空间几何体的三视图和直观图教学设计

合集下载

最新必修二1.2.空间几何体的三视图和直观图(教案)

最新必修二1.2.空间几何体的三视图和直观图(教案)

1.2 空间几何体的三视图和直观图教案 A第1课时教学内容:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图教学目标一、知识与技能1.掌握画三视图的基本技能;2.提高学生的空间想象力.二、过程与方法主要通过亲身实践,动手作图,体会三视图的作用.三、情感、态度与价值观感受空间物体的平面作图原理,体会三视图的奥妙.教学重点、难点教学重点:画出简单组合体的三视图.教学难点:识别三视图所表示的空间几何体.教学关键:认识棱柱、棱锥、圆柱、圆锥、棱台、圆台、球及其组合体的结构特征.教学突破方法:使学生理解三视图的概念的基础上,亲自动手画几何体的三视图,体会三视图的画法.在作图前,要先观察几何体的结构特征,再动手作图.教法与学法导航教学方法:问题教学法,讨论法,练习法.通过提出问题,学生思考并体会几何体三视图的画法.学习方法:自主学习,自主探究,互动学习,合作交流,动手实践,观察探究,归纳总结.在学生理解三视图概念的基础上,通过老师的启发诱导,归纳总结出得到三视图的画法.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案),空间几何体的模型或图片.学生准备:练习本及铅笔橡皮.教学过程详见下页表格.精品文档教学环节教学内容师生互动设计意图创设情境导入新课1.如何将空间几何体画在纸上,用平面图形来表示.2.我们常用三视图和直观图表示空间几何体.三视图:观察者从三个不同位置观察同一空间几何体而画出的图形.直观图:观察者站在某一点观察一个空间几何体面画出的图形.师:要解决这个问题,我们需要将我们看到的画下来,这就取决于我们怎样去看.生1:我们可从前后角度,左右角度,上下角度看.生2:我们也可站在某一点观察.师:总结空间几何体表示方法,点出主题.让学生发现知识源于实践,又可应用于实践,培养学生应用意识,激发学生学习的激情.探索新知教学中心投影与平行投影.中心投影:光由一点向外散射形成的投影.平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.讨论:三角形在平行投影和中心投影后的结果.师:要学习三视图,首先我们要学习两个知识.中心投影与平行投影生1:联想到棱柱的结构特征,无论是正投影还是斜投影,三角形在平行投影后为结果是与原三角形全等的三角形.生2:三角形在中心投影后得到了一个相似的放大了的三角形.以旧带新,提高知识的系统性和思维的严谨性.探索新知教学柱、锥、台、球的三视图:1.定义三视图:正视图:光线从几何体的前面向后面正投影得到的投影图.侧视图:光线从几何体的左面向后面正投影得到的投影图.俯视图:光线从几何体的左面向后面正投影得到的投影图.2.观察长方体的三视图.讨论三视图有何基本特征.师:把一空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形难以把握几何体的全貌.通常,总是选择三种正投影……生:长方体的正视图和侧视图高度一样(等于长方体的高).俯视图与正视图长度一样(等于长方体的和).俯视图和侧视图宽度一样(等于长方体的宽).这个结论可推广到一般简单几何体.我们用“长对正高平齐、宽相等”来概括三视图的基本特征.通过讨论掌握三视图的基本特征,同时通过精炼的语言概括提高学生的记忆效果.精品文档续上表课堂作业1.画出下列空间几何体的三视图.如图1是截去一角的长方体,画出它的三视图.【解析】物体三个视图的构成都是矩形,长方体截角后,截面是一个三角形,在每个视图中反映为不同的三角形,三视图为图2.精品文档2.由5个小立方块搭成的几何体,其三视图分别如下,请画出这个的几何体(正视图)(俯视图)(右视图)【解析】先画出几何体的正面,再侧面,然后结合俯视图完成几何体的轮廓,如图.3.某建筑由相同的若干个房间组成,该楼的三视图如图所示,问:(1)该楼有几层?从前往后最多要走过几个房间?(2)最高一层的房间在什么位置?画出此楼的大致形状.【解析】(1)由主视图与左视图可知,该楼有3层.由俯视图可知,从前往后最多要经过3个房间.(2)由主视图与左视图可知,最高一层的房间在左侧的最后一排的房间.楼房大致形状如右图所示.板书展示1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.情景导入4.三视图2.提出问题5.例题3.平行投影与中心投影的概念俯视图左视图主视图精品文档第2课时教学内容:1.2.3 空间几何体的直观图教学目标一、知识与技能1.掌握斜二测画法画水平设置的平面图形的直观图;2.采用对比的方法了解在平行投影下面空间图形与在中心投影下面空间图形两种方法的各自特点.二、过程与方法通过观察和类比,利用斜二测画法画出空间几何体的直观图.三、情感、态度与价值观1.提高空间想象力与直观感受;2.体会对比在学习中的作用;3.感受几何作图在生产活动中的应用.教学重点、难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:用斜二测画法画空间几何体的直观图.教学关键:掌握斜二测画法及步骤.教学突破方法:本节主要使用启发式和探究式教学.使学生掌握斜二测画法及步骤的基础上,在教师的示例引导下,亲自动手画几何体的直观图,体会斜二测画法.教法与学法导航教学方法:问题教学法,练习法.通过提出问题,学生思考并体会应用斜二测画法画几何体的直观图.在以水平放置的正六边形或正六棱柱为例画直观图,通过多媒体课件具体准确的逐步演示,使学生熟练掌握并归纳斜二测画法去画直棱柱的基本步骤.学习方法:自主探究,自主学习,互动学习,合作交流,动手实践,归纳总结.在学生掌握斜二测画法的基础上,通过实践,熟练掌握应用斜二测画法画几何体的直观图.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案).学生准备:练习本及铅笔橡皮.教学过程精品文档新课师:这些平面图形既富有立体感又能表达出图形各主要部分的位置关系和度量关系,故称为立体图形的直观图.主题探索新知1.水平放置的平面图形的直观图的画法.(1)例1 用斜二测法画水平放置的正六边形的画法:①如图(1),在正方边开ABCDEF中,取AD所在直线为x轴,对称轴MN所在直线为y轴,两轴相交于点O′,使∠x′O′y′ =45°.②在图(2)中,以O′为中点,在x′ 轴上取A′D′=AD,在y′ 轴上取M′ N ′ =12MN.以点N ′为中点,画B′C′ 平行于x′ 轴,并且等于BC;再以M ′为中点,画E′F′平行于x′ 轴,并且等于EF.③连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF水平放置的直观A′B′C′D′E′F′(图(3))教师用多媒体课件边演示边讲解.学生观察、思考、归纳师:从以上演示我们可以发现画一个水平放置的平面多边形直观图的关键是什么?生:确定多边形顶点的位置.师:请大家尝试归纳平面多边形直观图的基本步骤.生:①选取恰当的坐标系.②画平行线段,截取长度③依次连结各顶点成图(老师板书)师:有哪些注意事项生1:平行于x轴,y轴的线段在直观图中分别画成平行于x′轴、y′轴.多媒体演示提高上课效率.师生互动,突破重点.探索新知(2)斜二测画法基本步骤.①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴与y′轴,两轴交于点O′,且使∠x′O′y′=45°(或生2:原图中平行于x轴的线段在直观图中保持原长精品文档135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度为原来的一半.度不变平行于y 轴的线段长度,为原来的一半.师:在连虚实线的使用等方面予以补充.探索新知2.简单几何体的直观图画法例2 用斜二测画法画长、宽、高分别是4cm,3cm,2cm的长方体ABCD–A′B′C′D′的直观图.画法:(1)画轴.如图,画x轴、y轴、z轴,三轴交于点O,使∠xOy = 45°,∠xOz = 90°.(2)画底面.以点O为中点,在x轴上取线段MN,使MN= 4cm;在y轴上取线段PQ,使PQ =32cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.(3)画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别截取2 cm长的线段A′A,B′B,C′C,D′D.(4)成图.顺次连接A,B,C,D,并加以整理(去掉辅助线,将被挡的部分改为虚线),就得长方体的直观图.师:下面我们体会一下,用斜二测画长、宽、高分别为4cm、3cm、2cm的长方体ABCD、A′B′C′D′的直观图的画法.教师边演示边讲解,学生边观察边思考总结.师:请大家归纳一下直棱柱直观图的画法.生:①画轴②画底画③画侧棱④成图师:有什么注意事项吗?生1:竖直方面保持平行关系和长度关系不变.生2:被遮的部分用虚线.多媒体演示提高上课效率.师生互动,突破重点.探索新知3.简单组合体画法例 3 已知几何体的三视图说出它的结构特征,并用斜二测画法画它的直观图.画法:(1)画轴.如图(1),画x轴、z轴,学生讨论然后简答.生1:这个几何体是一个前后联系加强知识精品文档精品文档使∠xOz =90°.(2)画圆柱的下底面. 在x 轴上取A ,B 两点,使AB 的长度等于俯视图中圆的直径,且OA = OB . 选择椭圆模板中适当的椭圆过A ,B 两点,使它为圆柱下底面的作法作出圆柱的下底面.(3)在Oz 上截取点O ′,使OO ′ 等于正视图中OO ′ 的长度,过点O ′作平行于轴Ox 的轴O ′x ′,类似圆柱下底面的作法作出圆柱的上底面.(4)画圆锥的顶点. 在Oz 上截取点P ,使PO ′ 等于正视图中相应的高度.(5)成图. 连接P A ′、PB ′,AA ′,BB ′,整理得到三视图表示的几何体的直观图.(如图(2))简单的组合体,它的下部是一个圆柱,上部是一个圆锥,并且圆柱上底面与圆锥底面相重合. 生2:我们可以先画出上部的圆锥.师:给予肯定然后点拨注意事项.的系统性. 小结1.平面图形斜二测画法. 2.简单几何体斜二测画法. 3.简单组合斜二测画法. 4.注意事项.学生归纳,然后老师补充、完善 小结形成整体思维课堂作业1.用斜二测画法画出水平放置的正五边形的直观图.【分析】先画出正五边形的图形,然后按照斜二测画法的作图步骤进行画图. 【解析】(1)如图1所示,在已知正五边形ABCDE 中,取中心O 为原点,对称轴F A 为y 轴,对点O 与y 轴垂直的是x 轴,分别过B 、E 作GB ∥y 轴,HE ∥y 轴,与x 轴分别交于点G 、H .画对应的轴O′x′、O′y′,使∠x′O′y′ = 45°.(2)如图2所示:以点O ′为中点,在x ′轴上取G′H′ = GH ,分别过G′、H′,在x ′轴的上方,作G′B′∥y ′轴,使G′B′ =12GB ;作H′E′∥y′轴,使H′E′ =12HE ;在y′轴的点正视图O ′ O O O′′ O ′ 侧视图俯视图O′上方取O′A′=1 2OA,在点O′下方取O′F′ =12OF,并且以点F′为中点,画C′D′∥x′轴,且使C′D′ = CD.(3)连接A′B′,B′C′,D′E′,E′A′,所得正五边形A′B′C′D′E′就是正五边形ABCDE的直观图,如图3所示.2.已知一个正四棱台的上底面边长为2cm,下底面边长为6cm,高为4cm.用斜二测画法画出此正四棱台的直观图.【分析】先画出上、下底面正方形的直观图,再画出整个正四棱台的直观图.【解析】(1)画轴.以底面正方形ABCD的中心为坐标原点,画x轴、y轴、z轴,三轴相交于O,使∠xOy = 45°,∠xOz = 90°.(2)画下底面.以O为中点,在x轴上取线段EF,使得EF = AB = 6cm,在y轴上取线段GH,使得GH=12AB,再过G、H分别作AB∥EF,CD∥EF,且使得CD的中点为H,AB的中点为G,这样就得到了正四棱台的下底面ABCD的直观图.(3)画上底面.在z轴上截取线段OO1 = 4cm,过O1点作O1x′∥Ox、O1y′∥Oy,使∠x′O1y′ = 45°,建立坐标系x′O1y′,在x′O1y′中重复(2)的步骤画出上底面的直观图A1B1C1D1.(3)再连结AA1、BB1、CC1、DD1,得到的图形即所求的正四棱台的直观图(图2).3.如右图所示,梯形A1B1C1D1是一平面图形ABCD的直观图.若A1D1∥O1y,A1B1∥C1D1,A1B1 =23C1D1 = 2,A1D1精品文档= O′D1 = 1.请画出原来的平面几何图形的形状,并求原图形的面积.【解析】如图,建立直角坐标系xoy,在x轴上截取OD=O′D1=1,OC=O′C1=2.在过点D的y轴的平行线上截取DA=2D1A1=2.在过点A的x轴的平行线上截取AB=A1B1 = 2.连接BC,即得到了原图形.由作法可知,原四边形ABCD是直角梯形,上、下底长度分别为AB = 2,CD = 3,直角腰长度为AD = 2.所以面积2322S+=⨯= 5.板书展示1.2.3 空间几何体的直观图1.情景导入2.斜二测画法的概念3.例题教案B第1课时教学内容:1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图教学目标1.了解中心投影与平行投影的区别;2.能画出简单空间图形的三视图;3.能识别三视图所表示的空间几何体.教学重点、难点教学重点:画出简单组合体的三视图,给出三视图还原或想象出原实际图的结构特征.教学难点:识别三视图所表示的几何体.教学过程:一、课前准备(预习教材,找出疑惑之处)复习1:圆柱、圆锥、圆台、球分别是_______绕着________、_______绕着___________、_______绕着__________、_______绕着_______旋转得到的.复习2:简单组合体构成的方式:________________和__________________.二、新课教学探索新知探究1:中心投影和平行投影的有关概念问题:中午在太阳的直射下,地上会有我们的影子;晚上我们走在路灯旁身后也会留下长长的影子,你知道这是什么现象吗?为什么影子有长有短?新知1:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中光线叫投影线,留下物体影子的屏幕叫投影面.光由一点向外散精品文档精品文档射形成的投影叫做中心投影,中心投影的投影线交于一点.在一束平行光照射下形成的投影叫做平行投影,平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时叫正投影,否则叫斜投影.思考:中午太阳的直射是什么投影?路灯、蜡烛的照射是什么投影?试试:在下图中,分别作出圆在中心投影和平行投影中正投影的影子.结论:中心投影其投影的大小随物体与投影中心间距离的变化而变化;平行投影其投影的大小与这个平面图形的形状和大小是完全相同的.探究2:柱、锥、台、球的三视图问题:我们学过的几何体(柱、锥、台、球),为了研究的需要,常常要在纸上把它们表示出来,该怎么画呢?能否用平行投影的方法呢?新知2:为了能较好把握几何体的形状和大小,通常对几何体作三个角度的正投影.一种是光线从几何体的前面向后面正投影得到投影图,这种投影图叫几何体的正视图;一种是光线从几何体的左面向右面正投影得到投影图,这种投影图叫几何体的侧视图;第三种是光线从几何体的上面向下面正投影得到投影图,这种投影图叫几何体的俯视图.几何体的正视图、侧视图和俯视图称为几何体的三视图.一般地,侧视图在正视图的右边,俯视图在正视图的下边.三视图中,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.1. 长方体的三视图.2. 球的三视图(见下页)3.圆柱的三视图4.圆锥的三视图5.组合体的三视图思考:仔细观察上图的三视图,你能得出同一几何体的三视图在形状、大小方面的关系吗?能归纳三视图的画法吗?小结:1.正视图反映物体的长度和高度,俯视图反映长度和宽度,侧视图反映宽度和高精品文档度;2. 正视图和俯视图高度相同,俯视图和正视图长度相同,侧视图和俯视图宽度相同;3. 三视图的画法规则:①正视图、侧视图齐高,正视图、俯视图长对正,俯视图、侧视图宽相等,即“长对正”、“高平齐”、“宽相等”;②正、侧、俯三个视图之间必须互相对齐,不能错位.探究3:简单组合体的三视图问题:下图是个组合体,你能画出它的三视图吗?小结:画简单组合体的三视图,要先观察它的结构,是由哪几个基本几何体生成的,然后画出对应几何体的三视图,最后组合在一起.注意线的虚实.典型例题例1画出下列几何体的三视图.【分析】画三视图之前,应把几何体的结构弄清楚,选择一个合适的主视方向.一般先画主视图,其次画俯视图,最后画左视图.画的时候把轮廓线要画出来,被遮住的轮廓线要画成虚线.物体上每一组成部分的三视图都应符合三条投影规律.【解析】这两个几何体的三视图如下练习:画出下列几何体的三视图.精品文档回顾与反思:通过师生共同画图,学生独立画图,让学生充分掌握画三视图的画法规则和一般步骤,认识到空间图形与其三视图间的对应关系,进而提高学生的空间想象能力.例2 如图,设所给的方向为物体的正前方,试画出它的三视图(单位:cm).【分析】该几何体结构较复杂,可先出示其实物模型,引导学生从三个不同角度观察,找出其轮廓线,进而画出其三视图.在画三视图时,可按相应比例来画.练习:如图,E、F分别为正方形的面ADD1A1、BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影不可能为回顾与反思:在完成例2较复杂图形的三视图后,给出的上述练习,实质上是三视图的一个应用.只要从主视图、俯视图和左视图三个方面来着手,就不难解决问题了.例3 某物体的三视图如下,试判断该几何体的形状.【分析】三视图是从三个不同的方向看同一物体得到的三个视图.主视图反映物体精品文档的主要形状特征,主要体现物体的长和高,不反映物体的宽.而俯视图和主视图共同反映物体的长要相等.左视图和俯视图共同反映物体的宽要相等.据此就不难得出该几何体的形状.【解析】该几何体为一个正四棱锥.练习:根据物体的三视图(右图)试判断该物体的形状.回顾与反思:在已基本掌握空间几何体的三视图画法后,由三视图来想象其对应空间几何体,旨在进一步提高学生空间想象能力.思考:某建筑由相同的若干个房间组成,该楼三视图如右下图所示,试问:(1)该楼有几层;(2)最高一层的房间在什么位置;(3)该楼可以有多少个房间?三、课堂小结1. 平行投影和中心投影的有关概念;2. 三视图的概念以及空间物体的三视图的画法规则;3. 如何由物体的三视图判断物体的形状.四、课后作业P20.习题1.2 A组1,2,3.第2课时教学内容:1.2.3 空间几何体的直观图教学目标1.掌握斜二测画法及其步骤;2.能用斜二测画法画空间几何体的直观图.教学重点、难点教学重点:用斜二测画法画空间几何体的直观图.教学难点:直观图和三视图的互化.精品文档精品文档教学过程:一、课前准备(预习教材,找出疑惑之处) 复习1:中心投影的投影线_________;平行投影的投影线_______.平行投影又分___投影和____投影.复习2:物体在正投影下的三视图是_____、______、_____;画三视图的要点是_____ 、_____ 、______.引入:空间几何体除了用三视图表示外,更多的是用直观图来表示.用来表示空间图形的平面图叫空间图形的直观图.要画空间几何体的直观图,先要学会水平放置的平面图形的画法.我们将学习用斜二测画法来画出它们.你知道怎么画吗?二、新课导学 探索新知探究1:水平放置的平面图形的直观图画法问题:一个水平放置的正六边形,你看过去视觉效果是什么样子的?每条边还相等吗?该怎样把这种效果表示出来呢?上面的直观图就是用斜二测画法画出来的. 典型例题例1 用斜二测画法画水平放置的正六边形的直观图. (师生共练,注意取点、变与不变→小结:画法步骤)画法:① 如图(1),在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴相交于点O .在图(2)中,画相应的x′ 轴与y′ 轴,两轴相交于点O′,使∠X′O′Y′=45°.② 在图(2)中,以O ′为中点,在x′轴上取A′D′=AD ,在y′轴上取M′N′=21MN .以点N′为中点,画B′C′平行于x′轴,并且等于BC ;再以M′为中点,画E′F′平行于x′轴,并且等于EF .③ 连接A′B′,C′D′,D′E′,F′A′,并擦去辅助线x′轴和y′轴,便获得正六边形ABCDEF 水平放置的直观图A′B′C′D′E′F′(图(3)).新知1:斜二测画法的基本步骤:①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O′X′,O’Y′,使'''=45°(或135°),它们确定的平面表示水平平面;X OY③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X′ 轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y′ 轴,且长度变为原来的一半;④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线).练习:用斜二测画法画水平放置的正五边形.讨论:把一个圆水平放置,看起来像个什么图形?它的直观图如何画?结论:水平放置的圆的直观图是个椭圆,通常用椭圆模板来画.探究2:空间几何体的直观图画法问题:斜二测画法也能画空间几何体的直观图,和平面图形比较,空间几何体多了一个“高”,你知道画图时该怎么处理吗?例2用斜二测画法画长4cm、宽3cm、高2cm的长方体ABCD-A’B’C’D’的直观图.画法:①画轴.如上图,画x轴、y轴、z轴,三轴相交于点O,使∠xOy=45°,∠xOz=90°.精品文档②画底面.以点O为中点,在x轴上取线段MN,使MN=4cm;在y轴上取线段PQ,使PQ=23cm.分别过点M和N作y轴的平行线,过点P和Q作x轴的平行线,设它们的交点分别为A,B,C,D,四边形ABCD就是长方体的底面ABCD.③画侧棱.过A,B,C,D各点分别作z轴的平行线,并在这些平行线上分别取2cm 长的线段AA′,BB′,CC′,DD′.④成图.顺次连接A′,B′,C′,D′,并加以整理(去掉辅助线,将被遮挡的部分改为虚线),就得到长方体的直观图.(2)思考:如何根据三视图,用斜二测画法画它的直观图?新知2:用斜二测画法画空间几何体的直观图时,通常要建立三条轴:x轴,y轴,z轴;它们相交于点O,且45xOy∠=°,90xOz∠=°;空间几何体的底面作图与水平放置的平面图形作法一样,即图形中平行于x轴的线段保持长度不变,平行于y轴的线段长度为原来的一半,但空间几何体的“高”,即平行于z轴的线段,保持长度不变.例3如下图,已知几何体的三视图(见下页左图),用斜二测画法画出它的直观图.【分析】由几何体的三视图知道,这个几何体是一个简单组合体.它的下部是一个圆柱,上部是一个圆锥,并且圆锥的底面与圆柱的上底面重合.我们可以先画出下部的圆柱,再画出上部的圆锥.画法:①画轴.如上图(1),画x轴、z轴,使∠xOz=90°.②画圆柱的下底面.在x轴上取A,B两点,使AB的长度等于俯视图中圆的直径,且OA=OB.选择椭圆模板中适当的椭圆过A,B两点,使它为圆柱的下底面.③在Oz上截取点O′,使OO′等于正视图中OO′的长度,过点O′作平行于轴Ox的轴O′x′,类似圆柱下底面的作法作出圆柱的上底面.④画圆锥的顶点.在Oz上截取点P,使PO′等于正视图中相应的高度.⑤成图.连接P A′,PB′,AA′,BB′,整理得到三视图表示的几何体的直观图(图⑵).强调:用斜二测画法画图,注意正确把握图形尺寸大小的关系.精品文档。

高中数学必修2《空间几何体的三视图和直观图》教案

高中数学必修2《空间几何体的三视图和直观图》教案

高中数学必修2《空间几何体的三视图和直观图》教案高中数学必修2《空间几何体的三视图和直观图》教案一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识.主要内容是:画出空间几何体的三视图.比较准确地画出几何图形,是学好立体几何的一个前提.因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视.画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力. 视图是将物体按正投影法向投影面投射时所得到的投影图.光线自物体的前面向后投影所得的投影图称为正视图,自左向右投影所得的投影图称为侧视图,自上向下投影所得的投影图称为俯视图.用这三种视图即可刻画空间物体的几何结构,这种图称之为三视图.教科书从复习初中学过的正方体、长方体的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过思考提出了由三视图想象几何体的学习任务.进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点.三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成.因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容.教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用.对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图.教材中的探究可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流.值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成.另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形.二、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

空间几何体的三视图和直观图(教学设计)

空间几何体的三视图和直观图(教学设计)

1.2(2)空间几何体的三视图和直观图(教学设计)(1.2.3 空间几何体的直观图)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。

(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

3.情感态度与价值观(1)提高空间想象力与直观感受。

(2)体会对比在学习中的作用。

(3)感受几何作图在生产活动中的应用。

二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。

三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

2.教学用具:三角板、圆规四、教学思路(一)复习回顾:主、俯视图长对正主、左视图高平齐俯、左视图宽相等(二)创设情景,新课引入:1.我们都学过画画,这节课我们画一物体:正方体把实物正方体放在讲台上让学生画。

2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

(三)师生互动,新课讲解:例1(课本P16例1)用斜二测画法画水平放置的正六边形的直观图。

由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。

斜二测画法-------空间几何体直观图的一种画法.(课本P16)(1) 建立平面直角坐标系: 在已知平面图形中取互相垂直的x轴和y轴,两轴相交于点O.(2) 画出斜坐标系: 在画直观图的纸上(平面上)画出对应的x'轴和y'轴, 两轴相交于点O',且使∠x'O'y' =45度(或135度), 它们确定的平面表示水平平面.(3) 画对应图形: 在已知图形平行于x轴的线段, 在直观图中画成平行于x'轴, 长度保持不变。

空间几何体的结构及其三视图和直观图最新衡水中学自用精品教学设计

空间几何体的结构及其三视图和直观图最新衡水中学自用精品教学设计

空间几何体的结构及其三视图和直观图主标题:空间几何体的结构及其三视图和直观图副标题:为学生详细的分析空间几何体的结构及其三视图和直观图的高考考点、命题方向以及规律总结。

关键词:多面积,旋转体,三视图难度:2重要程度:4考点剖析:1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简单组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.会画某些建筑物的三视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).命题方向:在空间几何体部分,主要是以空间几何体的三视图为主展开,考查空间几何体三视图的识别判断、考查通过三视图给出的空间几何体的表面积和体积的计算等问题,试题的题型主要是选择题或者填空题,在难度上也进行了一定的控制,尽管各地有所不同,但基本上都是中等难度或者较易的试题.规律总结:1.两点提醒一是从棱柱、棱锥、棱台、圆柱、圆锥、圆台的定义入手,借助几何模型强化空间几何体的结构特征.二是图形中与x轴、y轴、z轴都不平行的线段可通过确定端点的办法来解,即过端点作坐标轴的平行线段,再借助所作的平行线段来确定端点在直观图中的位置.2.一个防范三视图的长度特征:“长对正、宽相等,高平齐”,即正视图和侧视图一样高、正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.该部分要牢牢抓住各种空间几何体的结构特征,通过对各种空间几何体结构特征的了解,认识各种空间几何体的三视图和直观图,通过三视图和直观图判断空间几何体的结构,在此基础上掌握好空间几何体的表面积和体积的计算方法.知识梳理1.多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆锥可以由直角三角形绕其任一直角边旋转得到.(2)圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.(3)球可以由半圆面或圆面绕直径旋转得到.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.。

空间几何体的结构,直观图和三视图 教案

空间几何体的结构,直观图和三视图 教案

适用学科 适用区域 知识点 教学目标高中数学 人教版区域适用年级 课时时长(分钟)高二 2 课时三视图、画三视图的原则、直观图、斜二测画法的步骤 掌握画三视图的基本技能和方法; 提高学生空间想象力,体会三视图的作用.教学重点 教学难点画出简单组合体的三视图. 识别三视图所表示的空间几何体.【教学建议】 本节重点是认识空间几何体的结构特征.画出空间几何体的三视图、直观图、培养空间 想象能力、几何直观能力、运用图形语言进行交流的能力。

由空间图形数出其结构特征,由 结构特征想象出空间几何体, 进行空间图形与其三视图的相互转化, 是达到本节课程目标的 重要方法。

本节中的有关概念, 主要采用分析具体实例的共同特点, 再抽象其本质属性空间而得到。

教学中应充分使用直观模型,必要时要求学生自己制作模型,引导学生直观感知模型,然后 再抽象出有关空间几何体的本质属性,从而形成概念. 学生在初中学过平面几何, 掌握了大量的平面几何知识, 进行过一定量的逻辑推理训练, 为学习立体几何打下了基础。

但学习立体几何不仅需要较强的逻辑思维能力, 还需要丰富的 空间想象能力。

学生常感到立体几何难学,究其原因主要有几点: (1)消极心理的影响 “代数繁,几何难”,在学生中广为流传,使不少学生还未学习立体几何就已经产生了畏 惧心理,他们对学好立体几何信心不足,对怎样学习心中无底,这种消极心理必然会给学生 造成消极影响. (2)思维定势的影响 受初中所学平面几何时形成的思维定式的束缚,常将平面几何中的概念、定理照搬 照用. (3)缺乏空间想象力 缺乏空间想象力,常将空间问题看成平面问题,作图、识图难。

作图中不知何时该用实 线,何时该用虚线,作出的图形缺乏立体感。

识图中相交、异面分不清,大角、小角分不清, 是否平行、垂直分不清。

【知识导图】第 1 页教学过程一、导入【教学建议】 导入是一节课必备的一个环节, 是为了激发学生的学习兴趣, 帮助学生尽快进入学习状 态。

空间几何体的三视图和直观图(优秀经典导学案)

空间几何体的三视图和直观图(优秀经典导学案)

1.2空间几何体的三视图和直观图
一、课时目标
1.了解中心投影与平行投影.(易混点)
2.能画出简单空间图形(柱、锥、台、球及其组合体)的三视图.(重、难点)
3.能识别三视图所表示的立体模型.(难点)
二、自主学习
1
、知识点(一)
定义
由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的
,这种现象叫做投影,其中,
我们把光线叫做,把留下物体影子的屏幕叫做
分类
中心
投影
光由向外散射形成的投影,叫做中心投影.中心投影的投影线交于平行
投影
在一束光线照射下形成的投影,叫做平行投影.平行投影的投影线是
的.在平行投影中,投影线着投影面时,叫做正投影,否则叫做斜投影2、知识点(二)
分类正视图
光线从几何体的面向面正投影,得到投影图,这种投影图叫做几何体的正视

侧视图
光线从几何体的面向面正投影,得到投影图,这种投影图叫做几何体的侧视

俯视图
光线从几何体的面向面正投影,得到投影图,这种投影图叫做几何体的俯视

说明几何体的正视图、侧视图、俯视图统称为几何体的,三视图是投影
特征
一个几何体的侧视图和正视图一样,俯视图与正视图一样,侧视图与俯视图一样.
三、课堂练习
1.一条直线在平面上的正投影是()
A.直线B.点C.线段D.直线或点
2.如图所示图形中,是四棱锥的三视图的是()
3.如图1-2-8所示为一个简单组合体的三视图,它的上部是一个________,下部是一个
________.
图1-2-8
4.画出如图1-2-9所示的空间图形的三视图(阴影部分为正面).
图1-2-9。

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图(第一课时)木井中学陈文杰一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。

另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。

同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。

所以在人们的日常生活中有着重要意义。

二、教学目标(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。

直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。

通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。

培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实分析本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。

高一数学空间几何体的三视图和直观图教案

高一数学空间几何体的三视图和直观图教案

高一数学空间几何体的三视图和直观图教案一、教材的地位和作用本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这局部知识是立体几何的基础之一,一方面它是对上一节空间几何体构造特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效伎俩。

另外,三视图局部也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的外表积或体积设置在选择或填空中。

同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。

所以在人们的日常生活中有着重要意义。

二、教学目的(1) 知识与技能:能画出简略空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步相熟简略几何体的构造特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应意图识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生互相交流、互相合作的精神。

三、设计思路本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。

直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。

通过大量的多媒体直观,实物直观使学生取得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识回升为理性认识。

培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点(一)重点:画出空间几何体及简略组合体的三视图,领会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实剖析本节首先简略介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。

空间几何体的三视图和直观图——投影与三视图教案Word版

空间几何体的三视图和直观图——投影与三视图教案Word版

空间几何体的三视图和直观图第一课时:投影与三视图——教案备课人:张亮20080511548一、教材分析前面我们认识了柱体、锥体、台体、球体以及简单的组合体,如何将这些空间几何体画在纸上,并体现立体感呢?我们常用三视图表示空间几何体。

三视图是观察者从不同位置观察同一个几何体,画出的平面图形。

视图在现实生活中有着广泛的应用,同时是培养空间观念的基本素材,因此视图知识进入了高中数学课程。

由于教材编写比较简明,而多数学生在初中没有学过视图,因此,在设计时,补充了视图的一些初步知识,便于学生的学习。

二、任务分析画空间几何体的三视图是学习立体几何的基本任务之一,也是学好立体几何的基本功,对空间能力的培养有很大帮助。

如何画好空间几何体的视图呢?首先要明确视图的一些概念,掌握正投影的规律:平行,形不变;倾斜,形改变;垂直,成一点(或线段)。

掌握三视图的画法规则:长对正,宽平齐,高相等,以及画图中的注意事项。

画好视图,还要亲自动手画图,不必画很多,但一定要规范,用心体会方法。

同时,要适当进行由三视图所表示的立体模型的识别训练,逐步培养空间观念。

这节课大约为2课时。

三、教学目标(一)知识目标1.了解投影、视图的一些概念,掌握画简单空间几何体的三视图的方法,能画出一些空间几何体的三视图;2.能由三视图识别出其表示的立体模型;3.了解中心投影与平行投影的区别与联系。

(二)能力目标1.通过视图的学习,培养学生的空间想象能力和动手操作能力;2.培养学生观察能力,识图能力;3.体会立体图形和平面图形的转化关系,渗透应用数学的意识。

四、教学重点平行投影与中心投影的区别与联系,三视图的画法,及简单物体的三视图。

五、教学难点中心投影,识别三视图所表示的空间几何体。

六、教学方法分组讨论法、启发式教学法、师生合作教学法。

七、教学准备幻灯投影仪,多媒体投影。

八、教学过程设计(一)中心投影与平行投影教学过程设计:(二)空间几何体的三视图教学过程设计:九、布置作业:必做题:教科书第17页练习1、 2 、(1)(2)。

1.2《空间几何体的三视图与直观图》教学设计新部编版(人教A版必修2).doc

1.2《空间几何体的三视图与直观图》教学设计新部编版(人教A版必修2).doc

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.2《空间几何体的三视图与直观图》教学设计【教学目标】1、了解中心投影和平行投影的原理;2、能利用正投影绘制空间图形的三视图,并根据所给的三视图识别该几何体;3、能利用正投影绘制简单组合体的三视图,并根据所给的三视图说出该几何体由那些简单几何体构成。

4、理解平面图形的直观图画——斜二测画法;5、会画常见的几种平面图形的直观图;6、会画立体图形的直观图。

【导入新课】实例导入:请同学们看下面几个常见的自然现象,考虑它们是怎样得到的?(手影表演)提出问题,从而引入投影的概念。

新授课阶段一、投影的概念上述这种现象我们把它称为是投影.通过观察和自己的认识, 你是怎样来理解投影的含义的?投影是光线(投射线)通过物体,向选定的面(投影面)投射,并在该面上得到图形的方法.1、中心投影:把光由一点向外散射形成的投影叫做中心投影。

特点:中心投影的投影大小与物体和投影面之间的距离有关。

2、平行投影:当把投影中心移到无穷远,在一束平行光线照射下形成的投影,叫做平行投影。

正投影:投影方向垂直于投影面的投影。

斜投影:投影方向与投影面倾斜的投影。

二、三视图及其有关概念什么是空间图形的三视图呢?我们从不同的方向观察同一物体时,可能看到不同的图形。

从正面看到的图叫做正视图,从左面看到的图叫做侧视图,从上面看到的图叫做俯视图。

三视图的作图步骤:1.确定三视图方向;2.先画出能反映物体真实形状的一个视图(一般为正视图);3.布置视图位置:正视图,侧视图,俯视图要求:俯视图安排在正视图的正下方,侧视图安排在正视图的正右方。

4.画图原则:长对正,高平齐,宽相等画一个物体的三视图时,正视图,侧视图,俯视图所画的位置如图所示,且要符合如下原则:三视图表达的意义:从前面正对着物体观察,画出正视图,正视图反映物体的高度和长度 , 即上下左右从上向下正对着物体观察,画出俯视图,布置在主视图的正下方,俯视图反映物体的长度和宽度 , 即前后左右.从左向右正对着物体观察,画出侧视图,布置在主视图的正右方,侧视图反映物体的高度和宽度 , 即上下前后.三视图能反映物体真实的形状和长、宽、高.基本几何体的三视图:回忆初中已经学过的正方体、长方体、圆柱、圆锥、球的三视图.注意:(1)画几何体的三视图时,能看见的轮廓和棱用实线表示,不能看见的轮廓和棱用虚线表示。

空间几何体的三视图和直观图第一课时教学设计教学内容

空间几何体的三视图和直观图第一课时教学设计教学内容

1.2空间几何体的三视图和直观图(第一课时)教学设计一、教学内容分析(一)教材地位和作用三视图是立体几何的基础之一,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间观念的基础和训练学生几何直观能力的有效手段。

在近几年的高考考查中,利用三视图求直观图体积或表面积的题型屡见不鲜,这种题型的本质即为由三视图还原直观图,所以要求学生掌握由三视图还原直观图这部分内容显得尤其重要。

三视图对部分对学生的逻辑思维能力和空间想象能力提出了较高的要求,使学生谈“图”色变。

本节课是普通高中新课程人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体的结构特征之后,直观图之前,尚未学习点、直线、平面位置关系的情况下教学的。

学生在义务教育阶段,已经初步接触了正方体、长方体的几何特征以及简单几何体的表面积、体积的计算,会从不同的方向看物体得到不同的视图的方法。

与初中教学内容相比较,本节增加学习了台体的有关内容,简单组合体涉及柱体、锥体、台体以及球体,比义务教育阶段数学课程“空间与图形”部分呈现的组合体多。

通过本节知识的学习,为下一章点、直线、平面之间的位置关系学习打下基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣,体会数学的实用价值。

(二)教学内容及结构本章的主要内容是认识空间图形,通过对空间几何体的整体把握,培养和发展空间想象能力。

从学生熟悉的物体入手,使学生对物体形状的认识由感性上升到理性;通过三视图和直观图的学习,进一步认识空间几何体的结构。

本节课教材从了解中心投影和平行投影出发介绍三视图是利用三个正投影来表示空间几何体的的方法,并给出三视图的概念及作图规则。

要求学生能画出简单空间图形的三视图,能识别上述的三视图所表示的立体模型。

在此基础上,学习画出简单组合体(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,并识别三视图所表示的简单组合体。

(三)教学重难点1、重点:(1)画出空间几何体及简单组合体的三视图,(2)给出三视图,还原或想象出原实际图的结构特征,体会三视图的作用。

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图教学设计

1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图一、学情分析空间几何体的三视图在初中时候遇到过,高中的学习深度和概括程度比初中时候要求提高,投影是三视图的基础,讲解中心投影和平行投影的时候应结合具体实例。

三视图的学习主要通过学生自己动手实践来完成,这样可以提高学生的空间想象能力和几何直观能力。

学生在学习过程中可能出现以下问题:1、学生在画三视图时对轮廊和棱的实线和虚线分不清楚可能导致作图出现错误。

2、学生在识别三视图时由于空间想象力不足,可能在识别特殊三棱锥和一些简单组合体的三视图时出现障碍3、由于空间想象力的不足,学生在学习三视图中的边长关系时可能难以理解。

二、学习内容分析本节课是普通高中新课程人教版《必修2》第一章第二节第一课时。

三视图利用物体的三个投影来表现空间几何体,是用平面图形表示空间几何体的一种方式。

它能够帮助我们从不同侧面、不同角度认识几何体的结构特征,使我们能够根据平面图形想象空间几何体的形状和结构。

本节课的内容包括三视图的形成和三视图的画法。

通过本节的学习,不仅为后续学习直观图奠定基础,同时有利于培养学生空间想象能力、几何直观能力。

尤其是空间想象能力,它是高中阶段数学必修课的一个基本要求。

三视图正是培养和考察学生空间想象能力的一个契机。

新课程改革以来,三视图再次进入高中教材,短短几年已成为高考考查的重点内容之一。

此外,目前在机械制造和工程建设等许多领域,零件图纸、建筑图纸都是三视图,三视图有着广泛的应用。

三、设计思路:教育部《基础教育改革纲要》明确指出:改革过于注重知识传授倾向的过程,强调形成积极主动的学习态度,使获得基础知识基本技能的过程同时成为学会学习和形成正确价值观的过程。

倡导学生主动参与,乐于探究,勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流合作的能力。

我校以“诱思探究理论”为指导思想,以“积极学习101种有效教学策略”为方针,坚持以学生的发展为本,把学习的主动权交给学生,把课堂还给学生,让学生的思维插上飞翔的翅膀,充分实现学生的主体性。

空间几何体的三视图和直观图教学设计 (1)

空间几何体的三视图和直观图教学设计 (1)

空间几何体的三视图和直观图教学设计1教学目标1.了解投影、中心投影和平行投影的概念;2.能画出简单几何体的三视图,能识别三视图所表示的立体模型.2学情分析1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.2.一个物体的三视图的排列规则是:俯视图放在正视图的下面,长度和正视图一样.侧视图放在正视图的右面,高度和正视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.3重点难点1.投影(1)投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体影子的屏幕叫做投影面.(2)投影的分类①中心投影:光由一点向外散射形成的投影,叫做中心投影.中心投影的投影线交于一点.②平行投影:在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投影线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.2.三视图(1)三视图的分类①正视图:光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正视图.②侧视图:光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧视图.③俯视图:光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图.(2)三视图的画法要求①三视图的正视图、俯视图、侧视图分别是从物体的正前方、正上方、正左方看到的物体轮廓线的正投影围成的平面图形.②一个物体的三视图的排列规则是:俯视图放在正视图的下边,长度与正视图的长度一样,侧视图放在正视图的右边,高度与正视图的高度一样,宽度与俯视图的宽度一样.③在绘制三视图的时候,分界线和可见轮廓线都用实线画出,被遮挡部分用虚线画出.4教学过程4.1 第一学时教学活动活动1【导入】探要点究所然[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答灯泡发出的光线是由一点向外分散发射的;手电筒发出的光是一束平行光线.小结我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答灯泡照射物体形成的投影是中心投影;手电筒照射物体形成的投影是平行投影.思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答在投影面上形成的影子形状与原物体相似,比原物体大.物体离灯泡越近,在投影面上的影子越大.思考5用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答形状和大小是相同的;当物体与手电筒的距离发生变化时,影子的大小不变.小结在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答与投影面平行的平面图形,在正投影和斜投影下形状、大小都不发生变化;与投影面不平行的平面图形,在正投影和斜投影下形状、大小会发生变化.例1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)答案①②③解析要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A、G、F、E在每个面上的投影,再顺次连接即得在该面上的投影,并且在两个平行平面上的投影是相同的.可得在面ABCD和面A1B1C1D1上的投影是图①;在面ADD1A1和面BCC1B1上的投影是图②;在面ABB1A1和面DCC1D1上的投影是图③.反思与感悟画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E在该正方体的各个面上的投影可能是图(2)中的________.答案②③解析四边形BFD′E在正方体ABCD-A′B′C′D′的面ADD′A′、面BCC′B′上的投影是③;在面DCC′D′上的投影是②;同理,在面ABB′A′、面ABCD、面A′B′C′D′上的投影也全是②.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答如图:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.小结一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答圆柱:圆锥:圆台:思考4球的三视图是什么?下列三视图表示一个什么几何体?答球的三视图都是半径相等的圆,上面三视图表示的几何体为如图所示:探究点三简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?答能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答三视图如下图:例2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)解三视图如下:反思与感悟(1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案D解析根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D.探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答简单组合体的示意图如下:例3说出下面的三视图表示的几何体的结构特征.解几何体为三棱台,结构特征如下图:反思与感悟通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3下图是一个物体的三视图,试说出物体的形状.解物体的形状如下图所示:1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()答案A解析由正投影的定义知,点M,N在平面ADD1A1上的正投影分别是AA1,DA的中点,D在平面ADD1A1上的投影还是D,因此A正确.2.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台答案B解析由三视图知该几何体为一四棱锥,其中有一侧棱垂直于底面,底面为一直角梯形.3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()答案B解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.4.一个几何体的三视图如图所示,则该几何体可以是()答案D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.解所给四棱锥的三视图如图所示:[呈重点、现规律]1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.1.2空间几何体的三视图和直观图课时设计课堂实录1.2空间几何体的三视图和直观图1第一学时教学活动活动1【导入】探要点究所然[情境导学]从不同角度看庐山,有古诗:“横看成岭侧成峰,远近高低各不同;不识庐山真面目,只缘身在此山中.”对于我们所学几何体,从不同方向看到的形状也各有不同,我们通常用三视图和直观图来把几何体画在纸上.探究点一中心投影与平行投影导引在建筑、机械等工程图中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,要想知道这方面的基础知识,请先阅读教材第11页,然后思考下列问题.思考1什么是投影、投影线、投影面吗?答光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影.其中的光线叫做投影线,留下物体影子的屏幕叫做投影面.思考2不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么不同?答灯泡发出的光线是由一点向外分散发射的;手电筒发出的光是一束平行光线.小结我们把光由一点向外散射形成的投影叫做中心投影;把在一束平行光线照射下形成的投影叫做平行投影.思考3用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?答灯泡照射物体形成的投影是中心投影;手电筒照射物体形成的投影是平行投影.思考4用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?答在投影面上形成的影子形状与原物体相似,比原物体大.物体离灯泡越近,在投影面上的影子越大.思考5用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?答形状和大小是相同的;当物体与手电筒的距离发生变化时,影子的大小不变.小结在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.思考6一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?答与投影面平行的平面图形,在正投影和斜投影下形状、大小都不发生变化;与投影面不平行的平面图形,在正投影和斜投影下形状、大小会发生变化.例1 如图所示,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、C1D1的中点,G是正方形BCC1B1的中心,则四边形AGFE在该正方体的各个面上的投影可能是图中的________.(填序号)答案①②③解析要画出四边形AGFE在该正方体的各个面上的投影,只需画出四个顶点A、G、F、E在每个面上的投影,再顺次连接即得在该面上的投影,并且在两个平行平面上的投影是相同的.可得在面ABCD和面A1B1C1D1上的投影是图①;在面ADD1A1和面BCC1B1上的投影是图②;在面ABB1A1和面DCC1D1上的投影是图③.反思与感悟画出一个图形在一个平面上的投影的关键是确定该图形的关键点,如顶点等,画出这些关键点的投影,再依次连接即可得此图形在该平面上的投影.如果对平行投影理解不充分,做该类题目容易出现不知所措的情形,避免出现这种情况的方法是依据平行投影的含义,借助于空间想象来完成.跟踪训练1如图(1)所示,E、F分别为正方体面ADD′A′、面BCC′B′的中心,则四边形BFD′E在该正方体的各个面上的投影可能是图(2)中的________.答案②③解析四边形BFD′E在正方体ABCD-A′B′C′D′的面ADD′A′、面BCC′B′上的投影是③;在面DCC′D′上的投影是②;同理,在面ABB′A′、面ABCD、面A′B′C′D′上的投影也全是②.探究点二柱、锥、台、球的三视图导引把一个空间几何体投影到一个平面上,可以获得一个平面图形.从多个角度进行投影就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面.思考1如图,设长方体的长、宽、高分别为a、b、c,那么其三视图分别是什么?答如图:思考2三视图,分别反映物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)?答正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度.小结一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度的关系为:正侧等高,正俯等长,侧俯等宽.思考3圆柱、圆锥、圆台的三视图分别是什么?答圆柱:圆锥:圆台:思考4球的三视图是什么?下列三视图表示一个什么几何体?答球的三视图都是半径相等的圆,上面三视图表示的几何体为如图所示:探究点三简单组合体的三视图思考1在简单组合体中,从正视、侧视、俯视等角度观察,有些轮廓线和棱能看见,有些轮廓线和棱不能看见,在画三视图时怎样处理?答能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示.思考2如图所示,将一个长方体截去一部分,这个几何体的三视图如何画出?(标出字母)答三视图如下图:例2 如图,设所给的方向为物体的正前方,试画出它的三视图.(单位:cm)解三视图如下:反思与感悟(1)在画三视图时,务必做到正(视图)侧(视图)高平齐,正(视图)俯(视图)长对正,俯(视图)侧(视图)宽相等.(2)习惯上将正视图与侧视图画在同一水平位置上,俯视图在正视图的正下方.跟踪训练2某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()答案D解析根据几何体的三视图知识求解.由于该几何体的正视图和侧视图相同,且上部分是一个矩形,矩形中间无实线和虚线,因此俯视图不可能是D.探究点四将三视图还原成几何体思考下图是简单组合体的三视图,想象它们表示的组合体的结构特征,并画出其示意图.答简单组合体的示意图如下:例3说出下面的三视图表示的几何体的结构特征.解几何体为三棱台,结构特征如下图:反思与感悟通常要根据俯视图判断几何体是多面体还是旋转体,再结合正视图和侧视图确定具体的几何结构特征,最终确定是简单几何体还是简单组合体.跟踪训练3下图是一个物体的三视图,试说出物体的形状.解物体的形状如下图所示:1.如图所示,在正方体ABCD-A1B1C1D1中,M,N分别是BB1,BC的中点,则图中阴影部分在平面ADD1A1上的正投影是()答案A解析由正投影的定义知,点M,N在平面ADD1A1上的正投影分别是AA1,DA的中点,D在平面ADD1A1上的投影还是D,因此A正确.2.某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台答案B解析由三视图知该几何体为一四棱锥,其中有一侧棱垂直于底面,底面为一直角梯形.3.将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的侧视图为()答案B解析还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线.D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.4.一个几何体的三视图如图所示,则该几何体可以是()答案D解析由三视图可知上部是一个圆台,下部是一个圆柱,选D.5.如图,四棱锥的底面是正方形,顶点在底面上的射影是底面正方形的中心,试画出其三视图.解所给四棱锥的三视图如图所示:[呈重点、现规律]1.三视图的正视图、侧视图、俯视图是分别从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,画几何体的要求是正视图、俯视图长对正,正视图、侧视图高平齐,俯视图、侧视图宽相等,前后对应,画出的三视图要检验是否符合“长对正、高平齐、宽相等”的基本特征.2.几何体的三视图的画法为:先画出两条互相垂直的辅助坐标轴,在第二象限画出正视图;根据“正、俯两图长对正”的原则,在第三象限画出俯视图;根据“正、侧两图高平齐”的原则,在第一象限画出侧视图.3.看得见部分的轮廓线画实线,看不见部分的轮廓线画虚线.。

《空间几何体的三视图和直观图》教学设计

《空间几何体的三视图和直观图》教学设计

《空间几何体的三视图和直观图》教学设计汝阳县实验高中何要坡在人教版《普通高中课程标准实验教科书(数学必修2)》中,空间几何体的三视图和直观图的内容约2课时,第一课时学习1.2.1中心投影与平行投影和1.2.2空间几何体的三视图;第二课时学习1.2.3空间几何体的直观图。

下面笔者从教学理念、教材分析、学生分析、环境分析、目标分析、教法学法、过程分析、板书设计等方面进行第一课时的教学设计. 一、教学理念设计新课改之后的基本理念是倡导合作探究性学习,培养学生的创新精神和实践能力,更加贴近素质教育,更加人性化、信息化、多元化.根据这一理念,本节是以实际问题的出现通过自主探究的方式掌握数学知识——交流合作的模式发展数学能力——理论是为实践服务的宗旨解决实际问题——最后升华为培养数学精神为理念.“学起于思,思源于疑”.学生有了疑问才会去进一步思考问题,才会有所发展,有所创造,苏霍姆林斯基曾说:“人的心灵深处,总有一种把自己当作发现者、研究者、探索者的固有需要… …”.二、教材分析(一)教材的地位与作用本节课是普通高中课程标准实验教科书人教版《必修2》第一章第二节第一课时的内容,是在学习空间几何体结构特征之后,尚未学习点、直线、平面位置关系的情况下教学的.三视图是空间几何体的一种表示形式,是立体几何的基础之一.学好三视图为学习直观图奠定基础,同时有利于培养学生空间想象能力,几何直观能力的,有利于培养学生学习立体几何的兴趣.(二)教学重点与难点重点:1.中心投影、平行投影的概念与特点;2.三视图的画法规则及画空间几何体的三视图,体会三视图的作用.难点:根据三视图研究所表示的空间几何体的结构特征.三、学生分析(1)在义务教育阶段,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法.但是对于三视图的概念还不清晰;(2)学生只接触了从空间几何体到三视图的单向转化,还无法准确的识别三视图的立体模型.四、教学环境分析多媒体课件、柱、锥、台、球及简单组合体的模型(课前用纸片制成或用实物).五、教学目标分析(一)知识目标1.了解中心投影、平行投影、斜投影、正投影、三视图的概念.2.能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等及简易组合)的三视图,掌握三视图画法规则,并能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征.(二)能力目标通过直观感知各种投影、三视图,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的数学应用意识.(三)情感目标感受数学就在身边,提高学生的学习立体几何的兴趣,培养学生大胆创新、勇于探索、互相合作的精神.六、教法和学法1.教法和教学手段:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识.在教学中,教师要善于启发学生自主性学习,充分调动学生的积极性、主动性,要有效地渗透数学思想方法,努力去提高学生素质.在教师的引导下,创设情境,通过开放性探索性问题的设置来启发学生思考探究,在思考探究中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受.同时采用多媒体的教学手段,加强直观性和启发性,增大课堂容量,提高课堂效率.2.学法指导:波利亚曾说过“学习任何知识的最佳途径都是由自己发现,因为这种发现,理解最深刻,也最容易掌握其中内在的规律、性质和联系.”根据本节课特点及学生的认知心理,学生在教师营造的“可探索”环境里,积极参与、通过自己的观察,想象,思考,实践,主动发现规律、获得知识,体验成功.具体①课前预习--增强自主探究意识;②互动教学--开展自主探究活动;③当堂检测--关注解决问题的探究过程;④总结反思--培养自主探究能力;⑤拓展引伸--提高自主探究能力,它们环环相扣,层层深入,顺利完成教学目标.七、教学过程教学过程分为课前预习(自主学习)、创设情境(引入新课)、动手作图(掌握技能)、尝试作图(形成能力)、理论迁移(发展思维)、探究发现(提升能力)、小试牛刀(巩固提高)、总结提高(加深理解)、布置作业(训练提高)等九个环节.(一)课前预习--提供自主努力目标,增强自主探究意识.1.课前自学,完成预习案--引发探究欲望(1)课前预习,完成预习案,划出本节的重点内容,圈出疑难问题,将疑难问题及好的想法旁注在书边,特别强调要求学生在自学时提出新见解,培养学生创新能力,激发学生的学习兴趣;(2)寻找生活中相关的具体实例--长方体、正三棱锥、圆锥、圆柱、圆台;(3)自制模型--三投影面体系,教具;(4)上网查找与本节相关的资料与小故事等.2.明确目标, 检查反馈--增强探究意识(1)教师亮出本节课的的高考目标和命题趋势, 使学生心中有数,进而围绕目标带着问题积极、主动地参与学习活动.(2)根据课前对学生预习案的检查情况,将学生在预习中存在的问题有针对性地进行讲解,指出发生错误的根源,关键是将预习中存在的问题回归到基础知识.也可以有侧重的让学生进行讲解.【设计意图】课前预习是学好数学必不可少的,做好课前预习,不仅可以明确新课的重点和难点,发现不懂的问题,使学生在课堂上有针对性的学习,而且有益于培养自学能力,增强创新意识,要学生养成良好的预习习惯.(二)创设情境,引入新课活动1.(多媒体播放三角板影子、皮影戏的图片,组织学生欣赏)1.提问:同学们在感受这些形象逼真的图形时,是否思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这些原理还有哪些重要用途呢?2.导入:这就是我们本节课所要研究的第一个问题——中心投影和平行投影.【设计意图】引入生活情境,激发学生的学习欲望,自然导入新课,同时又弘扬了中国传统文化,增强文化意识.活动2.多媒体播放演示中心投影和平行投影的相关知识.1.投影的概念①投影:由于光的照射,在不透明物体后面的屏幕上留下这个物体的影子,这种现象叫做投影.其中,光线叫做投影线,屏幕叫做投影面.②中心投影:把光由一点向外散射形成的投影叫做中心投影.③平行投影:把在一束平行光线照射下形成的投影称为平行投影.平行投影分为斜投影与正投影.例1在正方体ABCD-A′B′C′D′中,E、F分别是A′A、C′C的中点,则下列判断正确的是________.①四边形BFD′E在底面ABCD内的投影是正方形;②四边形BFD′E在面A′D′DA内的投影是菱形;③四边形BFD′E在面A′D′DA内的投影与在面ABB′A′内的投影是全等的平行四边形.讲解原则:配以多媒体动画,让学生思考,抽象或概括出相应定义,教师加以修正.【设计意图】通过动画演示投影的形成过程,使学生直观、生动地感悟,使抽象问题具体化,加速学生对概念的理解.2.中心投影和平行投影的区别和用途中心投影的投影线交于一点,形成的直观图能非常逼真地反映原来的物体,主要运用于绘画领域.同学们课后可阅读教科书第11页相关材料,平行投影的投影线相互平行,形成的直观图则能比较精确地反映原来物体的形状和特征.因此更多应用于工程制图或技术图样.活动3.直观感知形成概念--三视图①欣赏飞机、轿车、坦克的三视图图片.②导入本节课第二个问题:空间几何体的三视图.从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.【设计意图】引入生活情境激发学生的学习欲望,自然引入新课,同时与其它学科相联系,拓宽学生思维,发展他们联想、类比能力.(三)尝试作图 形成能力活动4.【试一试】:让学生动手画出以下几个几何体的三视图:圆柱、圆锥、圆台、六棱柱、六棱锥、正四棱台.先让学生独立画图,然后同桌两人交换后指出错误,教师再用多媒体展示画图.【设计意图】:三视图画法是个操作技能,根据教育心理学,操作技能的认知需要教师准确示范,然后学生思考、模仿、展示学生的作品、练习直至熟练.教师重点讲评.活动5.【试一试】:让学生分组讨论例2,以及空间想象能力1与空间想象能力2. 例2如图所示是三个立体图形的三视图,请说出立体图形的名称.【设计意图】:让学生通过分组讨论,培养其协作能力,团队精神,并使其提高空间想象能力,会通过观察三视图还原其几何图形。

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图一、教学目标:1.掌握斜二测画法;能用斜二测画法画空间几何体的直观图。

2.引导学生体会画水平放置的直观图的关键是确定多边形顶点的位置。

3.培养学生严谨的治学态度。

二、教学重点:用斜二测画法画空间几何体的直观图三、教学难点:用斜二测画法画空间几何体的直观图四、教学过程:(一)复习巩固问题1: 何为三视图?(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)2. 定义直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形(二)讲授新课:1.水平放置的平面图形的斜二测画法:讨论:水平放置的平面图形的直观感觉?以六边形为例讨论.例1 用斜二测画法画水平放置的正六边形.(师生共练,注意取点、变与不变→小结:画法步骤)给出斜二测画法规则:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使'''=450(或1350),它们确定的平面表示水平平面;X OY画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)④练习:用斜二测画法画水平放置的正五边形.⑤讨论:水平放置的圆如何画?(正等测画法;椭圆模板)2.空间图形的斜二测画法:问题2:如何用斜二测画法画空间图形?例2. 用斜二测画法画长4cm、宽3cm、高2cm的长方体的直观图.(师生共练,建系→取点→连线,注意变与不变;小结:画法步骤)例3.(教材P18)根据三视图,用斜二测画法画它的直观图.讨论:几何体的结构特征?基本数据如何反应?师生共练:用斜二测画法画图,注意正确把握图形尺寸大小的关系问题3:如何由三视图得到直观图?又如何由直观图得到三视图?二者有何关系?(探究P19 奖杯的三视图到直观图)结论:空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,三视图在现实生活中得到广泛应用(零件图纸、建筑图纸等). 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.(三)巩固练习:1. 练习:P19-20 1~5题正视图俯视图侧视图2. 右图是一个几何体的三视图,请作出其直观图.3. 画出一个正四棱台的直观图.尺寸:上、下底面边长2cm、4cm; 高3cm五、课时小结:本节课主要学习了用斜二测画法画空间几何体的直观图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的三视图和直观图(第一课时)
铜仁二中饶望远
一、教材的地位和作用
本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图,是建立空间概念的基础和训练学生几何直观能力的有效手段。

另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。

同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。

所以在人们的日常生活中有着重要意义。

二、教学目标
(1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。

(2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。

(3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生相互交流、相互合作的精神。

三、设计思路
本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。

直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。

通过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。

培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。

教学的重点、难点
(一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。

(二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。

四、学生现实分析
本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的两种投影形式,学生具有这方面的直接经验和基础。

投影和三视图虽为高中新增内容,但学
生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。

到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近了高中的三视图定义,只是在名字上略有差异。

初中叫做主视图、左视图、俯视图。

进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了一定的提高,所以,给出了正视图、侧视图、俯视图的概念。

这些概念的变化也说明了学生年龄特点和思维差异
五、教学方法
(1)教学方法及教学手段
针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、启导发现法。

在教学中,通过创设问题情境,充分调动学生学习的积极性和主动性,并引导启发学生动眼、动脑、动手.同时采用多媒体的教学手段,加强直观性和启发性,解决了教师“口说无凭”的尴尬境地,增大了课堂容量,提高了课堂效率。

(2)学法指导
力争在新课程要求的大背景下组织教学,为学生创设良好的问题情境,留给学生充分的思考空间,在学生的辩证和讨论前提下,发挥教师的概括和引领的作用。

六、教学过程
(一)创设情境,引出课题
通过摄影作品及汽车设计图纸引出问题
1.照相、绘画之所以有空间视觉效果,主要处决于线条、明暗和色彩,其中对线条画法的基本原理是一个几何问题,我们需要学习这方面的知识。

2.在建筑、机械等工程中,需要用平面图形反映空间几何体的形状和大小,在作图技术上这也是一个几何问题,你想知道这方面的基础知识吗?
设计意图:通过摄影作品及汽车设计图纸的展示引出问题1,2,从贴近生活的实例入手,给学生以视觉冲击,引领学生进入本节课的内容。

引出课题:投影与三视图
知识探究(一):中心投影与平行投影
光是直线传播的,一个不透明物体在光的照射下,在物体后面的屏幕上会留下这个物体的影子,这种现象叫做投影。

其中的光线叫做投影线,留下物体影子的屏幕叫做投影面。

思考1:不同的光源发出的光线是有差异的,其中灯泡发出的光线与手电筒发出的光线有什么
不同?
思考2:我们把光由一点向外散射形成的投影叫做中心投影,把在一束平行光线照射下形成的投影叫做平行投影,那么用灯泡照射物体和用手电筒照射物体形成的投影分别是哪种投影?
思考3:用灯泡照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与灯泡的距离发生变化时,影子的大小会有什么不同?
思考4:用手电筒照射一个与投影面平行的不透明物体,在投影面上形成的影子与原物体的形状、大小有什么关系?当物体与手电筒的距离发生变化时,影子的大小会有变化吗?
思考5:在平行投影中,投影线正对着投影面时叫做正投影,否则叫做斜投影.一个与投影面平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?
思考6:一个与投影面不平行的平面图形,在正投影和斜投影下的形状、大小是否发生变化?师生活动:学生思考,讨论,教师归纳总结。

设计意图:讲解投影,投影线,投影面,让学生了解投影式如何形成的。

通过六个思考层层深入,学生在思考讨论的过程中总结出投影的分类及每种投影的特点。

知识探究(二):柱、锥、台、球的三视图
把一个空间几何体投影到一个平面上,可以获得一个平面图形。

但只有一个平面图形难以把握几何体的全貌,因此我们需要从多个角度进行投影,这样就能较好地把握几何体的形状和大小,通常选择三种正投影,即正面、侧面和上面。

从不同的角度看建筑
问题1:要很好地描绘这幢房子,需要从哪些方向去看?
问题2:如果要建造房子,你是工程师,需要给施工员提供哪几种图纸?
设计意图:通过观察大楼的图片,提出问题1,2,这种设计更易于让学生接受,说明数学与生活密不可分。

给出三视图的含义:
(1)光线从几何体的前面向后面正投影得到的投影图,叫做几何体的正视图;
(2)光线从几何体的左面向右面正投影得到的投影图,叫做几何体的侧视图;
(3)光线从几何体的上面向下面正投影得到的投影图,叫做几何体的俯视图;
(4)几何体的正视图、侧视图、俯视图统称为几何体的三视图。

思考1 :正视图、侧视图、俯视图分别是从几何体的哪三个角度观察得到的几何体的正投影图?它们都是平面图形还是空间图形?
思考2 :如图,设长方体的长、宽、高分别为a、b、c ,那么其三视图分别是什么?
一个几何体的正视图和侧视图的高度一样,俯视图和正视图的的长度一样,侧视图和俯视图的宽度一样。

思考3 :圆柱、圆锥、圆台的三视图分别是什么?
思考4 :一般地,一个几何体的正视图、侧视图和俯视图的长度、宽度和高度有什么关系?师生活动:分小组讨论,动手操作来完成思考题。

设计意图:通过多媒体的动态演示,对学生的结论进行验证,大概花15分钟的时间来完成这部分的教学。

学生自主归纳总结将本节课的重点化解。

长对正,高平齐,宽相等
(三)理论迁移
1、例题讲解
例1
例2
例3
2、课堂练习
设计意图:运用新知进行针对性的讲解与练习,加深学生对三视图的理解。

3、作业
(1)必做
(2)选做:如何画出空间几何体的直观图
(四)小结
1、谈一谈对三视图的新认识。

2、想一想自己还有哪些方面掌握的不够熟练?课下还需在哪些方面努力?
设计意图:通过作业与小结,让学生自己发现不足,并且在课下努力弥补,将疑惑解除。

通过设置选作题,提高学生的能力。

七、教学反思
由三视图到立体图形是本节课的难点,需要学生根据视图进行想象,在大脑中构建一个立体形象。

通过引导学生利用直观形象与生活中的实物进行联系,运用归纳、总结、类比的方法,有效地突破这一难点。

学生对于由三视图得出立体图形的名称掌握不熟练,课下应多做练习。

在教学的过程中,应多给学生安排时间自主探究,小组合作,这样对知识的记忆会更深刻。

在课堂上应大胆放手,将课堂交给学生。

相关文档
最新文档