江苏专用2020版高考数学大一轮复习第十章附加考查部分6第6讲矩阵与变换刷好题练能力文

合集下载

高考总复习课程--2020年高考数学(理)第一轮复习(江苏版) 讲义: 答案 .doc

高考总复习课程--2020年高考数学(理)第一轮复习(江苏版) 讲义: 答案 .doc

讲义参考答案第1讲 集合与简易逻辑金题精讲题一:1.题二: ①16;②29. 题三:B . 题四:B . 题五:C . 题六:A . 题七:A .第2讲 函数及其性质经典精讲题一:[3,1];[0,2];[3,1]--- 题二:(3) 题三:2 题四:(3)(4) 题五:(3)(4) 题六:(1)(5,1) (2)2,左,1 (3)x = -1第3讲 函数及其性质2018新题赏析金题精讲 题一:C 题二:B题三:[1,3] 题四:(0,1][3,)+∞U 题五:9(,]2-∞题六:8第4讲 平面向量金题精讲题一:题二: 4, 题三:A . 题四:6. 题五:B . 题六:3.题七:① 1Q ;② 2p .第5讲 三角函数与三角恒等变换经典精讲金题精讲题一:75 题二:5665-题四:A 题五:A题六:(1)6x 5π=;(2)0x =时,()f x 取得最大值为3,56x π=时,()f x 取得最小值为- 题七:2第6讲 三角函数与三角恒等变换2018新题赏析金题精讲题一:79-题二:D 题三:D 题四:A题五:(1)2;(2) 最小正周期为π,单调递增区间为[,]()63k k k π2ππ+π+∈Z第7讲 解三角形金题精讲题一:3π题二:B 题三:A 题四:75°题六:(1) 23;(2)3+ 第8讲 不等式经典精讲题一:(1)[24,)+∞ (2)(0,81]题二:(1)(,2-∞- (2)7[,)2+∞ (3)4 题三:不对,正确解法如下: 因为3ab a b =++,所以31a b a +=-, 所以2233(1)5(1)4111a a a a a ab a a a a ++-+-+===--- 495=(1)5=(1)5111a a a a a -++-++----因为9(1)1a a -+≥-,当且仅当4a =时,“=”成立, 又因为51y a =--在(4,)+∞上单调递增, 所以53y ≥-,所以5286533ab ≥+-=, 故ab 的取值范围是28[,)3+∞. 题四:(0,1)第9讲 线性规划经典精讲题一:4题二:(1,3] 题三:7题四:4,135⎡⎤⎢⎥⎣⎦第10讲 数列经典精讲金题精讲题一:-24. 题二:21nn +. 题三:(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+.题四:(1)证明:因为{}n a 是等差数列,所以112n n n a a a -++=①;222n n n a a a -++=②;332n n n a a a -++=③,由①+②+③可得:3211236n n n n n n n a a a a a a a ---++++++++=于是得到等差数列{}n a 是“(3)P 数列”;(2)证明:因为数列{}n a 是“(2)P 数列”,所以21124n n n n n a a a a a --+++++=①; 又因为数列{}n a 是“(3)P 数列”,所以3211236n n n n n n n a a a a a a a ---++++++++=②, 由②-①得332n n n a a a -++=,于是得到33,,n n n a a a -+是等差数列,故147,,a a a 、258,,a a a 、369,,a a a …成等差数列,设147,,a a a 的公差为13d ,258,,a a a 的公差为23d ,369,,a a a 的公差为33d ,…,当3n =时,124534a a a a a +++=④, 当4n =时,235644a a a a a +++=⑤,当5n =时,346754a a a a a +++=⑥ …将首项和公差代入上述式子可得:1212322334a a d d a +++=⑦ 2323112233412a a d d a d +++=+⑧ 1331222239412a a d d a d +++=+⑨由⑦+⑧+⑨可得:23d d =,将23d d =代入分别代入⑦、⑧、⑨整理可得13d d =, 于是有123d d d ==,将123d d d ==代入1331222239412a a d d a d +++=+ 可得到2132a a a =+,故数列123,,a a a 是等差数列,设其公差为d ',于是有2131,2a a d a a d =+=+'',将其代入⑦可得1d d =',于是有123d d d d ===',故数列{}n a 是等差数列.第11讲 数列2018新题赏析金题精讲 题一: 4. 题二: 3. 题三: A . 题四: (1)221n a n =-;(2)数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和为 221n n T n =+.题五: (1)12n n x -=;(2)(21)212n n n T -⨯+=.第12讲 导数及其应用经典精讲题一:4题二:题三:(1)极大值为(1)4f -=-,极小值为1112()327f -=- (2)a ≤5 题四:(1)2()ln 1f x x x x =-- (2)1-(3)证明:要证函数2()e x y f x x x =-+的图象在直线21y x =--的下方 只需证 2()e 210x f x x x x -+++<, 即要证e 20ln x x x x x +<-,所以只要证e 2ln 0x x +-<, 令e 2()ln x h x x +=-,则1e ()x xh x '=-, 根据函数1xy =和e x y =的图象,可知 0(0,1)x ∃∈,使得0001e 0()x x x h ='=-所以0()()x x h h ≤, 又因为001e x x =,所以00e x x -=,故 00000002000200e 21212(21)(1)0()ln ln x x x x x x x x x x x x h +=+=-+--+=--=<=---也就是()0x h <恒成立,此题得证.第13讲 导数及其应用2018新题赏析金题精讲 题一:①④ 题二:1[1,]2-题三:(1)()f x 在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增;(2) (0,1)第14讲 巧用导数解决实际应用问题 题一:(1)3312m ;(2)23;题二:(1)222()S r x r x =+-(0,)r ;233. 第15讲 空间立体几何经典精讲323,24π+163 3 题三:(Ⅰ)证法一:因为E ,F 分别是P A ,PD的中点,所以EF∥AD.又因为AD∥BC,所以EF∥BC.因为E,H分别为P A,AB的中点,所以EH∥PB,又因为PB∩BC=B,EF∩EH=E,所以平面EFH∥平面PBC,又PC⊂平面PBC,所以PC∥平面EFH.证法二:连接AC,BD,设交点为O,连接HO,FO,因为O,H分别是BD,AB的中点,E,F分别是P A,PD的中点,所以EF∥AD,EF=12AD,OH∥AD,OH=12AD,所以OH∥EF,OH=EF,所以点O在平面EFH上,所以证PC∥平面EFH,即证PC∥平面EFOH.因为O,E分别是AC,AP的中点,所以EO∥PC,又因为直线PC⊄平面EFOH,所以PC∥平面EFOH.(Ⅱ)证明:因为AP=AD,点F是PD的中点,所以AF⊥PD. 因为P A⊥平面ABCD,所以P A⊥AB.因为四边形ABCD是矩形,所以AB⊥AD,所以AB⊥平面APD,所以AB⊥PD,即AH⊥PD,又AF⊥PD,AF∩AH=A,所以PD⊥平面AHF,又PD⊂平面PCD,所以平面PCD⊥平面AHF.题四:(Ⅰ)证明:因为DE⊥面ACD,AF⊂面ACD,所以DE⊥AF,又因为AF⊥CD,所以AF⊥面BCDE,所以AF BE⊥.(Ⅱ)线段AB上存在点Q,使AC⊥平面DEQ.理由如下:如图,分别取AC AB,的中点G Q,,则GQ//BC,且GQ=12 BC,又因为DE//BC,12DE BC=,所以GQ//DE且GQ=DE,因为AD=CD,所以DG⊥AC,因为DE⊥面ACD,所以DE⊥AC,所以AC⊥面EDGQ,即AC⊥平面DEQ.第16讲空间向量法解立体几何题经典精讲题一:④题二:23题三:(1)当P为AC中点时,PF与BC所成的角是60︒ (2) 60︒题四:(1)证明:∵ABC-A1B1C1为直棱柱,∴C1C⊥面ABC,∴C1C⊥AC,C1C⊥CB,即︒=∠=∠90DCBDCA,∵底面为等腰直角三角形,且90ACB∠=︒,∴CA = CB,在△DCA和△DCB中⎪⎩⎪⎨⎧︒==∠=∠=CBCADCBDCADCDC90∴△DCA≌△DCB(SAS),∴DA=DB,又∵G为ABD∆的重心,∴DG⊥AB,∵E在面ABD上的射影为G,∴EG⊥面ABD,∴EG⊥AB,∵DG⊥AB,EG⊥AB,∴AB⊥面DEG.7第17讲空间立体几何2018新题赏析金题精讲题一:A题二:C10题四:②③题五:(1)证明:∵∠BAP =∠CDP =90°,∴PA ⊥AB ,PD ⊥CD , ∵AB ∥CD ,∴AB ⊥PD , 又∵PA ∩PD =P ,且PA ⊂平面PAD , PD ⊂平面PAD ,∴AB ⊥平面PAD ,又AB ⊂平面PAB , ∴平面PAB ⊥平面PAD ;(2) 第18讲 直线与圆经典精讲题一:(,[1,)-∞⋃+∞,π2π[,]43题三:(1)24 (2)24题四:(1)320x y ++= (2)22(2)8x y -+= (3)221(22x y x -=≤第19讲 椭圆经典精讲金题精讲题一:D题二:2题三:1题四:题六:(±.第20讲 双曲线与抛物线经典精讲金题精讲题一:B题二:221312x y -=;2y x =±题三:C 题四:C题六:证明:如图,设点11(,)A x y ,点22(,)B x y ,直线:AB l x my t =+, 由22x my t y px=+⎧⎨=⎩,得2220y pmy pt --=,∴2221212122,22y y y y pt x x t p p=-==g ,又∵121k k =-,∴12120x x y y +=, ∴220t pt -=,∴2t p =,(0t =舍), ∴:2AB l x my p =+,∴AB l 恒过点(2,0)p . 题七:(1) 证明:设直线:AB l x my t =+, 由22x my ty px=+⎧⎨=⎩,得2220y pmy pt --=,∴122y y pt =-,又∵122y y p =-,∴1t =,∴:1AB l x my =+, ∴AB l 恒过点(1,0). (2)(0,4).第21讲 解析几何2018新题赏析金题精讲题一:(0,1][9,)+∞U题二:22y x =±题三:233题四:(1) 抛物线C 的方程为y 2 = x ,焦点坐标为(14,0),准线为x =-14; (2) 设过点(0,12)的直线方程为y = kx +12(k ≠ 0),M (x 1,y 1),N (x 2,y 2), ∴直线OP 为y = x ,直线ON 为y =22y x x ,由题意知A (x 1,x 1),B (x 1,122x y x ),由212y kx y x⎧=+⎪⎨⎪=⎩,可得k 2x 2+(k -1)x +14= 0,∴x 1+x 2 =21k k -,x 1x 2 =214k , 要证A 为线段BM 的中点,只需证211122y x y x x =+,即证2111211222kx x kx x x +=++, 即证1212212111222x x kx x x kx x x =+++, 即证12121(22)()2k x x x x -=+,而12122221111222(1)(22)()(22)02244k k k k x xx x k k k k ------+=-⋅-⋅==∴ A 为线段BM 的中点.第22讲 排列、组合及二项式定理 经典精讲金题精讲题一:14 题二:C 题三:D 题四:-2 题五:10题六:710. 题七:证明:设a n =2n ,b n =n +2,∴数列{a n }是以2首项,公比为2的等比数列, ∴a 1=2.a 2=4.a 3=8,知a 1、a 2显然不是数列{b n }中的项. ∵a 3=8=3×2+2,∴a 3是数列{b n }中的第2项,设a k =2k 是数列{b n }中的第m 项,则2k =3m +2(k 、m ∈N *), ∵a k+1=2k+1=2×2k =2(3m +2)=3(2m +1)+1, ∴a k+1不是数列{b n }中的项,∵a k +2=2k +2=4×2k =4(3m +2)=3(4m +2)+2, ∴a k +2是数列{b n }中的项,∴c 1=a 3,c 2=a 5,c 3=a 7,…,c n =a 2n +1, ∴数列{c n }的通项公式是c n =22n +1(n ∈N *), ∴{c n }是等比数列. 题八:(1)72;432.(2) 有五位数,无六位数. (3)4012第23讲 统计与两个概型经典精讲金题精讲 题一:B 题二:(I )1315;(II )78题三:B题四:(1)B 地区用户满意度评分的频率分布直方图如下:B 地区用户满意度评分的频率分布直方图通过直方图比较可以看出,B 地区满意度评分的平均值高于A 地区用户满意度评分的平均值,B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散; (2)A 地区的满意度等级为不满意的概率大,理由略. 题五:23题六:(I) 1.2 3.6y t =+$;(II)10.8(千亿元).第24讲 离散型随机变量及 其分布列、期望经典精讲 金题精讲 题一:1.96. 题二:(1)0.3; (2)ξ的分布列如下:ξ 0 12P16 23 16E (ξ)=1;(3) 100名患者中服药者指标y 数据的方差比未服药者指标y 数据的方差大. X 0 123P14 1124 14 124E (X )=12; (2)1148. 题四:(1)518;(2)X X1234EX =2. 题五:(1)23; (2)X数学期望EX =236. 第25讲 概率统计2018新题赏析金题精讲题一:25 题二:59题三:π8题四:A 题五:B题六:(1)0.4;(2)20;(3)3:2.题七:(1)0.6;(2) Y 的所有可能值为900,300,-100;Y 大于零的概率为0.8.第26讲 几何证明选讲(选修4-1) 题一:点P 的轨迹是223(0)x y y +=≠所表示的两个半圆. 题二:题三:43题四:11第27讲 矩阵与变换(选修4-2)题一:⎣⎢⎢⎡⎦⎥⎥⎤92-15 -1 题二:(Ⅰ)1a =,1b =-;(Ⅱ)(1,0)题三:1203--⎡⎤⎢⎥⎣⎦题四:(1)312221⎡⎤-⎢⎥⎢⎥-⎣⎦;(2)32223⎡⎤⎢⎥⎢⎥--⎣⎦题五:矩阵A =1120-⎡⎤⎢⎥⎣⎦,其另一个特征值为1. 第28讲 坐标系与参数方程(选修4-4)金题精讲题二:1 题三:(1)1C :cos 2ρθ=-, 2C :22cos 4sin 40ρρθρθ--+=;(2)12题四:78第29讲 不等式选讲(选修4-5)金题精讲题一:(,8]-∞ 题二:1a ≤时,x ∈∅;12a <≤时,533a a x +-<<; 2a >时,5533a a x -+<<题三:(Ⅰ)2|23x x ⎧⎫<<⎨⎬⎩⎭;(Ⅱ)(2,)+∞.第30讲 复数题二:(31)-, 题三:i 题四:i 题五:−3题六:1第31讲 定积分都考啥题一:2题三:3ln 22-题四:13第32讲 算法金题精讲 题一:8. 题二:②.题三:(1) {1,3,5,7,9,11,13},a n =2n -1 (n ∈N +且n ≤7);(2) a =2;(3) a =a +3. 题四:12na a a n+++…;样本平均数.题五:2.第33讲 高考数学一轮复习综合 验收题精讲(一)金题精讲题一:1 题二:12题三:7或8 题四:(Ⅰ)π;(Ⅱ)最大值为2,最小值为-1. 题五:(Ⅰ)2y x =; (Ⅱ)令3()()2()3x g x f x x =-+,则4222()()2(1)1x g x f x x x ''=-+=-,因为()0g x '>(01)x <<,所以()g x 在区间(0,1)上单调递增, 所以()(0)0g x g >=,(0,1)x ∈, 即当(0,1)x ∈时,3()2()3x f x x >+;(Ⅲ)2.第34讲 高考数学一轮复习综合 验收题精讲(二)金题精讲题一:3R π 题二:1a题三:2sin 4y x =+题四:7 题五:14 题六:(1)连接BD ,∵底面ABCD 是正方形,∴AC ⊥BD , ∵BB 1⊥底面ABCD ,∴BB 1⊥AC ,∵BD ∩BB 1=B ,∴ AC ⊥面DBB 1,∴AC ⊥B 1D ; (2)60°.题七:(Ⅰ)37;(Ⅱ)1049;(Ⅲ)11a =或18a =. 第35讲 集合与常用逻辑用语经典回顾题一:(){2,4,8}U A B =U ð.第36讲 函数的概念及其性质经典回顾题一:-8.题二:(Ⅰ)(0)0f =,(1)0f =; (Ⅱ)()f x 是奇函数, 证明:因为2(1)[(1)](1)(1)0f f f f =-=----= 所以(1)0f -=()(1)()(1)()f x f x f x xf f x -=-⋅=-+-=- 因此()f x 是奇函数 题三:(Ⅰ)(0)1f =;(II )证明:设1212,,x x x x <∈R , 212111211121()()()()()()1()()1f x f x f x x x f x f x x f x f x f x x -=-+-=-+--=--∵210x x ->∴2121()1,()10f x x f x x ->--> 所以21()()f x f x > 因此()f x 在R 上是增函数.第37讲 数列经典回顾开心自测题一:24. 题二:!2n 金题精讲 题一: 60. 题二:(Ⅰ)13n na ∴=; (Ⅱ)1(21)3344n n n S +-∴=+.题三:(Ⅰ)*65()n a n n N =-∈;(Ⅱ)10.第38讲 导数及其应用经典回顾金题精讲 题一:(Ⅰ)32()312f x x x x =-+; (Ⅱ)a 的取值范围是[]1,9.题二:(Ⅰ) ()f x 的减区间是(,ln 2)-∞, 增区间是(ln 2,)+∞,ln2()(ln 2)2ln 2222ln 22f x f e a a ==-+=-+极小(Ⅱ) 证明:设()221e R x g x x ax x =-+-∈,,∴()2e R 2x g x x a x '=-+∈,,由(Ⅰ)知当ln21a ->时,()g x '最小值为 ()()ln221ln20g a '=-+>,∴对任意R x ∈,都有()0g x '>, 所以()g x 在R 内单调递增;∴当ln21a ->时,对任意0()x ∈+∞,, 都有()()0g x g >,而()00g =, 从而对任意()00()x g x ∈+∞,,>, 即221e 0x x ax -+->,故221e x x ax -+>.第39讲 复数与算法初步经典回顾金题精讲题一:30. 题二:3.第40讲 推理与证明问题经典回顾开心自测 题一:81248,T T T T . 题二:证明:假设T 为奇数,则1271,2,,7a a a ---L 均为奇数.因奇数个奇数之和为奇数,故有奇数()()()()()1271271271027a a a a a a -+-++-+++-=+=+=+L L L ,但0≠奇数,这一矛盾说明T 为偶数.金题精讲题一:2222ABC ACD ADB BCD S S S S ++=△△△△.题二:2(1)(32)(21)n n n n ++++-=-L . 题三:1()(())n n f x f f x -==(21)2n nxx -+.题四:(1)13{,}a a 是E 的第5个子集. (2)E 的第211个子集是12578{,,,,}a a a a a . 题五:证明:(用反证法)假设c b a ,,都不大于0,即0,0,0≤≤≤c b a , 则有0≤++c b a , 而222222(2)(2)(2)236(1)(1)(1)()3236a b cx y y z z x x y z ππππππ++=-++-++-+=-+-+-+++- =3)1()1()1(222-+-+-+-πz y x∴222)1(,)1(,)1(---z y x 均大于或等于0,03>-π,∴0>++c b a ,这与假设0≤++c b a 矛盾,故c b a ,,中至少有一个大于0.第41讲 选修4经典回顾开心自测题一:{11}x x -≤≤. 题二:98a .金题精讲题一:CE题二:3)4π. 题三:(Ⅰ)2a =.(Ⅱ)m 的取值范围是(,5]-∞.。

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.3 Word版含解析

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.3 Word版含解析

§10.3 用样本估计总体考情考向分析 主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用;题型以填空题为主,难度为中低档题.1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:如果将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,那么就得到频率分布折线图.(2)总体分布的密度曲线:如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s =.1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](3)方差:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](x n 是样本数据,n 是样本容量,是样本平均1nx x x x 数).概念方法微思考1.在频率分布直方图中如何确定中位数?提示 在频率分布直方图中,中位数左边和右边的直方图的面积是相等的.2.平均数、标准差与方差反映了数据的哪些特征?提示 平均数反映了数据取值的平均水平,标准差、方差反映了数据对平均数的波动情况,即标准差、方差越大,数据的离散程度越大,越不稳定;反之离散程度越小,越稳定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ )(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × )(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √ )题组二 教材改编2.[P58例4]如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有________人.答案 25解析 0.5×0.5×100=25.3.[P56练习T3]一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为________.答案 8解析 设频数为n ,则=0.25,n32∴n =32×=8.144.[P71练习T1]已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________.答案 0.1解析 ==5.1,x 4.7+4.8+5.1+5.4+5.55则该组数据的方差s 2==0.1.(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25题组三 易错自纠5.(2018·徐州模拟)一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为________.答案 8解析 因为数据共40个,第5组的频率为0.1,所以第5组的频数为40×0.1=4,所以第6组的频数为40-(10+5+7+6+4)=8.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m ,众数为n ,平均数为,则m ,n ,的大小关系x x 为________.(用“<”连接)答案 n <m <x解析 由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m =5.5;又5出现的次数最多,故n =5;=≈5.97.x 2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030故n <m <.x 7.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图,这200名学生中每周的自习时间不少于22.5小时的人数是________.答案 140解析 由频率分布直方图,知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.题型一 茎叶图的应用1.(2018·南通模拟)如图是甲、乙两位同学在5次测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为________.答案 2解析 由于甲、乙两位同学的平均数均为90,所以甲、乙两位同学的方差分别为×(4+1+0+1+4)=2,×(9+1+0+1+9)=4>2,1515故成绩较稳定(方差较小)的那一位同学的方差为2.2.(2018·江苏淮阴中学月考)如图所示是一次歌唱大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a 2+b 2的最小值是________.答案 32解析 方法一 根据题意,有=5,得a +b =8,则b =8-a ,a 2+b 2=a 2+(8-a )24+a +6+b +75=2a 2-16a +64,其中a ,b 满足0≤a ≤9,0≤b ≤9,即0≤a ≤9,0≤8-a ≤9,即0≤a ≤8且a 是整数,令f (a )=2a 2-16a +64,显然当a =4时,f (a )取得最小值,这个最小值是32.方法二 同方法一可得a +b =8,则8≥2,故ab ≤16,而a 2+b 2=(a +b )2-2ab ≥64-32=ab 32,当且仅当a =b =4时等号成立.3.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如下.根据该统计数据,估计此地该年AQI 大于100的天数约为________.(该年有365天)答案 146解析 该样本中AQI 大于100的频数是4,频率为,25由此估计该地全年AQI 大于100的频率为,25估计此地该年AQI 大于100的天数约为365×=146.25思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.题型二 频率分布直方图的绘制与应用例1 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为_______.答案 12解析 志愿者的总人数为=50,20(0.16+0.24)×1所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.思维升华 (1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆.(2)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.跟踪训练1 (1)某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.答案 10解析 设11时至12时的销售额为x ,因为9时至10时的销售额为2.5万元,由题意得=0.10.4,得x =10.2.5x(2)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.答案 400解析 因为第一、第二、第三小组的频率成等比数列,设公比为q ,则第三小组的频率为0.16q 2;又第三、第四、第五、第六小组的频率成等差数列,设公差为d ,从而得第六小组的频率为0.16q 2+3d =0.07.又因为六组频率之和为1,所以Error!由图知q >0,d <0,得q =1.25,d =-0.06,得第三小组的频率为0.25,则该校高三年级的男生总数为100÷0.25=400.题型三 用样本的数字特征估计总体的数字特征例2 (1)(2013·江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.答案 2解析 甲=(87+91+90+89+93)=90,x 15乙=(89+90+91+88+92)=90,x 15s =[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,2甲15s =[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.2乙15(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价.解 ①由图象可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.甲==13;x 10+13+12+14+165乙==13,x 13+14+12+12+145s =[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;2甲15s =[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.2乙15②由s >s ,可知乙的成绩较稳定.2甲2乙从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.跟踪训练2 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,),(a ,b ),(,b ),(,),(a ,b ),(a ,b ),(a ,b a a b ),(,b ),(a ,),(,),(a ,b ),(a ,),(,b ),(a ,b ),其中a ,分别表示甲组研发b a b a b b a a 成功和失败;b ,分别表示乙组研发成功和失败.b (1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.解 (1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数甲==;x 101523方差为s ==.2甲115[(1-23)2×10+(0-23)2×5]29乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数乙==;x 91535方差为s ==.2乙115[(1-35)2×9+(0-35)2×6]625因为甲>乙,s <s ,所以甲组的研发水平优于乙组.x x 2甲2乙(2)记恰有一组研发成功为事件E ,在所抽得的15个结果中,恰有一组研发成功的结果是(a ,),(,b ),(a ,),(,b ),(a ,),(a ,),(,b ),共7个.因此事件E 发生的频率为.b a b a b b a 715用频率估计概率,即得所求概率为P (E )=.7151.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.答案 6解析 这组数据的平均数为(4+6+5+8+7+6)=6.162.下面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.答案 5,8解析 由题意根据甲组数据的中位数为15,可得x =5;乙组数据的平均数为16.8,则=16.8,求得y =8.9+15+18+24+10+y 53.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案 0.4解析 10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为=0.4.4104.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为________.答案 22.5解析 产品的中位数出现在频率是0.5的地方.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x ,则由0.1+0.2+0.08×(x -20)=0.5,得x =22.5.5.(2018·扬州调研)随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若该校的学生总人数为3 000,则成绩不超过60分的学生人数大约为________.答案 900解析 由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.6.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为=2×8=16.22×647.已知等差数列{a n }的公差为d ,若a 1,a 2,a 3,a 4,a 5的方差为8,则d 的值为________.答案 ±2解析 因为{a n }为等差数列,所以a 1,a 2,a 3,a 4,a 5的平均数为a 3,所以方差为[(-2d )2+(-15d )2+0+d 2+(2d )2]=2d 2=8,解得d =±2.8.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.9.某电子商务公司对10 000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示:(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1,可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.10.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.答案 2解析 170+×(1+2+x +4+5+10+11)=175,17×(33+x )=5,即33+x =35,解得x =2.1711.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为________.答案 6.8解析 因为甲==11,x 9+7+7+14+185乙==11,x 8+9+10+13+155所以s ==>s ===6.8,故得分稳定的运动员的方2甲16+16+4+9+4959452乙9+4+1+4+165345差为6.8.12.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×=20.5100(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×=30,12所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.13.样本(x 1,x 2,…,x n )的平均数为,样本(y 1,y 2,…,y m )的平均数为(≠).若样本(x 1,x y x y x 2,…,x n ,y 1,y 2,…,y m )的平均数=α+(1-α),其中0<α<,则n ,m 的大小关系为________.z x y 12答案 n <m解析 由题意,得==+,z nx +my n +m n n +m x m n +m y 则有α=,又0<α<,则0<<,得n <m .n m +n 12n m +n 1214.(2018·南通、徐州等六市调研)某班40名学生参加普法知识竞赛,成绩都在区间[40,100]上,其频率分布直方图如图所示,则成绩不低于60分的人数为________.答案 30解析 根据频率分布直方图可得成绩不低于60分的学生的频率为(0.015+0.030+0.025+0.005)×10=0.75.∴成绩不低于60分的学生的人数为40×0.75=30.15.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为________.答案 6解析 根据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽取16人时,在第4组中应抽取的人数为16×=6.31+4+316.空气质量指数(简称:AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:[0,50)为优,[50,100)为良,[100,150)为轻度污染,[150,200)为中度污染,[200,250)为重度污染,[250,300)为严重污染.下面记录了北京市22天的空气质量指数,根据图表,下列结论正确的是________.(填序号)①在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量;②在北京这22天的空气质量中,有3天达到污染程度;③在北京这22天的空气质量中,12月29日空气质量最差;④在北京这22天的空气质量中,达到空气质量优的天数有7天.答案 ①②③解析 因为97>59,51>48,36>29,68>45,所以在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量,即①正确;AQI不低于100的数据有3个:143,225,145,所以在北京这22天的空气质量中,有3天达到污染程度,即②正确;因为12月29日的AQI为225,为重度污染,该天的空气质量最差,即③正确;AQI在[0,50)的数据有6个:36,47,49,48,29,45,即达到空气质量优的天数有6天,所以④错.。

(江苏专用)2020版高考数学大一轮复习第十章附加考查部分 排列、组合与二项式定(理)刷好题练能力(文)

(江苏专用)2020版高考数学大一轮复习第十章附加考查部分 排列、组合与二项式定(理)刷好题练能力(文)

第3讲 排列、组合与二项式定理1.求(1-x )20的二项展开式中,x 的系数与x 9的系数之差.解:由(1-x )20⇒T r +1=C r 20(-x )r =(-1)r C r20x r2.所以r2=1⇒r =2⇒x 的系数为C 220,r2=9⇒r =18⇒x 9的系数为C 1820.所以C 220-C 1820=C 220-C 220=0.2.若⎝⎛⎭⎪⎫3x +1x n 的展开式中各项系数和为1 024,试确定展开式中的有理项.解:令x =1,则22n=1 024,解得n =5. T r +1=C r5(3x )5-r⎝ ⎛⎭⎪⎫1x r =C r 5·35-r·x 10-3r 2,有理项即使10-3r2为整数,r =0、r =2、r =4,有3项,即T 1=243x 5,T 3=270x 2,T 5=15x -1.3.已知⎝ ⎛⎭⎪⎫x -2x 2n(n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和; (2)求展开式中含x 32的项.解:由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则有C 4n ·(-2)4C 2n ·(-2)2=101, 化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1得各项系数的和为(1-2)8=1. (2)通项T k +1=C k 8(x )8-k ⎝ ⎛⎭⎪⎫-2x 2k =C k 8(-2)kx8-k2-2k,令8-k 2-2k =32,则k =1,故展开式中含x 32的项为T 2=-16x 32.4.二项式(2x -3y )9的展开式中,求: (1)二项式系数之和;(2)各项系数之和; (3)所有奇数项系数之和.解:设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9. (1)二项式系数之和为C 09+C 19+C 29+…+C 99=29. (2)各项系数之和为a 0+a 1+a 2+…+a 9=(2-3)9=-1. (3)由(2)知a 0+a 1+a 2+…+a 9=-1, 令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59,将两式相加,得a 0+a 2+a 4+a 6+a 8=59-12,即为所有奇数项系数之和.5.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生; (2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表. 解:(1)先选后排,先选可以是2女3男,也可以是1女4男,先取有C 35C 23+C 45C 13种,后排有A 55种,共有(C 35C 23+C 45C 13)·A 55=5 400种.(2)除去该女生后,先取后排,有C 47·A 44=840种. (3)先选后排,但先安排该男生,有C 47·C 14·A 44=3 360种.(4)先从除去该男生该女生的6人中选3人有C 36种,再安排该男生有C 13种,选出的3人全排有A 33种,共C 36·C 13·A 33=360种.6.已知⎝⎛⎭⎪⎪⎫x +124x n的展开式中,前三项系数成等差数列. (1)求n ;(2)求第三项的二项式系数及项的系数; (3)求含x 项的系数.解:(1)因为前三项系数1,12C 1n ,14C 2n 成等差数列.所以2·12C 1n =1+14C 2n ,即n 2-9n +8=0.所以n =8或n =1(舍).(2)由n =8知其通项T r +1=C r8·(x )8-r·⎝ ⎛⎭⎪⎫12 41x r =⎝ ⎛⎭⎪⎫12r ·C r 8·x 4-34r,r =0,1, (8)所以第三项的二项式系数为C 28=28.第三项系数为⎝ ⎛⎭⎪⎫122·C 28=7.(3)令4-34r =1,得r =4,所以含x 项的系数为⎝ ⎛⎭⎪⎫124·C 48=358.7.4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?解:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”,即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步计数原理,共有C 14C 24C 13×A 22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C 24种方法,4个球放进2个盒子可分成(3,1),(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24⎝ ⎛⎭⎪⎫C 34C 11A 22+C 24C 22A 22·A 22=84种.8.(2019·南京、盐城模拟)已知m ,n ∈N *,定义f n (m )=n (n -1)(n -2)…(n -m +1)m !.(1)记a m =f 6(m ),求a 1+a 2+…+a 12的值;(2)记b m =(-1)mmf n (m ),求b 1+b 2+…+b 2n 所有可能值的集合.解:(1)由题意知,f n (m )=⎩⎪⎨⎪⎧0,m ≥n +1,C m n ,1≤m ≤n .所以a m =⎩⎪⎨⎪⎧0,m ≥7,C m 6,1≤m ≤6.所以a 1+a 2+…+a 12=C 16+C 26+…+C 66=63.(2)当n =1时,b m =(-1)mmf 1(m )=⎩⎪⎨⎪⎧0,m ≥2,-1,m =1,则b 1+b 2=-1.当n ≥2时,b m =⎩⎪⎨⎪⎧0,m ≥n +1,(-1)m m ·C mn ,1≤m ≤n . 又m C mn =m ·n !m !(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1,所以b 1+b 2+…+b 2n =n [-C 0n -1+C 1n -1-C 2n -1+C 3n -1+…+(-1)n C n -1n -1]=0. 所以b 1+b 2+…+b 2n 的取值构成的集合为{-1,0}.1.已知(2-3x )50=a 0+a 1x +a 2x 2+…+a 50x 50,其中a 0,a 1,a 2…,a 50是常数,计算(a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2.解:设f (x )=(2-3x )50,令x =1,得a 0+a 1+a 2+…+a 50=(2-3)50, 令x =-1,得a 0-a 1+a 2-…+a 50=(2+3)50, (a 0+a 2+a 4+…+a 50)2-(a 1+a 3+a 5+…+a 49)2 =(a 0+a 1+a 2+…+a 50)(a 0-a 1+a 2-…+a 50) =(2-3)50(2+3)50=1. 2.求证:(1)32n +2-8n -9能被64整除(n ∈N *); (2)3n>(n +2)·2n -1(n ∈N *,n >2).证明:(1)因为32n +2-8n -9=32·32n-8n -9=9·9n-8n -9=9(8+1)n-8n -9 =9(C 0n 8n+C 1n 8n -1+…+C n -1n ·8+C nn ·1)-8n -9=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9=9×82(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ].所以32n +2-8n -9能被64整除.(2)因为n ∈N *,且n >2,3n =(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1>2n +n ·2n -1+2n+1>2n+n ·2n -1=(n +2)·2n -1,故3n >(n +2)·2n -1.3.(2019·盐城调研)已知f (x )=(2+x )n,其中n ∈N *. (1)若展开式中x 3的系数为14,求n 的值;(2)当x =3时,求证:f (x )必可表示成s +s -1(s ∈N *)的形式.解:(1)因为T r +1=C r n·2n -r·x r2.令r2=3得r =6, 故x 3项的系数为C 6n ·2n -6=14,解得n =7.(2)证明:由二项式定理可知 (2+3)n =C 0n 2n +C 1n 2n -1·3+C 2n 2n -2·(3)2+…+C r n 2n -r(3)r +…+C n n (3)n=(C 0n 2n+C 2n 2n -2(3)2+…)+3(C 1n 2n -1+C 3n 2n -3·3+…).令x 0=C 0n 2n +C 2n 2n -2(3)2+…,y 0=C 1n 2n -1+C 3n 2n -3·3+…,显然x 0∈N *,y 0∈N *.则(2+3)n=x 0+3y 0,(2-3)n=x 0-3y 0, 所以(2+3)n ·(2-3)n =x 20-3y 20=1. 令s =x 20,则必有s -1=x 20-1=3y 20.从而当x =3时,f (x )必可表示成s +s -1的形式,其中s ∈N *.4.编号为A ,B ,C ,D ,E 的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A 球不能放在1,2号,B 球必须放在与A 球相邻的盒子中,不同的放法有多少种?解:根据A 球所在位置分三类:(1)若A 球放在3号盒子内,则B 球只能放在4号盒子内,余下的三个盒子放球C ,D ,E ,则根据分步计数原理得,此时有A 33=6种不同的放法;(2)若A 球放在5号盒子内,则B 球只能放在4号盒子内,余下的三个盒子放球C ,D ,E ,则根据分步计数原理得,此时有A 33=6种不同的放法;(3)若A 球放在4号盒子内,则B 球可以放在2号,3号,5号盒子中的任何一个,余下的三个盒子放球C ,D ,E ,有A 33=6种不同的放法,根据分步计数原理得,此时有A 13A 33=18种不同的放法.综上所述,由分类计数原理得不同的放法共有6+6+18=30种.5.(2019·南京六校联考)已知g (x )=C 0n f ⎝ ⎛⎭⎪⎫0n x 0(1-x )n +C 1n f ⎝ ⎛⎭⎪⎫1n x 1(1-x )n -1+C 2n f ⎝ ⎛⎭⎪⎫2nx 2(1-x )n -2+…+C nn f ⎝ ⎛⎭⎪⎫n n x n (1-x )0.(1)若f (x )=1,求g (x ); (2)若f (x )=x ,求g (x ).解:(1)因为f (x )=1,所以f ⎝ ⎛⎭⎪⎫0n =f ⎝ ⎛⎭⎪⎫1n =…=f ⎝ ⎛⎭⎪⎫n n=1, 所以g (x )=C 0n x 0(1-x )n +C 1n x 1(1-x )n -1+C 2n x 2(1-x )n -2+…+C n n x n (1-x )0=[(1-x )+x ]n =1.因为00无意义,所以g (x )=1,且x ≠0,x ≠1,x ∈R . (2)因为r C r n=r ·n !r !(n -r )!=n !(r -1)!(n -r )!=n ·(n -1)!(r -1)![(n -1)-(r -1)]!=n C r -1n -1,其中r =1,2,…,n .所以r C rn =n C r -1n -1(r =1,2,…,n ). 又因为f (x )=x ,所以g (x )=C 0n ·0·x 0(1-x )n +C 1n ·1n ·x 1(1-x )n -1+C 2n ·2n ·x 2(1-x )n -2+…+C nn ·n n·x n (1-x )0=1n [C 1n x 1(1-x )n -1+2C 2n x 2(1-x )n -2+…+r C r n x r (1-x )n -r +…+n C n n x n (1-x )0]=1n·n [C 0n -1x 1(1-x )n -1+C 1n -1x 2(1-x )n -2 +…+C r -1n -1·x r (1-x )n -r +…+C n -1n -1x n (1-x )0] =x [C 0n -1x 0(1-x )n -1+C 1n -1x 1(1-x )n -2+…+C r -1n -1·xr -1(1-x )(n -1)-(r -1)+…+C n -1n -1xn -1(1-x )0]=x [(1-x )+x ]n -1=x .即g (x )=x ,且x ≠0,x ≠1,x ∈R .6.(2019·江苏省重点中学领航高考冲刺卷(五))已知F (n )=a 1-a 2C 1n +a 3C 2n -a 4C 3n +…+(-1)n a n +1C n n (n ≥2,n ∈N *).(1)若数列{a n }是首项为1,公比为-1的等比数列,求证:F (n )=2n;(2)若对任意的n ≥2,n ∈N *,都有F (n )=0成立,试证明数列{a n }是等差数列. 证明:(1)因为数列{a n }是首项为1,公比为-1的等比数列, 所以a n =(-1)n -1(n ∈N *),即F (n )=C 0n +C 1n +C 2n +C 3n +…+C nn .又(1+x )n =C 0n +C 1n x +C 2n x 2+C 3n x 3+…+C n n x n, 所以令x =1,得C 0n +C 1n +C 2n +C 3n +…+C n n =2n, 所以F (n )=2n.(2)①当n =2时,F (2)=a 1-a 2C 12+a 3C 22=0, 即2a 2=a 1+a 3,所以数列{a n }的前3项成等差数列. ②假设当n =k (k ≥2,k ∈N *)时, 数列{a n }的前k +1项成等差数列.因为对任意的n ≥2,n ∈N *都有F (n )=0成立, 所以F (k +1)=0成立, 所以⎩⎪⎨⎪⎧a 1-a 2C 1k +a 3C 2k -a 4C 3k +…+(-1)k a k +1C kk =0,a 1-a 2C 1k +1+a 3C 2k +1-a 4C 3k +1+…+(-1)k +1a k +2C k +1k +1=0, 两式相减得,-a 2(C 1k +1-C 1k )+a 3(C 2k +1-C 2k )+…+(-1)k a k +1(C k k +1-C k k )+(-1)k +1a k +2C k +1k +1=0.因为C m +1n +1=C m +1n +C mn ,所以-a 2C 0k +a 3C 1k -a 4C 2k +…+(-1)k a k +1C k -1k +(-1)k +1a k +2C k k =0,即a 2-a 3C 1k +a 4C 2k +…+(-1)k -1a k +1C k -1k +(-1)k a k +2C kk =0.由假设可知a 2,a 3,a 4,…,a k +1,a k +2成等差数列, 从而数列{a n }的前k +2项成等差数列.由①②可知,若对任意的n ≥2,n ∈N *,都有F (n )=0成立,则数列{a n }是等差数列.。

高考江苏数学大一轮精准复习课件矩阵与变换

高考江苏数学大一轮精准复习课件矩阵与变换

旋转变换
利用三维旋转矩阵,可将 空间图形绕某一轴旋转一 定角度。
缩放变换
通过三维缩放矩阵,可将 空间图形沿某一方向进行 缩放。
利用矩阵求解几何问题举例
点线距离问题
01
通过构造点线距离的矩阵表达式,可快速求解点到直线的距离

点面距离问题
02
利用点面距离的矩阵表达式,可便捷地求解点到平面的距离。
直线与直线、直线与平面的位置关系问题
克拉默法则应用条件
系数矩阵A的行列式D≠0,即A满秩。若D=0,则克拉默法则不适用,需采用其他方法 求解。
03
特征值与特征向量
特征值与特征向量定义及性质
特征值定义
设A是n阶方阵,如果存在数λ和非零n维 列向量x,使得Ax=λx成立,则称λ是A的 特征值,x是A的对应于特征值λ的特征向 量。
VS
特征向量性质
矩阵数乘与乘法运算
矩阵数乘
一个数与矩阵中的每一个元素相乘,得到的结果按照原矩阵的形状排列,即为该数与该矩阵的数乘。
矩阵乘法
设A为$m times p$的矩阵,B为$p times n$的矩阵,那么称$m times n$的矩阵C为矩阵A与B的乘 积,记作C=AB。其中,矩阵C中的第i行第j列元素可以表示为A的第i行元素与B的第j列对应元素乘积 之和。需要注意的是,两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数。
03
矩阵表示方法:矩阵通常用大写的英文字母表示,如A、B 、C等。矩阵的维度用“行×列”表示,如$3 times 3$矩 阵表示该矩阵有3行3列。
矩阵相等与加减法运算
矩阵相等
两个矩阵的行数相等、列数相等且对应位置上的元素相等,则称这两个矩阵相 等。

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.2

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.2

§10.2 抽样方法考情考向分析 在抽样方法的考查中,系统抽样,分层抽样是考查的重点,题型主要以填空题为主,属于中低档题.1.简单随机抽样(1)定义:一般地,从个体数为N 的总体中逐个不放回地取出n 个个体作为样本(n <N ),如果每个个体都有相同的机会被取到,那么这样的抽样方法称为简单随机抽样. (2)最常用的简单随机抽样方法有两种——抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)采用随机的方式将总体中的N 个个体编号;(2)将编号按间隔k 分段,当N n 是整数时,取k =N n ;当Nn 不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N ′能被n 整除,这时取k =N ′n ,并将剩下的总体重新编号;(3)在第一段中用简单随机抽样确定起始的个体编号l ;(4)按照一定的规则抽取样本,通常将编号为l ,l +k ,l +2k ,…,l +(n -1)k 的个体抽出. 3.分层抽样(1)定义:一般地,当总体由差异明显的几个部分组成时,为了使样本更客观地反映总体情况,我们常常将总体中的个体按不同的特点分成层次比较分明的几个部分,然后按各个部分在总体中所占的比实施抽样,这种抽样方法叫分层抽样,所分成的各个部分称为“层”. (2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样的方法.概念方法微思考三种抽样方法有什么共同点和联系?提示 (1)抽样过程中每个个体被抽取的机会均等.(2)系统抽样中在起始部分抽样时采用简单随机抽样;分层抽样中各层抽样时采用简单随机抽样或系统抽样.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)简单随机抽样是一种不放回抽样.(√)(2)抽签法中,先抽的人抽中的可能性大.(×)(3)系统抽样在第1段抽样时采用简单随机抽样.(√)(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)题组二教材改编2.[P52习题T1]某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是________.答案分层抽样法解析从全体学生中抽取100名宜用分层抽样法,按男、女学生所占的比例抽取.3.[P52习题T4]某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取_____名学生.答案15解析从高二年级中抽取的学生数与抽取学生总数的比为310,所以应从高二年级抽取学生人数为50×310=15.4.[P52习题T2]某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是________.答案16解析从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16.题组三易错自纠5.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则________.答案p1=p2=p3解析由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等.6.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 1 800解析 分层抽样中各层的抽样比相同.样本中甲设备生产的产品有50件,则乙设备生产的产品有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.题型一 简单随机抽样1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生,6名女生,则下列命题正确的是________.(填序号) ①这次抽样中可能采用的是简单随机抽样; ②这次抽样一定没有采用系统抽样;③这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率; ④这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率. 答案 ①解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,①正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,②错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,③和④均错误.2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为________.答案 01解析 由题意知前5个个体的编号为08,02,14,07,01.3.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为________.答案514解析 由题意知9n -1=13,得n =28,所以整个抽样过程中每个个体被抽到的概率为1028=514.思维升华 应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.题型二 系统抽样例1 (1)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 4解析 由题意知,将1~35号分成7组,每组5名运动员,成绩落在区间[139,151]内的运动员共有4组,故由系统抽样法知,共抽取4名.(2)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 答案 12解析 由84042=20,即每20人抽取1人,所以抽取编号落入区间[481,720]的人数为720-48020=24020=12. 引申探究1.若本例(2)中条件不变,若号码“5”被抽到,那么号码“55”________被抽到.(填“能”或“不能”) 答案 不能解析 若55被抽到,则55=5+20n ,n =2.5,n 不是整数.故不能被抽到.2.若本例(2)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 答案 28解析 因为在编号[481,720]中共有720-480=240(人),又在[481,720]中抽取8人, 所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取的样本容量为84030=28.思维升华 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 跟踪训练1 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为________. 答案 25,17,8解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.题型三 分层抽样命题点1 求总体或样本容量例2 (1)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =________. 答案 13解析 ∵360=n120+80+60,∴n =13.(2)(2018·江苏省南京金陵中学模拟)某校共有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从女学生中抽取的人数为50人,那么n 的值为________. 答案 120解析 因为共有教师200人,男学生1 200人,女学生1 000人, 所以女学生占的比例为1 0002 400=512,女学生中抽取的人数为50人, 所以n ×512=50,所以n =120.命题点2 求某层入样的个体数例3 (1)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师的人数为________.答案 180解析 由题意,得抽样比为3201 600=15, ∴该样本中的老年教师的人数为900×15=180.(2)我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣________人. 答案 108解析 由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912=300×8 10022 500=108.思维升华 分层抽样问题类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.(3)确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况.跟踪训练2 (1)某校为了了解学生学习的情况,采用分层抽样的方法从高一1 000人,高二1 200人,高三n 人中抽取81人进行问卷调查,已知高二被抽取的人数为30,那么n =________. 答案 1 040解析 分层抽样是按比例抽样的,所以81× 1 2001 000+1 200+n=30,解得n =1 040.(2)(2018·如东模拟)下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如下表所示:现要在所有参与调查的人中用分层抽样的方法抽取n 人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n 的值为________. 答案 30解析 参与调查的总人数为150,由8∶n =40∶150, 得n =30.1.(2018·盐城调研)某单位有老年人20人,中年人120人,青年人100人,现用分层抽样的方法从所有人中抽取一个容量为n 的样本,已知从青年人中抽取的人数为10,则n =________. 答案 24解析 由分层抽样可得10n =10020+120+100=1024,故n =24.2.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体中抽取一个13张的样本,则这种抽样方法是________. 答案 系统抽样解析 符合系统抽样的特点.3.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是________. 答案110,110解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.4.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个样本编号为________. 答案 695解析 由题意可知,第一组随机抽取的编号为015,分段间隔数k =N n =1 00050=20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个样本编号为15+(35-1)×20=695.5.某工厂的一、二、三车间在某月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 成等差数列,则二车间生产的产品数为________.答案 1 200解析 因为a ,b ,c 成等差数列,所以2b =a +c ,所以从二车间抽取的产品数占抽取产品总数的13,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13,所以二车间生产的产品数为3 600×13=1 200.6.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为________. 答案 10解析 由系统抽样的特点知,抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人. 7.某电视台为了调查“爸爸去哪儿”节目的收视率,现用分层抽样的方法从4 300人中抽取一个样本,这4 300人中青年人1 600人,且中年人人数是老年人人数的2倍,现根据年龄采用分层抽样的方法进行调查,在抽取的样本中青年人有320人,则抽取的样本中老年人的人数为________. 答案 180解析 设老年人有x 人,从中抽取y 人,则1 600+3x =4 300,得x =900,即老年人有900人,则9001 600=y320, 得y =180.8.某中学教务处采用系统抽样方法,从学校高三年级全体1 000名学生中抽50名学生做学习状况问卷调查.现将1 000名学生从1到1000进行编号,求得间隔数k =20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应抽取的号码是_____. 答案 157解析 根据系统抽样的特点可知,抽取出的编号成首项为17,公差为20的等差数列,所以第8组应抽取的号码是17+(8-1)×20=157.9.(2017·江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).10.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山的比赛活动.每人都参与而且只能参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取的人数为________. 答案 36解析 根据题意可知,样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.11.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,若第5组抽取号码为22,则第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.答案 37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得,200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.12.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________. 答案 76解析 由题意知,m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.13.某市教育主管部门为了全面了解2018届高三学生的学习情况,决定对该市参加2018年高三第一次全省统一考试(后称统考)的32所学校进行抽样调查.将参加统考的32所学校进行编号,依次为1到32,现用系统抽样法抽取8所学校进行调查,若抽到的最大编号为31,则最小编号是________. 答案 3解析 根据系统抽样的特点可知,总体分成8组,组距为328=4,若抽到的最大编号为31,则最小编号是3.14.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.答案 16解析 由题意,知二年级女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.15.某公司员工对户外运动分别持“喜欢”、“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人中有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的有________人. 答案 78解析 设持“喜欢”、“不喜欢”、“一般”态度的人数分别为6x,2x,3x ,由题意可得3x -2x =13,x =13,∴持“喜欢”态度的有6x =78(人).16.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,则在采用系统抽样时,需要在总体中先剔除2个个体,求n . 解 总体容量为6+12+18=36.当样本容量为n 时,由题意知,系统抽样的间隔为36n ;分层抽样的比例是n 36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n 2, 所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.。

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.3

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.3

§10.3 用样本估计总体考情考向分析 主要考查平均数、方差的计算以及茎叶图与频率分布直方图的简单应用;题型以填空题为主,难度为中低档题.1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差). (2)决定组距与组数. (3)将数据分组. (4)列频率分布表. (5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:如果将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,那么就得到频率分布折线图.(2)总体分布的密度曲线:如果将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图将趋于一条光滑曲线,我们称这条光滑曲线为总体分布的密度曲线. 3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差: s =1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]. (3)方差:s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x 是样本平均数).概念方法微思考1.在频率分布直方图中如何确定中位数?提示在频率分布直方图中,中位数左边和右边的直方图的面积是相等的.2.平均数、标准差与方差反映了数据的哪些特征?提示平均数反映了数据取值的平均水平,标准差、方差反映了数据对平均数的波动情况,即标准差、方差越大,数据的离散程度越大,越不稳定;反之离散程度越小,越稳定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.(√)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.(×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.(√)题组二教材改编2.[P58例4]如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民有________人.答案25解析0.5×0.5×100=25.3.[P56练习T3]一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为________. 答案 8解析 设频数为n ,则n32=0.25,∴n =32×14=8.4.[P71练习T1]已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________. 答案 0.1解析 x =4.7+4.8+5.1+5.4+5.55=5.1,则该组数据的方差s 2=(4.7-5.1)2+(4.8-5.1)2+(5.1-5.1)2+(5.4-5.1)2+(5.5-5.1)25=0.1.题组三 易错自纠5.(2018·徐州模拟)一组数据共40个,分为6组,第1组到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为________. 答案 8解析 因为数据共40个,第5组的频率为0.1, 所以第5组的频数为40×0.1=4,所以第6组的频数为40-(10+5+7+6+4)=8.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m ,众数为n ,平均数为x ,则m ,n ,x 的大小关系为________.(用“<”连接)答案 n <m <x解析 由图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m =5.5;又5出现的次数最多,故n =5;x =2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.故n <m <x .7.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据频率分布直方图,这200名学生中每周的自习时间不少于22.5小时的人数是________.答案 140解析 由频率分布直方图,知200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.题型一 茎叶图的应用1.(2018·南通模拟)如图是甲、乙两位同学在5次测试中得分的茎叶图,则成绩较稳定(方差较小)的那一位同学的方差为________.答案 2解析 由于甲、乙两位同学的平均数均为90,所以甲、乙两位同学的方差分别为15×(4+1+0+1+4)=2,15×(9+1+0+1+9)=4>2,故成绩较稳定(方差较小)的那一位同学的方差为2.2.(2018·江苏淮阴中学月考)如图所示是一次歌唱大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a 2+b 2的最小值是________.答案 32解析 方法一 根据题意,有4+a +6+b +75=5,得a +b =8,则b =8-a ,a 2+b 2=a 2+(8-a )2=2a 2-16a +64,其中a ,b 满足0≤a ≤9,0≤b ≤9,即0≤a ≤9,0≤8-a ≤9,即0≤a ≤8且a 是整数,令f (a )=2a 2-16a +64,显然当a =4时,f (a )取得最小值,这个最小值是32. 方法二 同方法一可得a +b =8,则8≥2ab ,故ab ≤16,而a 2+b 2=(a +b )2-2ab ≥64-32=32,当且仅当a =b =4时等号成立.3.空气质量指数(Air Quality Index ,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级,0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严重污染.从某地一环保人士某年的AQI 记录数据中,随机抽取10个,用茎叶图记录如下.根据该统计数据,估计此地该年AQI 大于100的天数约为________.(该年有365天)答案 146解析 该样本中AQI 大于100的频数是4,频率为25,由此估计该地全年AQI 大于100的频率为25,估计此地该年AQI 大于100的天数约为365×25=146.思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐. 题型二 频率分布直方图的绘制与应用例1 为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为_______.答案 12解析 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.思维升华 (1)准确理解频率分布直方图的数据特点,频率分布直方图中纵轴上的数据是各组的频率除以组距的结果,不要误以为纵轴上的数据是各组的频率,不要和条形图混淆. (2)在很多题目中,频率分布直方图中各小长方形的面积之和为1,是解题的关键,常利用频率分布直方图估计总体分布.跟踪训练1 (1)某商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为2.5万元,则11时至12时的销售额为________万元.答案 10解析 设11时至12时的销售额为x ,因为9时至10时的销售额为2.5万元,由题意得0.10.4=2.5x,得x =10. (2)某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分成六组,并绘制频率分布直方图(如图所示).已知图中从左到右第一、第六小组的频率分别为0.16,0.07,第一、第二、第三小组的频率成等比数列,第三、第四、第五、第六小组的频率成等差数列,且第三小组的频数为100,则该校高三年级的男生总数为________.答案 400解析 因为第一、第二、第三小组的频率成等比数列,设公比为q ,则第三小组的频率为0.16q 2; 又第三、第四、第五、第六小组的频率成等差数列,设公差为d , 从而得第六小组的频率为0.16q 2+3d =0.07. 又因为六组频率之和为1,所以⎩⎪⎨⎪⎧0.16q 2+3d =0.07,0.16+0.16q +0.16q 2+0.16q 2+d +0.16q 2+2d +0.07=1.由图知q >0,d <0,得q =1.25,d =-0.06,得第三小组的频率为0.25,则该校高三年级的男生总数为100÷0.25=400. 题型三 用样本的数字特征估计总体的数字特征例2 (1)(2013·江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.解析 x 甲=15(87+91+90+89+93)=90, x乙=15(89+90+91+88+92)=90, s 2甲=15[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4, s 2乙=15[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2. (2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:①分别求出两人得分的平均数与方差;②根据图和上面算得的结果,对两人的训练成绩作出评价. 解 ①由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13;x乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4; s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. ②由s 2甲>s 2乙,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动跟踪训练2 某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),其中a ,a 分别表示甲组研发成功和失败;b ,b 分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 解 (1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数x甲=1015=23; 方差为s 2甲=115⎣⎡⎦⎤⎝⎛⎭⎫1-232×10+⎝⎛⎭⎫0-232×5=29.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数x乙=915=35; 方差为s 2乙=115⎣⎡⎦⎤⎝⎛⎭⎫1-352×9+⎝⎛⎭⎫0-352×6=625.因为x 甲>x乙,s 2甲<s 2乙,所以甲组的研发水平优于乙组.(2)记恰有一组研发成功为事件E ,在所抽得的15个结果中,恰有一组研发成功的结果是(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),(a ,b ),共7个.因此事件E 发生的频率为715.用频率估计概率,即得所求概率为P (E )=715.1.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 答案 6解析 这组数据的平均数为16(4+6+5+8+7+6)=6.2.下面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为________.答案5,8解析由题意根据甲组数据的中位数为15,可得x=5;乙组数据的平均数为16.8,则9+15+18+24+10+y5=16.8,求得y=8.3.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案0.4解析10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.4.某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为________.答案22.5解析产品的中位数出现在频率是0.5的地方.自左至右各小矩形的面积依次为0.1,0.2,0.4,0.15,0.15,设中位数是x,则由0.1+0.2+0.08×(x-20)=0.5,得x=22.5. 5.(2018·扬州调研)随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若该校的学生总人数为3 000,则成绩不超过60分的学生人数大约为________.答案 900解析 由题图知,成绩不超过60分的学生的频率为(0.005+0.01)×20=0.3,所以成绩不超过60分的学生人数大约为0.3×3 000=900.6.若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为________.答案 16解析 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16.7.已知等差数列{a n }的公差为d ,若a 1,a 2,a 3,a 4,a 5的方差为8,则d 的值为________. 答案 ±2解析 因为{a n }为等差数列,所以a 1,a 2,a 3,a 4,a 5的平均数为a 3,所以方差为15[(-2d )2+(-d )2+0+d 2+(2d )2]=2d 2=8,解得d =±2.8.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案 24解析 底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm 的株数为(0.15+0.25)×60=24.9.某电子商务公司对10 000名网络购物者2018年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示:(1)直方图中的a =________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案 (1)3 (2)6 000解析 由频率分布直方图及频率和等于1,可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a ×0.1=1,解得a =3.于是消费金额在区间[0.5,0.9]内的频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.10.某校女子篮球队7名运动员身高(单位:cm)分布的茎叶图如图,已知记录的平均身高为175 cm ,但记录中有一名运动员身高的末位数字不清晰,如果把其末位数字记为x ,那么x 的值为________.答案 2解析 170+17×(1+2+x +4+5+10+11)=175, 17×(33+x )=5,即33+x =35,解得x =2. 11.如图是甲、乙两名篮球运动员在五场比赛中所得分数的茎叶图,则在这五场比赛中得分较为稳定(方差较小)的那名运动员的得分的方差为________.答案 6.8解析 因为x 甲=9+7+7+14+185=11, x 乙=8+9+10+13+155=11, 所以s 2甲=16+16+4+9+495=945>s 2乙=9+4+1+4+165=345=6.8,故得分稳定的运动员的方差为6.8.12.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解 (1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6, 所以样本中分数小于70的频率为1-0.6=0.4,所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9, 分数在区间[40,50)内的人数为100-100×0.9-5=5,所以总体中分数在区间[40,50)内的人数估计为400×5100=20. (3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×12=30, 所以样本中的男生人数为30×2=60,女生人数为100-60=40,所以样本中男生和女生人数的比例为60∶40=3∶2,所以根据分层抽样原理,估计总体中男生和女生人数的比例为3∶2.13.样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =αx +(1-α)y ,其中0<α<12,则n ,m 的大小关系为________.答案 n <m解析 由题意,得z =n x +m y n +m =n n +m x +m n +m y , 则有α=n m +n ,又0<α<12,则0<n m +n <12,得n <m . 14.(2018·南通、徐州等六市调研)某班40名学生参加普法知识竞赛,成绩都在区间[40,100]上,其频率分布直方图如图所示,则成绩不低于60分的人数为________.答案 30解析 根据频率分布直方图可得成绩不低于60分的学生的频率为(0.015+0.030+0.025+0.005)×10=0.75.∴成绩不低于60分的学生的人数为40×0.75=30.15.为了普及环保知识,增强环保意识,某大学有300名员工参加环保知识测试,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.现在要从第1,3,4组中用分层抽样的方法抽取16人,则在第4组中抽取的人数为________.答案 6解析根据频率分布直方图得,第1,3,4组的频率之比为1∶4∶3,所以用分层抽样的方法抽=6.取16人时,在第4组中应抽取的人数为16×31+4+316.空气质量指数(简称:AQI)是定量描述空气质量状况的无量纲指数,空气质量按照AQI 大小分为六级:[0,50)为优,[50,100)为良,[100,150)为轻度污染,[150,200)为中度污染,[200,250)为重度污染,[250,300)为严重污染.下面记录了北京市22天的空气质量指数,根据图表,下列结论正确的是________.(填序号)①在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量;②在北京这22天的空气质量中,有3天达到污染程度;③在北京这22天的空气质量中,12月29日空气质量最差;④在北京这22天的空气质量中,达到空气质量优的天数有7天.答案①②③解析因为97>59,51>48,36>29,68>45,所以在北京这22天的空气质量中,按平均数来考察,最后4天的空气质量优于最前面4天的空气质量,即①正确;AQI不低于100的数据有3个:143,225,145,所以在北京这22天的空气质量中,有3天达到污染程度,即②正确;因为12月29日的AQI为225,为重度污染,该天的空气质量最差,即③正确;AQI在[0,50)的数据有6个:36,47,49,48,29,45,即达到空气质量优的天数有6天,所以④错.。

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.4含解析

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.4含解析

§10.4 随机事件的概率考情考向分析 以考查随机事件、互斥事件与对立事件的概率为主,试题为简单题,题型为填空题.1.概率和频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=为事件A 出现的频率.n An (2)对于给定的随机事件A ,在相同条件下,随着试验次数的增加,事件A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A 发生的可能性大小,并把这个常数称为随机事件A 的概率,记作P (A ).2.事件的关系与运算定义符号表示包含关系如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B )相等关系若B ⊇A 且A ⊇BA =B并事件(和事件)若某事件发生当且仅当事件A 发生或事件B 发生,称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件(积事件)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A ∩B (或AB )互斥事件若A ∩B 为不可能事件(A ∩B =∅),则称事件A 与事件B 互斥A ∩B =∅对立事件若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,P (A )+P (B )=13.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1.(2)必然事件的概率P (E )=1.(3)不可能事件的概率P (F )=0.(4)概率的加法公式如果事件A 与事件B 互斥,则P (A∪B )=P (A )+P (B ).(5)对立事件的概率若事件A 与事件B 互为对立事件,则P (A )=1-P (B ).概念方法微思考1.随机事件A 发生的频率与概率有何区别与联系?提示 随机事件A 发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A 发生的频率稳定在事件A 发生的概率附近.2.随机事件A ,B 互斥与对立有何区别与联系?提示 当随机事件A ,B 互斥时,不一定对立,当随机事件A ,B 对立时,一定互斥.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.( × )(2)在大量重复试验中,概率是频率的稳定值.( √ )(3)两个事件的和事件是指两个事件都得发生.( × )(4)两互斥事件的概率和为1.( × )题组二 教材改编2.[P94练习T1]下列事件是随机事件的有________.(填序号)①若a,b,c都是实数,则a· (b·c)=(a· b)·c;②没有空气和水,人也可以生存下去;③掷一枚硬币,出现反面;④在标准大气压下,水的温度达到90 ℃时沸腾.答案 ③解析 ①为必然事件,③为随机事件,②④为不可能事件.3.[P97练习T1]某地气象局预报说,明天本地降雨的概率为80%,则下列解释正确的是________.(填序号)①明天本地有80%的区域降雨,20%的区域不降雨;②明天本地有80%的时间降雨,20%的时间不降雨;③明天本地降雨的可能性是80%;④以上说法均不正确.答案 ③解析 选项①②显然不正确,因为80%的概率是指降雨的概率,而不是指80%的区域降雨,更不是指有80%的时间降雨,是指降雨的可能性是80%.4.[P101例3]同时投掷两枚大小相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件有________个.答案 6解析 由题意知,事件A包含的基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个.题组三 易错自纠5.从16个同类产品(其中有14个正品,2个次品)中任意抽取3个,则下列事件中概率为1的是________.(填序号)①三个都是正品;②三个都是次品;③三个中至少有一个是正品;④三个中至少有一个是次品.答案 ③解析 16个同类产品中,只有2个次品,从中抽取三件产品,则①是随机事件,②是不可能事件,③是必然事件,④是随机事件.又必然事件的概率为1,所以答案为③.6.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是________.答案 15解析 基本事件的个数为5×3=15,其中满足b >a 的有3种,所以b >a 的概率为=.315157.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的产品不是一等品”的概率为________.答案 0.35解析 ∵事件A ={抽到一等品},且P (A )=0.65,∴事件“抽到的产品不是一等品”的概率为P =1-P (A )=1-0.65=0.35.题型一 事件关系的判断1.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有________组.答案 1解析 ①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,故两个事件不是互斥事件;②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,故两个事件不互斥;③中“恰有1个白球”与“恰有1个黄球”都是指有1个白球和1个黄球,故两个事件是同一事件;④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件.2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是________.310710答案 至多有一张移动卡解析 至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.3.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,事件A =“取出的两个球同色”,B =“取出的两个球中至少有一个黄球”,C =“取出的两个球中至少有一个白球”,D =“取出的两个球不同色”,E =“取出的两个球中至多有一个白球”.下列判断中正确的序号为____________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件;④P (C ∪E )=1;⑤P (B )=P (C ).答案 ①④解析 当取出的两个球中一黄一白时,B 与C 都发生,②不正确;当取出的两个球中恰有一个白球时,事件C 与E 都发生,③不正确;显然A 与D 是对立事件,①正确;C ∪E 为必然事件,P (C ∪E )=1,④正确;P (B )=,P (C )=,⑤不正确.4535思维升华 (1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.题型二 随机事件的频率与概率例1 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40]天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的2+16+3690估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.36+25+7+490因此Y 大于零的概率的估计值为0.8.思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.(2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.跟踪训练1 某鲜花店将一个月(30天)某品种鲜花的日销售量与销售天数统计如下表,将日销售量落入各组区间的频率视为概率.日销售量(枝)[0,50)[50,100)[100,150)[150,200)[200,250]销售天数3天5天13天6天3天(1)求这30天中日销售量低于100枝的概率;(2)若此花店在日销售量低于100枝的时候选择2天做促销活动,求这2天恰好是在销售量低于50枝时的概率.解 (1)设日销售量为x 枝,则P (0≤x <50)==,330110P (50≤x <100)==,53016所以P (0≤x <100)=+=.11016415(2)日销售量低于100枝的共有8天,从中任选2天做促销活动,共有28种情况;日销售量低于50枝的共有3天,从中任选2天做促销活动,共有3种情况.所以所求概率为P =.328题型三 互斥、对立事件的概率命题点1 互斥事件的概率例2 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,取到红球的概率是,取到黑球或黄球的概率是,取到黄球或绿球的概率也是,试求取到黑球、黄球和绿球13512512的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”、“摸到黑球”、“摸到黄球”、“摸到绿球”分别是A ,B ,C ,D ,则有P (A )=,P (B ∪C )=P (B )+P (C )=,13512P (C ∪D )=P (C )+P (D )=,P (B ∪C ∪D )=P (B )+P (C )+P (D )=1-P (A )=1-=,解得P (B )5121323=,P (C )=,P (D )=,141614因此取到黑球、黄球、绿球的概率分别是,,.141614方法二 设红球有n 个,则=,所以n =4,即红球有4个.n 1213又取到黑球或黄球的概率是,所以黑球和黄球共5个.512又总球数是12,所以绿球有12-4-5=3(个).又取到黄球或绿球的概率也是,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=5122(个),所以黑球有12-4-3-2=3(个).因此取到黑球、黄球、绿球的概率分别是=,=,=.312142121631214命题点2 对立事件的概率例3 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解 方法一 (利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=,P (A 2)==,P (A 3)==,5124121321216P (A 4)=.112根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=+=.51241234(2)取出1球是红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=++=.5124122121112方法二 (利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1--=.21211234(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-=.1121112思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率.(2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.跟踪训练2 某保险公司利用简单随机抽样方法对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)0 1 000 2 000 3 000 4 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )==0.15,P (B )==0.12.1501 0001201 000由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,由频率估计概24100率得P (C )=0.24.用正难则反思想求对立事件的概率若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解.例 某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x 3025y 10结算时间(分钟/人)11.522.53已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).1×15+1.5×30+2×25+2.5×20+3×10100(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率,得P (A 1)==,P (A 2)==.201001510100110P (A )=1-P (A 1)-P (A 2)=1--=.15110710故一位顾客一次购物的结算时间不超过2分钟的概率为.7101.(2018·南京调研)某单位要在4名员工(含甲、乙两人)中随机选2名到某地出差,则甲、乙两人中至少有一人被选中的概率是________.答案 56解析 从4名员工中随机选2名的所有基本事件共有6个,而甲、乙都未被选中的事件只有1个,所以甲、乙两人中,至少有一人被选中的概率为1-=.16562.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________.答案 78解析 4位同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-=.1+116783.两个工人每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等2334品相互独立,则这两个零件中恰有一个一等品的概率为________.答案 512解析 记两个零件中恰好有一个一等品的事件为A ,则P (A )=×+×=.23(1-34)(1-23)345124.(2018·苏北四市模拟)若随机地从1,2,3,4,5五个数中选出两个数,则这两个数恰好为一奇一偶的概率为__________.答案 35解析 从1,2,3,4,5五个数中选出两个数的所有基本事件为(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中一奇一偶的基本事件有6个,故所求事件的概率为P ==.610355.下列命题:①将一枚硬币抛两次,设事件M :“两次出现正面”,事件N :“只有一次出现反面”,则事件M 与N 互为对立事件;②若事件A 与B 互为对立事件,则事件A 与B 为互斥事件;③若事件A 与B 为互斥事件,则事件A 与B 互为对立事件;④若事件A 与B 互为对立事件,则事件A ∪B 为必然事件.其中的真命题是________.(填序号)答案 ②④解析 对于①,一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反}四种结果,则事件M 与N 是互斥事件,但不是对立事件,故①错;对于②,对立事件首先是互斥事件,故②正确;对于③,互斥事件不一定是对立事件,如①中的两个事件,故③错;对于④,事件A ,B 为对立事件,则在这一次试验中A ,B 一定有一个要发生,故④正确.6.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点”,若表示B 的对立事件,则一次试验中,事件A +发生的概率为________.B B 答案 23解析 掷一个骰子的试验有6种可能的结果.由题意知P (A )==,P (B )==,26134623∴P ()=1-P (B )=1-=,B 2313∵表示“出现5点或6点”,因此事件A 与互斥,B B 从而P (A +)=P (A )+P ()=+=.B B 1313237.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=5200.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.8.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________.答案 (54,43]解析 由题意可知Error!即Error!解得Error!所以<a ≤.54439.甲、乙两人玩数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a ,b ∈{1,2,3},若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为______.答案 79解析 甲想一数字有3种结果,乙猜一数字有3种结果,基本事件总数为3×3=9.设甲、乙“心有灵犀”为事件A ,则A 的对立事件B 为“|a -b |>1”,即|a -b |=2包含2个基本事件,∴P (B )=,∴P (A )=1-=.29297910.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是________.答案 0.74解析 由表格可得至少有2人排队的概率P =0.3+0.3+0.1+0.04=0.74.11.A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):A 班 6 6.5 7 7.5 8B 班 6 7 8 9 10 11 12C 班3 4.5 6 7.5 9 10.5 12 13.5①试估计C 班的学生人数;②从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率.解 ①由题意及分层抽样可知,C 班学生人数约为100×=100×=40.85+7+8820②设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,...,5,事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,...,8.由题意可知P (A i )=,i =1,2,...,5;P (C j )=,j =1,2, (8)1518P (A i C j )=P (A i )P (C j )=×=,i =1,2,...,5,j =1,2, (8)1518140设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×=.1403812.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=,P (B )==,11 000101 0001100P (C )==.501 000120故事件A ,B ,C 的概率分别为,,.11 0001100120(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C .∵A ,B ,C 两两互斥,∴P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C )==.1+10+501 000611 000故1张奖券的中奖概率为.611 000(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A ∪B )=1-=.(11 000+1100)9891 000故1张奖券不中特等奖且不中一等奖的概率为.9891 00013.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________.答案 351315解析 “至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P ==.11+10+7+86+7+8+8+10+10+1135“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-=.86+7+8+8+10+10+11131514.有编号为1,2,3的三个白球,编号为4,5,6的三个黑球,这六个球除编号和颜色外完全相同,现从中任意取出两个球.(1)求取出的两个球颜色相同的概率;(2)求取出的两个球颜色不相同的概率.解 从六个球中取出两个球的基本事件有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.(1)记事件A 为“取出的两个球是白球”,则这个事件包含的基本事件有(1,2),(1,3),(2,3),共3个,故P (A )==;31515记事件B 为“取出的两个球是黑球”,同理可得P (B )=.15记事件C 为“取出的两个球的颜色相同”,A ,B 互斥,根据互斥事件的概率加法公式,得P (C )=P (A +B )=P (A )+P (B )=.25(2)记事件D 为“取出的两个球的颜色不相同”,则事件C ,D 对立,根据对立事件概率之间的关系,得P (D )=1-P (C )=1-=.253515.小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.答案 112解析 小明输入密码后两位的所有情况为(4,A ),(4,a ),(4,B ),(4,b ),(5,A ),(5,a ),(5,B ),(5,b ),(6,A ),(6,a ),(6,B ),(6,b ),共12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是.11216.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y (单位:kg)与它的“相近”作物株数X 之间的关系如表所示:X 1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y 51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至多为48 kg 的概率.解 (1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y 51484542频数2463所种作物的平均年收获量为==46.51×2+48×4+45×6+42×31569015(2)方法一 由(1)知P (Y =42)=,P (Y =45)=,315615P (Y =48)=.415故在所种作物中随机选取一株,它的年收获量至多为48 kg 的概率为P (Y ≤48)=P (Y =42)+P (Y =45)+P (Y =48)=++=.3156154151315方法二 由(1)知P (Y =51)=,215故在所种作物中随机选取一样,它的年收获量至多为48 kg 的概率为P (Y ≤48)=1-P (Y =51)=.1315。

2020高考江苏数学(理)大一轮复习:册答案PDF

2020高考江苏数学(理)大一轮复习:册答案PDF

2
2
-!$%,.%##)'&&!'#-$#-!$#$+*%#%,
#$ %,+*&##&#'&!%#($!
2
2 2 2
.!G &#$%.#$+*%,&#%.! ?"!HIJK ! " # $ % & ' ( ) * + & + , - ./ 0 1
67()*:S %##&#$&#&$(-##&#-&!%#($!
2
2
%!%.
!"123%$&#-!#123%%#$-'$&#-%#$&!-#'$
2
2
67!"*##)'&#$&.#&/'-# #)'&&!'#'/#
#$ &##&&!-#'$#$+*&##&#'&!%#($
TUC<'I_V`a" &!% $ !
PQ!!&(&% 67!!"%##&.# 槡"&#$##&"&#$(-#&%%
2 2 2 2 2
2
%!%.
G %,&#%#$ %%&#$&%%%''(#$'-&%!
2
2
67(%,&#%K''$#%#$'#!#$%$&#!%.!

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.5含解析

2020版高考数学新增分大一轮江苏专用讲义+习题:第十章 算法、统计与概率 10.5含解析

§10.5 古典概型考情考向分析 古典概型每年都会考查,主要考查实际背景下的可能事件,通常与互斥事件、对立事件一起考查,其中计数的方法局限于枚举法.常以填空题形式出现,属于中低档题.1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型满足以下两个条件的随机试验的概率模型称为古典概型.(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.3.如果1次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是.1n如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=.m n4.古典概型的概率公式P (A )=.A 包含的基本事件的个数基本事件的总数概念方法微思考1.任何一个随机事件与基本事件有何关系?提示 任何一个随机事件都等于构成它的每一个基本事件的和.2.如何判断一个试验是否为古典概型?提示 一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽”与“不发芽”.( × )(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.( × )(3)从市场上出售的标准为500±5 g 的袋装食盐中任取一袋测其重量,属于古典概型.( × )(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.( √ )13(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2.( √ )(6)在古典概型中,如果事件A 中基本事件构成集合A ,且集合A 中的元素个数为n ,所有的基本事件构成集合I ,且集合I 中元素个数为m ,则事件A 的概率为.( √ )n m题组二 教材改编2.[P103练习T6]从A ,B ,C 三名同学中选2名为代表,则A 被选中的概率为________.答案 23解析 从A ,B ,C 三名同学中选2名为代表,有AB ,AC ,BC 三种可能,则A 被选中的概率为.233.[P101例3]一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取2张,则取出的2张卡片上的数字之和为奇数的概率是________.答案 23解析 抽取两张卡片的基本事件有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种,和为奇数的事件有:(1,2),(1,4),(2,3),(3,4),共4种.∴所求概率为=.46234.[P103练习T4]袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为________.答案 25解析 从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P ==.615255.[P103习题T4]同时掷两个骰子,向上点数不相同的概率为________.答案 56解析 掷两个骰子一次,向上的点数共6×6=36(种)可能的结果,其中点数相同的结果共有6种,所以点数不相同的概率为P =1-=.66×656题组三 易错自纠6.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为___.答案 23解析 设两本不同的数学书为a 1,a 2,1本语文书为b ,则在书架上的摆放方法有a 1a 2b ,a 1ba 2,a 2a 1b ,a 2ba 1,ba 1a 2,ba 2a 1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率为P ==.46237.已知函数f (x )=2x 2-4ax +2b 2,若a ∈{4,6,8},b ∈{3,5,7},则该函数有两个零点的概率为________.答案 23解析 要使函数f (x )=2x 2-4ax +2b 2有两个零点,即方程x 2-2ax +b 2=0有两个实根,则Δ=4a 2-4b 2>0,又a ∈{4,6,8},b ∈{3,5,7},即a >b ,而a ,b 的取法共有3×3=9(种),其中满足a >b 的取法有(4,3),(6,3),(6,5),(8,3),(8,5),(8,7),共6种,所以所求的概率为=69.23题型一 基本事件与古典概型的判断1.下列试验中,古典概型的个数为________.①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD 内,任意抛掷一点P ,点P 恰与点C 重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.答案 1解析 ①中,硬币质地不均匀,不是等可能事件,所以不是古典概型;②④的基本事件都不是有限个,不是古典概型;③符合古典概型的特点,是古典概型.2.有两个正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1个正四面体玩具出现的点数,y 表示第2个正四面体玩具出现的点数.试写出:(1)试验的基本事件;(2)事件“出现点数之和大于3”包含的基本事件;(3)事件“出现点数相等”包含的基本事件.解 (1)这个试验的基本事件为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含的基本事件为(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(3)事件“出现点数相等”包含的基本事件为(1,1),(2,2),(3,3),(4,4).3.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为,而白球有5个,111故一次摸球摸到白球的可能性为,511同理可知摸到黑球、红球的可能性均为,311显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型.思维升华 一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特点——有限性和等可能性,只有同时具备这两个特点的概型才是古典概型.题型二 古典概型的求法例1 (1)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为________.答案 25解析 从5张卡片中随机抽取1张,放回后再随机抽取1张的情况如图:基本事件总数为25,第一张卡片上的数大于第二张卡片上的数的事件数为10,∴所求概率P ==.102525(2)袋中有形状、大小都相同的4个球,其中1个白球,1个红球,2个黄球,从中一次随机摸出2个球,则这2个球颜色不同的概率为________.答案 56解析 设取出的2个球颜色不同为事件A ,基本事件有:(白,红),(白,黄),(白,黄),(红,黄),(红,黄),(黄,黄),共6种,事件A 包含5种,故P (A )=.56(3)(2018·无锡模拟)从3男2女共5名学生中任选2名参加座谈会,则选出的2人恰好为1男1女的概率为________.答案 35解析 记3名男生分别为x 1,x 2,x 3,2名女生分别为y 1,y 2,则从3男2女共5名学生中任选2名包含的基本事件为(x 1,x 2),(x 1,x 3),(x 2,x 3),(x 1,y 1),(x 1,y 2),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2),(y 1,y 2),共10个.其中选出的2人恰好为1男1女包含6个基本事件,分别为(x 1,y 1),(x 1,y 2),(x 2,y 1),(x 2,y 2),(x 3,y 1),(x 3,y 2).故所求事件的概率为=.61035引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解 基本事件数仍为6.设标号和为奇数为事件A ,则A 包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P (A )==.46232.本例(2)中,若将条件改为有放回地取球,取两次,求两次取球颜色相同的概率.解 基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率P ==.61638思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A 包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树形图法,具体应用时可根据需要灵活选择.跟踪训练1 某旅游爱好者计划从3个亚洲国家A 1,A 2,A 3和3个欧洲国家B 1,B 2,B 3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A 1但不包括B 1的概率.解 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有:{A 1,A 2},{A 1,A 3},{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,A 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{B 1,B 2},{B 1,B 3},{B 2,B 3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A 1,A 2},{A 1,A 3},{A 2,A 3},共3个,则所求事件的概率为P ==.31515(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},共9个.包括A 1但不包括B 1的事件所包含的基本事件有:{A 1,B 2},{A 1,B 3},共2个,则所求事件的概率为P =.29题型三 古典概型与统计的综合应用例2 某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.解 (1)由题意知,样本数据的平均数==12.x 4+6+12+12+18+206(2)样本中优秀服务网点有2个,概率为=,由此估计这90个服务网点中优秀服务网点有261390×=30(个).13(3)样本中优秀服务网点有2个,分别记为a 1,a 2,非优秀服务网点有4个,分别记为b 1,b 2,b 3,b 4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共15种,记“恰有1个是优秀服务网点”为事件M ,则事件M 包含的可能情况有:(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种,故所求概率P (M )=.815思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练2 从某学校2018届高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x ,y ,求|x -y |≤5的概率.解 (1)由频率分布直方图知,前五组的频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,所以后三组的频率为1-0.82=0.18,人数为0.18×50=9,由频率分布直方图得第八组的频率为0.008×5=0.04,人数为0.04×50=2,设第六组人数为m ,则第七组人数为m -1,又m +m -1+2=9,所以m =4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2)由(1)知身高在[180,185)内的男生有四名,设为a ,b ,c ,d ,身高在[190,195]的男生有两名,设为A ,B .若x ,y ∈[180,185),有ab ,ac ,ad ,bc ,bd ,cd 共6种情况;若x ,y ∈[190,195],只有AB 1种情况;若x ,y 分别在[180,185),[190,195]内,有aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB 共8种情况,所以基本事件的总数为6+8+1=15,事件|x -y |≤5包含的基本事件的个数为6+1=7,故所求概率为.7151.(2018·苏州模拟)若a ,b ∈{0,1,2},则函数f (x )=ax 2+2x +b 有零点的概率为________.答案 23解析 a ,b ∈{0,1,2},当函数f (x )=ax 2+2x +b 没有零点时,a ≠0,且Δ=4-4ab <0,即ab >1,∴(a ,b )有3种情况:(1,2),(2,1),(2,2).基本事件总数n =3×3=9,∴函数f (x )=ax 2+2x +b 有零点的概率为P =1-=.39232.从边长为1的正方形的中心和顶点这5个点中随机(等可能)取两点,则该两点间距离为22的概率为________.答案 25解析 设此正方形为ABCD ,中心为O ,则任取两点的取法有AB ,AC ,AD ,AO ,BC ,BD ,BO ,CD ,CO ,DO ,共10种;取出的两个点的距离为的取法有AO ,BO ,CO ,DO ,共4种,22故所求概率为=.410253.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是________.答案 59解析 ∵9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取,∴P (第一次抽到奇数,第二次抽到偶数)=×=,5948518P (第一次抽到偶数,第二次抽到奇数)=×=,4958518∴P (抽到的2张卡片上的数奇偶性不同)=+=.518518594.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,则两人都中奖的概率是________.答案 13解析 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖记为事件A ,共有(1,2),(2,1)2种,所以P (A )==.26135.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为________.答案 13解析 点P (m ,n )的情况为(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为=.26136.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________.答案 16解析 从2,3,8,9中任取2个不同的数字,记为(a ,b ),则有(2,3),(3,2),(2,8),(8,2),(2,9),(9,2),(3,8),(8,3),(3,9),(9,3),(8,9),(9,8),共有12种情况,其中符合log a b 为整数的有log 39和log 28两种情况,∴P ==.212167.某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为________.答案 14解析 记两个食堂为A ,B ,则甲、乙、丙在两个食堂用餐的所有情况有(A ,A ,A ),(A ,A ,B ),(A ,B ,A ),(A ,B ,B ),(B ,A ,A ),(B ,A ,B ),(B ,B ,A ),(B ,B ,B ),共8种,其中他们在同一个食堂用餐有2种情形,概率为=.28148.如图所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为________.答案 310解析 依题意,记题中被污损的数字为x ,若甲的平均成绩不超过乙的平均成绩,则有(8+9+2+1)-(5+3+x +5)≤0,得x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率为P =.3109.在集合Error!中任取一个元素,所取元素恰好满足方程cos x =的概率是________.12答案 310解析 基本事件总数为10,满足方程cos x =的基本事件数为3,故所求概率为P =.1231010.(2018·无锡模拟)已知a ,b ∈{1,2,3,4,5,6},直线l 1:2x +y -1=0,l 2:ax -by +3=0,则直线l 1⊥l 2的概率为________.答案 112解析 易知直线l 2的所有情况共有36种,若直线l 1与直线l 2垂直,则-2· =-1⇒=,a b a b 12使直线l 1⊥l 2的{(a ,b )}={(1,2),(2,4),(3,6)},故直线l 1⊥l 2的概率P ==.33611211.设连续抛掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,-3).(1)求事件“a ⊥b ”发生的概率;(2)求事件“|a |≤|b |”发生的概率.解 (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6},故(m ,n )所有可能的情况共36种.因为a ⊥b ,所以m -3n =0,即m =3n ,有(3,1),(6,2),共2种,所以事件“a ⊥b ”发生的概率为=.236118(2)由|a |≤|b |,得m 2+n 2≤10,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为=.63616所以事件“|a |≤|b |”发生的概率为.1612.海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区A B C 数量50150100(1)求这6件样品中来自A ,B ,C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解 (1)A ,B ,C 三个地区商品的总数量为50+150+100=300,抽样比为=,6300150所以样本中包含三个地区的个体数量分别是50×=1,150×=3,100×=2.150150150所以A ,B ,C 三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D :“抽取的这2件商品来自相同地区”,则事件D 包含的基本事件有:{B 1,B 2},{B 1,B 3},{B 2,B 3},{C 1,C 2},共4个.所以P (D )=,415即这2件商品来自相同地区的概率为.41513.已知A ,B ∈{-3,-1,1,2}且A ≠B ,则直线Ax +By +1=0的斜率小于0的概率为________.答案 13解析 因为A ,B ∈{-3,-1,1,2}且A ≠B ,记有序数对A ,B 为(A ,B ),则所有的(A ,B )为(-3,-1),(-3,1),(-3,2),(-1,1),(-1,2),(1,2),(-1,-3),(1,-3),(2,-3),(1,-1),(2,-1),(2,1),共12个,而满足直线Ax +By +1=0的斜率小于0,即A ,B 同号的有序数对有(-3,-1),(-1,-3),(1,2),(2,1),共4个,故该事件的概率为=.4121314.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个;②若xy ≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解 (1)用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16,所以基本事件总数n =16.记“xy ≤3”为事件A ,则事件A 包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P (A )=,即小亮获得玩具的概率为.516516(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C .则事件B 包含的基本事件共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P (B )==.61638事件C 包含的基本事件共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P (C )=.因为>,51638516所以小亮获得水杯的概率大于获得饮料的概率.15.设a ∈{1,2,3,4},b ∈{2,4,8,12},则函数f (x )=x 3+ax -b 在区间[1,2]上没有零点的概率为________.答案 516解析 由已知f ′(x )=3x 2+a >0,所以f (x )在R 上单调递增,若f (x )在[1,2]上有零点,则需Error!经验证有(1,12),(2,2),(3,2),(4,2),(4,4)共5对不满足上述不等式组,总的情况有16对,故所求概率为.51616.已知直线l 1:x -2y -1=0,直线l 2:ax -by +1=0,其中a ,b ∈{1,2,3,4,5,6}.(1)求直线l 1∩l 2≠∅的概率;(2)求直线l 1与l 2的交点位于第三象限的概率.解 (1)直线l 1的斜率k 1=,直线l 2的斜率k 2=.设事件A 为“直线l 1∩l 2=∅”.a ,12ab b ∈{1,2,3,4,5,6}的总事件数为(1,1),(1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5),(6,6),共36个.若l 1∩l 2=∅,则l 1∥l 2,即k 1=k 2,即b =2a .满足条件的实数对(a ,b )有(1,2),(2,4),(3,6),共3种情况.∴P (A )==.∴P ()=,故l 1∩l 2≠∅的概率为.336112A 11121112(2)设事件B 为“直线l 1与l 2的交点位于第三象限”,由于直线l 1与l 2有交点,则b ≠2a .联立方程组Error!解得Error!∵l 1与l 2的交点位于第三象限,∴Error!∵a ,b ∈{1,2,3,4,5,6},∴b <2a .∵总事件数共36个,满足b <2a 的事件有(1,1),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共27种.∴P (B )==.273634故l 1与l 2的交点位于第三象限的概率为.34。

考点01 矩阵与变换-2020年高考数学附加题专项训练(解析版)

考点01   矩阵与变换-2020年高考数学附加题专项训练(解析版)

考点 1 矩阵与变换-2020年高考数学附加题专项训练(江苏专用)一、知识点梳理(一)、 二阶矩阵与平面向量(1) 矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 31 5,⎣⎢⎡⎦⎥⎤1,3, 42,0,-1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2) 二阶矩阵与平面列向量的乘法① [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]; ② ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (二)、. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换. (2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cosθ-sinθsinθ cosθ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换. (三)、 线性变换的基本性质(1) 设向量α=⎣⎢⎡⎦⎥⎤x y ,则λα=⎣⎢⎡⎦⎥⎤λx λy . (2) 设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,则α+β=⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2. (3) A 是一个二阶矩阵,α、β是平面上任意两个向量,λ是任一实数,则A (λα)=λA α,A (α+β)=Aα+Aβ.(4) 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).(四)、 二阶矩阵的乘法(1) A =⎣⎢⎡⎦⎥⎤a 1 b 1c 1 d 1,B =⎣⎢⎡⎦⎥⎤a 2 b 2c 2 d 2, 则AB =⎣⎢⎡⎦⎥⎤a 1a 2+b 1c 2 a 1b 2+b 1d 2c 1a 2+d 1c 2 c 1b 2+d 1d 2 (2) 矩阵乘法满足结合律(AB )C =A (BC ).几种特殊的变换反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y)→(x ,-y),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y)→(-x ,y),变换前后关于y 轴对称; M =⎣⎢⎡⎦⎥⎤-1 00-1:点的变换为(x ,y)→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y)→(y ,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y)→(x ,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y)→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y)→(x ,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y)→(y ,y); M =⎣⎢⎡⎦⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y)→⎝⎛⎭⎫x +y 2,x +y 2.(五)、 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3) 利用行列式解二元一次方程组.2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量。

江苏省2020届高三数学一轮复习典型题专题训练:矩阵与变换(含解析)

江苏省2020届高三数学一轮复习典型题专题训练:矩阵与变换(含解析)

江苏省2020届高三数学一轮复习典型题专题训练矩阵与变换1、(南京市2018高三9月学情调研)设二阶矩阵A =⎣⎡⎦⎤1234.(1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ':6x 2-y 2=1,求曲线C 的方程.2、(南京市六校联合体2019届高三上学期12月联考)已知矩阵⎥⎦⎤⎢⎣⎡=11-b a A ,其中R b a ∈,,若点(1,1)P 在矩阵A 的变换下得到的点)4,1(1P (1)求实数b a ,的值; (2)求矩阵A 的逆矩阵.3、(南师附中2019届高三年级5月模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 10-1,二阶矩阵B 满足AB =⎣⎢⎡⎦⎥⎤1001. (1) 求矩阵B ;(2) 求矩阵B 的特征值.4、(南京市13校2019届高三12月联合调研)求曲线||||1x y +=在矩阵10103⎡⎤⎢⎥=⎢⎥⎣⎦M 对应的变换作用下得到的曲线所围成图形的面积.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)已知直线l :x +y =1在矩阵A = 0 1m n ⎡⎤⎢⎥⎣⎦对应的变换作用下变为直线l ':x ﹣y =1,求矩阵A .6、(苏州市2019届高三上学期期中调研)已知可逆矩阵A =273a⎡⎤⎢⎥⎣⎦的逆矩阵为127b a --⎡⎤=⎢⎥-⎣⎦A ,求1-A 的特征值.7、(徐州市2019届高三上学期期中质量抽测)已知矩阵M =200a ⎡⎤⎢⎥⎣⎦ ,且属于特征值2的一个特征向量为01a ⎡⎤=⎢⎥⎣⎦,在平面直角坐标系xoy 中,眯A (0,0),B (1,0),C (2,3)在矩阵M 对应的变换作用下得到的点分别为',','A B C ,求△'''A B C 的面积。

8、(苏州市2018高三上期初调研)在平面直角坐标系xOy 中,设点(),5P x 在矩阵1234M ⎡⎤=⎢⎥⎣⎦对应的变换下得到点()2,Q y y -,求1x y M -⎡⎤⎢⎥⎣⎦.9、(扬州市2019届高三上学期期末调研)已知矩阵A =ab ⎡⎢⎣ 12⎤⎥⎦,满足A 13⎡⎤⎢⎥⎣⎦=68⎡⎤⎢⎥⎣⎦,求矩阵A 的特征值.10、(常州市2019届高三上学期期末考试)已知点(1,2)在矩阵12x A y ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到的点(7,6),求: (1)矩阵A ;(2)矩阵A 的特征值及对应的特征向量.11、(海安县2019届高三上学期期末)设点(x ,y )在矩阵M 对应变换作用下得到点(3x ,3y )。

2020版高考数学大一轮复习第十章附加考查部分6第6讲矩阵与变换刷好题练能力文

2020版高考数学大一轮复习第十章附加考查部分6第6讲矩阵与变换刷好题练能力文

第讲矩阵与变换.(·扬州期中)已知矩阵=)),属于特征值的一个特征向量为),求.解:由条件,))))=),所以解得所以=)),所以=))..(·江苏省四校联考)二阶矩阵有特征值λ=,其对应的一个特征向量为=,并且矩阵对应的变换将点(,)变换成点(,),求矩阵.解:设所求二阶矩阵=,则所以所以解方程组得=-))..已知矩阵=)),点(,)在矩阵对应变换作用下变为′(,),求矩阵的逆矩阵-.解:因为))=,所以=,=.所以=)),所以-=() -()))..(·江苏省重点中学领航高考冲刺卷(九))在平面直角坐标系中,设点(,)在矩阵=))对应的变换下得到点(-,),求-.解:依题意,))=,即解得由逆矩阵公式知,矩阵=))的逆矩阵-=,() -())),所以-=,() -()))))=,-))..(·镇江模拟)已知矩阵=)),=)),试求曲线=在矩阵变换下的函数解析式.解:=))))=)),即在矩阵变换下→=))=)),′=,′=,代入得:′=′,即曲线=在矩阵变换下的函数解析式为= ..(·江苏省重点中学领航高考冲刺卷(八))已知矩阵的逆矩阵是-=(), () -())),向量α=,β=,若α=β,求+的值.解:设矩阵=,则由-=)),可得(),() -()))=)),所以,解得,所以=)).由α=β,得))=,即,解得,则+=..(·南京六校联考)已知矩阵=)),=() )).若矩阵对应的变换把直线:+-=变为直线′,求直线′的方程.解:因为=)),=() )),所以=))() ))=() )).在直线′上任取一点(,),它是由上的点(,)经矩阵所对应的变换所得,则一方面,因为点(,)在直线:+-=上,所以+-=.①)=),即() )))=) ,所以所以②将②代入①得-+-=,即+-=,所以直线′的方程为+-=..(·南京、盐城模拟)已知矩阵=)),的逆矩阵-=)).()求,的值;()求的特征值.解:()因为-=))))=,()+))=)).所以解得=,=-.()由()得=)),则的特征多项式(λ)=,-λ-))=(λ-)( λ-).令(λ)=,解得的特征值λ=,λ=..已知二阶矩阵有特征值λ=及对应的一个特征向量=,并且矩阵对应的变换将点(-,)变换成(-,).()求矩阵;()求矩阵的另一个特征值,及对应的一个特征向量的坐标之间的关系;()求直线:-+=在矩阵对应的变换作用下的直线′的方程.解:()设=,则==,故))=)),故联立以上两方程组解得=,=,=,=,故=)).()由()知,矩阵的特征多项式为(λ)=-, -λ-))=(λ-)(λ-)-=λ-λ+,故其另一个特征值为λ=.设矩阵的另一个特征向量是=,则==,解得+=. ()设点(,)是直线上的任一点,其在矩阵对应的变换作用下得到的点的坐标为(′,′),则))=,。

江苏专用2020版高考数学大一轮复习第十章附加考查部分6第6讲矩阵与变换课件文

江苏专用2020版高考数学大一轮复习第十章附加考查部分6第6讲矩阵与变换课件文

第十八页,编辑于星期二:八点 二分。
第十九页,编辑于星期二:八点 二分。
第二十页,编辑于星期二:八点 二分。
第二十一页,编辑于星期二:八点 二分。
第二十二页,编辑于星期二:八点 二分。
第二十三页,编辑于星期二:八二分。
第二十五页,编辑于星期二:八点 二分。
第五十页,编辑于星期二:八点 二分。
第二十六页,编辑于星期二:八点 二分。
第二十七页,编辑于星期二:八点 二分。
第二十八页,编辑于星期二:八点 二分。
第二十九页,编辑于星期二:八点 二分。
第三十页,编辑于星期二:八点 二分。
第三十一页,编辑于星期二:八点 二分。
第三十二页,编辑于星期二:八点 二分。
第三十三页,编辑于星期二:八点 二分。
第三十四页,编辑于星期二:八点 二分。
第三十五页,编辑于星期二:八点 二分。
第三十六页,编辑于星期二:八点 二分。
第三十七页,编辑于星期二:八点 二分。
第三十八页,编辑于星期二:八点 二分。
第三十九页,编辑于星期二:八点 二分。
第四十页,编辑于星期二:八点 二分。
第四十一页,编辑于星期二:八点 二分。
第一页,编辑于星期二:八点 二分。
第二页,编辑于星期二:八点 二分。
第三页,编辑于星期二:八点 二分。
第四页,编辑于星期二:八点 二分。
第五页,编辑于星期二:八点 二分。
第六页,编辑于星期二:八点 二分。
第七页,编辑于星期二:八点 二分。
第八页,编辑于星期二:八点 二分。
第九页,编辑于星期二:八点 二分。
第四十二页,编辑于星期二:八点 二分。
第四十三页,编辑于星期二:八点 二分。
第四十四页,编辑于星期二:八点 二分。

2020年高考江苏版高考数学 22.1 矩阵与变换

2020年高考江苏版高考数学  22.1 矩阵与变换
考向基础
考点清单
考点 矩阵与变换
1.矩阵的概念
在数学中,我们把形如
为矩阵(matrix).
, ,13 这样的矩形数字(或字母)阵列称
记法:矩阵通常用大写的黑体拉丁字母来表示,比如A,B,C,…或(aij)(其 中i,j分别为元素aij所在的行和列). 矩阵相等:设有两个矩阵A,B,如果它们适合如下条件: (1)A与B的行数与列数分别相等; (2)A与B对应位置的元素也分别相等. 则称A与B相等并记为A=B.
例2 (2017江苏苏州期中)已知二阶矩阵M有特征值λ=8及对应的一个
特征向量e1=
1 1
,并且矩阵M将点(-1,3)变换为(0,8).
(1)求矩阵M;
(2)求曲线x+3y-2=0在M的作用下的新曲线方程.
解析
(1)设M=ca db

,由ca db
a b c d

与列矩阵

x y

的乘法规则为
a b c d


x y

=
ax by
① cx dy .
假设矩阵A=
a b
c d

,B=
,则矩阵A和矩阵B的乘积AB=
.
说明:矩阵乘法MN的几何意义为对向量连续实施的两次几何变换(先TN 后TM)的复合变换.
则 xy'' =
xy
,即 xy''

6x 4x

2 y, 4 y,
解之得x

y

2x ' y ' , 8
2x ' 3y 8
'

(江苏版)高考数学一轮复习 专题11.6 矩阵与变换(讲)理-人教版高三全册数学试题

(江苏版)高考数学一轮复习 专题11.6 矩阵与变换(讲)理-人教版高三全册数学试题

专题11.6 矩阵与变换【最新考纲解读】【考点深度剖析】1. 某某高考中,主要考查的是如何求逆矩阵,矩阵的变换和矩阵的运算,其落脚点是对运算能力的考查,当然不能忽视对特征值和特征向量的复习.2. 加强训练,提高推理和运算能力. 矩阵乘法的几何意义是矩阵所对应的变换的复合,会将矩阵语言转化为数学符号,利用特征值和特征向量或其他矩阵工具解决实际问题. 【课前检测训练】 【练一练】 1.已知矩阵A =⎣⎢⎡⎦⎥⎤-121x ,B =⎣⎢⎡⎦⎥⎤112-1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若Aα=Bα,求x +y 的值.2.已知矩阵A =⎣⎢⎡⎦⎥⎤-1002,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B . 解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤ab cd ·⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 00 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 00 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3. 3.已知矩阵A =⎣⎢⎡⎦⎥⎤1 002,B =⎣⎢⎡⎦⎥⎤1 201,若矩阵AB -1对应的变换把直线l 变为直线l ′:x +y -2=0,求直线l 的方程. 解 因为B =⎣⎢⎡⎦⎥⎤1 201,所以B -1=⎣⎢⎡⎦⎥⎤1-20 1,所以AB -14.已知矩阵M =⎣⎢⎡⎦⎥⎤a b0满足:Mαi =λi a i ,其中λi (i =1,2)是互不相等的实常数,αi (i =1,2)是非零的平面列向量,λ1=1,α2=⎣⎢⎡⎦⎥⎤11,求矩阵M .解 由题意,λ1,λ2是方程f (λ)=⎣⎢⎡⎦⎥⎤λ-a -bλ=λ2-ab =0的两根,因为λ1=1,所以ab =1.又因为Mα2=λ2α2,所以⎣⎢⎡⎦⎥⎤0a b 0⎣⎢⎡⎦⎥⎤11=λ2⎣⎢⎡⎦⎥⎤11,从而⎩⎪⎨⎪⎧a =λ2,b =λ2.所以λ22=ab =1.因为λ1≠λ2,所以λ2=-1. 从而a =b =-1. 故矩阵M =⎣⎢⎡⎦⎥⎤0-1-10. 5.已知a ,b ∈R ,矩阵A =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T A 将直线x -y -1=0变换为自身,求a ,b 的值.解 设直线x -y -1=0上任意一点P (x ,y )在变换T A 作用下变成点P ′(x ′,y ′),【题根精选精析】 考点1:矩阵及其变换【1-1】已知矩阵A =⎣⎢⎡⎦⎥⎤1002,B =⎣⎢⎢⎡⎦⎥⎥⎤1 1201,若矩阵AB 对应的变换把直线l :x +y -2=0变为直线l ′,求直线l ′的方程.【答案】4x +y -8=0.【解析】易得AB =⎣⎢⎡⎦⎥⎤100 2⎣⎢⎢⎡⎦⎥⎥⎤1 120 1=⎣⎢⎢⎡⎦⎥⎥⎤11202,在直线l 上任取一点P (x ′,y ′),经矩阵AB 变换为点Q (x ,y ),则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤1 1202⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤x ′+12y ′ 2y ′, ∴⎩⎪⎨⎪⎧x =x ′+12y ′,y =2y ′,即⎩⎪⎨⎪⎧x ′=x -14y ,y ′=y2,代入x ′+y ′-2=0中得x -14y +y2-2=0,∴直线l ′的方程为4x +y -8=0.【1-2】求使等式⎣⎢⎡⎦⎥⎤2 43 5=⎣⎢⎡⎦⎥⎤2001M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M .【答案】⎣⎢⎡⎦⎥⎤1 -23 -5 【解析】设M =⎣⎢⎡⎦⎥⎤mn pq ,则⎣⎢⎡⎦⎥⎤2 435=⎣⎢⎡⎦⎥⎤2 001M ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤2m -2n p -q , 则⎩⎪⎨⎪⎧ 2m =2,-2n =4,p =3,-q =5,⇒⎩⎪⎨⎪⎧m =1,n =-2,p =3,q =-5,即M =⎣⎢⎡⎦⎥⎤1 -23 -5. 【1-3】已知矩阵A =⎣⎢⎡⎦⎥⎤1121,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β. 【答案】⎣⎢⎡⎦⎥⎤-1 2【1-4】在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (2,0),C (2,1),求△ABC 在矩阵MN 作用下变换所得到的图形△A ′B ′C ′的面积,其中M =⎣⎢⎡⎦⎥⎤2002,N =⎣⎢⎡⎦⎥⎤0 -11 0. 【答案】4【解析】解:因为△ABC 在MN 作用下变换为△A ′B ′C ′, 且MN =⎣⎢⎡⎦⎥⎤2 00 2⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -22 0, 所以⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤04, ⎣⎢⎡⎦⎥⎤0 -22 0⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-24. 即A ′(0,0),B ′(0,4),C ′(-2,4). 可得S △A ′B ′C ′=4.所以△ABC 在矩阵MN 作用下变换所得的图形的面积为4.【1-5】在直角坐标系中,已知椭圆x 2+4y 2=1,矩阵M =⎣⎢⎡⎦⎥⎤110,N =⎣⎢⎡⎦⎥⎤0 210,求椭圆x 2+4y 2=1,在矩阵MN 作用下变换所得到的图形的面积.【答案】π.∴在矩阵MN 作用下变换所得到的图形的面积为π. 【基础知识】1.乘法规则(1)行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法法则: [a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21]. (2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11a 12a 21a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则:⎣⎢⎡⎦⎥⎤a 11a 12a 21a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11x 0+a 12y 0a 21x 0+a 22y 0. (3)两个二阶矩阵相乘的结果仍然是一个二阶矩阵,其乘法法则如下:⎣⎢⎡⎦⎥⎤a 11a 12a 21a 22⎣⎢⎡⎦⎥⎤b 11b 12b 21b 22=⎣⎢⎡⎦⎥⎤a 11b 11+a 12b 21a 11b 12+a 12b 22a 21b 11+a 22b 21a 21b 12+a 22b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律,即(AB )C =A (BC ). (5)A k A l=Ak +l,(A k )l =A kl (其中k ,l ∈N *).2.常见的平面变换(1)恒等变换:因为⎣⎢⎡⎦⎥⎤1001⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x y ,该变换把点(x ,y )变成(x ,y ),故矩阵⎣⎢⎡⎦⎥⎤1 001表示恒等变换.(2)反射变换:因为⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x y ,该变换把点(x ,y )变成(-x ,y ),故矩阵⎣⎢⎡⎦⎥⎤-1 0 0 1表示关于y轴的反射变换;类似地,⎣⎢⎡⎦⎥⎤1 00 -1,⎣⎢⎡⎦⎥⎤0, 11 0,⎣⎢⎡⎦⎥⎤0, -1-1 0分别表示关于x 轴、直线y =x 和直线y =-x 的反射变换.(3)伸缩变换:因为⎣⎢⎡⎦⎥⎤1 00 k ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ky ,该变换把点(x ,y )变成点(x ,ky ),在此变换中,点的横坐标不变,纵坐标变成原来的k 倍,故矩阵⎣⎢⎡⎦⎥⎤1, 00 k 表示y 轴方向上的伸缩变换;类似地,矩阵⎣⎢⎡⎦⎥⎤s001可以用来表示水平伸缩变换.(4)旋转变换:把点A (x ,y )绕着坐标原点逆时针旋转α角的变换,对应的矩阵是⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α.(5)切变变换:⎣⎢⎡⎦⎥⎤1s 01⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +sy y 表示的是沿x 轴的切变变换.沿y 轴的切变变换对应的矩阵是⎣⎢⎡⎦⎥⎤10t1.(6)投影变换:⎣⎢⎡⎦⎥⎤1 00 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0,该变换把所有横坐标为x 的点都映射到了点(x,0)上,因此矩阵⎣⎢⎡⎦⎥⎤1 00 0表示的是x 轴上的投影变换.类似地,⎣⎢⎡⎦⎥⎤0 00 1表示的是y 轴上的投影变换.【思想方法】.1.通过二阶矩阵与平面向量的乘法求出变换前与变换后坐标之间的变换公式,进而得到所求曲线(或点),求解时应注意待定系数法的应用2.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.3.在解决通过矩阵进行平面曲线的变换时,变换矩阵可以通过待定系数法解决,在变换时一定要把变换前后的变量区别清楚,防止混淆.2.曲线(或点)经过二阶矩阵变换后的曲线(或点)的求法,类似于平面解析几何中的代入法求轨迹,此类问题的关键是求对坐标之间的变换公式.【温馨提醒】1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等. 2.矩阵的乘法只满足结合律,不满足交换律和消去律. 考点2:特征值与特征向量【2-1】若矩阵M =⎣⎢⎡⎦⎥⎤3 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤23 00 12,求矩阵MN 的逆矩阵.【答案】⎣⎢⎢⎡⎦⎥⎥⎤13 00 12【解析】解: ∵M =⎣⎢⎡⎦⎥⎤3002为一伸缩变换对应的矩阵,∴M-1=⎣⎢⎢⎡⎦⎥⎥⎤13 00 12. 又∵N =⎣⎢⎢⎡⎦⎥⎥⎤23 00 12也为一伸缩变换对应的矩阵,∴N -1=⎣⎢⎢⎡⎦⎥⎥⎤32002.由矩阵的性质知(MN )-1=N -1M -1=⎣⎢⎢⎡⎦⎥⎥⎤32 00 2⎣⎢⎢⎡⎦⎥⎥⎤13 00 12=⎣⎢⎢⎡⎦⎥⎥⎤1200 1. 【2-2】已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求其另一个特征值.【答案】-1.【2-3】给定矩阵A =⎣⎢⎡⎦⎥⎤1 2-14,B =⎣⎢⎡⎦⎥⎤53,求A 4B . 【答案】⎣⎢⎡⎦⎥⎤145113 【解析】解:设A 的一个特征值为λ,由题知⎪⎪⎪⎪⎪⎪λ-1 -21 λ-4=0,得【2-4】已知矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,若矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤1-1,求矩阵A .【答案】 ⎣⎢⎡⎦⎥⎤1 22 1【解析】解:由矩阵A 属于特征值3的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11可得⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤11=3⎣⎢⎡⎦⎥⎤11,即⎩⎪⎨⎪⎧a +b =3,c +d =3;由矩阵A 属于特征值-1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤ 1-1可得⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤ 1-1=(-1)⎣⎢⎡⎦⎥⎤ 1-1,即⎩⎪⎨⎪⎧a -b =-1,c -d =1,解得⎩⎪⎨⎪⎧a =1,b =2,c =2,d =1,即矩阵A =⎣⎢⎡⎦⎥⎤1221.【2-5】已知矩阵A =⎣⎢⎡⎦⎥⎤-1 00 2,B =⎣⎢⎡⎦⎥⎤1 20 6,求矩阵A -1B .【答案】⎣⎢⎡⎦⎥⎤-1 -20 3【解析】[解] 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 001,即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 001,故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3. 【基础知识】1.逆变换与逆矩阵(1)逆变换:设ρ是一个线性变换,如果存在线性变换σ,使得σρ=ρσ=1,则称变换ρ可逆,并且称σ是ρ的逆变换.(2)逆矩阵:设A 是一个二阶矩阵,如果存在二阶矩阵B ,使得BA =AB =E 2,则称矩阵A 可逆,或称矩阵A 是可逆矩阵,并且称B 是A 的逆矩阵.(3)逆矩阵的性质性质①:设A 是一个二阶矩阵,如果A 是可逆的,则A 的逆矩阵是唯一的. 性质②:设A ,B 是二阶矩阵,如果A ,B 都可逆,则AB 也可逆,且(AB )-1=B -1A -1. (4)定理:二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,当且仅当det A =ad -bc ≠0. 2.逆矩阵与二元一次方程组(1)定理:如果关于变量x ,y 的二元一次方程组(线性方程组)⎩⎪⎨⎪⎧ax +by =e ,cx +dy =f的系数矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤e f .(2)推论:关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =0,cx +dy =0.其中a ,b ,c ,d 是不全为零的常数,有非零解的充分必要条件是系数矩阵的行列式⎪⎪⎪⎪⎪⎪ab cd =0.3.特征值和特征向量设矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,如果存在数λ以及非零向量ξ,使得Aξ=λξ,则称λ是矩阵A 的一个特征值,ξ是矩阵A 的属于特征值λ的一个特征向量.4.特征向量的性质设λ1,λ2是二阶矩阵A 的两个不同特征值,ξ1,ξ2是矩阵A 的分别属于特征值λ1,λ2的特征向量,对于任意的非零平面向量α,设α=t 1ξ1+t 2ξ2(t 1,t 2为实数),则对任意的正整数n ,有A nα=t 1λn1ξ1+t 2λn2ξ2. 【思想方法】1.求逆矩阵的常见方法 (1)待定系数法:设A 是一个二阶可逆矩阵⎣⎢⎡⎦⎥⎤ab cd ,AB =BA =E 2; (2)公式法:|A |=⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,有A-1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |,当且仅当|A |≠0;(3)从几何变换的角度求解二阶矩阵的逆矩阵; (4)利用逆矩阵的性质(AB )-1=B -1A -1. 2.求特征值和特征向量的方法(1)矩阵M =⎣⎢⎡⎦⎥⎤ab cd 的特征值λ满足(λ-a )(λ-d )-bc =0,属于λ的特征向量a =⎣⎢⎡⎦⎥⎤x y 满足M ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y . (2)求特征向量和特征值的步骤:①解f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0得特征值;②解⎩⎪⎨⎪⎧λ-a x -by =0,-cx +λ-d y =0⇔(λ-a )x -by =0,取x =1或y =1,写出相应的向量.【温馨提醒】1.逆矩阵的求法常用待定系数法.2.若A ,B 两个矩阵均存在可逆矩阵,则有(AB )-1=B -1A -1,若A ,B ,C 为二阶矩阵且A 可逆,则当AB =AC 时,有B =C ,即此时矩阵乘法的消去律成立.3.求M nα,一般都是先求出矩阵M 的特征值与特征向量,将α写成t 1α1+t 2α2.利用性质M nα=t 1λn1α1+t 2λn 2α2求解. 【易错问题大揭秘】1.两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算.2.矩阵的特征值与特征向量(1)不是每个矩阵都有特征值与特征向量. (2)属于矩阵的不同特征值的特征向量不共线.(3)设ξ是矩阵A 属于特征值λ的一个特征向量,则对任意的非零数k ,k ξ也是矩阵A 属于特征值λ的一个特征向量.。

苏教版 高三数学 一轮复习---14.2 矩阵与变换

苏教版 高三数学 一轮复习---14.2  矩阵与变换

§14.2 矩阵与变换2020高考会这样考 1.考查二阶矩阵与矩阵变换;2.考查逆矩阵、特征值、特征向量的求法. 复习备考要这样做 1.掌握矩阵的有关概念;2.重视二阶矩阵的有关问题;3.注意和几何等知识相结合的交汇处命题.1.乘法规则(1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则: [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21]. (2)二阶矩阵⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22与列向量⎣⎢⎡⎦⎥⎤x 0y 0的乘法规则: ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下: ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎡⎦⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22 (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ), AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法 运算. 2.常见的平面变换(1)恒等变换:如⎣⎢⎡⎦⎥⎤1 00 1;(2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤1 00 12;(3)反射变换:如⎣⎢⎡⎦⎥⎤1 00 -1;(4)旋转变换:如⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎡⎦⎥⎤1 00 0,⎣⎢⎡⎦⎥⎤1 01 0;(6)切变变换:如⎣⎢⎡⎦⎥⎤1 k 0 1(k ∈R ,且k ≠0).3.逆变换与逆矩阵(1)对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵; (2)若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.5.特征多项式设A =⎣⎢⎡⎦⎥⎤a b c d 是一个二阶矩阵,λ∈R ,把行列式f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式. [难点正本 疑点清源]1.矩阵与行列式的区别矩阵A =⎣⎢⎡⎦⎥⎤a b c d 与它的行列式|A |=⎪⎪⎪⎪⎪⎪a b c d 的意义是不同的,矩阵不是一个数,而是4个数按顺序排列成的一个数表,行列式|A |是由矩阵A 算出来的一个数,不同的矩阵可以有相同的行列式,矩阵代表一个线性变换,它的行列式只是这个变换的性质之一. 2.行列式与矩阵设A =⎣⎢⎡⎦⎥⎤a b c d ,|A |=⎪⎪⎪⎪⎪⎪a b c d =ad -bc , 并记Δ=|A |=det(A )①A 可逆的充分必要条件是:Δ≠0;②当Δ≠0时,A -1=⎣⎢⎡⎦⎥⎤ d Δ -b Δ-c Δ a Δ. 3.特征值与特征向量的几何意义从几何上看,特征向量经矩阵A 的变换作用后,仍与原向量共线,这时特征向量或者方向不变(λ>0)或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.1 . ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=________. 答案 ⎣⎢⎡⎦⎥⎤ 5-7解析 ⎣⎢⎡⎦⎥⎤1 00 -1⎣⎢⎡⎦⎥⎤57=⎣⎢⎢⎡⎦⎥⎥⎤ 1×5+0×70×5+(-1)×7=⎣⎢⎡⎦⎥⎤ 5-7. 2.若X ⎣⎢⎡⎦⎥⎤2 31 2=⎣⎢⎡⎦⎥⎤ 3 2-1 1,则二阶矩阵X =____________. 答案 ⎣⎢⎡⎦⎥⎤ 4 -5-3 5解析 设X =⎣⎢⎡⎦⎥⎤a b c d ,由于⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 31 2=⎣⎢⎢⎡⎦⎥⎥⎤2a +b 3a +2b 2c +d 3c +2d =⎣⎢⎡⎦⎥⎤ 3 2-1 1,得a =4,b =-5,c =-3,d =5,故X =⎣⎢⎢⎡⎦⎥⎥⎤4 -5-3 5. 3.圆x 2+y 2=1在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 00 12对应的变换作用下的结果为________.答案 椭圆x 2+4y 2=1解析 设A (x ,y )是圆上一点,在矩阵变换作用后的点为A ′(x 1,y 1),有⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x 1y 1,解得x =x 1,y =2y 1,代入x 2+y 2=1,得x 21+4y 21=1.所以圆x 2+y 2=1在矩阵变换下得到椭圆x 2+4y 2=1.4.若A =⎣⎢⎡⎦⎥⎤1 65 2,则A 的特征值为________.答案 7和-4解析 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -6 -5 λ-2 =(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4.5.设矩阵A 为二阶矩阵,且规定其元素a ij =i 2+j (i =1,2;j =1,2),则A =__________.答案 ⎣⎢⎡⎦⎥⎤2 35 6 解析 由a ij =i 2+j 知:a 11=12+1=2, a 12=12+2=3,a 21=22+1=5,a 22=22+2=6.∴A =⎣⎢⎡⎦⎥⎤2 35 6.题型一 矩阵与变换例1 已知变换S 把平面上的点A (3,0),B (2,1)分别变换为点A ′(0,3),B ′(1,-1),试求变换S 对应的矩阵T .思维启迪:先设出矩阵,然后找出两组对应点的坐标,利用矩阵乘法列出方程组即可 求出.解 设T =⎣⎢⎡⎦⎥⎤a c b d ,则S :⎣⎢⎡⎦⎥⎤30→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤30=⎣⎢⎡⎦⎥⎤3a 3b =⎣⎢⎡⎦⎥⎤03,解得⎩⎪⎨⎪⎧a =0b =1;S :⎣⎢⎡⎦⎥⎤21→⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a c b d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎢⎡⎦⎥⎥⎤2a +c 2b +d =⎣⎢⎡⎦⎥⎤ 1-1, 解得⎩⎪⎨⎪⎧c =1d =-3,综上可知T =⎣⎢⎡⎦⎥⎤0 11 -3.探究提高 理解变换的意义,掌握矩阵的乘法运算法则是求解的关键,利用待定系数法,构建方程是解决此类题的关键.(1)已知⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 22 0⎣⎢⎡⎦⎥⎤x y ,试将它写成坐标变换的形式,并求点A (1,3)在⎣⎢⎡⎦⎥⎤1 22 0对应的变换作用下得到的点; (2)已知⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ x +3y -2x +y ,试将它写成矩阵的乘法形式;若在上述矩阵对应的变换作用下得到点P (7,0),试求变换前对应的点P ′的坐标.解 (1)⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +2y 2x ,点A (1,3)在矩阵⎣⎢⎡⎦⎥⎤1 22 0对应的变换作用下得到点的坐标为(7,2).(2)⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤ 1 3-2 1⎣⎢⎡⎦⎥⎤x y , 由⎩⎪⎨⎪⎧ x +3y =7,-2x +y =0, 得⎩⎪⎨⎪⎧x =1,y =2, ∴点P ′的坐标为(1,2).题型二 逆矩阵的求法及应用例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2 -31 -1所对应的线性变换把点A (x ,y )变成点A ′(13,5),试求M 的逆矩阵及点A 的坐标.思维启迪:(1)要求M 的逆矩阵,先求|M |并判断|M |不为0.(2)M ·⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,即⎣⎢⎡⎦⎥⎤x y =M -1·⎣⎢⎡⎦⎥⎤135. 解 依题意得由M =⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1,得|M |=1, 故M -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 3-1 2. 从而由⎣⎢⎢⎡⎦⎥⎥⎤2 -31 -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-1 3-1 2⎣⎢⎡⎦⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2y =-3,∴A (2,-3)为所求.探究提高 求逆矩阵时,可用定义法解方程处理,也可以用公式法直接代入求解.在求逆矩阵时要重视(AB )-1=B -1A -1性质的应用.已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2,(1)求矩阵A 的逆矩阵;(2)利用逆矩阵知识解方程组⎩⎪⎨⎪⎧2x +3y -1=0x +2y -3=0.解 (1)方法一 设逆矩阵为A -1=⎣⎢⎡⎦⎥⎤a b c d ,则由⎣⎢⎡⎦⎥⎤2 31 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,得⎩⎪⎨⎪⎧ 2a +3c =12b +3d =0a +2c =0b +2d =1,解得⎩⎪⎨⎪⎧a =2b =-3c =-1d =2,A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2. 方法二 由公式知若A =⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤2 31 2,则A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc-b ad -bc-c ad -bca ad -bc =⎣⎢⎢⎡⎦⎥⎥⎤2 -3-1 2. (2)已知方程组⎩⎪⎨⎪⎧2x +3y -1=0,x +2y -3=0,可转化为⎩⎪⎨⎪⎧2x +3y =1,x +2y =3, 即AX =B ,其中A =⎣⎢⎡⎦⎥⎤2 31 2,X =⎣⎢⎡⎦⎥⎤x y ,B =⎣⎢⎡⎦⎥⎤13,且由(1),得A -1=⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2. 因此,由AX =B ,同时左乘A -1,有 A -1AX =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 2 -3-1 2⎣⎢⎡⎦⎥⎤13=⎣⎢⎡⎦⎥⎤-7 5.即原方程组的解为⎩⎪⎨⎪⎧x =-7,y =5.题型三 求矩阵的特征值与特征向量例3 已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系; (3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程.解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎪⎨⎪⎧a +b =8,c +d =8. 因⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-24,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4,故M =⎣⎢⎡⎦⎥⎤6 24 4.(2)由(1)知,矩阵M 的特征多项式为 f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16, 故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y , 则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0. (3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤6 24 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简得x ′-y ′+2=0, 即x -y +2=0.探究提高 矩阵的特征值和特征向量在求解形如M n a 的矩阵与向量的乘法运算中有重要应用,熟练掌握此知识,用它来解决将可以大大减少运算量.应掌握求解二阶矩阵的特征向量和特征值的基本方法,关于特征值问题的探究一般解法如下:给定矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,向量α=⎣⎢⎡⎦⎥⎤x y ,若有特征值λ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤λ-a -b -c λ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00, 所以⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =0,即λ2-(a +d )λ+(ad -bc )=0.已知矩阵A =⎣⎢⎡⎦⎥⎤1a -1b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21. (1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值. 解 (1)A =⎣⎢⎡⎦⎥⎤1 2-1 4.(2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21, 当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11. 由β=m α1+n α2,得⎩⎪⎨⎪⎧2m +n =7m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.用坐标转移的思想求曲线在变换作用下的新方程典例:(10分)二阶矩阵M 对应的变换T 将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在变换T 作用下得到了直线m :x -y =4,求l 的方程.审题视角 (1)变换前后的坐标均已知,因此可以设出矩阵,用待定系数法求解. (2)知道直线l 在变换T 作用下的直线m ,求原直线,可用坐标转移法. 规范解答解 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1 -1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2,[2分] 所以⎩⎪⎨⎪⎧ a -b =-1c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2c =3d =4,所以M =⎣⎢⎡⎦⎥⎤1 23 4.[5分](2)因为⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 即x +y +2=0,∴直线l 的方程是x +y +2=0.[10分]温馨提醒 (1)本题考查了求变换矩阵和在变换矩阵作用下的曲线方程问题,题目难度属中档题.(2)本题突出体现了待定系数法的思想方法和坐标转移的思想方法.(3)本题的易错点是计算错误和第(2)问中坐标转移的方向错误.方法与技巧1.二阶矩阵与平面列向量乘法:⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ax +by cx +dy (注意矩阵“在左”即为“左乘”),这是所有变换的基础.2.验证某两个矩阵互逆要进行两个方向:(1)AB =E ;(2)BA =E .3.二元一次方程组相应的矩阵方程为AX =B ,其中A 为系数矩阵,X 为未知数向量⎣⎢⎡⎦⎥⎤x y ,B 为常数向量.4.特征值与特征向量的认识:如果某一向量在矩阵变换作用下的象与原象共线,则称这个向量是属于该变换矩阵的特征向量,相应共线系数为属于该特征向量的特征值. 失误与防范1.六种基本变换各具特点,要从理解的角度认识各自的特征及变换向量的特征,不必死记硬背.2.矩阵乘法满足结合律,但不满足消去律和交换律.A 组 专项基础训练 (时间:35分钟,满分:62分)一、填空题(每小题5分,共35分)1.已知变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤3x +4y 5x +6y ,则该变换矩阵为________. 答案 ⎣⎢⎡⎦⎥⎤3 45 6 解析 ⎩⎪⎨⎪⎧x ′=3x +4y ,y ′=5x +6y 可写成⎣⎢⎡⎦⎥⎤3 45 6⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 2.计算⎣⎢⎡⎦⎥⎤3 75 8 ⎣⎢⎡⎦⎥⎤ 2-1=________.答案 ⎣⎢⎡⎦⎥⎤-1 2解析 ⎣⎢⎡⎦⎥⎤3 75 8⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎢⎡⎦⎥⎥⎤3×2-75×2-8=⎣⎢⎡⎦⎥⎤-12. 3.函数y =x 2在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 00 14变换作用下的结果为__________.答案 y =14x 2解析 ⎣⎢⎢⎡⎦⎥⎥⎤1 00 14⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ x 14y =⎣⎢⎡⎦⎥⎤x ′y ′⇒x =x ′,y =4y ′, 代入y =x 2得y ′=14x ′2,即y =14x 2.4.矩阵⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为__________. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤150 0 1 解析 ⎪⎪⎪⎪⎪⎪5 00 1=5,∴⎣⎢⎡⎦⎥⎤5 00 1的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤15 0 0 1. 5.已知矩阵M =⎣⎢⎡⎦⎥⎤1 23 4,α=⎣⎢⎡⎦⎥⎤12,β=⎣⎢⎡⎦⎥⎤ 0-3,则M (2α+4β)=________. 答案 ⎣⎢⎡⎦⎥⎤-14-26解析 2α+4β=⎣⎢⎡⎦⎥⎤24+⎣⎢⎡⎦⎥⎤ 0-12=⎣⎢⎡⎦⎥⎤ 2-8, M (2α+4β)=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤ 2-8=⎣⎢⎢⎡⎦⎥⎥⎤-14-26. 6.若矩阵A =⎣⎢⎡⎦⎥⎤3 a b 13把直线l :2x +y -7=0变换成另一直线l ′:9x +y -91=0,则a =________,b =________. 答案 0 -1解析 取l 上两点(0,7)和(3.5,0),则⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤07=⎣⎢⎡⎦⎥⎤7a 91,⎣⎢⎡⎦⎥⎤3 a b 13⎣⎢⎡⎦⎥⎤3.5 0=⎣⎢⎡⎦⎥⎤10.53.5b .由已知(7a,91),(10.5,3.5b )在l ′上,代入得a =0,b =-1.7.直线y =x +1在矩阵⎣⎢⎡⎦⎥⎤1 01 -2作用下变换得到的图形与x 2+y 2=1的位置关系是________.答案 相离解析 直线y =x +1在矩阵变换作用下得到的方程为x +y +2=0,圆心到直线的距离为d =|0+0+2|2=2>1,所以变换后的直线与圆x 2+y 2=1相离.二、解答题(共27分)8.(13分)变换T 是绕坐标原点逆时针旋转π2的旋转变换,求曲线2x 2-2xy +y 2=1在变换T作用下所得的曲线方程.解 变换T 所对应的变换矩阵为M =⎣⎢⎡⎦⎥⎤0 -11 0,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0, 则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧y 0=-x ,x 0=y ,代入2x 20-2x 0y 0+y 20=1, 即x 2+2xy +2y 2=1,所以变换后的曲线方程为x 2+2xy +2y 2=1. 9.(14分)(2012·江苏)已知矩阵A 的逆矩阵A-1=⎣⎢⎡⎦⎥⎤-14 3412 -12,求矩阵A 的特征值.解 因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎡⎦⎥⎤-14 3412 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1, 于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.B 组 专项能力提升 (时间:35分钟,满分:58分)一、填空题(每小题5分,共30分)1.矩阵M =⎣⎢⎡⎦⎥⎤6 -36 -3的特征值为________.答案 0和3解析 f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 3 -6 λ+3=(λ-6)(λ+3)+18=0. ∴λ=0或λ=3.2.将坐标平面上的一个图形先将其横坐标伸长到原来的2倍,纵坐标变为原来的一半,然后对它做关于y 轴对称的变换,再将它做关于直线y =x 对称的变换,则此平面变换所对应的二阶变换矩阵为__________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤ 0 12-2 0 解析 由题意知,所求的二阶变换矩阵为:A =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤-1 0 0 1⎣⎢⎢⎡⎦⎥⎥⎤2 00 12 =⎣⎢⎡⎦⎥⎤ 0 1-1 0⎣⎢⎢⎡⎦⎥⎥⎤2 00 12=⎣⎢⎢⎡⎦⎥⎥⎤ 0 12-2 0. 3.设A =⎣⎢⎡⎦⎥⎤-1 0 0 1,B =⎣⎢⎡⎦⎥⎤0 -11 0,则AB 的逆矩阵为____________. 答案 ⎣⎢⎡⎦⎥⎤0 11 0 解析 ∵A -1=⎣⎢⎡⎦⎥⎤-1 0 0 1,B -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0 ∴(AB )-1=B -1A -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0⎣⎢⎡⎦⎥⎤-1 0 0 1=⎣⎢⎡⎦⎥⎤0 11 0. 4.若A =⎣⎢⎡⎦⎥⎤12 1212 12,B =⎣⎢⎡⎦⎥⎤ 12 -12-12 12,则AB =________. 答案 ⎣⎢⎡⎦⎥⎤0 00 0 解析 AB =⎣⎢⎡⎦⎥⎤12 1212 12⎣⎢⎡⎦⎥⎤ 12 -12-12 12=⎣⎢⎡⎦⎥⎤12×12+12×⎝⎛⎭⎫-12 12×⎝⎛⎭⎫-12+12×1212×12+12×⎝⎛⎭⎫-12 12×⎝⎛⎭⎫-12+12×12=⎣⎢⎡⎦⎥⎤0 00 0. 5.已知a ,b ∈R ,若M =⎣⎢⎡⎦⎥⎤-1 a b 3所对应的变换T M 把直线l :2x -y =3变换为自身,则实数a =______,b =______.答案 1 -4解析 T M :⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-1 a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-x +ay bx +3y ∴⎩⎪⎨⎪⎧x ′=-x +ayy ′=bx +3y ,将(x ′,y ′)代入2x -y =3, 得(-2-b )x +(2a -3)y =3与2x -y =3为同一条直线.∴⎩⎪⎨⎪⎧ 2a -3=-1-2-b =2,∴⎩⎪⎨⎪⎧a =1b =-4.6.在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎡⎦⎤k 00 1,N =⎣⎡⎦⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,则k 的为值________.答案 -2或2解析 由题设得MN =⎣⎡⎦⎤k 00 1⎣⎡⎦⎤0 11 0=⎣⎡⎦⎤0 k 1 0.由⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤00=⎣⎡⎦⎤00,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-20=⎣⎡⎦⎤0-2,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-21=⎣⎡⎦⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2). 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,由题设知|k |=2×1=2,所以k 的值为-2或2.二、解答题(共28分)7.(14分)求A =⎣⎢⎡⎦⎥⎤3 24 1的特征值与属于每个特征值的一个特征向量. 解 由⎪⎪⎪⎪⎪⎪⎪⎪3-λ -2-4 1-λ=λ2-4λ-5=0, 得λ1=-1,λ2=5. 由λ1=-1得4x -2y =0,取ξ1=⎣⎢⎡⎦⎥⎤12; 由λ2=5,得x +y =0,取ξ2=⎣⎢⎡⎦⎥⎤1-1. 所以A =⎣⎢⎡⎦⎥⎤3 24 1的特征值为λ1=-1,λ2=5,相应的特征向量分别为ξ1=⎣⎢⎡⎦⎥⎤ 12,ξ2=⎣⎢⎡⎦⎥⎤1-1. 8.(14分)(2012·福建)设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1.(1)求实数a ,b 的值;(2)求A 2的逆矩阵.解 (1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的象是P ′(x ′,y ′).由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ ax bx +y ,得⎩⎪⎨⎪⎧ x ′=ax ,y ′=bx +y .又点P ′(x ′,y ′)在x 2+y 2=1上,所以x ′2+y ′2=1, 即a 2x 2+(bx +y )2=1, 整理得(a 2+b 2)x 2+2bxy +y 2=1. 依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧ a =1,b =1,或⎩⎪⎨⎪⎧ a =-1,b =1.因为a >0,所以⎩⎪⎨⎪⎧ a =1,b =1.(2)由(1)知,A =⎣⎢⎡⎦⎥⎤1 01 1,A 2=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 01 1=⎣⎢⎡⎦⎥⎤1 02 1.所以|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤1 0-2 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6讲 矩阵与变换
1.(2019·扬州期中)已知矩阵A =⎣⎢⎡⎦⎥⎤1a b 2,属于特征值4的一个特征向量为⎣⎢⎡⎦
⎥⎤
23),求A 2.
解:由条件,⎣⎢⎡⎦⎥⎤1a b 2⎣⎢⎡⎦⎥⎤23 )=4⎣⎢⎡⎦⎥⎤
23),所以⎩⎪⎨⎪⎧2+3a =8,2b +6=12,解得⎩⎪⎨
⎪⎧a =2,b =3,
所以A =⎣⎢
⎡⎦⎥⎤1 23 2,所以A 2
=⎣⎢⎡⎦
⎥⎤7 69 10.
2.(2019·江苏省四校联考)二阶矩阵A 有特征值λ=6,其对应的一个特征向量为e =⎣⎢⎡⎦
⎥⎤
11,并且矩阵
A 对应的变换将点(1,2)变换成点(8,4),求矩阵A.
解:设所求二阶矩阵A =⎣⎢⎡⎦⎥⎤
ab cd ,则⎩⎪⎨⎪
⎧Ae =6e ,A ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦
⎥⎤
84,
所以⎩⎪⎨⎪⎧⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦
⎥⎤66,⎣⎢⎡⎦⎥⎤a +2b c +2d =⎣⎢⎡⎦
⎥⎤
84,所以⎩⎪⎨⎪⎧a +b =6,c +d =6,a +2b =8,c +2d =4,
解方程组得A =⎣⎢
⎡⎦
⎥⎤
4 28 -2.
3.已知矩阵M =⎣⎢
⎡⎦
⎥⎤
a 1b
0,点A (1,0)在矩阵M 对应变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1
.
解:因为⎣⎢
⎡⎦⎥⎤a 1b 0⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦
⎥⎤
12,所以a =1,b =2.
所以M =⎣⎢
⎡⎦
⎥⎤
1
12
0,所以M -1=
⎣⎢⎢⎡⎦
⎥⎥⎤0 121 -12.
4.(2019·江苏省重点中学领航高考冲刺卷(九))在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M =
⎣⎢⎡⎦
⎥⎤1 23
4对应的变换下得到点Q (y -2,y ),求M -1
⎣⎢⎡⎦
⎥⎤x y .
解:依题意,⎣⎢
⎡⎦⎥⎤1
23
4⎣⎢⎡⎦⎥⎤x 5=⎣⎢⎡⎦
⎥⎤y -2y ,
即⎩⎪⎨⎪⎧x +10=y -2,3x +20=y ,解得⎩
⎪⎨⎪⎧x =-4,y =8.
由逆矩阵公式知,矩阵M =⎣⎢
⎡⎦
⎥⎤
1
23
4的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤
-2 132
-12,
所以M -1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-2 132
-12⎣⎢⎡⎦⎥⎤-4 8=⎣⎢
⎡⎦
⎥⎤ 16-10.
5.(2019·镇江模拟)已知矩阵M =⎣⎢⎡⎦
⎥⎤
1 00 2,N =⎣⎢⎢⎡⎦
⎥⎥⎤
12 00 1,试求曲线y =sin x 在矩阵MN 变换下的函数解析式.
解:MN =⎣⎢⎡⎦
⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 00 1=⎣⎢⎢⎡⎦
⎥⎥⎤12 00 2,
即在矩阵MN 变换下
⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎢⎡⎦⎥⎥⎤12 00 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦
⎥⎥⎤12x 2y ,
x ′=1
2x ,y ′=2y ,
代入得:12
y ′=sin 2x ′,
即曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin 2x .
6.(2019·江苏省重点中学领航高考冲刺卷(八))已知矩阵M 的逆矩阵是M
-1
=⎣⎢⎢⎡⎦
⎥⎥⎤-14 3
4 12 -12,
向量α=
⎣⎢⎡⎦⎥⎤x 2,β=⎣⎢⎡⎦
⎥⎤
5y ,若M α=β,求x +y 的值.
解:设矩阵M =⎣⎢⎡⎦
⎥⎤
ab cd ,则由MM -1
=⎣⎢
⎡⎦
⎥⎤
1 00 1,
可得⎣⎢⎢⎡⎦
⎥⎥⎤-14 3412 -12⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 00 1,
所以⎩⎪⎪⎨⎪⎪⎧-14a +34
c =1-14b +3
4d =012a -12c =0
12b -12d =1
,解得⎩⎪⎨⎪⎧a =2b =3c =2d =1,所以M =⎣⎢⎡⎦
⎥⎤
2 32 1.
由M α=β,得⎣⎢
⎡⎦⎥⎤2
32
1⎣⎢⎡⎦⎥⎤x 2=⎣⎢⎡⎦
⎥⎤5y ,
即⎩⎪⎨⎪⎧2x +6=52x +2=y ,解得⎩⎪
⎨⎪⎧x =-1
2y =1
,则x +y =12.
7.(2019·南京六校联考)已知矩阵A =⎣⎢⎡⎦
⎥⎤
1 00 2,B =⎣⎢⎢⎡⎦
⎥⎥⎤
1 120 1.若矩阵AB 对应的变换把直线l :x +y -2=0变为直线l ′,求直线l ′的方程.
解:因为A =⎣⎢⎡⎦
⎥⎤1 00 2,B =⎣⎢⎢⎡⎦⎥⎥⎤
1 120 1,
所以AB =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢
⎢⎡⎦⎥⎥⎤1 120 1=⎣⎢⎢⎡⎦
⎥⎥
⎤1 120 2.
在直线l ′上任取一点P (x ,y ),它是由l 上的点P 0(x 0,y 0)经矩阵AB 所对应的变换所得,
则一方面,因为点P 0(x 0,y 0)在直线l :x +y -2=0上,
所以x 0+y 0-2=0.①
AB ⎣⎢⎡⎦⎥⎤
x0y0)=⎣⎢⎡⎦⎥⎤
x y ),即⎣⎢⎢⎡⎦⎥⎥⎤1 120 2⎣⎢⎡⎦⎥⎤x0
y0)=⎣⎢⎡⎦⎥⎤x y ) ,
所以⎩⎪⎨⎪⎧x0+12y0=x ,2y0=y ,
所以⎩⎪⎨⎪⎧x0=x -14y ,y0=12y ,

将②代入①得x -1
4y +12
y -2=0,即4x +y -8=0,
所以直线l ′的方程为4x +y -8=0.
8.(2019·南京、盐城模拟)已知矩阵A =⎣⎢
⎡⎦
⎥⎤
3
02
a ,A 的逆矩阵A -1=⎣⎢⎢⎡⎦
⎥⎥⎤
13 0b 1.
(1)求a ,b 的值; (2)求A 的特征值.
解:(1)因为AA -1=⎣⎢⎡⎦⎥⎤3 02 a ⎣⎢⎢⎡⎦⎥⎥⎤13 0b 1=⎣⎢⎢⎡⎦
⎥⎥⎤1 023+aba =⎣⎢⎡⎦⎥⎤
1 00 1.所以⎩⎪⎨⎪
⎧a =1,23+ab =0.
解得a =1,b =-2
3
.
(2)由(1)得A =⎣⎢
⎡⎦
⎥⎤3 02
1,
则A 的特征多项式f (λ)=⎪⎪⎪⎪
⎪⎪
λ-3 0-2 λ-1=(λ-3)( λ-1).
令f (λ)=0,解得A 的特征值λ1=1,λ2=3.
9.已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦
⎥⎤
11,并且矩阵M 对应的变换将点(-1,
2)变换成(-2,4). (1)求矩阵M ;
(2)求矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;
(3)求直线l :x -y +1=0在矩阵M 对应的变换作用下的直线l ′的方程.
解:(1)设M =⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦
⎥⎤88,
故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,故⎩
⎪⎨⎪⎧-a +2b =-2,-c +2d =4.
联立以上两方程组解得a =6,b =2,c =4,d =4,
故M =⎣⎢
⎡⎦
⎥⎤6
24
4.
(2)由(1)知,矩阵M 的特征多项式为
f (λ)=⎪⎪⎪⎪
⎪⎪λ-6 -2 -4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2.设矩阵M
的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎡⎦⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦
⎥⎤
x y ,解得2x +y =0.
(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 对应的变换作用下得到的点的坐标为(x ′,y ′),
则⎣⎢⎡⎦⎥⎤6
24
4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦
⎥⎤x′y′,
即x =14x ′-18y ′,y =-14x ′+38
y ′,代入直线l 的方程后并化简得x ′-y ′+2=0,即x -y +2=
0.。

相关文档
最新文档