABD=60°,∵∠ABC=150°,∴∠DBC=90°,∵BC=12m,BD=5m,∴DC ==13(m ),答:CD 的长度为13m .【点评】此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD 是等边三角形是解题关键.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查 七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99 八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91 整理数据如下成绩 人数 年级 50≤x ≤5960≤x ≤6970≤x ≤7980≤x ≤8990≤x ≤100七年级 0 1 10 1 a 八年级 12386分析数据如下年级 平均数 中位数 众数 方差 七年级 84.2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题 (1)a =8 b = 88.5 ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有180,280人.【分析】(1)从调查的七年级的人数20减去前几组的人数即可,将八年级的20名学生的成绩排序后找到第10、11个数的平均数即是八年级的中位数,(2)从中位数、众数、方差进行分析,调查结论,(3)用各个年级的总人数乘以样本中优秀人数所占的比即可.【解答】解:(1)a=20﹣1﹣10﹣1=8,b=(88+89)÷2=88.5故答案为:8,88.5.(2)八年级成绩较好,八年级成绩的众数、中位数比七年级成绩相应的众数、中位数都要大,说明八年级成绩的集中趋势要高,方差八年级较小,说明八年级的成绩比较稳定.(3)七年级优秀人数为:400×=180人,八年级优秀人数为:400×=280人,故答案为:180,280.【点评】考查频数分布表、众数、中位数、平均数、方差的意义及计算方法,明确各自的意义和计算方法是解决问题的前提.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.【分析】(1)根据平行四边形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据直角三角形斜边中线可得:OF=AC,利用勾股定理计算AC的长,可得结论.【解答】(1)证明:∵在▱ABCD中,∴AD∥BC且AD=BC,∴∠ADF=∠BCE,在△ADF和△BCE中,∵∴△ADF≌△BCE(SAS),∴AF=BE,∠AFD=∠BEC=90°,∴AF∥BE,∴四边形ABEF是矩形;(2)解:由(1)知:四边形ABEF是矩形,∴EF=AB=6,∵DE=2,∴DF=CE=4,∴CF=4+4+2=10,Rt△ADF中,∠ADF=45°,∴AF=DF=4,由勾股定理得:AC===2,∵四边形ABCD是平行四边形,∴OA=OC,∴OF=AC=.【点评】本题考查了矩形的判定和性质,平行四边形的性质,勾股定理,正确的识别图形是解题的关键.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.【分析】(1)把A点坐标代入y=x﹣2中,求得m的值,再把求得的A点坐标代入y =kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN ≤2PM,列出n的不等式,再求得结果.【解答】解:(1)把A(3,m)代入y=x﹣2中,得m=3﹣2=1,∴A(3,1),把A(3,1)代入y=kx+7中,得1=3k+7,解得,k=﹣2;(2)由(1)知,直线y=kx+7为y=﹣2x+7,根据题意,作出草图如下:∵点P(n,n),∴M(n+2,n),N(n,﹣2n+7),∴PM=2,PN=|3n﹣7|,∵PN≤2PM,∴|3n﹣7|≤2×2,∴1≤n≤,∵P与N不重合,∴n≠﹣2n+7,∴n≠,综上,1≤n≤,且n≠【点评】本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n的代数式表示PM与PN的长度.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.【分析】(1)①根据要求画出图形即可解决问题.②结论:DE=BC.连接OD交BC于F,连接AF.证明AF为Rt△ABC斜边中线,为△ODE的中位线,即可解决问题.(2)分两种情形:如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.证明△BMA≌△BMO(AAS),推出AM=OM,∠BMO=∠BMA=120°,推出∠AMO=120°,即可解决问题.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.分别求解即可.【解答】解:(1)①补全图形如图所示:②结论:DE=BC.理由:如图一中,连接OD交BC于F,连接AF.∵OC∥BD,∴∠FCO=∠FBD,∵∠CFO=∠BFD,OC=BD,∴△FCO≌△FBD(AAS),∴BF=CF,∵OA=AE,∵DE=2AF,∵∠BAC=90°,BF=CF,∴BC=2AF,∴DE=BC.(2)如图二中,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由(1)可知:AF为Rt△ABC斜边中线,为△ODE的中位线,∵AB=AC,∴AF垂直平分线段BC,∴MB=MC,∵∠OCB=30°,∠OBC=15°,∴∠MBC=∠MCB=30°,∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∠MBO=∠MBA=15°,∵∠BAM=∠BOM=45°,BM=BM,∴△BMA≌△BMO(AAS),∴AM=OM,∠BMO=∠BMA=120°,∴∠AMO=120°,∴∠MAO=∠MOA=30°,∴∠AED=∠MAO=30°.如图三中,当点O在△ABC外部时,当点O在△ABC内部时,连接OD交BC于F,连接AF,延长CO交AF于M.连接BM.由∠BOM=∠BAM=45°,可知A,B,M,O四点共圆,∴∠MAO=∠MBO=30°﹣15°=15°,∵DE∥AM,∴∠AED=∠MAO=15°,综上所述,满足条件的∠AED的值为15°或30°.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,直角三角形斜边中线的性质,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
北京市海淀区2018-2019学年初二第二学期期末数学测试卷及参考答案
北京市海淀区2019 年八年级学业发展水平评价数学试卷及参考答案一、选择题(本题共30 分,每小题 3 分)在下列各题的四个选项中,只.有.一.个.是符合题意的.1.下列实数中,是方程x2 - 4 = 0 的根的是A. 1B. 2C. 3D. 42019.72.如图,在Rt△ABC 中,A.7B.8C.9D.10∠C = 90 °,BC = 6 ,AC = 8 ,则AB 的长度为3.在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4.下列各曲线中,不表示y 是x 的函数的是A B C D5.数据2, 6, 4, 5, 4, 3 的平均数和众数分别是A.5 和4B.4 和4C.4.5 和4D.4 和55 CO 6. 一元二次方程 x 2 - 8x -1 = 0 经过配方后可变形为A. (x + 4)2 = 15B. (x + 4)2 = 17C. (x - 4)2 = 15D. (x - 4)2 = 177.若点 A (-3, y 1 ), B (1, y 2 ) 都在直线 y=x + 2 上,则 y 1 与 y 2 的大小关系是A. y 1<y 2B. y 1=y 2C. y 1>y 2D. 无法比较大小8.如图,正方形 ABCD 的边长为则 BE 的长度为A. B. 102, 对角线 AC , BD 交于点 O , E 是 AC 延长线上一点, 且CE =CO .EDC.D. 2AB9.对于一次函数 y = kx + b (k , b 为常数),下表中给出 5 组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018 年我国博物馆参观人数统计如下:2 35小明研究了这个统计图,得出四个结论:① 2012 年到 2018 年,我国博物馆参观人数持续增长;② 2019 年末我国博物馆参观人数估计将达到 10.82 亿人次;③ 2012 年到 2018 年,我国博物馆参观人数年增幅最大的是 2017 年;④ 2016 年到 2018 年,我国博物馆参观人数平均年增长率超过 10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共 18 分,每小题 3 分) 11.如图,在□ABCD 中,∠B =110°,则∠D =°.A12. 八年级(1)班甲、乙两个小组的 10 名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组.13. 若关于 x 的一元二次方程 x26x m 0 有实数根, 且所有实数根均为整数,请写出一个符合条件的常数 m 的值:m =.博物馆参观人数:亿人次2018年2017年2016年2015年2014年2013年2012年425.646 6.387.817.188 8.5010.089.721210 2012-2018年全国博物馆参观人数统计图14. 如图,某港口 P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口 P ,各自沿固定方向航行,“远洋”号每小时航行 12 n mile ,“长峰”号每小时航行 16 n mile ,它们离开港口 1 小时后,分别到达 A ,B 两个位置,且 A B =20 n mile ,已知“远洋”号沿着北偏东 60°方向航行,那么“长峰”号航行的方向是.15. 若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 38 m 的篱笆围成一个“优美矩形”形状的花园 ABCD ,,其中边 AB , AD 为篱笆,且 AB 大于 AD . 设 AD 为 x m, 依题意可列方程为.16. 在平面直角坐标系 xOy 中,直线 y = kx + 3 与 x ,y 轴分别交于点 A ,B ,若将该直线向右平移 5 个单位,线段 A B 扫过区域的边界恰好为菱形,则 k 的值为.三、解答题(本题共 26 分,第 17 题 8 分,第 18,20 题各 5 分,第 19,21 题各 4 分)17. 解方程:(1) x 2 - 2x - 3 = 0 ;(2) 2x 2 + 3x -1 = 0 .18. 在平面直角坐标系 xOy 中,一次函数 y =kx +b 的图象与直线 y =2x 平行,且经过点 A (1,6).(1) 求一次函数 y =kx +b 的解析式;(2) 求一次函数 y =kx +b 的图象与坐标轴围成的三角形的面积.19. 下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程. 已知:如图,在 Rt △ABC 中,∠ABC =90°,O 为 AC 的中点. 求作:四边形 ABCD ,使得四边形 ABCD 为矩形.作法:①作射线 BO ,在线段 BO 的延长线上取点 D ,使得 DO =BO ;②连接 AD ,CD ,则四边形 ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2) 完成下面的证明.证明:∵点 O 为AC 的中点,∴ AO =CO .又∵ DO =BO ,∴四边形 A BCD 为平行四边形( )(填推理的依据).D C∵∠ABC =90°,∴□ABCD 为矩形()(填推理的依据).20.关于x 的一元二次方程x2 + 2x +k - 4 = 0 有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+ 6k - 5 的值.21.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5 m,∠A=60°,BC=12 m,∠ABC=150°.小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.B CAD四、解答题(本题共13 分,第22 题7 分,第23 题 6 分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400 名学生参加了这次竞赛, 现从七、八年级各随机抽取20 名学生的成绩进行抽样调查.收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 5089 68 65 88 77 87 89 88 92 91整理数据如下:人数年级七年级分析数据如下:(1)a= ,b= ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合;理性)(3)学校对知识竞赛成绩不低于80 分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.如图,在□ABCD 中,对角线AC,BD 交于点O,过点B 作BE⊥CD 于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF 是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF 的长度.五、解答题(本题共13 分,第24 题 6 分,第25 题7 分)24.如图,在平面直角坐标系xOy 中,直线y =kx + 7 与直线y =x - 2 交于点A(3, m).(1)求k, m 的值;(2)已知点P (n, n),过点P 作垂直于y 轴的直线与直线y =x - 2 交于点M ,过点P 作垂直于x 轴的直线与直线y =kx + 7 交于点N (P 与N 不重合). 若PN ≤ 2PM ,结合图象,求n 的取值范围.25. 在 Rt △ABC 中, ∠BAC = 90︒ ,点 O 是△ABC 所在平面内一点,连接 OA ,延长 OA 到点 E ,使得AE =OA ,连接 OC ,过点 B 作 BD 与 OC 平行,并使∠DBC =∠OCB ,且 BD =OC ,连接 DE .(1) 如图一,当点 O 在 Rt △ABC 内部时.① 按题意补全图形;② 猜想 DE 与 BC 的数量关系,并证明.图一(2) 若 A B = AC (如图二), 且∠OCB = 30︒, ∠OBC = 15︒ ,求∠AED 的大小.图二备用图备用图北京市海淀区2019 年八年级学业发展水平评价数学试卷及参考答案一、选择题二、填空题11.11012.甲13.0(答案不唯一)14.南偏东 30°15.(38 -x)2= 38x (无需写成一般式)16 . ±3(填对一个得 2 分,填对两个得 3 分,含有错误答案得 0 分)4三、解答题17.解:(1)x2 - 2x - 3 = 0 ;解法一:x2 - 2x - 3 = 0x2 - 2x = 3x2 -2x +1 = 4(x -1)2 = 4 x -1 =±2…………………………………………………………………………1分………………………………………………………………………………2分………………………………………………………………………………3分x1 = 3,x2=-1………………………………………………………………………………4 分解法二:x2 -2x -3 =0 (x -3)(x +1) =………………………………………………………………………………2 分x1 = 3,x2=-1………………………………………………………………………………4 分(2)2x2 + 3x -1 = 0 .解:2x2 +3x -1 = 0a =2,b =3,c =-1∴∆=9 -4⨯2⨯(-1) =17> 0……………………………………………………………………1 分x =-3 ± 174………………………………………………………………………………3 分x =-3 + 1 417,x =-3 -172 4……………………………………………………………………4 分注:若(1)中用公式法,请参考(2)中评分细则D(1) 一次函数 y = kx + b 的图象为直线,且与直线 y = 2x 平行,∴k = 2 ................................................................. 1 分又知其过点 A (1,6),∴2 + b = 6 . ∴b = 4 .∴一次函数的解析式为 y = 2x + 4 ........................................ 2 分(2)当 x = 0 时, y = 4 ,可知直线 y = 2x + 4 与 y 轴的交点为(0, 4) ................................... 3 分 当 y = 0 时, x = -2 , 可知直线 y = 2x + 4 与 x 轴交点为(-2, 0) ................................. 4 分可得该直角三角形的两条直角边长度分别为 4 和 2.所以直线 y = 2x + 4 与坐标轴围成的三角形的面积为 1 ⨯ 4 ⨯ 2 = 4 ............ 5 分219. 解:(1) 作图如图所示BA ...............................................................2 分(2) 对角线互相平分的四边形是平行四边形 ...................................... 3 分有一个角是直角的平行四边形是矩形 ......................................... 4 分20. 解:(1)x 2 + 2x + k - 4 = 0 有实数根,∴∆ ≥ 0 ..................................................................... 1 分即22 - 4(k - 4) ≥ 0 .∴ k ≤ 5. .................................................................... 2 分(2) k 是方程 x 2 + 2x + k - 4 = 0 的一个根,∴k 2 + 2k + k - 4 = 0.……………………………………………………………………………3 分∴k 2 + 3k = 4 ............................................................ 4 分 2k 2 + 6k - 5 = 2(k 2 + 3k) - 5= 3. ...................................................................... 5 分同意 ........................................................................ 1 分 连接 BD ,如图.∵AB =AD =5 (m),∠A =60°,BC∴△ABD 是等边三角形 ....................... 2 分 ∴BD =AB =5 (m),∠ABD =60°. A∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3 分 D在 Rt △CBD 中,BD =5 (m),BC =12 (m),∴CD = 13 (m) ........................................ 4 分四、解答题22. 解:(1)8,88.5; .................................................................. 2 分 (2)你认为 八 年级知识竞赛的总体成绩较好,理由 1:八年级成绩的中位数较高;理由 2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由 1:七年级的平均成绩较高;理由 2:低分段人数较少 .…………………………………………………………………………………5 分(答案不唯一,合理即可)(3)460. ...................................................................... 7 分23. (1)证明:∵四边形 ABCD 是平行四边形∴ A B = CD , A B ∥CD . ∵ DF = CE ,∴ DF + DE = CE + ED , 即: FE = CD .∵点 F 、E 在直线 CD 上, ∴ AB = FE AB ∥ F E .∴四边形 A BEF 是平行四边形 ................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E , ∴ ∠BEF = 90︒ .∴四边形 A BEF 是矩形 ......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O ,∴ ∠AFC = 90︒ , A B = FE . ∵AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .29 29 ∴ FC = 10 ....................................................................... 3 分 在Rt △AFD 中, ∠AFD = 90︒ . ∵ ∠ADF = 45︒ ,∴ AF = FD = 4 ............................................................ 4 分 在Rt △AFC 中, ∠AFC = 90︒ .∴ AC == 2 . ............................................... 5 分 ∵点 O 是平行四边形 ABCD 对角线的交点, ∴ O 为 AC 中点.在Rt △AFC 中, ∠AFC = 90︒ . O 为 AC 中点.∴ O F = 1AC = . ......................................................... 6 分2五、解答题24. 解:(1) ∵直线 y =kx +7 与直线 y =x ﹣2 交于点 A (3,m ),∴m =3k +3,m =1 .............................................................. 1 分∴k =﹣2 ..................................................................... 2 分 (2) ∵点 P (n ,n ),过点 P 作垂直于 y 轴的直线与直线 y =x ﹣2 交于点 M ,∴M (n +2,n ).∴PM =2 ...................................................................... 3 分 ∵PN ≤2PM , ∴PN ≤4.∵过点 P 作垂直于 x 轴的直线与直线 y =kx +7 交于点 N ,k =﹣2,∴N (n ,﹣2n +7).∴PN = 3n - 7 ................................... 4 分当 PN =4 时,如图,即 3n - 7 =4,∴n =1 或 n = 11 .3∵P 与 N 不重合, ∴ 3n - 7 ≠ 0 .∴ n ≠ 7.3当 PN ≤4(即 PN ≤2PM )时,n 的取值范围为:1≤ n < 7 或 7 < n ≤11 .......................................6 分 3 33⎨⎩25. 解:(1) ①补全图形,如图一 .......................... 1 分②猜想 D E =BC .................................. 2 分如图,连接 OD 交 BC 于点 F ,连接 AF. 在△BDF 和△COF 中, ⎧∠DBF = ∠OCF ,⎪∠DFB = ∠OFC , 图 一⎪DB = OC , ∴△BDF ≌△COF.∴DF =OF , BF =CF ................................. 3 分 ∴F 分别为 B C 和 D O 的中点. ∵∠BAC =90°, F 为 BC 的中点,∴ AF = 1BC .2∵OA =AE , F 为 BC 的中点,∴ AF = 1ED .2∴DE =BC ...................................... 4 分(2) 如图二,连接 OD 交 BC 于点 F ,连接 AF ,延长 CO交 AF 于点 M ,连接 BM.由(1)中②可知,点 F 为 BC 的中点,AF 为 Rt △ABC 斜边 BC 边中线,为△OED 的中位线, ∴AF 为 BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°,DD图二∴∠MBC =∠MCB =30°. ∵∠BAC =90°,AB =AC, ∴∠MBO =∠MBA=15°. 又可证∠BAM =∠BOM=45°. ∴△BMA ≌△BMO.∴AM =OM 且∠BMO =∠BMA=120°. ∴∠OMA=120°. ∴∠MAO=30°. ∵AF 为△OED 的中位线, ∴AF ∥ED. BC∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7 分O备用图(提示:证明△ABO 为等边三角形,得到∠AED=15°.) ∴∠AED=30°或 15°.注:各题中若有其他合理的解法请酌情给分.。
北京市2019-2020年八年级下学期期末考试数学试卷
北京市2019-2020年八年级下学期期末考试数学试卷一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A. 3,﹣4,﹣5 B. 3,﹣4,5 C. 3,4,5 D. 3,4,﹣52.函数y=中自变量x的取值范围是()A. x≤3 B. x≠3 C. x≠﹣3 D. x≥33.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C. D.4.已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A. y1>y2 B. y1<y2 C. y1=y2 D.不能确定5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=236.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A. 24,25 B.25,26 C. 26,24 D. 26,257.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A. 14 B. 12 C. 24 D. 488.(3分)(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A. 28° B. 52° C. 62° D. 72°9.如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A. k>0 B. m>nC.当x<2时,y2>y1 D. 2k+n=m﹣210.如图,若点P为函数y=kx+b(﹣4≤x≤4)图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A. B.C. D.二、填空题:(本题共18分,每小题3分)11.在▱ABCD中,若∠B=50°,则∠C= °.12.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为.15.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是.16.边长为a的菱形是由边长为a的正方形“形变”得到的,若这个菱形一组对边之间的距离为h,则称为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为;(2)如图,A、B、C为菱形网格(每个小菱形的边长为1,“形变度”为)中的格点,则△ABC的面积为.三、解答题:(本题共22分,第17题4分,第18题8分,第19题5分,第20题5分)17.计算:(+)×﹣4.18.(1)解方程:x(x﹣1)=2﹣2x;(2)若x=1是方程x2﹣4mx+2m2=0的一个根,求代数式3(m﹣1)2﹣1的值.19.如图,E、F是▱ABCD对角线AC上的两点,AF=CE.求证:BE=DF.20.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和B(2,0).(1)求这个一次函数的解析式;(2)若以O、A、B、C为顶点的四边形为菱形,则点C的坐标为(直接写出答案).四、解答题:(本题共10分,第21题5分,第22题5分)21.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,DE=AC,连接AE、CE.若AB=2,∠ABC=60°,求AE的长.22.列方程解应用题:随着经济的增长和人民生活水平的提高,我国公民出境旅游人数逐年上升,据统计,2012年我国公民出境旅游总人数约为8000万人次,2014年约为11520万人次,求我国公民出境旅游总人数的年平均增长率.五、解答题:(本题共20分,第23题6分,第24题7分,第25题7分)23.如图,在▱ABCD中,对角线AC、BD相交于点O,点E为点B关于直线AC的对称点,连接EB、ED.(1)求∠BED的度数;(2)过点B作BE的垂线交EA的延长线于点F,请补全图形,并证明DE=AC+BF.24.已知:关于x的方程mx2﹣(3m+1)x+2m+2=0(m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=mx2﹣2x1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围是(直接写出答案).25.如图,正方形ABCD中,P为BD上一动点,过点P 作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB2、PD2、AQ2之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径长为(直接写出答案).八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是()A. 3,﹣4,﹣5 B. 3,﹣4,5 C. 3,4,5 D. 3,4,﹣5考点:一元二次方程的一般形式.分析:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).其中a,b,c 分别叫二次项系数,一次项系数,常数项.解答:解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选A.点评:一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.函数y=中自变量x的取值范围是()A. x≤3 B. x≠3 C. x≠﹣3 D. x≥3考点:函数自变量的取值范围.分析:根据二次根式的意义,被开方数是非负数即可解答.解答:解:根据题意得:x﹣3≥0,解得x≥3,故选D点评:本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数非负.3.下列各曲线表示的y与x的关系中,y不是x的函数的是()A. B.C. D.考点:函数的概念.分析:根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.解答:解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.点评:本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.4.已知P1(﹣3,y1),P2(2,y2)是一次函数y=2x+1的图象上的两个点,则y1,y2的大小关系是()A. y1>y2 B. y1<y2 C. y1=y2 D.不能确定考点:一次函数图象上点的坐标特征;一次函数的性质.专题:探究型.分析:先根据一次函数y=2x+1中k=2判断出函数的增减性,再根据﹣3<2进行解答即可.解答:解:∵一次函数y=2x+1中k=2>0,∴此函数是增函数,∵﹣3<2,∴y1<y2.故选B.点评:本题开查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数的增减性是解答此题的关键.5.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=23考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上4变形得到结果即可.解答:解:方程x2﹣4x﹣7=0,变形得:x2﹣4x=7,配方得:x2﹣4x+4=11,即(x﹣2)2=11,故选A点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.本市5月份某一周每天的最高气温统计如下表:温度/℃22242629天数2131则这组数据的中位数和平均数分别是()A. 24,25 B. 25,26 C. 26,24 D. 26,25考点:中位数;加权平均数.分析:利用中位数及平均数的定义求解即可.解答:解:按从小到大的顺序排列数为22,22,24,26,26,26,29,由中位数的定义可得:这组数据的中位数是26,这组数据的平均数分别是=25,故选:D.点评:本题主要考查了中位数与加权平均数,解题的关键是熟记中位数与加权平均数的定义.7.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A. 14 B. 12 C. 24 D. 48考点:中点四边形.分析:有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH矩形,根据矩形的面积公式解答即可.解答:解:∵点E、F分别为四边形ABCD的边AD、AB的中点,∴EF∥BD,且EF=BD=3.同理求得EH∥AC∥GF,且EH=GF=AC=4,又∵AC⊥BD,∴EF∥GH,FG∥HE且EF⊥FG.四边形EFGH是矩形.∴四边形EFGH的面积=EF•EH=3×4=12,即四边形EFGH的面积是12.故选B.点评:本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.8.(3分)(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A. 28° B. 52° C. 62° D. 72°考点:菱形的性质;全等三角形的判定与性质.分析:根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.解答:解:∵四边形ABCD为菱形,∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=28°,∴∠BCA=∠DAC=28°,∴∠OBC=90°﹣28°=62°.故选:C.点评:本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.9.(3分)(2015春•海淀区期末)如图,直线y1=﹣x+m与y2=kx+n相交于点A,若点A的横坐标为2,则下列结论中错误的是()A. k>0 B. m>nC.当x<2时,y2>y1 D. 2k+n=m﹣2考点:两条直线相交或平行问题.分析:由函数图象可判断A;由直线与y轴的交点位置可判断B;由函数图象可知当x>2时,对应的函数值的大小关系可判断C;把A点横坐标代入两函数解析式可判断D;可得出答案.解答:解:∵y2=kx+n在第一、三、四象限,∴k>0,故A正确;由图象可知直线y1与y轴的交点在直线y2相与y轴交点的上方,∴m>n,故B正确;由函数图象可知当x<2时,直线y1的图象在y2的上方,∴y1>y2,故C不正确;∵A点为两直线的交点,∴2k+n=m﹣2,故D正确;故选C.点评:本题主要考函数的交点问题,能够从函数图象中得出相应的信息是解题的关键.注意数形结合.10.如图,若点P为函数y=kx+b(﹣4≤x≤4)图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A. B.C. D.考点:动点问题的函数图象.分析:当OP垂直于直线y=kx+b时,由垂线段最短可知:OP<2,故此函数在y轴的左侧有最小值,且最小值小于2,从而得出答案.解答:解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.点评:本题主要考查的是动点问题的函数图象,由垂线段最短判定出当x<0时,函数有最小值,且最小值小于2是解题的关键.二、填空题:(本题共18分,每小题3分)11.在▱ABCD中,若∠B=50°,则∠C= 130 °.考点:平行四边形的性质.分析:根据平行四边形的邻角互补即可得出∠C的度数.解答:解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.点评:本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.12.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .考点:一次函数图象与几何变换.分析:直接根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1点评:本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.若关于x的方程9x2﹣6x+m=0有两个相等的实数根,则m的值为 1 .考点:根的判别式.分析:关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=0,据此列出关于m的新方程,通过解新方程即可求得m的值.解答:解:∵关于x的方程9x2﹣6x+m=0有两个相等的实数根,则△=62﹣4×9m=0,即36﹣36m=0,解得,m=1,故答案为:1.点评:本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某通讯公司的4G上网套餐每月上网费用y(单位:元)与上网流量x(单位:兆)的函数关系的图象如图所示.若该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,则图中a的值为59 .考点:一次函数的应用.分析:由该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,可知a=30+0.29×(600﹣500).解答:解:∵该公司用户月上网流量超过500兆以后,每兆流量的费用为0.29元,根据图象可知:a=a=30+0.29×(600﹣500)=59元.故答案为:59.点评:本题考查了一次函数的应用,根据图象正确理解横纵坐标的对应关系是解决问题的关键.15.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是①④.考点:图形的剪拼.分析:此题需要动手操作或画图,用完全相同的直角三角形一定可以拼成矩形、等腰三角形.解答:解:根据题意,用形状和大小完全相同的直角三角形一定能拼出矩形和等腰三角形,共2种图形.画出图形如下所示:故答案为:①④.点评:本题考查了图形的剪拼,同时考查了学生的动手操作能力和想象观察能力,难度一般.16.边长为a的菱形是由边长为a的正方形“形变”得到的,若这个菱形一组对边之间的距离为h,则称为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为1:3 ;(2)如图,A、B、C为菱形网格(每个小菱形的边长为1,“形变度”为)中的格点,则△ABC的面积为12 .考点:菱形的性质.分析:(1)分别表示出正方形的面积和菱形的面积,再根据“形变度”为3,即可得到菱形与其“形变”前的正方形的面积之比;(2)根据两面积之比=菱形的“形变度”,即可解答.解答:解:(1)∵边长为a的正方形面积=a2,边长为a的菱形面积=ah,∴菱形面积:正方形面积=ah:a2=h:a,∵菱形的变形度为3,即=3,∴“形变度”为3的菱形与其“形变”前的正方形的面积之比=1:3,故答案为:1:3;(2)∵菱形的边长为1,“形变度”为,∴菱形形变前的面积与形变后的面积之比为,∴S△ABC=(36﹣×3×3﹣×3×6﹣×3×6)×=×=12,故答案为:12.点评:本题考查了正方形的性质,菱形的性质以及四边形综合,根据题意得出菱形形变前的面积与形变后的面积之比是解题关键.三、解答题:(本题共22分,第17题4分,第18题8分,第19题5分,第20题5分)17.计算:(+)×﹣4.考点:二次根式的混合运算.专题:计算题.分析:先把各二次根式化为最简二次根式,再进行二次根式的乘法运算得到原式=4+3﹣2,然后合并即可.解答:解:原式=(2+)×﹣2=2×+×﹣2=4+3﹣2=4+.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(1)解方程:x(x﹣1)=2﹣2x;(2)若x=1是方程x2﹣4mx+2m2=0的一个根,求代数式3(m﹣1)2﹣1的值.考点:解一元二次方程-因式分解法;一元二次方程的解.分析:(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)把x=1代入方程后求出(m﹣1)2=0.5,即可求出答案.解答:解:(1)x(x﹣1)=2﹣2x,x(x﹣1)+2(x﹣1)=0,(x﹣1)(x+2)=0,x﹣1=0,x+2=0,x1=1,x2=﹣2;(2)把x=1代入方程x2﹣4mx+2m2=0得:1﹣4m+2m2=0,2(m2﹣2m)+1=0,2(m﹣1)2=1,(m﹣1)2=0.5,即3(m﹣1)2﹣1=3×0.5﹣1=0.5.点评:本题考查了一元二次方程的解,解一元二次方程,求代数式的值的应用,能求出(m ﹣1)2=0.5是解(2)的关键,难度适中.19.如图,E、F是▱ABCD对角线AC上的两点,AF=CE.求证:BE=DF.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据平行四边形的对边相等可得AB=CD,对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠BAE=∠DCF,然后利用“边角边”证明△ABE和△CDF全等,根据全等三角形对应边相等可得BE=DF.解答:证明:∵AF=CE.∴AE=CF,∵在▱ABCD中,AB=CD,AB∥CD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,理解平行四边形的对边平行且相等,是解答本题的关键.20.在平面直角坐标系xOy中,一次函数的图象经过点A(1,﹣3)和B(2,0).(1)求这个一次函数的解析式;(2)若以O、A、B、C为顶点的四边形为菱形,则点C的坐标为(1,3)(直接写出答案).考点:菱形的性质;待定系数法求一次函数解析式.专题:计算题.分析:(1)利用待定系数法求一次函数解析式;(2)由于AO=AB,于是可判断菱形为OABC,再根据菱形的性质得点C与点A关于y轴对称,然后根据关于y轴对称的点的坐标特征写出C点坐标.解答:解:(1)设一次函数解析式为y=kx+b,把A(1,﹣3)、B(2,0)代入得,解得,所以一次函数解析式为y=3x﹣6;(2)如图,因为OA=AB,所以以O、A、B、C为顶点的菱形的对角线为OB和AC,因为OB与AC互相垂直平分,所以点C与点A关于y轴对称,所以C点坐标为(1,3).故答案为(1,3).点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了待定系数法求一次函数解析式.四、解答题:(本题共10分,第21题5分,第22题5分)21.如图,菱形ABCD的对角线AC、BD相交于点O,DE∥AC,DE=AC,连接AE、CE.若AB=2,∠ABC=60°,求AE的长.考点:菱形的性质.专题:计算题.分析:先根据菱形的性质得OB=OD,OA=OC,AB=CB,AC⊥BD,再利用∠ABC=60°可判断△A BC为等边三角形,所以AC=AB=2,则根据等边三角形的性质得OA=AC=1,OD=OB=AC=,接着判定四边形OCED为矩形,得到∠OCE=90°,CE=OD=,然后利用勾股定理计算AE.解答:解:∵菱形ABCD的对角线AC、BD相交于点O,∴OB=OD,OA=OC,AB=CB,AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=2,在Rt△AOB中,OA=AC=1,OD=OB=AC=,∵DE=AC,∴DE=OC,而DE∥AC,∴四边形OCED为平行四边形,而OC⊥OD,∴四边形OCED为矩形,∴∠OCE=90°,CE=OD=,在Rt△ACE中,AE===.点评:本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.也考查了等边三角形的判定与性质.22.列方程解应用题:随着经济的增长和人民生活水平的提高,我国公民出境旅游人数逐年上升,据统计,2012年我国公民出境旅游总人数约为8000万人次,2014年约为11520万人次,求我国公民出境旅游总人数的年平均增长率.考点:一元二次方程的应用.专题:增长率问题.分析:设年平均增长率为x.根据题意2013年公民出境旅游总人数为 8000(1+x)万人次,2014年公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;解答:解:设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:8000(1+x)2 =11520,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.点评:此题考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.五、解答题:(本题共20分,第23题6分,第24题7分,第25题7分)23.如图,在▱ABCD中,对角线AC、BD相交于点O,点E为点B关于直线AC的对称点,连接EB、ED.(1)求∠BED的度数;(2)过点B作BE的垂线交EA的延长线于点F,请补全图形,并证明DE=AC+BF.考点:平行四边形的性质.分析:(1)如图,设直线AC与BE交于N,由点E为点B关于直线AC的对称点,得到AN ⊥BE,BN=EN,根据平行四边形的性质得到BO=DO,于是得到AN∥EM,即可得到结论;(2)延长BA交DE于M,连接FM,由于BF∥AN∥EM,根据平行线等分线段定理得到FA=AE,BA=AM,再根据平行四边形的性质即可得到结论.解答:解:(1)如图,设直线AC与BE交于N,∵点E为点B关于直线AC的对称点,∴AN⊥BE,BN=EN,∵四边形ABCD是平行四边形,∴BO=DO,∴AN∥EM,∴DE⊥BE,∴∠BED=90°,(2)如图,延长BA交DE于M,连接FM,∵BE⊥BF,AN⊥BE,BE⊥DE,∴BF∥AN∥EM,∵BN=EN,∴FA=AE,BA=AM,∴四边形BFME是平行四边形,∴EM=BF,∵AC∥DM,CD∥AM,∴四边形ACDM是平行四边形,∴DM=AC,∴DE=EM+DM=AC+BF.点评:本题考查了平行四边形的性质,线段的垂直平分线的性质,平行线等分线段定理,三角形的中位线定理,熟练掌握平分线等分线段定理是解题的关键.24.已知:关于x的方程mx2﹣(3m+1)x+2m+2=0(m>1).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1>x2),若y是关于m的函数,且y=mx2﹣2x1,求这个函数的解析式;(3)将(2)中所得的函数的图象在直线m=2的左侧部分沿直线m=2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当关于m的函数y=2m+b的图象与此图象有两个公共点时,b的取值范围是b<﹣5 (直接写出答案).考点:抛物线与x轴的交点;解一元二次方程-公式法;根的判别式.分析:(1)要证明无论m取何值方程必有两个不相等的实数根,只要证明△≥0即可,而,△=(3m+1)2﹣4m(2m+2)=(m﹣1)2.由m>1,可得到△>0;(2)利用求根公式可得,因为m>1,x1>x2.所以.然后代入y=mx2﹣2x1,即可得到函数的解析式即可;(3)先求出对折后的函数的解析式,进而求得与函数y=2m+b的交点坐标,根据题意列出不等式组,解不等式组即可求得.解答:(1)证明:由题意得,△=(3m+1)2﹣4m(2m+2)=(m﹣1)2.∵m>1,∴△=(m﹣1)2>0.∴方程有两个不等实根.(2)由题意得,.∵m>1,x1>x2,∴.∴.(3)根据题意新的函数为:y=解得,函数y=2m+b的图象与此图象有两个公共点时,则,解得b<﹣5.故答案为b<﹣5.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了解一元一次方程和解不等式组.25.如图,正方形ABCD中,P为BD上一动点,过点P 作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB2、PD2、AQ2之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为2,则AQ的中点M移动的路径长为(直接写出答案).考点:四边形综合题.分析:(1)过点P作PE⊥AD于点E,PF⊥CD于点F,由正方形的性质得出PE=PF,证出四边形PEDF是正方形,得出∠EPF=90°,由ASA证明△APE≌△QPF,得出对应边相等即可;(2)延长FP交AB于点G,由正方形的性质得出△PBG是等腰直角三角形,得出BP2=2PG2,同理PD2=2PE2,再由△PAQ是等腰直角三角形,得出AQ2=2PA2,即可得出结论;(3)当点P在B点处时,点Q与点C重合,AQ的中点即为点O,则AQ的中点M移动的路径长为OM的长;连接PC,由正方形的性质得出PA=PC,再求出CQ的长,由三角形中位线定理求出OM的长即可.解答:(1)证明:过点P作PE⊥AD于点E,PF⊥CD于点F,如图1所示:∴∠PED=∠PEA=∠PFQ=90°,∵四边形ABCD是正方形,∴∠ADC=90°,∠ADB=∠CDB=45°,∴PE=PF,∴四边形PEDF是正方形,∴∠EPF=90°,∴∠EPQ+∠FPQ=90°,∵AP⊥PQ,∴∠EPQ+∠APE=90°,∴∠APE=∠FPQ,在△APE和△QPF中,,∴△APE≌△QPF(ASA),∴PA=PQ;(2)解:PD2+PB2=AQ2,理由如下:延长FP交AB于点G,如图2所示:∵四边形ABCD是正方形,∴AB∥CD,∠PBG=45°,∴∠BGP=∠PFD=90°,∴△PBG是等腰直角三角形,由勾股定理得:BP2=2PG2,同理:PD2=2PE2,由(1)得PA=PQ,AP⊥PQ,∴△PAQ是等腰直角三角形,由勾股定理得:AQ2=2PA2,∵∠AEP=∠AGP=∠BAD=90°,∴四边形AEPG为矩形,∴PE=AG,∵PA2=AG2+PG2,∴PD2+PB2=2PE2+2PG2=2AG2+2PG2=2AP2=AQ2;(3)解:当点P在B点处时,点Q与点C重合,AQ的中点即为点O,则AQ的中点M移动的路径长为OM的长;连接PC,如图3所示:由正方形的对称性得:PA=PC,由(2)得:△PBG是等腰直角三角形,∴FC=BG===,由(1)得:PA=PQ,∴PC=PQ,∵PF⊥CQ,∴FQ=FC=,∴CQ=2,∵O是AC的中点,M是AQ的中点,∴OM=CQ=;故答案为:.点评:本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数、勾股定理、三角形的中位线定理等知识;本题综合性强,难度较大.。
【Word版】2019.7海淀区八年级期末数学试题及答案
海淀区2019 年八年级学业发展水平评价数学一、选择题(本题共30 分,每小题 3 分)在下列各题的四个选项中,只.有.一.个.是符合题意的.1.下列实数中,是方程x2 - 4 = 0 的根的是A. 1B. 2C. 3D. 42019.72.如图,在Rt△ABC 中,A.7B.8C.9D.10∠C = 90 °,BC = 6 ,AC = 8 ,则AB 的长度为3.在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4.下列各曲线中,不表示y 是x 的函数的是A B C D5.数据2, 6, 4, 5, 4, 3 的平均数和众数分别是A.5 和4B.4 和4C.4.5 和4D.4 和55 CO 6. 一元二次方程 x 2 - 8x -1 = 0 经过配方后可变形为A. (x + 4)2 = 15B. (x + 4)2 = 17C. (x - 4)2 = 15D. (x - 4)2 = 177.若点 A (-3, y 1 ), B (1, y 2 ) 都在直线 y=x + 2 上,则 y 1 与 y 2 的大小关系是A. y 1<y 2B. y 1=y 2C. y 1>y 2D. 无法比较大小8.如图,正方形 ABCD 的边长为则 BE 的长度为A. B. 102, 对角线 AC , BD 交于点 O , E 是 AC 延长线上一点, 且CE =CO .EDC.D. 2AB9.对于一次函数 y = kx + b (k , b 为常数),下表中给出 5 组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018 年我国博物馆参观人数统计如下:2 35小明研究了这个统计图,得出四个结论:① 2012 年到 2018 年,我国博物馆参观人数持续增长;② 2019 年末我国博物馆参观人数估计将达到 10.82 亿人次;③ 2012 年到 2018 年,我国博物馆参观人数年增幅最大的是 2017 年;④ 2016 年到 2018 年,我国博物馆参观人数平均年增长率超过 10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共 18 分,每小题 3 分) 11.如图,在□ABCD 中,∠B =110°,则∠D =°.A12. 八年级(1)班甲、乙两个小组的 10 名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组.13. 若关于 x 的一元二次方程 x26x m 0 有实数根, 且所有实数根均为整数,请写出一个符合条件的常数 m 的值:m =.博物馆参观人数:亿人次2018年2017年2016年2015年2014年2013年2012年425.646 6.387.817.188 8.5010.089.721210 2012-2018年全国博物馆参观人数统计图14. 如图,某港口 P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口 P ,各自沿固定方向航行,“远洋”号每小时航行 12 n mile ,“长峰”号每小时航行 16 n mile ,它们离开港口 1 小时后,分别到达 A ,B 两个位置,且 A B =20 n mile ,已知“远洋”号沿着北偏东 60°方向航行,那么“长峰”号航行的方向是.15. 若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙角(两边足够长)和长为 38 m 的篱笆围成一个“优美矩形”形状的花园 ABCD ,,其中边 AB , AD 为篱笆,且 AB 大于 AD . 设 AD 为 x m, 依题意可列方程为.16. 在平面直角坐标系 xOy 中,直线 y = kx + 3 与 x ,y 轴分别交于点 A ,B ,若将该直线向右平移 5 个单位,线段 A B 扫过区域的边界恰好为菱形,则 k 的值为.三、解答题(本题共 26 分,第 17 题 8 分,第 18,20 题各 5 分,第 19,21 题各 4 分)17. 解方程:(1) x 2 - 2x - 3 = 0 ;(2) 2x 2 + 3x -1 = 0 .18. 在平面直角坐标系 xOy 中,一次函数 y =kx +b 的图象与直线 y =2x 平行,且经过点 A (1,6).(1) 求一次函数 y =kx +b 的解析式;(2) 求一次函数 y =kx +b 的图象与坐标轴围成的三角形的面积.19. 下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程. 已知:如图,在 Rt △ABC 中,∠ABC =90°,O 为 AC 的中点. 求作:四边形 ABCD ,使得四边形 ABCD 为矩形.作法:①作射线 BO ,在线段 BO 的延长线上取点 D ,使得 DO =BO ;②连接 AD ,CD ,则四边形 ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹);(2) 完成下面的证明.证明:∵点 O 为AC 的中点,∴ AO =CO .又∵ DO =BO ,∴四边形 A BCD 为平行四边形( )(填推理的依据).D C∵∠ABC =90°,∴□ABCD 为矩形()(填推理的依据).20.关于x 的一元二次方程x2 + 2x +k - 4 = 0 有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2k 2+ 6k - 5 的值.21.小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5 m,∠A=60°,BC=12 m,∠ABC=150°.小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.B CAD四、解答题(本题共13 分,第22 题7 分,第23 题 6 分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了“二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400 名学生参加了这次竞赛, 现从七、八年级各随机抽取20 名学生的成绩进行抽样调查.收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 5089 68 65 88 77 87 89 88 92 91整理数据如下:人数年级七年级分析数据如下:(1)a= ,b= ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合;理性)(3)学校对知识竞赛成绩不低于80 分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.如图,在□ABCD 中,对角线AC,BD 交于点O,过点B 作BE⊥CD 于点E,延长CD 到点F,使DF=CE,连接AF.(1)求证:四边形ABEF 是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF 的长度.五、解答题(本题共13 分,第24 题 6 分,第25 题7 分)24.如图,在平面直角坐标系xOy 中,直线y =kx + 7 与直线y =x - 2 交于点A(3, m).(1)求k, m 的值;(2)已知点P (n, n),过点P 作垂直于y 轴的直线与直线y =x - 2 交于点M ,过点P 作垂直于x 轴的直线与直线y =kx + 7 交于点N (P 与N 不重合). 若PN ≤ 2PM ,结合图象,求n 的取值范围.25. 在 Rt △ABC 中, ∠BAC = 90︒ ,点 O 是△ABC 所在平面内一点,连接 OA ,延长 OA 到点 E ,使得AE =OA ,连接 OC ,过点 B 作 BD 与 OC 平行,并使∠DBC =∠OCB ,且 BD =OC ,连接 DE .(1) 如图一,当点 O 在 Rt △ABC 内部时.① 按题意补全图形;② 猜想 DE 与 BC 的数量关系,并证明.图一(2) 若 A B = AC (如图二), 且∠OCB = 30︒, ∠OBC = 15︒ ,求∠AED 的大小.图二备用图B备用图海淀区2019 年八年级学业发展水平评价数学参考答案一、选择题二、填空题11.11012.甲13.0(答案不唯一)14.南偏东 30°15.(38 -x)2= 38x (无需写成一般式)16 . ±3(填对一个得 2 分,填对两个得 3 分,含有错误答案得 0 分)4三、解答题17.解:(1)x2 - 2x - 3 = 0 ;解法一:x2 - 2x - 3 = 0x2 - 2x = 3x2 -2x +1 = 4(x -1)2 = 4 x -1 =±2…………………………………………………………………………1分………………………………………………………………………………2分………………………………………………………………………………3分x1 = 3,x2=-1………………………………………………………………………………4 分解法二:x2 -2x -3 =0 (x -3)(x +1) =………………………………………………………………………………2 分x1 = 3,x2=-1………………………………………………………………………………4 分(2)2x2 + 3x -1 = 0 .解:2x2 +3x -1 = 0a =2,b =3,c =-1∴∆=9 -4⨯2⨯(-1) =17> 0……………………………………………………………………1 分x =-3 ± 174………………………………………………………………………………3 分x =-3 + 1 417,x =-3 -172 4……………………………………………………………………4 分注:若(1)中用公式法,请参考(2)中评分细则D(1) 一次函数 y = kx + b 的图象为直线,且与直线 y = 2x 平行,∴k = 2 ................................................................. 1 分又知其过点 A (1,6),∴2 + b = 6 . ∴b = 4 .∴一次函数的解析式为 y = 2x + 4 ........................................ 2 分(2)当 x = 0 时, y = 4 ,可知直线 y = 2x + 4 与 y 轴的交点为(0, 4) ................................... 3 分 当 y = 0 时, x = -2 , 可知直线 y = 2x + 4 与 x 轴交点为(-2, 0) ................................. 4 分可得该直角三角形的两条直角边长度分别为 4 和 2.所以直线 y = 2x + 4 与坐标轴围成的三角形的面积为 1 ⨯ 4 ⨯ 2 = 4 ............ 5 分219. 解:(1) 作图如图所示BA ...............................................................2 分(2) 对角线互相平分的四边形是平行四边形 ...................................... 3 分有一个角是直角的平行四边形是矩形 ......................................... 4 分20. 解:(1)x 2 + 2x + k - 4 = 0 有实数根,∴∆ ≥ 0 ..................................................................... 1 分即22 - 4(k - 4) ≥ 0 .∴ k ≤ 5. .................................................................... 2 分(2) k 是方程 x 2 + 2x + k - 4 = 0 的一个根,∴k 2 + 2k + k - 4 = 0.……………………………………………………………………………3 分∴k 2 + 3k = 4 ............................................................ 4 分 2k 2 + 6k - 5 = 2(k 2 + 3k) - 5= 3. ...................................................................... 5 分同意 ........................................................................ 1 分 连接 BD ,如图.∵AB =AD =5 (m),∠A =60°,BC∴△ABD 是等边三角形 ....................... 2 分 ∴BD =AB =5 (m),∠ABD =60°. A∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3 分 D在 Rt △CBD 中,BD =5 (m),BC =12 (m),∴CD = 13 (m) ........................................ 4 分四、解答题22. 解:(1)8,88.5; .................................................................. 2 分 (2)你认为 八 年级知识竞赛的总体成绩较好,理由 1:八年级成绩的中位数较高;理由 2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由 1:七年级的平均成绩较高;理由 2:低分段人数较少 .…………………………………………………………………………………5 分(答案不唯一,合理即可)(3)460. ...................................................................... 7 分23. (1)证明:∵四边形 ABCD 是平行四边形∴ A B = CD , A B ∥CD . ∵ DF = CE ,∴ DF + DE = CE + ED , 即: FE = CD .∵点 F 、E 在直线 CD 上, ∴ AB = FE AB ∥ F E .∴四边形 A BEF 是平行四边形 ................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E , ∴ ∠BEF = 90︒ .∴四边形 A BEF 是矩形 ......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O ,∴ ∠AFC = 90︒ , A B = FE . ∵AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .29 29 ∴ FC = 10 ....................................................................... 3 分 在Rt △AFD 中, ∠AFD = 90︒ . ∵ ∠ADF = 45︒ ,∴ AF = FD = 4 ............................................................ 4 分 在Rt △AFC 中, ∠AFC = 90︒ .∴ AC == 2 . ............................................... 5 分 ∵点 O 是平行四边形 ABCD 对角线的交点, ∴ O 为 AC 中点.在Rt △AFC 中, ∠AFC = 90︒ . O 为 AC 中点.∴ O F = 1AC = . ......................................................... 6 分2五、解答题24. 解:(1) ∵直线 y =kx +7 与直线 y =x ﹣2 交于点 A (3,m ),∴m =3k +3,m =1 .............................................................. 1 分∴k =﹣2 ..................................................................... 2 分 (2) ∵点 P (n ,n ),过点 P 作垂直于 y 轴的直线与直线 y =x ﹣2 交于点 M ,∴M (n +2,n ).∴PM =2 ...................................................................... 3 分 ∵PN ≤2PM , ∴PN ≤4.∵过点 P 作垂直于 x 轴的直线与直线 y =kx +7 交于点 N ,k =﹣2,∴N (n ,﹣2n +7).∴PN = 3n - 7 ................................... 4 分当 PN =4 时,如图,即 3n - 7 =4,∴n =1 或 n = 11 .3∵P 与 N 不重合, ∴ 3n - 7 ≠ 0 .∴ n ≠ 7.3当 PN ≤4(即 PN ≤2PM )时,n 的取值范围为:1≤ n < 7 或 7 < n ≤11 .......................................6 分 3 33⎨⎩25. 解:(1) ①补全图形,如图一 .......................... 1 分②猜想 D E =BC .................................. 2 分如图,连接 OD 交 BC 于点 F ,连接 AF. 在△BDF 和△COF 中, ⎧∠DBF = ∠OCF ,⎪∠DFB = ∠OFC , 图 一⎪DB = OC , ∴△BDF ≌△COF.∴DF =OF , BF =CF ................................. 3 分 ∴F 分别为 B C 和 D O 的中点. ∵∠BAC =90°, F 为 BC 的中点,∴ AF = 1BC .2∵OA =AE , F 为 BC 的中点,∴ AF = 1ED .2∴DE =BC ...................................... 4 分(2) 如图二,连接 OD 交 BC 于点 F ,连接 AF ,延长 CO交 AF 于点 M ,连接 BM.由(1)中②可知,点 F 为 BC 的中点,AF 为 Rt △ABC 斜边 BC 边中线,为△OED 的中位线, ∴AF 为 BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°,DD图二∴∠MBC =∠MCB =30°. ∵∠BAC =90°,AB =AC, ∴∠MBO =∠MBA=15°. 又可证∠BAM =∠BOM=45°. ∴△BMA ≌△BMO.∴AM =OM 且∠BMO =∠BMA=120°. ∴∠OMA=120°. ∴∠MAO=30°. ∵AF 为△OED 的中位线, ∴AF ∥ED. BC∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7 分O备用图(提示:证明△ABO 为等边三角形,得到∠AED=15°.) ∴∠AED=30°或 15°.注:各题中若有其他合理的解法请酌情给分.。
2019年北京市八年级数学下期末试卷附答案
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEB=∠CBE,
∵∠B的平分线BE交AD于点E,
∴∠ABE=∠CBE,
∴∠AEB=∠ABE,
∴AE=AB,
∵AB=3,BC=5,
∴DE=AD-AE=BC-AB=5பைடு நூலகம்3=2.
故答案为2.
【点睛】
本题考查了平行四边形的性质、角平分线的定义,解题的关键是掌握平行四边形的性质:对边相等.
一、选择题
1.C
解析:C
【解析】
【分析】
根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.
【详解】
A. =4,故A选项错误;
B. 与 不是同类二次根式,不能合并,故B选项错误;
C. ,故C选项正确;
D. = ,故D选项错误,
故选C.
【点睛】
本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.
20.已知一直角三角形两直角边的长分别为6cm和8cm,则第三边上的高为________.
三、解答题
21.如图,在平面直角坐标系中,直线 过点 且与 轴交于点 ,把点 向左平移2个单位,再向上平移4个单位,得到点 .过点 且与 平行的直线交 轴于点 .
(1)求直线CD的解析式;
(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.
7.B
解析:B
【解析】
【分析】
根据函数图象和三角形面积得出AB+BC=6,CD=4,AD=4,AB=1,当P运动到BC中点时,梯形ABCD的中位线也是△APD的高,求出梯形ABCD的中位线长,再代入三角形面积公式即可得出结果.
北京市海淀区2019-2020学年八年级下期末数学试卷含答案解析.docx
北京市海淀区2019-2020 学年八年级下期末数学试卷含答案解析一、选择题:(本题共30 分,每小题 3 分)在下列各题的四个备选答案中,只有一个是正确的.1.下列各式中,运算正确的是()A.B.C.D.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5 C.5,12, 13D.2,2,33.如图,矩形ABCD 中,对角线AC, BD 交于点 O.若∠ AOB=60°,BD=8,则AB 的长为()A.4 B.C.3 D.54.已知 P1(﹣ 1,y1), P2(2,y2)是一次函数y=﹣x+1 图象上的两个点,则y1, y2的大小关系是()A.y1=y2B.y1< y2C.y1>y2D.不能确定5.2022 年将在﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的平均数与方差 s2:队员 1队员 2队员 3队员 4平均数(秒)51505150方差 s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员 1B.队员 2C.队员 3D.队员 46.用配方法解方程x2﹣2x﹣ 3=0,原方程应变形为()A.( x﹣ 1)2=2B.( x+1)2=4C.( x﹣1)2=4D.( x+1)2=2 7.如图,在平行四边形ABCD中,∠ BAD 的平分线交 BC于点 E,∠ ABC的平分线交 AD 于点 F,若 BF=12,AB=10,则 AE的长为()A.13 B.14 C.15 D.168.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的 8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位: L)与时间 x(单位: min)之间的关系如图所示.则8min 时容器内的水量为()A.20 L B.25 LC.27LD.30 L.若关于x 的方程2﹣( k+1)x+1=0 的根是整数,则满足条件的整数k 的个9kx数为()A.1 个B.2 个C.3 个D.4 个10.如图 1,在菱形 ABCD中,∠ BAD=60°, AB=2, E 是 DC 边上一个动点, F 是AB 边上一点,∠ AEF=30°.设 DE=x,图中某条线段长为y,y 与 x 满足的函数关系的图象大致如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF二、填空题:(本题共18 分,每小题 3 分)11.写出一个以 0,1 为根的一元二次方程.12.若关于x 的一元二次方程x2+4x﹣ m=0 有实数根,则m 的取值范围是.13.如图,为了检查平行四边形书架 ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线 AC, BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理.14.若一次函数y=kx+b( k≠ 0)的图象如图所示,点P( 3, 4)在函数图象上,则关于 x 的不等式 kx+b≤4 的解集是.15.如图所示,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90°,若AB=5,BC=8,则 EF的长为.16.如图,正方形ABCD的面积是 2,E,F,P 分别是 AB,BC,AC 上的动点,PE+PF的最小值等于.三、解答题:(本题共22 分,第 17-19 题每小题 4 分,第 20-21 题每小题 4分)17.计算:.18.解方程: y(y﹣4)=﹣1﹣2y.19x=1是方程x2﹣ 3ax a2=0的一个根,求代数式3a2﹣9a 1的值..已知++20.在平面直角坐标系 xOy 中,一次函数的图象经过点A( 2, 3)与点 B( 0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.21.如图,四边形ABCD 中, AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.四、解答:(本共10 分,第 22 5 分,第 23 5 分)22.下列材料:了抓疏解非首都功能个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始出增,城六区人口年由升降.而在,多地区人口都开始下降.数字示:年区常住外来人口150 万人,同比下降 1.1%,减少 1.7 万人,首次了增.和海淀一,丰台也在年首次了常住外来人口增,同比下降 1.4%,减少1.2 万人;、西城,常住外来人口同呈下降:年城同比下降 2.4%,减少 5000人,西城同比下降 5.5%,减少 1.8 万人;石景山,常住外来人口近年来增速放,到年年底,全区常住外来人口可降至 63.5 万,比年减少 1.7 万人,首次出增;⋯年初,市改委透露,年本市将确保完成人口控目城六区常住人口年下降 3%,迎来人口由升降的拐点.人口下降背后,是本市密鼓疏解非首都功能的大略.根据以上材料解答下列:( 1)年常住外来人口万人;( 2 )年城、西城、海淀、丰台四个常住外来人口同比下降率最高的是区;根据材料中的信息估年四个常住外来人口数最多的是区;(3)如果年常住外来人口降到 121.5 万人,求从年至年平均每年外来人口的下降率.23.如,四形ABCD 是矩形,点 E 在 CD 上,点 F 在 DC 延上,(1)求:四形 ABFE是平行四形;(2)若∠ BEF=∠DAE,AE=3, BE=4,求 EF的.五、解答:(本共20 分,第 24 6 分,第 25-26 每小 6 分)24.如 1,将 1 的正方形 ABCD扁 1 的菱形 ABCD.在菱形ABCD中,∠ A 的大小α,面 S.( 1)全表:α30°45°60°90°120°135°150°S1( 2)填空:由( 1)可以位正方形在扁的程中,菱形的面随着∠ A 大小的化而化,不妨把位菱形的面SS(α).例如:当α=30° , S=S ( 30°) =;当α=135°, S=S=.由上表可以得到 S(60°)=S(°);S=S(°),⋯,由此可以出S=(°).(3)两相同的等腰直角三角板按 2 的方式放置, AD= ,∠ AOB=α,探究中两个阴影的三角形面是否相等,并明理由(注:可以利用( 2)中的).25.如,在正方形 ABCD中,点 M 在 CD 上,点 N 在正方形 ABCD 外部,且足∠CMN=90°,CM=MN.接 AN, CN,取 AN 的中点 E,接 BE,AC,(1)①依题意补全图形;②求证: BE⊥AC.(2)请探究线段 BE,AD,CN 所满足的等量关系,并证明你的结论.(3)设 AB=1,若点 M 沿着线段 CD 从点 C 运动到点 D,则在该运动过程中,线段 EN 所扫过的面积为(直接写出答案).26.在平面直角坐标系 xOy 中,图形 G 的投影矩形定义如下:矩形的两组对边分别平行于 x 轴, y 轴,图形 G 的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为k,我们称常数k 为图形G 的投影比.如图 1,矩形 ABCD为△ DEF的投影矩形,其投影比.( 1)如图 2,若点 A( 1,3), B( 3, 5),则△ OAB投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣ 4(其中 x< 2)的图象上有一点 D,若△OCD的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△PEF 的投影比1< k< 2,则点P 的横坐标m 的取值范围(直接写出答案).-学年八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本题共30 分,每小题 3 分)在下列各题的四个备选答案中,只有一个是正确的.1.下列各式中,运算正确的是()A.B.C.D.【考点】二次根式的加减法.【分析】分别根据合并同类项的法则、二次根式的化简法则对各选项进行逐一分析即可.【解答】解: A、3﹣=2≠ 3,故本选项错误;B、=2,故本选项正确;C、2 与不是同类项,不能合并,故本选项错误;D、=2≠﹣ 2,故本选项错误.故选 B.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5 C.5,12, 13D.2,2,3【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解: A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选 D.3.如图,矩形ABCD 中,对角线AC, BD 交于点 O.若∠ AOB=60°,BD=8,则AB 的长为()A.4 B.C.3D.5【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB,再证明△ AOB 是等边三角形,得出AB=OB=4即可.【解答】解:∵四边形 ABCD是矩形,∴OA= AC, OB= BD=4,AC=BD,∴OA=OB,∵∠ AOB=60°,∴△ AOB是等边三角形,∴AB=OB=4;故选: A.4.已知 P1(﹣ 1,y1), P2(2,y2)是一次函数y=﹣x+1 图象上的两个点,则y1, y2的大小关系是()A.y1=y2B.y1< y2C.y1>y2D.不能确定【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数y=﹣ x+1 中 k=﹣1 判断出函数的增减性,再根据﹣1<2进行解答即可.【解答】解:∵ P1(﹣ 1,y1)、 P2(2,y2)是 y=﹣x+1 的图象上的两个点,∴y1=1+1=2,y2 =﹣2+1=﹣1,∵ 2>﹣ 1,∴y1>y2.故选 C.5.2022 年将在﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校 4 名同学短道速滑选拔赛成绩的平均数与方差 s2:队员 1队员 2队员 3队员 4平均数(秒)51505150方差 s2(秒2) 3.5 3.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员 1B.队员 2C.队员 3D.队员 4【考点】方差;加权平均数.【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员 1 和 2 的方差最小,但队员 2 平均数最小,所以成绩好,所以队员 2 成绩好又发挥稳定.故选 B.6.用配方法解方程x2﹣2x﹣ 3=0,原方程应变形为()A.( x﹣ 1)2=2B.( x+1)2=4C.( x﹣1)2=4D.( x+1)2=2【考点】解一元二次方程 -配方法.【分析】先移项,再配方,即方程两边同时加上一次项系数一般的平方.【解答】解:移项得, x2﹣ 2x=3,配方得, x2﹣2x+1=4,即( x﹣ 1)2=4,故选 C.7.如图,在平行四边形ABCD中,∠ BAD 的平分线交 BC于点 E,∠ ABC的平分线交 AD 于点 F,若 BF=12,AB=10,则 AE的长为()A.13 B.14 C.15 D.16【考点】平行四边形的性质.【分析】先证明四边形ABEF 是平行四边形,再证明邻边相等即可得出四边形ABEF 是菱形,得出AE⊥ BF,OA=OE,OB=OF= BF=6,由勾股定理求出OA,即可得出 AE的长.【解答】解:如图所示:∵四边形 ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠ BAD的平分线交 BC于点 E,∴∠ DAE=∠BEA,∴∠ BAE=∠BEA,∴AB=BE,同理可得 AB=AF,∴AF=BE,∴四边形 ABEF是平行四边形,∵AB=AF,∴四边形 ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF= BF=6,∴ OA===8,∴AE=2OA=16;故选: D.8.一个有进水管与出水管的容器,从某时刻开始4min 内只进水不出水,在随后的 8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量 y(单位: L)与时间 x(单位: min)之间的关系如图所示.则8min 时容器内的水量为()A.20 L B.25 L C.27LD.30 L【考点】函数的图象.【分析】用待定系数法求对应的函数关系式,再代入解答即可.【解答】解:设当 4≤x≤12 时的直线方程为: y=kx+b(k≠0).∵图象过( 4,20)、( 12, 30),∴,解得:,∴y= x+15 (4≤x≤12);把x=8 代入解得: y=10+15=25,故选 B.若关于x 的方程2﹣( k+1)x+1=0 的根是整数,则满足条件的整数k 的个9kx数为()A.1 个B.2 个C.3 个D.4 个【考点】根的判别式.【分析】当 k=0 时,可求出 x 的值,根据 x 的值为整数可得出k=0 符合题意; k ≠ 0 时,利用分解因式法解一元二次方程可求出x 的值,再根据x 的值为整数结合 k 的值为整数即可得出k 的值.综上即可得出结论.【解答】解:当 k=0 时,原方程为﹣ x+1=0,解得: x=1,∴ k=0 符合题意;当k≠0 时, kx2﹣( k+1)x+1=( kx﹣1)( x﹣1)=0,解得: x1=1,x2= ,∵方程的根是整数,∴为整数, k 为整数,∴k=±1.综上可知:满足条件的整数k 为 0、1 和﹣ 1.故选 C.10.如图 1,在菱形 ABCD中,∠ BAD=60°, AB=2, E 是 DC 边上一个动点, F 是AB 边上一点,∠ AEF=30°.设 DE=x,图中某条线段长为y,y 与 x 满足的函数关系的图象大致如图 2 所示,则这条线段可能是图中的()A.线段 EC B.线段 AE C.线段 EF D.线段 BF【考点】动点问题的函数图象.【分析】求出当点 E 与点 D 重合时,即 x=0 时 EC、AE、 EF、BF 的长可排除 C、D;当点 E 与点 C 重合时,即 x=2 时,求出 EC、 AE的长可排除 A,可得答案.【解答】解:当点 E 与点 D 重合时,即 x=0 时, EC=DC=2,AE=AD=2,∵∠ A=60°,∠ AEF=30°,∴∠ AFD=90°,在RT△ ADF中,∵ AD=2,∴AF= AD=1,EF=DF=ADcos∠ADF= ,∴BF=AB﹣AF=1,结合图象可知C、D 错误;当点 E 与点 C 重合时,即 x=2 时,如图,连接 BD 交 AC于 H,此时 EC=0,故 A 错误;∵四边形 ABCD是菱形,∠ BAD=60°,∴∠ DAC=30°,∴ AE=2AH=2ADcos∠DAC=2× 2×=2,故B正确.故选: B.二、填空题:(本题共18 分,每小题 3 分)211.写出一个以 0,1 为根的一元二次方程x ﹣x=0.【分析】先根据 1+0=1,1×0=0,然后根据根与系数的关系写出满足条件的一个一元二次方程.【解答】解:∵ 1+0=1,1×0=0,2∴以 1 和 0 的一元二次方程可为x ﹣x=0.12.若关于 x 的一元二次方程x2+4x﹣ m=0 有实数根,则 m 的取值范围是 m≥﹣4 .【考点】根的判别式.【分析】根据关于 x 的一元二次方程x2+4x﹣m=0 有实数根,可得△≥ 0,从而可求得 m 的取值范围.【解答】解:∵关于 x 的一元二次方程x2+4x﹣m=0 有实数根,∴△ =42﹣4×1×(﹣ m)≥ 0,故答案为: m≥4.13.如图,为了检查平行四边形书架 ABCD 的侧边是否与上、下边都垂直,工人师傅用一根绳子比较了其对角线 AC, BD 的长度,若二者长度相等,则该书架的侧边与上、下边都垂直,请你说出其中的数学原理对角线相等的平行四边形是矩形,矩形的四个角都是直角.【考点】矩形的判定;平行四边形的性质.【分析】根据矩形的判定定理:对角线相等的平行四边形是矩形即可判定.【解答】解:这种做法的依据是对角线相等的平行四边形为矩形,故答案为:对角线相等的平行四边形是矩形,矩形的四个角都是直角.(“矩形的四个角都是直角”没写不扣分)14.若一次函数y=kx+b( k≠ 0)的图象如图所示,点P( 3, 4)在函数图象上,则关于 x 的不等式 kx+b≤4 的解集是x≤3.【考点】一次函数与一元一次不等式;待定系数法求一次函数解析式.【分析】先根据待定系数法求得一次函数解析式,再解关于x 的一元一次不等式即可.【解答】解法 1:∵直线y=kx+b( k≠ 0)的图象经过点P( 3, 4)和( 0,﹣2),∴,解得,∴一次函数解析式为y=2x﹣2,当y=2x﹣ 2≤ 4 时,解得 x≤3;解法 2:点 P(3,4)在一次函数y=kx+b( k≠ 0)的图象上,则当kx+b≤ 4 时, y≤4,故关于 x 的不等式 kx+b≤4 的解集为点 P 及其左侧部分图象对应的横坐标的集合,∵ P 的横坐标为 3,∴不等式 kx+b≤ 4 的解集为: x≤3.故答案为: x≤ 315.如图所示,DE 为△ ABC 的中位线,点 F 在 DE 上,且∠ AFB=90°,若AB=5,BC=8,则 EF的长为.【考点】三角形中位线定理;直角三角形斜边上的中线.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF 的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE 的长,进而求出 EF的长【解答】解:∵∠ AFB=90°, D 为 AB 的中点,∴ DF= AB=2.5,∵ DE为△ ABC的中位线,∴ DE= BC=4,∴ EF=DE﹣DF=1.5,故答案为: 1.5.16.如图,正方形ABCD的面积是 2,E,F,P 分别是 AB,BC,AC 上的动点,PE+PF的最小值等于.【考点】轴对称 -最短路线问题;正方形的性质.【分析】过点 P 作 MN∥AD 交 AB 于点 M,交 CD于点 N,根据正方形的性质可得出 MN ⊥AB,且 PM≤PE、 PN≤ PF,由此即可得出 AD≤PE+PF,再由正方形的面积为 2 即可得出结论.【解答】解:过点 P 作 MN∥AD 交 AB 于点 M,交 CD于点 N,如图所示.∵四边形 ABCD为正方形,∴MN⊥AB,∴PM≤ PE(当 PE⊥ AB 时取等号), PN≤PF(当 PF⊥BC时取等号),∴MN=AD=PM+PN≤ PE+PF,∵正方形 ABCD的面积是 2,∴AD= .故答案为:.三、解答题:(本题共22 分,第 17-19 题每小题 4 分,第 20-21 题每小题 4分)17.计算:.【考点】二次根式的混合运算.【分析】先化简,然后根据混合运算的法则,先算括号里面的,然后算乘法,最后算减法.【解答】解:=,====.18.解方程: y(y﹣4)=﹣1﹣2y.【考点】解一元二次方程 -配方法.【分析】先去括号,移项合并同类项得到y2﹣2y+1=0,再根据完全平方公式即可求解.【解答】解: y(y﹣4)=﹣1﹣2y,y2﹣ 2y+1=0,( y﹣ 1)2=0,y1=y2=1..已知2﹣ 3ax+a2的一个根,求代数式2﹣9a+1 的值.19x=1 是方程 x=03a【考点】一元二次方程的解.【分析】根据方程解的定义,把 x=1 代入得出关于 a 的方程,求得 a 的值,再代入即可得出答案.【解答】解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣ 3a+a2=0.∴a2﹣3a=﹣1.∴3a2﹣ 9a+1=3(a2﹣3a)+1=3×(﹣ 1)+1=﹣ 2.或解:∵ x=1 是方程 x2﹣3ax+a2=0 的一个根,∴1﹣ 3a+a2=0.∴a2﹣3a+1=0.解方程得.把代入得 3a2﹣9a+1 得 3a2﹣9a+1=﹣ 2.20.在平面直角坐标系xOy 中,一次函数的图象经过点A( 2, 3)与点 B( 0,5).(1)求此一次函数的表达式;(2)若点 P 为此一次函数图象上一点,且△ POB 的面积为 10,求点 P 的坐标.【考点】待定系数法求一次函数解析式.【分析】(1)设此一次函数的表达式为 y=kx+b( k≠ 0).由点 A、B 的坐标利用待定系数法即可求出该函数的表达式;( 2)设点 P 的坐标为( a,﹣ a+5).根据三角形的面积公式即可列出关于 a 的含绝对值符号的一元一次方程,解方程即可得出结论.【解答】解:( 1)设此一次函数的表达式为y=kx+b(k≠0).∵一次函数的图象经过点A(2,3)与点 B(0,5),∴,解得.∴此一次函数的表达式为y=﹣ x+5.(2)设点 P 的坐标为( a,﹣a+5).∵ B( 0, 5),∴ OB=5.∵ S△POB=10,∴.∴| a| =4.∴a=±4.∴点 P 的坐标为( 4, 1)或(﹣ 4, 9).21.如图,四边形ABCD 中, AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.【考点】勾股定理.【分析】连接 AC,过点 C 作 CE⊥AB 于点 E,在 Rt△ACD 中根据勾股定理求出AC 的长,由等腰三角形的性质得出AE=BE= AB,在 Rt△ CAE 中根据勾股定理求出 CE的长,再由 S 四边形ABCD=S△DAC+S△ABC即可得出结论.【解答】解:连接 AC,过点 C 作 CE⊥AB 于点 E.∵AD⊥CD,∴∠ D=90°.在 Rt△ACD中, AD=5, CD=12,AC=.∵BC=13,∴ AC=BC.∵CE⊥AB,AB=10,∴ AE=BE= AB=.在Rt△CAE中,CE=.=S=∴ S四边形ABCD△ DAC+S△ ABC.四、解答:(本共10 分,第 22 5 分,第 23 5 分)22.下列材料:了抓疏解非首都功能个“牛鼻子”,迁市、移企,人随走.城、西城、海淀、丰台⋯人口开始出增,城六区人口年由升降.而在,多地区人口都开始下降.数字示:年区常住外来人口150 万人,同比下降 1.1%,减少 1.7 万人,首次了增.和海淀一,丰台也在年首次了常住外来人口增,同比下降 1.4%,减少1.2 万人;、西城,常住外来人口同呈下降:年城同比下降 2.4%,减少 5000人,西城同比下降 5.5%,减少 1.8 万人;石景山,常住外来人口近年来增速放,到年年底,全区常住外来人口可降至 63.5 万,比年减少 1.7 万人,首次出增;⋯年初,市改委透露,年本市将确保完成人口控目城六区常住人口年下降 3%,迎来人口由升降的拐点.人口下降背后,是本市密鼓疏解非首都功能的大略.根据以上材料解答下列:( 1)年常住外来人口约为65.2万人;( 2)年东城、西城、海淀、丰台四个常住外来人口同比下降率最高的是西城区;根据材料中的信息估计年这四个常住外来人口数最多的是海淀区;(3)如果年常住外来人口降到 121.5 万人,求从年至年平均每年外来人口的下降率.【考点】一元二次方程的应用;用样本估计总体.【分析】(1)由年全区常住外来人口63.5 万,比年减少 1.7 万人,列式为63.5+1.7=65.2;(2)依次把四个区人口的同比下降率作比较即可得出同比下降率最高的是西,再计算四个年的人口数进行比较;( 3)设海淀平均每年常住外来人口的下降率为x,原数为 150 万人,后来数为121.5 万人,下降了两年,根据降低率公式列方程解出即可.【解答】解:( 1)63.5+1.7=65.2,故答案为: 65.2,(2)因为同比下降 1.1%,丰台同比下降 1.4%,东城同比下降 2.4%,西城则同比下降 5.5%,所以同比下降率最高的是西城,年这四个常住外来人口数::约为 150 万人,丰台: 1.2×104÷1.4%﹣12000≈845142≈85(万人),东城: 5000÷24%﹣ 5000≈ 15833≈1.6(万人),西城: 18000÷5.5%﹣ 18000≈309272≈ 31(万人),则常住外来人口数最多的是;故答案为:西城,海淀;( 3)解:设海淀平均每年常住外来人口的下降率为x.由题意,得 150( 1﹣x)2=121.5.解得, x1=0.1=10%, x2=1.9.(不合题意,舍去)答:海淀平均每年常住外来人口的下降率为10%.23.如图,四边形ABCD 是矩形,点 E 在 CD 边上,点 F 在 DC 延长线上,AE=BF.(1)求证:四边形 ABFE是平行四边形;(2)若∠ BEF=∠DAE,AE=3, BE=4,求 EF的长.【考点】矩形的性质;平行四边形的判定与性质.【分析】(1)欲证明四边形 ABFE 是平行四边形,只要证明 AE∥BF, EF∥AB 即可.(2)先证明△ AEB是直角三角形,再根据勾股定理计算即可.【解答】(1)证明:∵四边形 ABCD是矩形,∴ AD=BC,∠ D=∠ BCD=90°.∴∠ BCF=180°﹣∠ BCD=180°﹣90°=90°.∴∠ D=∠ BCF.在 Rt△ADE和Rt△ BCF中,∴Rt△ADE≌ Rt△BCF.∴∠ 1=∠ F.∴AE∥BF.∵AE=BF,∴四边形 ABFE是平行四边形.(2)解:∵∠ D=90°,∴∠DAE+∠1=90°.∵∠BEF=∠ DAE,∴∠ BEF+∠ 1=90°.24 / 37∴∠ AEB=90°.在Rt△ABE中, AE=3, BE=4,AB=.∵四形 ABFE是平行四形,∴EF=AB=5.五、解答:(本共20 分,第 24 6 分,第 25-26 每小 6 分)24.如 1,将 1 的正方形 ABCD扁 1 的菱形 ABCD.在菱形ABCD中,∠ A 的大小α,面 S.( 1)全表:α30°45°60°90°120°135°150°S1( 2)填空:由( 1)可以位正方形在扁的程中,菱形的面随着∠ A 大小的化而化,不妨把位菱形的面S S(α).例如:当α=30° ,S=S ( 30°) =;当α=135° ,S=S=.由上表可以得到S ( 60°) =S(120 °); S=S( 30 °),⋯,由此可以出 S=(α °).(3)两相同的等腰直角三角板按 2 的方式放置, AD= ,∠ AOB=α,探究中两个阴影的三角形面是否相等,并明理由(注:可以利用( 2)中的).【考点】四边形综合题.【分析】(1)过 D 作 DE⊥AB 于点 E,当α=45时°,可求得 DE,从而可求得菱形的面积 S,同理可求当α=60°时 S 的值,当α=120时°,过 D 作 DF⊥ AB交BA 的延长线于点F,则可求得DF,可求得S 的值,同理当α=135°时S的值;(2)根据表中所计算出的 S 的值,可得出答案;(3)将△ ABO 沿 AB 翻折得到菱形 AEBO,将△ CDO 沿 CD 翻折得到菱形OCFD.利用( 2)中的结论,可求得△ AOB 和△ COD 的面积,从而可求得结论.【解答】解:( 1)当α=45°,如图时 1,过 D 作 DE⊥AB 于点 E,则DE= AD= ,∴ S=AB?DE= ,同理当α=60时° S=,当α=120°,如图时 2,过 D 作 DF⊥AB,交 BA 的延长线于点 F,则∠ DAE=60°,∴DF= AD= ,∴S=AB?DF= ,同理当α=150时°,可求得 S= ,故表中依次填写:;;;;( 2)由( 1)可知 S(60°)=S,S=S(30°),∴S=S(α)故答案为: 120;30;α;( 3)两个带阴影的三角形面积相等.证明:如图 3 将△ ABO 沿 AB 翻折得到菱形 AMBO,将△ CDO沿 CD 翻折得到菱形OCND.∵∠ AOD=∠COB=90°,∴∠ COD+∠AOB=180°,∴S△AOB= S 菱形AMBO= S(α)S△CDO= S 菱形OCND=S由( 2)中结论 S(α)=S∴S△AOB=S△CDO.25.如图,在正方形 ABCD中,点 M 在 CD 边上,点 N 在正方形 ABCD 外部,且满足∠ CMN=90°,CM=MN.连接 AN, CN,取 AN 的中点 E,连接 BE,AC,交于 F 点.( 1)①依题意补全图形;②求证:BE⊥AC.(2)请探究线段 BE,AD,CN 所满足的等量关系,并证明你的结论.(3)设 AB=1,若点 M 沿着线段 CD 从点 C 运动到点 D,则在该运动过程中,线段 EN 所扫过的面积为(直接写出答案).【考点】四边形综合题.【分析】(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E 为AN 的中点即可得出AE=CE,由此即可得出B、E 在线段AC的垂直平分线上,由此即可证得 BE⊥AC;( 2) BE= AD+ CN.根据正方形的性质可得出BF=AD,再结合三角形的中位线性质可得出EF= CN,由线段间的关系即可证出结论;(3)找出 EN 所扫过的图形为四边形 DFCN.根据正方形以及等腰直角三角形的性质可得出 BD∥ CN,由此得出四边形 DFCN 为梯形,再由 AB=1,可算出线段 CF、DF、CN 的长度,利用梯形的面积公式即可得出结论.【解答】解:( 1)①依题意补全图形,如图 1 所示.②证明:连接 CE,如图 2 所示.∵四边形 ABCD是正方形,∴∠ BCD=90°,AB=BC,∴∠ ACB=∠ACD= ∠BCD=45°,∵∠ CMN=90°,CM=MN,∴∠ MCN=45°,∴∠ ACN=∠ACD+∠MCN=90°.∵在 Rt△ ACN中,点 E 是 AN 中点,∴AE=CE= AN.∵AE=CE,AB=CB,∴点 B,E 在 AC的垂直平分线上,∴BE垂直平分 AC,∴BE⊥AC.(2) BE= AD+ CN.证明:∵ AB=BC,∠ ABE=∠ CBE,∴AF=FC.∵点 E 是 AN 中点,∴AE=EN,∴FE是△ ACN的中位线.∴FE= CN.∵BE⊥AC,∴∠ BFC=90°,∴∠ FBC+∠FCB=90°.∵∠ FCB=45°,∴∠ FBC=45°,∴∠ FCB=∠FBC,∴BF=CF.222在 Rt△BCF中, BF +CF =BC,∴BF= BC.∵四边形 ABCD是正方形,∴BC=AD,∴BF= AD.∵BE=BF+FE,∴BE= AD+ CN.(3)在点 M 沿着线段 CD 从点 C 运动到点 D 的过程中,线段 EN 所扫过的图形为四边形 DFCN.∵∠ BDC=45°,∠DCN=45°,∴ BD∥CN,∴四边形 DFCN为梯形.∵ AB=1,∴ CF=DF= BD=,CN=CD=,∴ S梯形DFCN()(+)×=.=DF+CN ?CF=故答案为:.26.在平面直角坐标系xOy 中,图形 G 的投影矩形定义如下:矩形的两组对边分别平行于x 轴, y 轴,图形G 的顶点在矩形的边上或内部,且矩形的面积最小.设矩形的较长的边与较短的边的比为k,我们称常数k 为图形G 的投影比.如图 1,矩形 ABCD为△ DEF的投影矩形,其投影比.( 1)如图 2,若点 A( 1,3), B( 3, 5),则△ OAB投影比 k 的值为.(2)已知点 C(4,0),在函数 y=2x﹣ 4(其中 x< 2)的图象上有一点 D,若△OCD的投影比 k=2,求点 D 的坐标.(3)已知点 E(3,2),在直线 y=x+1 上有一点 F(5,a)和一动点 P,若△PEF 的投影比1<k< 2,则点P 的横坐标m 的取值范围1<m<3 或 m>5(直接写出答案).【考点】一次函数综合题.【分析】(1)在图 2 中作出△ OAB 的投影矩形ACBD,根据投影比的定义即可得出结论;( 2)设出 D 点的坐标,分0≤x≤2 和 x<0 两种情况考虑,找出两种情况下△OCD 的投影矩形,根据投影比的定义列出关于x 的方程,解方程即可得出结论;( 3)根据题意画出图形,根据投影矩形的不同分四种情况考虑(m≤ 1, 1< m < 3, 3≤ m≤5 和 m>5),找出每种情况下的投影矩形投影比,根据m 的取值范围确定 k 的取值范围,由此即可得出结论.【解答】解:( 1)在图 2 中过点 B 作 BC⊥x 轴于点 C,作 BD⊥y 轴于点 D,则矩形 ACBD为△ OAB 的投影矩形,∵点 B(3,5),∴OC=3, BC=5,∴△ OAB投影比 k 的值为=.(2)∵点D 为函数y=2x﹣4(其中x<2)的图象上的点,设点 D 坐标为( x, 2x﹣4)( x<2).分以下两种情况:①当 0≤x≤2 时,如图 3 所示,作投影矩形 OMNC.∵OC≥OM,∴,解得 x=1,∴ D( 1,﹣ 2);②当 x<0 时,如图 4 所示,作投影矩形 MDNC.∵点 D 坐标为( x, 2x﹣4),点 M 点坐标为( x,0),∴DM=| 2x﹣4| =4﹣2x,MC=4﹣x,∵ x<0,∴DM>CM,∴,但此方程无解.∴当 x<0 时,满足条件的点 D 不存在.综上所述,点 D 的坐标为 D(1,﹣ 2).(3)令 y=x+1 中 y=2,则 x+1=2,解得: x=1.①当 m≤ 1 时,作投影矩形 A′FB′P,如图 5 所示.此时点P(m , m+1), PA′=5﹣m, FA′=6﹣( m+1) =5﹣ m,△ PEF 的投影比k==1,∴ m≤1 不符合题意;②当 1<m< 3 时,作投影矩形A′FB′Q,如图 6 所示.此时点P ( m , m+1 ), FB′=5﹣ m , FA′=6﹣ 2=4 ,△ PEF 的投影比k==,∵1< m<3,∴1< k<2,∴1< m<3 符合题意;③当 3≤m≤ 5 时,作投影矩形A′FB′E,如图 7 所示.此时点 E( 3,2), FA′=6﹣2=4,FB′=5﹣3=2,△ PEF的投影比 k==2,∴ 3≤ m≤5不符合题意;④当 m> 5时,作投影矩形 A′PB′E,如图 8 所示.此时点P( m, m+1),点E(3,2), PB′=m+1﹣ 2=m﹣ 1, PA′=m﹣3,△ PEF的投影比 k==,∵m>5,∴ 1< k<2,∴ m>5 符合题意.综上可知:点 P 的横坐标 m 的取值范围为 1< m<3 或 m>5.故答案为: 1<m<3 或 m>5.年 2 月 18 日。
北京市海淀区2018—2019学年度第二学期期末试卷-初二数学-含详细答案
海淀区2019年八年级学业发展水平评价数 学2019.7一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个....是符合题意的. 1. 下列实数中,是方程240x -=的根的是A. 1B. 2C. 3D. 42. 如图,在Rt △ABC 中, 90C ∠=°,6BC =,8AC =,则AB 的长度为A. 7B. 8C. 9D. 103. 在下列条件中,能判定四边形为平行四边形的是A. 两组对边分别平行B. 一组对边平行且另一组对边相等C. 两组邻边相等D. 对角线互相垂直4. 下列各曲线中,不表示y 是x 的函数的是ABCD5. 数据2, 6, 4, 5, 4, 3的平均数和众数分别是A .5和4B .4和4C .4.5和4D .4和56. 一元二次方程2810x x --=经过配方后可变形为A. 2(4)15x +=B. 2(4)17x +=C. 2(4)15x -=D. 2(4)17x -=7. 若点12(3,),(1,)A y B y -都在直线122y x =+上,则1y 与2y 的大小关系是 A. y 1<y 2 B. y 1=y 2C. y 1>y 2D. 无法比较大小8. 如图,正方形ABCD对角线AC , BD 交于点O , E 是AC 延长线上一点, 且CE =CO .则BE 的长度为A.B.C.D.9. 对于一次函数y kx b =+(k , b 为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是 A. 5B. 8C. 12D. 1410. 博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务. 近年来,人们到博物馆学习参观的热情越来越高. 2012-2018年我 国博物馆参观人数统计如下:BCD O EA小明研究了这个统计图,得出四个结论:① 2012年到2018年,我国博物馆参观人数持续增长; ②2019年末我国博物馆参观人数估计将达到10.82亿人次;③ 2012年到2018年,我国博物馆参观人数年增幅最大的是2017年; ④ 2016年到2018年,我国博物馆参观人数平均年增长率超过10%. 其中正确的是 A .①③B .①②③C .①②④D .①②③④二、填空题(本题共18分,每小题3分)11. 如图,在□ABCD 中,∠B =110°,则∠D =________°.12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是 组.13.若关于x 的一元二次方程260x x m ++=有实数根, 且所有实数根均为整数,请写出一个符合条件的常数m 的值:m = .A14.如图,某港口P 位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P ,各自沿固定方向航行,“远洋”号每小时航行12 n mile ,“长峰”号每小时航行16 n mile ,它们离开港 口1小时后,分别到达A ,B 两个位置,且AB =20 n mile ,已知“远 洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_______. 15.若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时,工作人员想利用如图所示的直角墙 角(两边足够长)和长为38 m 的篱笆围成一个“优美矩形”形状的花 园ABCD ,,其中边AB , AD 为篱笆,且AB 大于AD . 设AD 为x m, 依题 意可列方程为 .16. 在平面直角坐标系xOy 中,直线3y kx =+与x ,y 轴分别交于点A ,B ,若将该直线向右平移5个单位,线段AB 扫过区域的边界恰好为菱形,则k 的值为 .三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分) 17.解方程: (1)2230x x --=;(2)22310x x +-=.18.在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与直线y =2x 平行,且经过点A (1,6).(1)求一次函数y =kx +b 的解析式;(2)求一次函数y =kx +b 的图象与坐标轴围成的三角形的面积.19.下面是小丁设计的“利用直角三角形和它的斜边中点作矩形”的尺规作图过程.已知:如图,在Rt △ABC 中,∠ABC =90°,O 为AC 的中点. 求作:四边形ABCD ,使得四边形ABCD 为矩形.作法:①作射线BO ,在线段BO 的延长线上取点D ,使得DO =BO ;②连接AD ,CD ,则四边形ABCD 为矩形. 根据小丁设计的尺规作图过程.(1)使用直尺和圆规,在图中补全图形(保留作图痕迹); (2)完成下面的证明. 证明:∵点O 为AC 的中点,∴ AO =CO . 又∵ DO =BO ,∴四边形ABCD 为平行四边形( )(填推理的依据).∵∠ABC =90°,∴□ABCD 为矩形( )(填推理的依据).20. 关于x 的一元二次方程2240x x k ++-=有实数根.(1)求k 的取值范围;(2)若k 是该方程的一个根,求2265k k +-的值.21.小东和小明要测量校园里的一块四边形场地ABCD (如图所示)的周长,其中边CD 上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB =AD =5 m ,∠A =60°,BC =12 m ,∠ABC =150°. 小明说根据小东所得的数据可以求出CD 的长度.你同意小明的说法吗?若同意,请求出CD 的长度;若不同意,请说明理由.ADCB四、解答题(本题共13分,第22题7分,第23题6分)22.三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动.为了让同学们更好的了解二十四节气的知识, 本次学习节在沿袭以往经典项目的基础上,增设了 “二十四节气之旅”项目,并开展了相关知识竞赛. 该学校七、八年级各有400名学生参加了这 次竞赛, 现从七、八年级各随机抽取20名学生的成绩进行抽样调查. 收集数据如下:七年级:74 97 96 72 98 99 72 73 76 7474 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91整理数据如下:分析数据如下:年级 平均数 中位数 众数 方差 七年级 84. 2 77 74 138.56 八年级84b89129.7根据以上信息,回答下列问题:(1)a = ,b = ;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有 人.50x ≤≤5960x ≤≤6970x ≤≤7980x ≤≤8990x ≤≤100七年级 0 1 10 1 a 八年级 12386人数 成绩年级23. 如图,在□ABCD 中,对角线AC ,BD 交于点O ,过点B 作BE ⊥CD 于点E ,延长CD 到点F ,使DF =CE ,连接AF . (1)求证:四边形ABEF 是矩形;(2)连接OF ,若AB =6,DE =2,∠ADF =45°,求OF 的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.如图,在平面直角坐标系xOy 中,直线7y kx =+与直线2y x =-交于点()3,A m .(1)求,k m 的值;(2)已知点(),P n n ,过点P 作垂直于y 轴的直线与直线2y x =-交于点M ,过点P 作垂直于x 轴的直线与直线7y kx =+交于点N (P 与N 不重合). 若2PN PM ≤,结合图象,求n 的取值范围.25.在Rt △ABC 中,90BAC ∠=︒,点O 是△ABC 所在平面内一点,连接OA ,延长OA 到点E ,使得AE =OA ,连接OC ,过点B 作BD 与OC 平行,并使∠DBC =∠OCB ,且BD =OC ,连接DE . (1)如图一,当点O 在Rt △ABC 内部时.① 按题意补全图形;② 猜想DE 与BC 的数量关系,并证明.(2)若AB = AC (如图二), 且30,15OCB OBC ∠=︒∠=︒,求AED ∠的大小.图一图二备用图海淀区2019年八年级学业发展水平评价数 学参考答案一、选择题二、填空题11. 110 12.甲13.0(答案不唯一) 14.南偏东30°15.2(38)38x x -=(无需写成一般式) 16. 34±(填对一个得2分,填对两个得3分,含有错误答案得0分) 三、解答题 17.解:(1)2230x x --=;解法一: 2230x x --=223x x -=2214x x -+=…………………………………………………………………………1分 2(1)4x -=………………………………………………………………………………2分 12x -=±………………………………………………………………………………3分 123,1x x ==-………………………………………………………………………………4分解法二:2230x x --=(3)(1)0x x -+= ………………………………………………………………………………2分123,1x x ==-………………………………………………………………………………4分备用图(2)22310x x +-=.解:22310x x +-= 2,3,1a b c ===-Q942(1)170∴∆=-⨯⨯-=>……………………………………………………………………1分x = ………………………………………………………………………………3分12x x ……………………………………………………………………4分 注:若(1)中用公式法,请参考(2)中评分细则18.解:(1)Q 一次函数y kx b =+的图象为直线,且与直线2y x =平行,2k ∴=. ……………………………………………………………………………1分 又知其过点A (1,6), 26b ∴+=. 4b ∴=.∴一次函数的解析式为24y x =+. ………………………………………………………2分 (2)当0x =时,4y =,可知直线24y x =+与y 轴的交点为(0,4). ……………………………………………3分当0y =时,2x =-,可知直线24y x =+与x 轴交点为(2,0)-. ……………………………………………4分可得该直角三角形的两条直角边长度分别为4和2.所以直线24y x =+与坐标轴围成的三角形的面积为14242⨯⨯=.…………………5分19.解:(1)作图如图所示…………………………………………………………………2分(2)对角线互相平分的四边形是平行四边形.……………………………………………3分 有一个角是直角的平行四边形是矩形.……………………………………………4分20. 解:(1)2240x x k ++-=Q 有实数根, 0∴∆≥.………………………………………………………………………………………1分即()22440k --≥.5.k ∴≤ …………………………………………………………………………………2分(2)Q k 是方程2240x x k ++-=的一个根,2240.k k k ∴++-= ……………………………………………………………………………3分 234k k ∴+=. …………………………………………………………………………………4分2265k k +-()2235k k =+-3.=…………………………………………………………………………………5分21.解:同意.………………………………………………………………………………………1分连接BD ,如图.∵AB =AD =5 (m),∠A =60°, ∴△ABD 是等边三角形. ……………………2分 ∴BD =AB =5 (m),∠ABD =60°. ∵∠ABC =150°,∴∠CBD =∠ABC -∠ABD =150°-60°=90°. ……3分 在Rt △CBD 中,BD =5 (m),BC =12 (m), ∴CD13=(m). …………………………………………………4分四、解答题 22.解: (1)8,88.5;…………………………………………………………………………………2分(2)你认为 八 年级知识竞赛的总体成绩较好,理由1:八年级成绩的中位数较高;理由2:八年级与七年级成绩的平均数接近且八年级方差较低,成绩更稳定. 或者你认为 七 年级知识竞赛的总体成绩较好, 理由1:七年级的平均成绩较高; 理由2:低分段人数较少 .…………………………………………………………………………………5分(答案不唯一,合理即可) (3)460. …………………………………………………………………………………7分 23. (1)证明:∵四边形ABCD 是平行四边形∴AB CD =,AB CD ∥.∵DF CE =,∴DF DE CE ED +=+, 即: FE CD =.∵点F 、E 在直线CD 上, ∴AB FE = AB FE ∥. ∴四边形ABEF 是平行四边形. ……………………………………………………………1分又∵BE CD ⊥,垂足是E ,A∴90BEF ∠=︒. ∴四边形ABEF 是矩形.……………………………………………………………2分(2)解:∵四边形ABEF 是矩形O ,∴90AFC ∠=︒,AB FE =. ∵6,2AB DE ==, ∴4FD =.∵FD CE =, ∴4CE =.∴10FC =.…………………………………………………………………………………3分在Rt AFD △中,90AFD ∠=︒. ∵45ADF ∠=︒, ∴4AF FD ==.………………………………………………………………………4分在Rt AFC △中,90AFC ∠=︒.∴AC ==.……………………………………………………………5分∵点O 是平行四边形ABCD 对角线的交点, ∴O 为AC 中点.在Rt AFC △中,90AFC ∠=︒.O 为AC 中点.∴12OF AC == …………………………………………………………………6分五、解答题 24.解:(1)∵直线y =kx +7与直线y =x ﹣2交于点A (3,m ),∴m =3k +3,m =1. …………………………………………………………………1分∴k =﹣2. …………………………………………………………………2分 (2)∵点P (n ,n ),过点P 作垂直于y 轴的直线与直线y =x ﹣2交于点M , ∴M (n +2,n ). ∴PM =2. …………………………………………………………………………………3分 ∵PN ≤2PM , ∴PN ≤4.∵过点P 作垂直于x 轴的直线与直线y =kx +∴N (n ,﹣2n +7).∴PN =37n -. 当PN =4时,如图,即37n -=4, ∴n =1或n =113.∵P 与N 不重合,∴370n -≠. ∴73n ≠.当PN ≤4(即PN ≤2PM )时, n 的取值范围为:713n <≤或71133n <≤.…………………………………………………6分25. 解:(1)①补全图形,如图一.……………………………1分②猜想DE =BC. …………………………………2分如图,连接OD 交BC 于点F ,连接AF . 在△BDF 和△COF 中, ,,,DBF OCF DFB OFC DB OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△COF .∴DF =OF , BF =CF . …………………………………3分 ∴F 分别为BC 和DO 的中点. ∵∠BAC =90°, F 为BC 的中点, ∴12AF BC =. ∵OA =AE , F 为BC 的中点,∴12AF ED =. ∴DE =BC. ………………………………………4分 (2)如图二,连接OD 交BC 于点F ,连接AF ,延长CO交AF 于点M ,连接BM.由(1)中②可知,点F 为BC 的中点,AF 为Rt △ABC 斜边BC 边中线,为△OED 的中位线, ∴AF 为BC 边的垂直平分线. ∴MB =MC.∵∠OCB =30°,∠OBC =15°, ∴∠MBC =∠MCB =30°.图一图二∵∠BAC=90°,AB=AC,∴∠MBO=∠MBA=15°.又可证∠BAM=∠BOM=45°.∴△BMA≌△BMO.∴AM=OM且∠BMO=∠BMA=120°.∴∠OMA=120°.∴∠MAO=30°.∵AF为△OED的中位线,∴AF∥ED.∴∠AED=30°.类似的,如备用图可知,∠AED=15°. ………………7分(提示:证明△ABO为等边三角形,得到∠AED=15°.)∴∠AED=30°或15°.注:各题中若有其他合理的解法请酌情给分.备用图。
2019北京海淀区初二(下)期末数学参考答案
∴ AB = CD , AB ∥CD . ∵ DF = CE , ∴ DF + DE = CE + ED , 即: FE = CD . ∵点 F、E 在直线 CD 上, ∴ AB = FE AB∥FE . ∴四边形 ABEF 是平行四边形................................................... 1 分 又∵ BE ⊥ CD ,垂足是 E, ∴ BEF = 90 . ∴四边形 ABEF 是矩形......................................................... 2 分 (2)解:∵四边形 ABEF 是矩形O , ∴ AFC = 90 , AB = FE . ∵ AB = 6, DE = 2 , ∴ FD = 4 . ∵ FD = CE , ∴ CE = 4 .
即22 − 4(k − 4) 0 .
k 5. .................................................................................................................................................... 2 分 (2) k 是方程 x2 + 2x + k − 4 = 0 的一个根,
2019北京海淀区初二(下)期末数学参考答案
一、选择题
题号
1
2
2019年北京市海淀区初二下学期期末数学试题
2019北京海淀区初二(下)期末数学2019.7考生须知1.本试卷共7页,5道大题,25道小题,满分100分,考试时间90分钟。
2.在答题纸上准确填写姓名、准考证号,并将条形码贴在指定区域。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题用2B铅笔作答,其他试题用黑色字迹的签字笔作答。
5.考试结束,请将答题纸和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的.1.下列实数中,是方程x2−4=0的根的是A. 1 B .2 C. 3 D. 42.如图在Rt△ABC中,∠C=90°,BC=6,AC=8则AB的长度为A. 7B .8C. 9D. 103.在下列条件中,能判定四边形为平行四边形的是A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.下列各曲线中,不表示y是x的函数的是5.数据2,6,4,5,4,3的平均数和众数分别是A. 5和4 B .4和4 C. 4.5和4 D. 4和56.一元二次方程x2-8x-1=0经过配方后可变形为A. (x+4)2=15B. (x+4)2=17C. (x−4)2=15D. (x−4)2=177.若点,(-3,y1 ). B(1, y2)都在直线y=1x+2上,则y1与y2的大小关系是2A. y1<y2B. y1=y2C. y1>y2D.无法比较大小8.如图,正方形ABCD的边长为√2,对角线AC, BD交于点O, E是AC延长线上一点,且CE=CO.则BE的长度为A. √3B. √102C. √5D. 2√59.对于一次函数y=kx+b(k, b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务,近年来,人们到博物馆学习参观的热情越来越高.2012-2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是A.①③B.①②③C.①②④D.①②③④二、填空题(本题共18分,每小题3分)11. 如图,在ABCD中,∠B=110°,则∠D= °12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组13.若关于x的一元二次方程x2+ 6x +m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=14.如图,某港口P位于南北延伸的海岸线上,东面是大海一远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12 n mile,“长峰”号每小时航行16 n mile,它们离开港口1小时后,分别到达A, B两个位置,且AB=20 n mile,己知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_ 。
2019-2020学年北京市海淀区八年级下学期期末考试数学模拟试卷及答案解析
7.(3分)如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子( )
A.逐渐变短B.先变短后变长
C.先变长后变短D.逐渐变长
8.(3分)如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为( )
三.解答题(共6小题,满分21分)
17.(3分)已知一次函数y=kx+b满足下列条件,分别求出字母k,b的取值范围.
(1)使得y随x的增大而减小;
(2)使得函数图象与y轴的交点在y轴上方;
(3)使得函数图象经过第一、三、四象限.
18.(3分)如图所示平行四边形ABCD中,EF分别是边AD,BC上的点,且AE=CF.
14.(3分)写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y随自变量x的增大而减少,则这个函数的表达式为.
15.(3分)在平面直角坐标系中,已知A(0,4)、B(1,0)、C(4,0),D为线段BC上的动点,以AD为边向右侧作正方形ADEF,连CF交DE于P,则CP的最大值为.
(1)求证:四边形ABEF是菱形:
(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的大小.
四.解答题(共4小题,满分16分,每小题4分)
23.(4分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)
(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图;
A.100°B.105°C.110°D.115°
9.(3分)如图,D是△ABC内一点,BD⊥CD,E、F、G、H分别是边AB、BD、CD、AC的中点.若AD=10,BD=8,CD=6,则四边形EFGH的周长是( )
2018-2019学年北京市海淀区八年级(下)期末数学试卷
2018-2019学年北京市海淀区八年级(下)期末数学试卷一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的1.(3分)下列实数中,是方程x2﹣4=0的根的是()A.1B.2C.3D.42.(3分)如图,在Rt△ABC中,∠C=90°,BC=6,AC=8,则AB的长度为()A.7B.8C.9D.103.(3分)在下列条件中,能判定四边形为平行四边形的是()A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.(3分)下列各曲线中,不表示y是x的函数的是()A.B.C.D.5.(3分)数据2,6,4,5,4,3的平均数和众数分别是()A.5和4B.4和4C.4.5和4D.4和56.(3分)一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=15D.(x﹣4)2=17 7.(3分)若点A(﹣3,y1),B(1,y2)都在直线y=x+2上,则y1与y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较大小8.(3分)如图,正方形ABCD的边长为,对角线AC,BD交于点O,E是AC延长线上一点,且CE=CO,则BE的长度为()A.B.C.D.29.(3分)对于一次函数y=kx+b(k,b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有1个函数值计算有误,则这个错误的函数值是()X﹣10123Y2581214 A.5B.8C.12D.1410.(3分)博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高,2012﹣2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增②2019年末我国博物馆参观人数估计将达到1082亿人次③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%其中正确的是()A.①③B.①②③C.①②④D.①②二、填空题(本题共18分,每小题3分)11.(3分)在▱ABCD中,若∠B=110°,则∠D=°.12.(3分)八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是.13.(3分)若关于x的一元二次方程x2+6x+m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=.14.(3分)如图,某港口P位于南北延伸的海岸线上,东面是大海远洋号,长峰号两艘轮船同时离开港P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是.15.(3分)若一个矩形的长边的平方等于短边与其周长一半的积,则称这样的矩形为“优美矩形”.某公园在绿化时工作人员想利用如图所示的直角墙角(两边足够长)和长为38m 的篱笆围成一个“优美矩形”形状的花园ABCD,其中边AB,AD为篱笆且AB大于AD.设AD为xm,依题意可列方程为.16.(3分)在平面直角坐标系xOy中,直线y=kx+3与x,y轴分别交于点A,B,若将该直线向右平移5单位,线段AB扫过区域的边界恰好为菱形,则k的值为.三、解答题(本题共26分,第17题8分,第18,20题各5分,第19,21题各4分)17.(8分)解下列方程:(1)x2+2x﹣3=0(用配方法)(2)2x2+5x﹣1=0(用公式法)18.(5分)在平面直角坐标系xOy中,函数y=kx+b的图象与直线y=2x平行,且经过点A (1,6)(1)求一次函数y=kx+b的解析式;(2)求一次函数y=kx+b的图象与坐标轴围成的三角形的面积.19.(5分)下面是小丁设计的“利用直角三角形和它的斜边中点作矩形的尺规作图过程:已知:如图,在Rt△ABC中,∠ABC=90°,O为AC的中点,求作:四边形ABCD,使得四边形ABCD为矩形.作法:①作射线BO,在线段BO的延长线上取点D,使得DO=BO②连接AD,CD,则四边形ABCD为矩形根据小丁设计的尺规作图过程(1)使用直尺和圆规,在图中补全图形(保留作图痕迹)(2)完成下面的证明证明:∵点O为AC的中点,∴AO=CO又∵DO=BO,∴四边形ABCD为平行四边形()∵∠ABC=90°,∴▱ABCD为矩形()20.(4分)方程x2+2x+k﹣4=0有实数根(1)求k的取值范围;(2)若k是该方程的一个根,求2k2+6k﹣5的值.21.(4分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.四、解答题(本题共13分,第22题7分,第23题6分)22.(7分)三月底,某学校迎来了以“学海通识品墨韵,开卷有益览书山”为主题的学习节活动为了让同学们更好的了解二十四节气的知识,本次学习节在沿袭以往经典项目的基础上,增设了十四节气之旅项目,并开展了相关知识竞赛该学校七、八年级各有400名学生参加了这次竞赛,现从七、八年级各随机抽取20名学生的成绩进行抽样调查七年级:74 97 96 72 98 99 72 73 76 74 74 69 76 89 78 74 99 97 98 99八年级:76 88 93 89 78 94 89 94 95 50 89 68 65 88 77 87 89 88 92 91整理数据如下50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100成绩人数年级七年级01101a八年级12386分析数据如下年级平均数中位数众数方差七年级84.27774138.56八年级84b89129.7根据以上信息,回答下列问题(1)a=b=;(2)你认为哪个年级知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性).(3)学校对知识竞赛成绩不低于80分的学生颁发优胜奖,请你估计学校七、八年级所有学生中获得优胜奖的大约有人.23.(6分)如图,在▱ABCD中,对角线AC,BD交于点O,过点B作BE⊥CD于点E,延长CD到点F,使DF=CE,连接AF.(1)求证:四边形ABEF是矩形;(2)连接OF,若AB=6,DE=2,∠ADF=45°,求OF的长度.五、解答题(本题共13分,第24题6分,第25题7分)24.(6分)如图,在平面直角坐标系xOy中,直线y=kx+7与直线y=x﹣2交于点A(3,m)(1)求k,m的值;(2)已知点P(n,n),过点P作垂直于y轴的直线与直线y=x﹣2交于点M,过点P 作垂直于x轴的直线与直线y=kx+7交于点N(P与N不重合).若PN≤2PM,结合图象,求n的取值范围.25.(7分)在Rt△ABC中,∠BAC=90°,点O是△ABC所在平面内一点,连接OA,延长OA到点E,使得AE=OA,连按OC,过点B作BD与OC平行,并使∠DBC=∠OCB,且BD=OC,连按DE.(1)如图一,当点O在Rt△ABC内部时,①按题意补全图形;②猜想DE与BC的数量关系,并证明.(2)若AB=AC(如图二),且∠OCB=30°,∠OBC=15°,求∠AED的大小.。
北京市海淀区2018-2019学年八年级下期末数学试卷含答案
海淀区 2019-2019 学年八年级第二学期期末练习数学(分数: 100 分时间: 90 分钟)学校班级姓名成绩一、选择题:(此题共30 分,每题 3 分)在以下各题的四个备选答案中,只有一个是正确的.....1.以下各式中,运算正确的选项是A .( 2)2 2 B.28 10C.28 4 D .2222.如图,在△ABC 中, AB 3 , BC 6 , AC 4 ,点 D , E 分别是边AB , CB 的中点,那么 DE 的长为 AA .B . 2 C. 3 D .4 DB EC 3.要获得函数y 2x 3 的图象,只需将函数y2x 的图象A .向左平移 3 个单位B.向右平移 3 个单位C.向上平移 3 个单位D.向下平移 3 个单位.在 Rt △ ABC 中, D 为斜边AB的中点,且 BC 3 , AC 4 ,则线段 CD 的长是4A .2 B.3 C.5D.5 25.已知一次函数y (k 1)x .若 y 随 x 的增大而增大,则k 的取值范围是A .k1B.k1C.k0D.k06 .如图,在△ABC 中, AB 5 , BC 6 , BC 边上的中线AD 4 ,那么 AC 的长是A .5 B.6C.34 D .2 13AB D C7.如图,在点 M , N , P, Q 中,一次函数y kx 2 (k 0) 的图象不行能经过的点是A . MB .N C. P D. QyM2N- 2O 2x Q - 2P8.如图是某一天北京与上海的气温T (单位: C )随时间t(单位:时)变化的图象.依据图中信息,以下说法错误的是..A .12 时北京与上海的气温同样B .从 8 时到 11 时,北京比上海的气温高C.从 4 时到 14 时,北京、上海两地的气温渐渐高升D .这天中上海气温达到 4 C 的时间大概在上午 10 时9.如图,在平面直角坐标系xOy 中,正方形ABCD的极点D在y轴上,且 A( 3,0) ,B (2, b ) ,则正方形ABCD 的面积是yDA .13 B.20 C.25 D.34 CA O x 10.已知两个一次函数y1, y2的图象互相平行,它们的部分自变量与相B 应的函数值以下表:x m 0 2y1 4 3 ty2 6 n - 1则 m 的值是1B . 3 1D .5A .C.3 2二、填空题:(此题共18 分,每题 3 分)11.x 2 在实数范围内存心义,那么x 的取值范围是.12.已知 2 x (y 1)20 ,那么y x的值是.13.如图,两张等宽的纸条交错叠放在一同,若重合部分组成的四边形ABCD 中,AB 3 , AC 2 ,则BD的长A B为.D C14 4的正方形ABCD四条边上的点,.如图, E, F , M , N 分别是边长为EA B且 AE BF CM DN .那么四边形 EFMN 的面积的最小值N 是.15.第 24 届冬天奥林匹克运动会,将于2022 年 2 月在北京市和张家口市结合举行 . 某校寒假时期组织部分滑雪喜好者参加冬令营集训. 训练时期,冬令营的同学们都参加了“单板滑雪” 这个项目40 次的训练测试,每次测试成绩分别为 5 分,4 分, 3 分, 2 分,1 分五档 .甲乙两位同学在这个项目的测试成绩统计结果以下图.F D M C依据上图判断,甲同学测试成绩的众数是;乙同学测试成绩的中位数是;甲乙两位同学中单板滑雪成绩更稳固的是.16.已知一次函数y kx b 的图象过点( 1,0) 和点 (0,2) . 若 x(kx b) 0 ,则 x 的取值范围是.三、解答题:(此题共22 分,第 17— 19 题每题 4 分,第 20— 21 题每题 5 分)317.计算:12 6 .218.如图,在Y ABCD中,点E,F分别在边AD , BC 上,AE CF ,求证:BE DF .A E D19.已知x5 1,求x 2BFC 2x 的值.20.在平面直角坐标系xOy 中,已知点A(0, 3) 、点 B(3, 0) ,一次函数y 2x 的图象与直线AB 交于点 M .(1)求直线AB的函数分析式及M点的坐标;(2)若点N是x轴上一点,且△MNB的面积为 6,求y 54 3 2点 N 的坐标. 1- 5 - 4 - 3 - 2 - 1O 1234 5 x-1-2-3-4-521.如图,在△ABC中,点D,E,F分别是边AB , AC ,ABC 的中点,且 BC 2 AF .( 1)求证:四边形ADFE为矩形;D E( 2)若 C 30 , AF 2 ,写出矩形ADFE的周长.B CF四、解答题:(此题共14 分,第 22 题 8 分,第 23 题 6 分)22.阅读以下资料:2019 年人均阅读16 本书!2019 年 4 月 23 日“世界念书日” 以前,国际网络电商亚马逊公布了“亚马逊中国2019 全民阅读报告”.报告显示,大多数读者已养成必定的阅读习惯,阅读总量在10 本以上的占 56%,而昨年阅读总量在10 本以上的占48%.京东图书也公布了2019 年度图书阅读报告.依据京东图书娱乐业务部数据统计,2019 年销售纸书人均16 册,总量叠在一同相当于15000 个帝国大厦的高.(1)在亚马逊这项检查中,以每年有效问卷 1.4 万份来计, 2019 年阅读量十本以上的人数比昨年增添了人;(2)毛毛雨作为学校的图书管理员,依据初二年级每位同学本学期的借书记录,对各个班借阅的状况作出了统计,并绘制统计图表以下:初二年级图书借阅分类统计扇形图初二年级各班图书借阅状况统计表班级123 4人数35353436借阅总182165143数(本)中位数565 5①整年级140名同学中有科技社团成员40 名,他们人均阅读科普类书本1.5 本,年级其余同学人均阅读科普类书本 1.08 本,请你计算整年级人均阅读科普类书本的数目,再经过计算补全统计表;②在①的条件下,若要介绍初二某个班级为本学期阅读先进集体,你会介绍哪个班,请写出你的原因.23.在四形中,一条上的两个角称角. 一条上的角相等,且条的上的角也相等,的四形叫做 IT 形 . 你依据研究平行四形及特别四形的方法,写出 IT 形的性,把你的都写出来 .五、解答:(本共16 分,第 24 8 分,第 25 8 分)24.如,四形ABCD是正方形,E是CD垂直均分上的点,点 E 对于 BD 的称点是 E ',直 DE 与直 BE' 交于点 F .A B(1)若点E是CD的中点,接AF ,FAD =;E'F(2)小明从老那边认识到,只需点 E 不在正方形的中心,直 AF 与 AD 所角不.他改点 E 的位置,算相角度,老的法.①如,将点 E 在正方形内,且△ EAB 等三角形,求出直 AF 与 AD 所角的度数;D CEA B E'E② 你研究个,能够延小明的想法,也可用其余方法 .D C F我想沿用小明的想法,把点 E 在CD 垂直均分上的另一个特别位置,我的地点是⋯⋯我没有沿用小明的想法,我的想法是⋯⋯我选择小明的想法;(填“用”或“不用”)并简述求直线度数的思路.AF 与AD 所夹锐角A BD C 25.对于正数 x ,用符号 [ x] 表示 x 的整数部分,比如: [0.1] 0 ,[2.5] 2 ,[3] 3 .点 A(a ,b) 在第一象限内,以 A 为对角线的交点画一个矩形,使它的边分别与两坐标轴垂直. 其中垂直于y 轴的边长为 a ,垂直于 x 轴的边长为 [ b] 1,那么,把这个矩形覆盖的地区叫做点 A 的矩形域.比如:点(3, 3 ) 的矩形域是一个以2(3, 3 ) 为对角线交点,长为23,宽为 2 的矩形所覆盖的地区,如图 1 所示,它的面积是6.y321- 1O 1234 5 x- 1y7654321- 1 O 12 3 4 5 x- 1图 1 图 2 依据上边的定义,回答以下问题:( 1)在图 2 所示的坐标系中画出点(2, 7) 的矩形域,该矩形域的面积是;2(7),Q( a,70) 的矩形域重叠部分面积为1,求 a 的值;2)点 P(2, )(a2 2( 3)已知点 B(m, n )(m 0) 在直线 y x 1上,且点 B 的矩形域的面积S 知足 4 S 5 ,那么 m 的取值范围是.(直接写出结果)八年级第二学期期末练习数学答案一、选择题(此题共30 分,每题3 分)题号 1 2 3 4 5 6 7 8 9 10答案 C B C C B A D D D A 二、填空题(此题共18 分,每题 3 分)11. x 2 12 .1 13. 4 2 14.8 15.3;3;乙同学16. 1 x 0说明:第15 题每空 1 分,共 3 分 .三、解答题(此题共22 分,第17— 19 题每题 4 分,第 20— 21 题每题 5 分)17 .解:原式= 2 3 3 3 ------------------------------ 3 分= 5 3 ------------------------------ 4 分18.证明:∵四边形ABCD是平行四边形,∴AD∥ BC,AD BC.------------------------------1分∵ AE CF ,A E D ∴ DE BF . ------------------------------ 2 分EBFD 是B F C∴ 四边形平行四边形 .------------------------------ 3 分∴ BE DF . ------------------------------ 4 分证法二:∵四边形ABCD是平行四边形,∴ AB DC , A C . ------------------------------1 分A E D ∵ AE CF . ------------------------------2 分∴ VBAE VDCF . ------------------------------3 分∴ BE DF . ------------------------------4 分 B F C 19.解法一:∵x 5 1,∴ x 1 5 .∴ x2 2x x2 2x 1 1 (x 1)2 1------------------------------ 2 分( 5) 2 14 .解法二:∵ x5 1,∴ x 22x x(x 2) ( 5 1)( 5 1 2)( 5) 21------------------------------4分------------------------------2 分4 .------------------------------ 4分注:结论错,有对根式计算正确的部分给1 分。
2019-2020学年海淀教师进修学校附属实验学校八年级(下)期末数学试卷(含答案解析)
2019-2020学年海淀教师进修学校附属实验学校八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.下列式子不一定是二次根式的是()A. √aB. √b2+1C. √0D. √(a+b)22.若实数a使得关于x的分式方程2x+1+x−ax+1=−2的解为负数,且使得关于x的一次函数y=(a+1)x−a+3过第一、二、三象限,则符合条件的所有整数a的和为()A. 6B. 5C. 3D. 23.如图,AB、CD相交于点O,OC=2,OD=3,AC//BD,EF是△ODB的中位线,且EF=2,则AC的长为()A. 83B. 73C. 2D. 534.一次函数y=kx+2(k≠0)的图象经过A(1,0),则它的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.在下列给出的条件中,能判定四边形ABCD为平行四边形的是()A. AB//CD,AD=BCB. ∠A=∠B,∠C=∠DC. AB=AD,CB=CDD. AO=OC,DO=OB6.某校要从甲、乙、丙三名学生中选出一名学生参加演讲比赛,3人的平均成绩均为92分,甲的方差为0.08,乙的方差为0.02,丙的方差为0.01,你认为应该选()参加比赛.A. 甲B. 乙C. 丙D. 无法确定7.如图,在平面直角坐标系中,点O是坐标原点,四边形ABOC是正方形,其中,点A在第二象限,点B,C在x轴、y轴上,若正方形ABOC的面积为36,则点A的坐标是()A. (6,−6)B. (−6,6)C. (−√6,√6)D. (√6,−√6)8.已知直线y=−x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则PAOP的值为()A. √22B. 1C. √2D. √39.如图,在△ABC中,AB=AC=√3,∠BAC=120°,分别以点A,B为圆心,以AB的长为半径作弧,两弧相交于M,N两点,连接MN交BC于点D,连接AD,AN,则△ADN的周长为()A. 3+√2B. 3−√2C. 2−√3D. 2+√310.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s,设P、Q出发t秒时,△BPQ的面积为y(cm2),已知y与t的函数关系的图象如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,y=25t2;③直线NH的解析式为y=−25t+27;④若△ABE与△QBP相似,则t=294秒,其中正确结论的个数为()A. 4B. 3C. 2D. 1二、填空题(本大题共8小题,共24.0分)11.使二次根式√5x−2有意义的x的取值范围是______ .12.在平面直角坐标系中,将直线y=3x−2向上平移3个单位长度后,所得直线的关系式为______ .13.若正六边形的边长为2,则此正六边形的边心距为______.14.菱形ABCD的边AB为5,对角线AC为8,则菱形ABCD的面积为______.15.如图,平行四边形钢板上有一圆洞,现需将该钢板(阴影部分)分成面积相等的两部分,如果限定只能用一条直线,能否做到:______(选填“能”或“不能”).若填“能”,请说明这条直线过哪两个点;若填“不能”,请简要说明理由:______.16.若y=kx−3的图象经过点P(1,3)和Q(3,m),则m=______.17.如图,在Rt△ABC中,∠ACB=90°,∠A<∠B,CM是斜边AB的中线,将△ACM沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,则∠A=____________°.18.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是如表数据:鸭的质量/千克0.51 1.52 2.53 3.5烤制时间/分钟406080100120140160设鸭的质量为x千克,烤制时间为t,估计当x=2.2千克时,t的值为______.三、解答题(本大题共8小题,共46.0分)19. 已知a,b,c,d四个数成比例,且a,d为外项.求证:点(a,b),(c,d)和坐标原点O在同一直线上.20. 如图,在平行四边形ABCD中,AM⊥BD于M,CN⊥BD于N,连接CM、AN(1)求证:四边形AMCN是平行四边形;(2)若∠CBD=30°,∠ABD=45°,AM=2.求平行四边形ABCD的周长.21. 我们把每个顶点都在格点的四边形叫做格点四边形.如图,在所给的8×6方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形ABCD,且它的面积为整数.(2)在图2中画出一个以AB为对角线的菱形APBQ,且它的周长为整数.22. 为了深入贯彻党的十九大精神,我县某中学开展了十九大精神进校园知识气赛活动,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A,B,C,E五个组,x表示测试成绩),通过对测试成绩的分析得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:A组:90≤x≤100B组:80≤x<90C组:70≤x<80D组:60≤x<70E组:x<60(1)参加调查测试的学生共有______人,扇形C的圆心角的度数是;______.(2)请将两幅统计图补充完整;(3)本次调查测试成绩的中位数落在哪个小组内,说明理由;(4)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?23. 如图,已知△ABC内接于⊙O,点D在OC的延长线上,∠B=∠CAD=30°.(1)AD是⊙O的切线吗?为什么?(2)若OD⊥AB,BC=5,求⊙O的半径.24. 在平面直角坐标系xOy中,对于任意两点P1(x1,y1),P2(x2,y2),如果|x1−x2|+|y1−y2|=m,则称P1与P2互为“m−阳光点”.例如:点P1(−1,2),P2(3,4),由于m=|−1−3|+|2−4|=6,则称P1与P2互为“6−阳光点”.(1)在点A(2,2)、B(0,−4)、C(6,2)中,原点O的“4−阳光点”是______;在图1中画出所有原点O的“4−阳光点”所形成的图形.(2)如图2,已知点M(2,1),①点N(0,n)是点M的“3−阳光点”,则n=______;②若直线y=2x+b上存在两个点M的“3−阳光点”,求b的取值范围.(3)已知点D(1,2),E(3,2),G(2,a),S(1,a),T(2,a+1),若线段DE上存在点P,△GST上存在点Q,使得点P与点Q互为“5−阳光点”,直接写出a的取值范围.25. 已知:矩形ABCD的对角线AC与BD交于点O,点E是BC边的中点,点F是线段OD的中点,连接EF.(1)如图1,若AB=2,∠CBD=30°,则线段EF的长为______ .(2)如图2,设EF与AC的交点为P,连接AF.①求证:点P是线段EF的中点;②若AF=EF,矩形ABCD的形状有怎样的变化?并证明你的结论.26.如图,在平面直角坐标系中,等边三角形ABC的BC边在x轴上,顶点A在y轴的正半轴上,OB=a,OA=√3a,△ABC的面积为36√3.(1)求点A的坐标;(2)动点P从点B出发,以每秒1个单位的速度沿B→A→C的方向运动.设运动时间为t,求t为何值时,过O、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍;(3)设点D为AB的中点,连接CD,在x轴上是否存在点Q,使△DCQ是以CD为腰的等腰三角形?如果存在,请求出点Q的坐标;如果不存在,请说明理由.【答案与解析】1.答案:A解析:解:A.√a中a<0时式子无意义,不是二次根式;B、2+1中b2+1≥1,是二次根式;C、√0是二次根式;D.√(a+b)2是二次根式;故选:A.根据二次根式的定义逐一判断可得答案.本题主要考查二次根式的定义,解题的关键是掌握一般地,我们把形如√a(a≥0)的式子叫做二次根式.2.答案:D解析:解:∵一次函数y=(a+1)x−a+3过第一、二、三象限,∴a+1>0且−a+3>0.∴−1<a<3.解分式方程2x+1+x−ax+1=−2得到:x=a−43且a−43≠−1.∵关于y的分式方程2x+1+x−ax+1=−2的解为负数,∴x=a−43<0且a−43≠−1.∴a<4且a≠1.综上所述,a的取值范围为−1<a<3且a≠1.∴整数a的值为:0,2,共有2个,∴0+2=2,故选:D.依据关于x的一次函数y=(a+1)x−a+3过第一、二、三象限,求得a的取值范围,依据关于y的分式方程2x+1+x−ax+1=−2的解为负数求得a的值,即可得到满足条件的整数a的个数,从而求得答案.此题考查了一次函数性质以及分式方程的解.注意根据题意求得使得关于x的分式方程有负数解,且关于x的一次函数y=(a+1)x−a+3的图象不经过第三象限的a的值是关键.3.答案:A解析:解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC//BD,∴△AOC∽△BOD,∴AC:BD=OC:OD,即AC4=23,解得AC=83.故选:A.根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.4.答案:C解析:解:把A点的坐标(1,0)代入y=kx+2得:k+2=0,解得:k=−2,即函数的解析式是y=−2x+2,所以函数的图象经过第一、二、四象限,不经过第三象限,故选:C.把A点的坐标(1,0)代入y=kx+2求出k,得出函数的解析式,再根据一次函数的性质得出即可.本题考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,一次函数的性质等知识点,能求出函数的解析式是解此题的关键.5.答案:D解析:解:A、不能判定四边形ABCD是平行四边形,故此选项不符合题意;B、不能判定四边形ABCD是平行四边形,故此选项不符合题意;C、不能判定四边形ABCD是平行四边形,故此选项不符合题意;D、根据对角线互相平分的四边形是平行四边形能判定四边形ABCD是平行四边形,故此选项符合题意;故选:D.根据两组对边分别平行的四边形是平行四边形可得答案.此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定方法.6.答案:C解析:解:∵甲的方差为0.08,乙的方差为0.02,丙的方差为0.01,∴S 甲2>S 乙2>S 丙2,∴应该选丙参加比赛; 故选:C .根据方差的定义,方差越小数据越稳定,即可得出答案.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.答案:B解析:解:∵正方形ABOC 的面积为36, ∴正方形ABOC 的边长为6, ∵A 在第二象限, ∴A(−6,6). 故选:B .根据正方形的面积确定其边长,再根据A 点所在象限确定其坐标.本题主要考查了正方形的性质以及坐标与图形性质,由正方形面积得出其边长是解答本题的关键.8.答案:C解析:解:如图,y =−x +6,令x =0,则y =6,令y =0,则x =6,故点A 、B 的坐标分别为(6,0)、(0,6),则AB =6√2=A′B , 设:PA =a =PA′,则OP =6−a ,OA′=6√2−6, 由勾股定理得:PA 2=OP 2+OA 2, 即(a)2=(6√2−6)2+(6−a)2, 解得:a =12−6√2,则PA =12−√2,OP =6√2−6,则PAOP =√2,故选:C .设:PA =a =PA′,则OP =6−a ,OA′=6√2−6,由勾股定理得:PA 2=OP 2+OA 2,即可求解. 本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA 2=OP 2+OA 2,从而求出PA 、OP 线段的长度,进而求解. 9.答案:D解析:解:如图,由作图可知,MN 垂直平分线段AB ,∴AD =BD , ∵AB =AC =√3,∠BAC =120°,∴∠B =30°,AE =BE =√32, ∴ED =12,BD =AD =2ED =1, Rt △AEN 中,AN =AB =√3,∴EN =√AN 2−AE 2=√(√3)2−(√32)2=32, ∴DN =EN −ED =32−12=1, ∴△ADN 的周长为AD +AN +DN =1+1+√3=2+√3.故选:D .先根据作图可知:MN 是AB 的垂直平分线,则AD =BD ,根据等腰三角形的性质和三角形内角和定理得∠B =30°,依次利用勾股定理和含30度角的直角三角形的性质得AD ,DN 的长,相加可得△ADN的周长.本题考查作图−基本作图,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.10.答案:B解析:解:①根据图(2)可得,当点P 到达点E 时点Q 到达点C ,∵点P 、Q 的运动的速度都是1cm/s ,∴BC =BE =5cm ,∴AD =BE =5(故①正确);②如图1,过点P 作PF ⊥BC 于点F ,根据面积不变时△BPQ 的面积为10,可得AB =4,∵AD//BC ,∴∠AEB =∠PBF ,∴sin∠PBF =sin∠AEB =AB BE =45, ∴PF =PBsin∠PBF =45t , ∴当0<t ≤5时,y =12BQ ⋅PF =12t ⋅45t =25t 2(故②正确);③根据5−7秒面积不变,可得ED =2,当点P 运动到点C 时,面积变为0,此时点P 走过的路程为BE +ED +DC =11,故点H 的坐标为(11,0),设直线NH 的解析式为y =kx +b ,将点H(11,0),点N(7,10)代入可得:{11k +b =07k +b =10, 解得:{k =−52b =552. 故直线NH 的解析式为:y =−52t +552,(故③错误);④当△ABE 与△QBP 相似时,点P 在DC 上,如图2所示:∵tan∠PBQ =tan∠ABE =34,∴PQ BQ =34,即11−t 5=34, 解得:t =294.(故④正确);综上可得①②④正确,共3个.据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.本题考查了二次函数的综合应用及动点问题的函数图象,根据图(2)判断出点P到达点E时,点Q到达点C是解题的关键,也是本题的突破口,难度较大.11.答案:x≥25解析:本题考查的知识点为:二次根式的被开方数是非负数.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.解:根据题意得:5x−2≥0,.解得x≥25.故答案为:x≥2512.答案:y=3x+1解析:解:将直线y=3x−2向上平移3个单位长度后,所得直线的关系式为y=3x−2+3=3x+1,故答案为:y=3x+1.根据“上加下减、左加右减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.答案:√3解析:解:连接OA、OB、OC、OD、OE、OF,∵正六边形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,×360°=60°,OA=OB,∴∠AOB=16∴△AOB是等边三角形,∴OA=OB=AB=2,∴AM=BM=1,在△OAM中,由勾股定理得:OM=√OA2−AM2=√3.故答案为:√3.根据正六边形的性质求出∠AOB,得出等边三角形OAB,求出OA、AM的长,根据勾股定理求出即可.本题主要考查正多边形的性质,能求出OA、AM的长是解此题的关键.14.答案:24解析:解:连接BD,交AC于O,∵四边形ABCD是菱形,AC=4,BO=DO,CA⊥BD,∴AO=CO=12∵AB=5,∴BO=√AB2−AO2=3,∴BD=6,×6×8=24,∴菱形ABCD的面积为:12故答案为:24.AC=4,BO=DO,连接BD,交AC于O,根据菱形的两条对角线互相垂直且平分可得AO=CO=12CA⊥BD,然后利用勾股定理计算出BO的长,进而可得BD长,再利用菱形的面积公式进行计算即可.此题主要考查了菱形的性质,关键是掌握菱形的两条对角线互相垂直且平分.15.答案:能对角线的交点和圆心解析:解:作一条过圆心与平行四边形对角线交点的直线即把该图形平分,如下图故答案为:能;对角线的交点和圆心.由于圆和平行四边形是中心对称图形,圆心是圆的对称中心,平行四边形的对角线的交点是它的对称中心,故作出一条过圆心与平行四边形对角线交点的直线即把该图形平分.本题利用了圆和平行四边形是中心对称图形的性质求解.16.答案:15解析:解:∵y=kx−3的图象经过点P(1,3),∴3=k−3,解得:k=6,∴一次函数解析式为y=6x−3.∵y=kx−3的图象经过点Q(3,m),∴m=6×3−3=15.故答案为:15.根据点P的坐标利用待定系数法即可求出一次函数的解析式,再根据一次函数图象上点的坐标即可得出结论.本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,根据点的坐标利用待定系数法求出一次函数解析式是解题的关键.17.答案:30解析:解:法一、在Rt△ABC中,∠A<∠B∵CM是斜边AB上的中线,∴CM=AM,∴∠A=∠ACM,将△ACM沿直线CM折叠,点A落在点D处设∠A=∠ACM=x度,∴∠A+∠ACM=∠CMB,∴∠CMB=2x,如果CD恰好与AB垂直在Rt△CMG中,∠MCG+∠CMB=90°即3x=90°x=30°则得到∠MCD =∠BCD =∠ACM =30°根据CM =MD ,得到∠D =∠MCD =30°=∠A∠A 等于30°.法二、∵CM 平分∠ACD ,∴∠ACM =∠MCD∵∠A +∠B =∠B +∠BCD =90°∴∠A =∠BCD∴∠BCD =∠DCM =∠MCA =30°∴∠A =30°18.答案:108解析:解:从表中可以看出,烤鸭的质量每增加0.5千克,烤制的时间增加20分钟,由此可知烤制时间是烤鸭质量的一次函数.设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,{k +b =602k +b =100, 解得{k =40b =20, 所以t =40x +20.当x =2.2千克时,t =40×2.2+20=108.故答案为:108.观察表格可知,烤鸭的质量每增加0.5千克,烤制时间增加20分钟,由此可判断烤制时间是烤鸭质量的一次函数,设烤制时间为t 分钟,烤鸭的质量为x 千克,t 与x 的一次函数关系式为:t =kx +b ,取(1,60),(2,100)代入,运用待定系数法求出函数关系式,再将x =2.2千克代入即可求出烤制时间. 本题考查了的是函数关系式,解题的关键是根据题目的已知及图表条件得到相关的信息. 19.答案:证明:设经过点O 和(a,b)的直线是y =kx ,则b =ak ,则k =b a ,设经过点O 和(c,d)的直线的解析式是:y =mx ,则d =cm ,解得:m =d c ,∵a,b,c,d四个数成比例,∴ab =cd,∴ba =dc,∴k=m,则直线y=kx和直线y=mx是同一直线,即点(a,b),(c,d)和坐标原点O在同一直线上.解析:设经过点O和(a,b)的直线是y=kx,设经过点O和(c,d)的直线的解析式是:y=mx,证明k=m即可证得.本题考查了待定系数法求函数解析式以及比例线段的定义,理解证明的思路是关键.20.答案:(1)证明:∵AM⊥BD于点M,CN⊥BD于点N,∴∠AMN=∠CNM=90°,∴AM//CN(内错角相等,两直线平行),在平行四边形ABCD中,AB=CD,AB//CD,∴∠ABM=∠CDN,在△ABM与△DCN中,{∠ABM=CDN∠AMN=∠CFE=90°AB=CD,∴△ABM≌△CDN(AAS),∴AM=CN,∴四边形AMCN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠ADB=∠CBD=30°,∵AM⊥BD,∠ABM=45°,AM=2,∴AB=√2AM=2√2,AD=2AM=4,∴▱ABCD的周长=(2√2+4)×2=4√2+8.解析:(1)根据垂直,利用内错角相等两直线平行可得AM//CN,在根据平行四边形的性质证明△ABM 与△DCN全等,根据全等三角形对应边相等可得AM=CN,然后根据有一组对边平行且相等的四边形是平行四边形即可证明;(2)由四边形ABCD是平行四边形,得到AD//BC,推出∠ADB=∠CBD=30°,由于AM⊥BD,∠ABM= 45°,AM=2,得到AB=√2AM=2√2,AD=2AM=4,于是得到结论.本题考查了平行四边形的性质与判定,利用三角形全等证明得到AM=CN是证明的关键.21.答案:解:(1)平行四边形ABCD如图所示.(2)菱形APBQ如图所示.解析:(1)利用数形结合的思想解决问题即可;(2)构造边长为5的菱形即可.本题考查了作图−应用与设计作图,勾股定理,平行四边形的判定和性质,菱形的判定等知识,解题的关键是正确的理解题意.22.答案:解:(1)参加调查测试的学生共有60÷15%=400人,扇形C的圆心角的度数是360°×80400= 72°,故答案为:400、72°;(2)A所占百分比为100400×100%=25%、C所占百分比为80400×100%=20%,B分组人数为400×30%=120人,统计图补充如下,(3)∵一共有400人,其中A组有100人,B组有120人,C组有80人,D组有60人,E组有40人.∴最中间的两个数在落在B组,∴中位数在B组.故答案为B组;(4)3000×(25%+30%)=1650人.答:估计全校测试成绩为优秀的学生有1650人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了中位数的定义.(1)根据D组人数及其所占百分比可得总人数,用360°乘以C分组人数所占比例可得;(2)用总人数乘以B组所占百分比,求出B组人数完成条形图.根据频率=频数÷数据总数求出A、C 两组所占百分比,完成扇形图;(3)利用中位数的定义,就是大小处于中间位置的数即可作判断.(4)利用总人数乘以对应的百分比即可求解.23.答案:解:(1)AD是⊙O的切线,理由如下:连接OA,∵∠B=30°,∴∠O=60°,∵OA=OC,∴∠OAC=60°,∵∠CAD=30°,∴∠OAD=90°,又∴点A在⊙O上,∴AD是⊙O的切线.(2)∵∠OAC=∠O=60°,∴∠OCA=60°,∴△AOC是等边三角形,∵OD⊥AB,∴OD垂直平分AB,∴AC=BC=5,∴OA=5,即⊙O的半径为5.解析:(1)理解OA,根据圆周角定理求出∠O,求出∠OAC,即可求出∠OAD=90°,根据切线的判定推出即可.(2)求出等边三角形OAC,求出AC,即可求出答案.本题考查了等边三角形的性质和判定,垂径定理,圆周角定理,切线的判定的应用,题目比较好,是一道比较典型的题目.24.答案:A、B2或0解析:解:(1))∵|−1−0|+|2−0|=4,|0−0|+|−4−0|=4,|6−0|+|2−0|=8,∴原点O的“4−阳光点”是点A、点B.故答案为:A、B;所有原点O的“4−阳光点”所形成的图形是正方形,正方形四个顶点为(0,4)(4,0)(0,−4)(−4,0),如图1中所示:(2)①如图2中,∵M(2,1),∴点M的“3−阳光点”在图中正方形ABCD的边上,∴满足条件的点N的坐标为(0,2)或(0,0),∴n=2或0,故答案为:0或2.②当直线y=2x+b经过点A(−1,1)时,b=3,当直线y=2x+b经过点C(5,1)时,b=−9,观察图象可知,满足条件的b的值为:−9<n<3(3)如图3中,以S,T,G为正方形的中心,对角线长为10,且对角线平行坐标轴,作正方形,观察图象可知,当这三个正方形与线段DE有交点时,线段DE上存在点P,△GST上存在点Q,使得点P与点Q互为“5−阳光点”,观察图象可知,满足条件的a的值为:−4≤a≤−1或5≤a≤7.(1)根据原点O的“4−阳光点”的定义,通过计算判断即可.作出对角线在坐标轴上,对角线长为8,对称中心为原点O的正方形即可.(2)①画出以M为正方形的中心,对角线长为6,且对角线平行坐标轴的正方形ABCD,这个正方形ABCD与y轴的交点即为点N,由此可得结论.②求出直线经过A,C两点时,b的值即可判断.(3)如图3中,以S,T,G为正方形的中心,对角线长为10,且对角线平行坐标轴,作正方形,观察图象可知,当这三个正方形与线段DE有交点时,线段DE上存在点P,△GST上存在点Q,使得点P与点Q互为“5−阳光点”,由此可得结论.本题属于一次函数综合题,考查了坐标与图形的变化,P1与P2互为“m−阳光点”的定义,正方形的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考压轴题.25.答案:√3解析:(1)解:如图1,连接CF,∵四边形ABCD为矩形,∠CBD=30°,=2√3,∴OC=OD,∠BDC=60°,BC=CDtan∠CBD∴△OCD为等边三角形,∵点F是线段OD的中点,∴CF⊥OD,∵点E是BC边的中点,∴EF=12BC=√3,故答案为:√3;(2)①证明:如图2,取OB的中点G,连接EG,∵点E是BC边的中点,∴EG//OC,∴FPPE =FOOG,∵四边形ABCD为矩形,∴OB=OD,∵点F是线段OD的中点,∴OF=OG,∴FP=PE,即点P是线段EF的中点;②解:矩形ABCD是正方形,理由如下:过点F作FH⊥BC于H,连接OE、FC,∵OB=OC,点E是BC边的中点,∴OE⊥BC,∴OE//FH//CD,∵点F是线段OD的中点,∴点H是线段EC的中点,∴FE=FC,∵AF=FE,∴AF=CF,∵OA=OC,∴DA=DC,∴矩形ABCD为正方形.(1)连接CF,根据正切的定义求出BC,根据矩形的性质、等边三角形的判定定理得到CF⊥OD,根据直角三角形的性质解答即可;(2)①取OB的中点G,连接EG,根据三角形中位线定理得到EG//OC,根据平行线分线段成比例定理证明即可;②过点F作FH⊥BC于H,连接OE、FC,根据平行线分线段成比例定理得到点H是线段EC的中点,根据线段垂直平分线的判定定理得到DA=DC,根据正方形的判定定理证明结论.本题考查的是正方形的判定定理、矩形的性质、平行线分线段成比例定理,掌握矩形的性质定理、正方形的判定定理是解题的关键.26.答案:解:(1)∵△ABC是等边三角形,AO⊥BC,∴CO=BO=a,∵S△ABC=12BC⋅OA=12×2a×√3a=36√3,∵a>0,∴a=6,∴OA=6√3,∴A(0,6√3);(2)∵CO=BO=6,∴AB=AC=BC=12,①当P在AB上时,如图1,BP=t,AP=AB−BP=12−t,∵OP分△ABC周长为1:2,∴(BP+BO):(AP+AC+OC)=1:2,∴(6+t):(12−t+12+6)=1:2,解得t=6;②当P在AC上时,如图2,BA+AP=t,PC=24−t,则有(BO+BA+AP):(PC+OC)=2:1,∴(6+t):(24−t+6)=2:1,解得t=18,∴t=6秒或t=18秒时,OP所在直线分△ABC周长为1:2;(3)如图3,∵点D为AB的中点,△ABC是等边三角形,∴CD⊥AB,∠BCD=30°,∵S△ABC=12BC⋅OA=12AB⋅CD,∴CD=OA=6√3,△DCQ是以CD为腰的等腰三角形,点Q在x轴上.分以下情况讨论:①如图3,当CQ=CD时,CQ=6√3,∵OC=6,∴Q1(6+6√3,0), Q2(6−6√3,0);②如图4,当DQ=DC时,∠DQB=∠DCQ=30°,又∵∠ABC=60°,∴∠QDB=∠ABC−∠DQC=60°−30°=30°,∴∠QDB=∠DQB,∴QB=BD=6,∴OQ=12,∴Q3(−12,0),所以,在x轴上存在点Q,Q1(6+6√3,0), Q2(6−6√3,0),Q3(−12,0)使△DCQ是以CD为腰的等腰三角形.解析:(1)根据三角形ABC的面积求出a的值,得出点A的坐标;(2)分两种情况:①P在边AB上,②P在边AC上,分别根据过O、P两点的直线将△ABC的周长分成两个部分,使其中一部分是另一部分的2倍,列式解出t的值即可;(3)满足△DCQ是以CD为腰的等腰三角形的情形有三种,正确画图,分别以D和C为圆心,以腰CD为半径画圆,分别与x轴相交,可得Q点有三个,根据腰长为6√3,可得对应Q的坐标.本题是三角形的综合题,考查了图形与坐标的特点,等腰三角形的判定和性质,三角形周长和面积的计算,等边三角形的性质,用运动时间和速度表示出线段的长,本题的2,3问容易丢解,解决本题的关键时分情况计算.。
2019北京海淀区初二(下)期末数学附答案
2019北京海淀区初二(下)期末数学2019.7考生须知1.本试卷共7页,5道大题,25道小题,满分100分,考试时间90分钟。
2.在答题纸上准确填写姓名、准考证号,并将条形码贴在指定区域。
3.试题答案一律填涂或书写在答题纸上,在试卷上作答无效。
4.在答题纸上,选择题用2B铅笔作答,其他试题用黑色字迹的签字笔作答。
5.考试结束,请将答题纸和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)在下列各题的四个选项中,只有一个是符合题意的.1.下列实数中,是方程x2−4=0的根的是A. 1 B .2 C. 3 D. 42.如图在Rt△ABC中,∠C=90°,BC=6,AC=8则AB的长度为A. 7B .8C. 9D. 103.在下列条件中,能判定四边形为平行四边形的是A.两组对边分别平行B.一组对边平行且另一组对边相等C.两组邻边相等D.对角线互相垂直4.下列各曲线中,不表示y是x的函数的是5.数据2,6,4,5,4,3的平均数和众数分别是A. 5和4 B .4和4 C. 4.5和4 D. 4和56.一元二次方程x2-8x-1=0经过配方后可变形为A. (x+4)2=15B. (x+4)2=17C. (x−4)2=15D. (x−4)2=177.若点,(-3,y1 ). B(1, y2)都在直线y=1x+2上,则y1与y2的大小关系是2A. y1<y2B. y1=y2C. y1>y2D.无法比较大小8.如图,正方形ABCD的边长为√2,对角线AC, BD交于点O, E是AC延长线上一点,且CE=CO.则BE的长度为A. √3B. √102C. √5D. 2√59.对于一次函数y=kx+b (k, b为常数),下表中给出5组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是A. 5B. 8C. 12D. 1410.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务,近年来,人们到博物馆学习参观的热情越来越高.2012-2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是A.①③B.①②③C.①②④D.①②③④二、填空题(本题共18分,每小题3分)11. 如图,在 ABCD中,∠B=110°,则∠D= °12.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:由上表可知,甲、乙两组成绩更稳定的是组13.若关于x的一元二次方程x2+ 6x +m=0有实数根,且所有实数根均为整数,请写出一个符合条件的常数m的值:m=14.如图,某港口P位于南北延伸的海岸线上,东面是大海一远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12 n mile,“长峰”号每小时航行16 n mile,它们离开港口1小时后,分别到达A, B两个位置,且AB=20 nmile,己知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是_。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级学业发展水平评价
数 学
学校 班级 姓名 成绩 一、选择题(本题共30分,每小题3分)
在下列各题的四个备选答案中,只有一个....是正确的. 1.下列各点中,在直线2y x =上的点是 A .(1,1)
B .(2,1)
C .(1,2)
D .(2,2)
2.如图,在△ABC 中,=90ACB ∠°,点D 为AB 的中点,若=4AB ,则CD 的长为 A .2 B .3 C .4
D .5 3.以下列长度的三条线段为边,能组成直角三角形的是 A .6,7,8
B .2,3,4
C .3,4,6
D .6,8,10
4.下列各式中,运算正确的是 A .1223=
B .3333-=
C .2+323=
D .2(2)2-=-
5.如图,一个小球由静止开始沿一个斜坡向下滚动,其速度每秒增加1.5m/s ,
则小球速度v (单位:m/s )关于时间t (单位:s )的函数图象是
A B
C D
6.如图,把一个长方形的纸片对折两次,然后剪下一个角.要得到
一个正方形,剪口与折痕所成锐角的大小为 A .30° B .45° C .60°
D .90°
7.小张骑车从图书馆回家,中途在文具店买笔耽误了1分钟,然后继续骑车回家.若小张骑车的速度始终不变,从出发开始计时,小张离家的距离s (单位:米)与时间t (单位:分钟)的对应关系如图所示,则文具店与小张家的距离为
11
v (m/s)
t (s)
O
1
1
v (m/s)
t (s)
O
1
1
v (m/s)
t (s)
O
D
C B
A
1500
s (米)
A .600米
B .800米
C .900米
D .1000米
8.为了了解班级同学的家庭用水情况,小明在全班50
名同学中,随机调查了10名同学家庭中一年的月平均用水量(单位:吨),绘制了条形统计图如图所示.这10名同学家庭中一年的月平均用水量的中位数是 A .6
B .6.5
C .7.5
D .8
9.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点D 在x 轴上,边BC 在y 轴上,若点A 的坐标为(12,13),则点C 的坐标是 A .(0,5-)
B .(0,6-)
C .(0,7-)
D .(0,8-) 10.教练记录了甲、乙两名运动员在一次1500米长跑比赛中的成绩,他们的速度v (单位:
米/秒)与路程s (单位:米)的关系如图所示,下列说法错误..
的是
A .最后50米乙的速度比甲快
B .前500米乙一直跑在甲的前面
C .第500米至第1450米阶段甲的用时比乙短
D .第500米至第1450米阶段甲一直跑在乙的前 二、 填空题(本题共18分,每小题3分)
11.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,若=10BC ,
则DE 的长为 .
12.如图,在平面直角坐标系xOy 中,若A 点的坐标为(1
,则
OA 的长为 .
v (米/
(吨)
E D
C
B
A
13.若A 12y (,),B 23y (,)
是一次函数31y x =-+的图象上的两个点,则1y 与2y 的大小关系是1y 2y .(填“>”,“=”或“<”)
14.甲、乙两地6月上旬的日平均气温如图所示,则这两地中6月上旬日平均气温的方差较
小的是 .(填“甲”或“乙”)
15.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地三尺.引索却行,去本
八尺而索尽.问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少?设绳索长为x 尺,可列方程为 .
16.计算机可以帮助我们又快又准地画出函数的图象.用
“几何画板”软件画出的函数2(3)y x x =-和
3y x =-的图象如图所示.根据图象可知方程
2(3)3x x x -=-的解的个数为 ;
若m n ,分别满足方程2(3)1x x -=和31x -=,则
m n ,的大小关系是 .
三、解答题(本题共22分,第17-19题每小题4分,第20-21题每小题5分)
17
.计算:.
温度 (
18.如图,四边形ABCD 为平行四边形,E ,F 是直线BD 上两点,且BE DF =,连接AF ,
CE .求证:AF CE =.
19
.已知2x =
,2y =+,求代数式22x xy y ++的值.
20.直线1l 过点A (6-,0),且与直线2l :2y x =相交于点B (m ,4).
(1)求直线1l 的解析式;
(2)过动点P (n ,0)且垂直于x 轴的直线与1l ,2l 的交点分别为C ,D ,当点C 位
于点D 上方时,直接写出n 的取值范围.
21.如图,ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作ABC ∠的
角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形; (2)若4AB =,60ABC ∠=°,求四边形ABFE 的面积.
F
E
D
C
B
A
四、解答题(本题共14分,第22题8分,第23题6分)
22.近年来,越来越多的人们加入到全民健身的热潮中来.“健步走”作为一项行走速度和
运动量介于散步和竞走之间的步行运动,因其不易发生运动伤害,不受年龄、时间和场地限制的优点而受到人们的喜爱.随着信息技术的发展,很多手机App 可以记录人们每天健步走的步数,为大家的健身做好记录.
小明的爸爸妈妈都是健步走爱好者,一般情况下,他们每天都会坚持健步走.小明为了给爸爸妈妈颁发4月份的“运动达人”奖章,进行了抽样调查,过程如下,请补充完整.
从4月份随机抽取10天,记录爸爸妈妈运动步数(千步)如下:
爸爸 12 10 11 15 14 13 14 11 14 12 妈妈 11 14 15 2 11 11 14 15 14 14 根据以上信息,整理分析数据如下表所示:
(1)写出表格中a ,b 的值;
(2)你认为小明会把4月份的“运动达人”奖章颁发给谁,并说明理由.
23.描点画图是探究未知函数图象变化规律的一个重要方法,下面是通过描点画图感知函数
1y x 图象的变化规律的过程:
F
E
D
C
B
A
(1)下表是y 与x 的几组对应值.
其中,的值为 ;
(2)根据上表中的数据,在平面直角坐标系xOy 中描出还未描出的点,并画出该函数
的图象;
(3)已知A ,B 是函数1y
x 图象上的任意两点(A 在B 的左侧),将A ,B 同
时向右平移1个单位得到点1A ,1B ,再将1A ,1B 同时向上平移()0h h >个单位后得到点2A ,2B ,若2A 刚好落在函数1y
x 的图象上,则2B 与函数
1y x 图象的位置关系是( )
A .2
B 是图象上的点 B .2B 在图象的上方
C .2B 在图象的下方
五、解答题(本题共16分,第24题8分,第25题8分)
24.在正方形ABCD 中,连接BD ,P 为射线CB 上的一个动点
(与点C 不重合),连接AP ,AP 的垂直平分线交线段BD 于点E ,连接AE ,PE .
x
提出问题:当点P 运动时,APE ∠的度数,DE 与CP 的数量关系是否发生改变? 探究问题:
(1)首先考察点P 的两个特殊位置:
①当点P 与点B 重合时,如图1-1所示,APE ∠= °,用等式表示线段DE 与CP 之间的数量关系: ;
②当BP BC =时,如图1-2所示,①中的结论是否发生变化?直接写出你的结论: ;(填“变化”或“不变化”)
图1-1 图1-2
(2)然后考察点P 的一般位置:依题意补全图2-1,2-2,通过观察、测量,发现:(1)
中①的结论在一般情况下 ;(填“成立”或“不成立”)
图2-1 图2-2
(3)证明猜想:若(1)中①的结论在一般情况下成立,请从图2-1和图2-2中任选一
个进行证明;若不成立,请说明理由.
25.在平面直角坐标系xOy 中,A (0,2),B (4,2),C (4,0).P 为矩形ABCO 内
(不包括边界)一点,过点P 分别作x 轴和y 轴的平行线,这两条平行线分矩形ABCO
P D C B A A
B C D
P P D C B (E )A E
D C B (P )A P D
C
B A
P
D
C
B (E )A P D
C B A A B C
D P P D
C
B A
为四个小矩形,若这四个小矩形中有一个矩形的周长等于OA ,则称P 为矩形ABCO 的矩宽点.
例如:下图中的P 23
55
(,)
为矩形ABCO 的一个矩宽点.
(1)在点D (
12,12),E (2,1),F (134,74)中,矩形ABCO 的矩宽点是 ; (2)若G (2
3
m ,)为矩形ABCO 的矩宽点,求m 的值;
(3)若一次函数()()210y k x k =--≠的图象上存在矩形ABCO 的矩宽点,则k 的取值
范围是 .
备用图。