2014年数学新课标1全国卷(文)
2014年高考新课标1全国卷理科数学试题及答案
2014年普通高等学校招生全国统一考试全国新课标1理科数学第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.已知集合2{|230}A x x x =--,{|22}B x x =-<,则A B ⋂=( )。
A .[]2,1-- B 。
[)1,2- C 。
[]1,1- D 。
[)1,22。
32(1)(1)i i +=-( )。
A 。
1i + B .1i - C 。
1i -+ D .1i --3。
设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是( )。
A .()()f x g x 是偶函数 B 。
()()f x g x 是奇函数C 。
()()g x f x 是奇函数D 。
()()f x g x 是奇函数4。
已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( ).A 。
3B 。
3C 。
3mD 。
3m5。
4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率( )。
A 。
18B .38C .58D 。
786。
如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则()y f x =在[]0,π上的图像大致为( ).7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ).A 。
203B . 72C . 165D .158 8。
设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( )。
A .32παβ-=B . 32παβ+=C .22παβ-=D 。
22παβ+=9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-, 2p :(,),22x y D x y ∃∈+≥,3P :(,),23x y D x y ∀∈+≤, 4p :(,),21x y D x y ∃∈+≤-.其中真命题是( )。
2014年高考新课标全国2卷数学(文)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(文史类)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={2-,0,2},B={x |022=--x x },则A B= (A )∅ (B ){}2 (C ){}0 (D ){}2-(2)131ii+=- (A )12i + (B )12i -+ (C )12i - (D )12i --(3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足||a b +=,||a b -=,则a b =(A )1 (B )2 (C )3 (D )5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A )()1n n + (B )()1n n -(C )()12n n + (D )()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727 (B )59 (C )1027 (D )13(7)正三棱柱的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S = (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D)⎡⎢⎣⎦ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个考试考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大概题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为________.(14)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为________.(15)偶函数)(x f y =的图像关于直线x =2对称,3)3(=f ,则(1)f -=________. (16)数列{}n a 满足111n na a +=-,82a =,则1a =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的角A 与C 互补,AB =1,BC =3,CD =DA =2. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA 平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P-ABD 的体积V =43,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :12222=+by a x (0>>b a )的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数()f x =3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.4 97 97665332110 98877766555554443332100 6655200 632220 甲部门 乙部门 59 0448 122456677789 011234688 00113449 123345 011456 000 3 4 56 7 8910请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. (22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (Ⅰ)BE =EC ; (Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,2π].(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l:2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x =|x +a1|+|x a -|(a >0). (Ⅰ)证明:()f x ≥2;(Ⅱ)若(3)5f <,求a 的取值围.2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(文科)参考答案一、选择题 1.B解析:把2-,0,2代入202x x --=验证,只有2满足不等式.故选B . 考点:考查集合的知识.简单题. 2.B 解析:13(13)(1)121(1)(12)42i i i i i i i i+++===-+---++.故选B . 考点:考查复数的基本知识.简单题.3.C解析:函数()f x 在0x=x 处导数存在,则极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/,从而p 是q 的必要但不充分的条件.故选C .考点:考查充要条件与极值的基础知识.简单题. 4.A解析:222210,226,a a b b a a b b ⋅-+++=⋅=44a b ∴⋅=,1a b ∴⋅=.故选A . 考点:考查平面向量的数量积.中等题. 5.A解析:∵数列{}n a 是等差数列,公差等于2,∴2141812,6,14a a a a a a =+=+=+.∵248,,a a a 成等比数列,∴22428111()6)214()(a a a a a a ⋅⇒=++=+,解得122(221)n a a n n ==+-⇒⋅=,∴(1)(222)=n n nS n n ⋅=++.故选A . 考点:考查等差数列的通项公式与求和公式.中等题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为134********V V ππ-=-=.故选C . 考点:考查三视图于空间几何体的体积.中等题. 7.C解析:∵正三棱柱的底面边长为2,D 为BC 中点,∴AD ==∵1112,BC CC ==1111111222B DC B C S C C ⋅=⋅⋅==,∴111111133AB C B DC V S AD ⋅⋅===.故选C . 考点:考查空间点,线,面关系和棱锥体积公式.中等题. 8.D解析:第1次循环M=2,S=5,k=1. 第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7.故选D . 考点:考查算法的基本知识.简单题. 9.B解析:作图即可.考点:考查二元一次不等式组的应用.中等题. 10.C解析:∵23y x =,∴抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,故23),343,y x y x ⎧=-⎪⎨⎪=⎩从而2122161689012x x x x -+=+=⇒, ∴弦长12||=3122x x AB ++=.故选C . 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力.中等题. 11.D 解析:()ln f x kx x =-,1()(0)f x k x x∴'=->.()f x 在区间(1,)+∞上递增,()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞,1k ∴≥.故选D . 考点:考查导数与函数单调性的关系.中等题. 12.A解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ,即22≥OM ON ,2120≤+x ,011x -≤≤.故选A . 考点:三角不等式,两点间距离公式.难题. 二、填空题 13.13解析:1.3333P =⋅=考点:考查古典概型的概念.简单题. 14.1解析:因为()f x si s n in cos s n c (o i )s x x x ϕϕϕ==--,所以最大值为1. 考点:考查和差角公式.简单题. 15.3解析:因()f x 是偶函数,所以(1)(1)f f -=.因()f x 图像关于2x =,所以(1)(2)(332)1f f f ⋅-===. 考点:考查偶函数的概念,轴对称的概念.简单题. 16.12解析:∵111n na a +=-,122111111(1)111n n n n n a a a a a +----∴==-=--=--, 822a a ∴==,12111112112a a a a =⇒-==⇒-. 考点:考查递推数列的概念.简单题. 三、解答题17.解析:(Ⅰ)由题设及余弦定理得222cos 1312c s 2o BD C BC CD BC D C C =+⋅=--, ① 2222cos 54cos AD AB BD AB AD A C =⋅=++-. ② 由①,②得1cos 2C =,故60C =︒,BD =(Ⅱ)四边形ABCD 的面积S =11sin sin 22AB DA A BC CD C ⋅+⋅111232)sin 6022(⨯⨯+⨯︒==⨯ 考点:考查余弦定理的应用.中等题.18.解析:(Ⅰ)设BD 与AC 的交点为O ,连结EO .因为四边形ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥AEC .(Ⅱ)616PA AB A V AD B ⋅⋅⋅==.由V =,可得32AB =.作AH ⊥PB 交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 到面PBC考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的数是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计数是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的数是66,68,故样本中位数为6668627+=,所以该市的市民对乙部门评分的中位数的估计数是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为50.150=,850=0.16,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异大.(注:考生利用其他统计量进行分析,结论合理的同样给分)考点:考查使用茎叶图及样本的数字特征估计总体的能力.中等题.20.解析:(Ⅰ)根据c =2(,)b M c a,223b ac =.将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得222911c a b+=. ②将①及c =229(4)1144a a a a-+=. 解得7a =,2428b a ==.故7a =,b =考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题. 21.解析:(Ⅰ)26()3f x x x a =-'+,'(0)f a =. 曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,∴1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++. 设32()()(2)3(1)4g x f x kx x x k x =--=-+-+. 由题设知10k ->.当0x ≤时,2()36(1)x g x x k -+-'=0>,()g x 单调递增,(1)10g k -=-<,(0)4g =,所以()g x =0在(,0]-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()g x =0在(0,)+∞没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 考点:考查利用导数综合研究函数性质的能力.难题. 22.解析:(Ⅰ)连结AB ,AC . 由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,.. .... .. .. PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆. 因为C 在D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(2. 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得523a <<+. 当03a <≤时,(3)61a f a =-+,由(3)5f <3a <≤. 综上,a的取值围是15(22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。
2014年高考数学(文)真题分类汇编:N单元 选修4系列
数 学 N 单元 选修4系列 N1 选修4-1 几何证明选讲15.[2014·广东卷] (几何证明选讲选做题)如图1-1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1-115.3 21.[2014·江苏卷] A .[选修4-1:几何证明选讲] 如图1-7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .图1-7证明:因为B ,C 是圆O 上的两点,所以OB =OC , 所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点, 所以∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D ,因此∠OCB =∠D . [2014·江苏卷] B .[选修4-2:矩阵与变换]已知矩阵A =⎣⎢⎡⎦⎥⎤-1 21 x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若=,求x +y 的值. 22.[2014·辽宁卷] 选修4-1如图1-6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA .又由于∠PGD=∠EGA,故∠DBA=∠EGA,所以∠DBA+∠BAD=∠EGA+∠BAD,从而∠BDA=∠PF A.因为AF⊥EP,所以∠PF A=90°,所以∠BDA=90°,故AB为圆的直径.(2)连接BC,DC.由于AB是直径,故∠BDA在Rt△BDA与Rt△ACB中,AB=BA,AC=BD,从而Rt△BDA≌Rt△ACB,所以∠DAB =∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角.所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.22.[2014·新课标全国卷Ⅱ] 选修4-1:几何证明选讲如图1-5,P是⊙O外一点,P A是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2P A,D为PC的中点,AD的延长线交⊙O于点E.证明:(1)BE=EC;(2)AD·DE=2PB2.图1-522.证明:(1)连接AB,AC.由题设知P A=PD,故∠P AD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠P AD=∠BAD+∠P AB,∠DCA=∠P AB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得P A2=PB·PC.因为P A=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.22.[2014·全国新课标卷Ⅰ] 选修4-1:几何证明选讲如图1-5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1-5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.15.[2014·陕西卷]B.(几何证明选做题)如图1-3所示,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=________.图1-315.37.[2014·天津卷] 如图1-1所示,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于点E,过点B的圆的切线与AD的延长线交于点F.在上述条件下,给出下列四个结论:①BD平分∠CBF;②FB2=FD·F A;③AE·CE=BE·DE;④AF·BD=AB·BF.则所有正确结论的序号是()A .①②B .③④C .①②③D .①②④ 7.DN2 选修4-2 矩阵N3 选修4-4 参数与参数方程 14.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2)12.[2014·湖南卷] 在平面直角坐标系中,曲线C :⎩⎨⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.12.x -y -1=0 3[2014·江苏卷] C .[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t(t 为参数),直线l与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎨⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝⎛⎭⎫2+22t 2=4⎝⎛⎭⎫1-22t ,解得t 1=0,t 2=-8 2,所以AB =|t 1-t 2|=8 2. 23.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2. 不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,即2x -4y =-3, 化为极坐标方程,得2 ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ.23.[2014·新课标全国卷Ⅱ] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.解:(1)C 的普通方程为 (x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎫1+cos π3,sin π3,即⎝⎛⎫32,32.23.[2014·全国新课标卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值, 最大值为2255.当sin(θ+α)=1时,|P A |取得最小值, 最小值为255.15. [2014·陕西卷]C.(坐标系与参数方程选做题)在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρ sin ⎝⎛⎭⎫θ-π6=1的距离是________.15. 1N4 选修4-5 不等式选讲 4[2014·江苏卷] D .[选修4-5:不等式选讲]已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . 证明:因为x >0,y >0,所以1+x +y 2≥33xy 2>0, 1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .15.[2014·江西卷] x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________. 15.[0,2] 24.[2014·辽宁卷] 选修4-5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x [f (x )]2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0, 故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝⎛⎭⎫x -142≤4,解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )]=xf (x )=x (1-x )=14-⎝⎛⎭⎫x -122≤14.24.[2014·新课标全国卷Ⅱ] 选修4-5:不等式选讲 设函数f (x )=⎪⎪⎪⎪x +1a +|x -a |(a >0). (1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.24.解:(1)证明:由a >0 ,有f (x )=⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2, 所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.24.[2014·全国新课标卷Ⅰ] 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b ≥2ab ,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2 a 3b 3≥42,当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6. 15. [2014·陕西卷] A.(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.15.A.5 [解析]由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号成立,所以m 2+n 2 ≥ 5.N5 选修4-7 优选法与试验设计。
2014年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
2014年高考新课标1全国卷语文试题及答案
(新课标卷Ⅰ)2014年普通高等学校招生全国统一考试语文试卷及答案第Ⅰ卷阅读题甲必做题一、现代文阅读I 9分,每小题3分)阅读下面的文字,完成l~3题。
悲剧产生于社会的矛盾、两种社会力量的冲突。
冲突双方分别代表着真与假、善与恶、新与旧等对立的两极,却总是以代表真、善、新等美好的一方的失败、死亡、毁灭为结局,他们是悲剧的主人公。
因为他们的力量还比较弱小,还无法与强大的旧势力或邪恶力量抗衡,正义的要求不能实现,于是形成了悲剧。
古希腊学者亚里士多德指出,悲剧描写了比现实中更美好同时又是“与我们相似的”人物,通过他们的毁灭“引起怜悯和恐惧来使感情得到陶冶”,即产生净化的作用。
然而,悲剧不仅表现冲突与毁灭,而且表现抗争与拼搏,这是悲剧具有审美价值的最根本的原因。
鲁迅说过:“悲剧将人生的有价值的东西毁灭给人看”。
这种毁灭是抗争、拼搏以后的毁灭,抗争与拼搏体现了人的一种精神。
古希腊神话中普罗米修斯为了人类从天上盗取火种,触怒了主神宙斯,被锁在高加索山崖上,每日遭神鹰啄食肝脏,但普罗米修斯毫不屈服,最后坠入深渊。
罗丹的大理石雕塑《马身人首》中,人臂绝望地扑向一个它所抓不到的目标,而马足则陷于尘土不能自拔,表现出人性学科网与兽性的冲突,象征着灵与肉的斗争,具有强烈的悲剧性。
可以说,没有抗争就没有悲剧,冲突、抗争与毁灭是构成悲剧的三个主要因素。
悲剧的审美价值的载体只能是文学艺术。
因为人生有价值的东西、美好事物的毁灭是令人伤悲的,因此现实中的悲剧不能作为直接的审美对象来欣赏,否则人就是泯灭了人性的人了。
现实中的悲剧只能激起人的同情、义愤,迫使人采取严肃的伦理态度和实践行动。
民主革命时期,在演出歌剧《白毛女》的过程中,曾多次出现扮演地主黄世仁的演员被打甚至险遭枪击的事件,这是人们以实际的道德评价代替了审美活动。
现实的悲剧只在客观上具有悲剧的审美性质,它们必须以文学艺术的形式表现出来,才能成为欣赏的对象,美学上所谓的“以悲为美”才能实现。
2014年高考全国卷1文科综合及答案-(word版)
2014年普通高等学校招生全国统一考试(新课标I)第Ⅰ卷本卷共35小题。
每小题4分,共140分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
24.中国古代,“天”被尊为最高神。
秦汉以后,以“天子”自居的皇帝举行祭天大典,表明自己“承天”而“子民”,官员、百姓则祭拜自己的祖先。
这反映了秦汉以后A.君主专制缘于宗教权威 B.政治统治借助于人伦秩序C.皇权至上促成祖先崇拜 D.祭天活动强化了宗法制度25.唐高祖李渊自认为是老子后裔,规定老子地位在孔子之上,佛教位居第三:武则天时明令佛教位在道教之上:后来唐武帝“灭佛”。
这反映出唐代A.皇帝的好恶决定宗教兴亡B.道教的社会影响最大C.懦学的政治地位最为稳固 D.佛教的社会基础薄弱26.人性是先秦以来一直讨论的问题。
基于对人性的新认识,宋明理学家主张“存天理,灭人欲”,他们认为人性A.本质是善 B.本质为恶C.非善非恶 D.本善习远27.据记载,清初实施海禁前,“市井贸易,国有外国货物,民间行使多以外国银钱,因而各省流行,所在皆有”。
这一记载表明当时A.中国在对外贸易中处于优势地位B.外来货币干扰了中国资本市场C.自然经济受到了进口货物的冲击D.民间贸易发展冲击清廷的统治28.据研究,1853年,印度人均消费英国棉纱、棉布9.09便士,而中国是094便士。
这反映出当时中国A.经济受到鸦片战争的破坏B.实行保护本国经济的政策C.经济的发展水平低于印度D.传统的小农经济根深蒂固29.1898年,梁启超等联合百余举人上书,请废八股取士之制。
参加会试的近万名举人,“闻启超等此举,嫉之如不共戴天之仇,遍播谣言,几被殴击”。
这一事件的发生表明A.废八股断送读书人政治前途B.改制缺乏广泛的社会基础C.知识分子在政治上极为保守D.新旧学之间矛盾不可调和30.20世纪20年代,上海成为中国电影的制作中心,当时在上海放映的各种影片中,外国片与国产片比例约为2:1;而在北京和天津,这一比例高达5:1甚至6:1。
2014年高考数学(文)真题分类汇编:三角函数
三角函数1.[2014·全国卷] 已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45【答案】D2.[2014·全国新课标卷Ⅰ] 若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0 【答案】C3.[2014·福建卷] 将函数y =sin x 的图像向左平移π2个单位,得到函数y =f (x )的图像,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图像关于直线x =π2对称D .y =f (x )的图像关于点⎝⎛⎭⎫-π2,0对称【答案】D4.[2014·全国新课标卷Ⅰ] 在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y=tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③ 【答案】A5.[2014·天津卷] 已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为( )A.π2B.2π3 C .π D .2π 【答案】C6.[2014·安徽卷] 若将函数f (x )=sin 2x +cos 2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.3π4【答案】C7.[2014·广东卷] 若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定【答案】[解析] 本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD -A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AD 是直线l 3,则DD 1是直线l 4,此时l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,A 1D 1是直线l 3,则C 1D 1是直线l 4,此时l 1⊥l 4.故l 1与l 4的位置关系不确定.8.[2014·辽宁卷] 将函数y =3sin ⎝⎛⎭⎫2x +π3的图像向右平移π2个单位长度,所得图像对应的函数( )A .在区间⎣⎡⎦⎤π12,7π12上单调递减B .在区间⎣⎡⎦⎤π12,7π12上单调递增C .在区间⎣⎡⎦⎤-π6,π3上单调递减D .在区间⎣⎡⎦⎤-π6,π3上单调递增【答案】B9.[2014·陕西卷] 函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( )A.π2 B .π C .2π D .4π 【答案】B10.[2014·浙江卷] 为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π12个单位B .向右平移π4个单位C .向左平移π12个单位D .向左平移π4个单位【答案】A11.[2014·四川卷] 为了得到函数y =sin(x +1)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动1个单位长度B .向右平行移动1个单位长度C .向左平行移动π个单位长度D .向右平行移动π个单位长度 【答案】A12.[2014·四川卷] 如图1-3所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )图1-3A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m 【答案】C1.[2014·广东卷] 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件 【答案】A5.[2014·江西卷] 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则2sin 2B -sin 2Asin 2A的值为( )A .-19 B.13 C .1 D.72【答案】D5.[2014·江苏卷] 已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图像有一个横坐标为π3的交点,则φ的值是________.【答案】π613.[2014·重庆卷] 将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2图像上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图像,则f ⎝⎛⎭⎫π6=________.【答案】2212.[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 【答案】π14.[2014·新课标全国卷Ⅱ] 函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________. 【答案】1 [解析] f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2sin φcos x =sin x cos φ-cos x sin φ=sin(x -φ),其最大值为1.14.、[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________.【答案】3216.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.【答案】4312.[2014·山东卷] 函数y =32sin 2x +cos 2x 的最小正周期为________. 【答案】π [解析] 因为y =32sin 2x +1+cos 2x 2=sin ⎝⎛⎫2x +π6+12,所以该函数的最小正周期T =2π2=π .12.[2014·北京卷] 在△ABC 中,a =1,b =2,cos C =14,则c =________;sin A =________.【答案】2 15814.[2014·福建卷] 在△ABC 中,A =60°,AC =2,BC =3,则AB 等于________. 【答案】113.[2014·湖北卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A =π6,a=1,b =3,则B =________.【答案】π3或2π3 [解析] 由正弦定理得a sin A =b sin B ,即1sin π6=3sin B,解得sin B =32.又因为b >a ,所以B =π3或2π3.14.[2014·江苏卷] 若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是______.14.6-24[解析] 设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,则由正弦定理得a +2b =2c .故cos C =a 2+b 2-c22ab=a 2+b 2-⎝ ⎛⎭⎪⎫a +2b 222ab=34a 2+12b 2-22ab 2ab =34a 2+12b 22ab -24≥234a 2·12b 22ab -24=6-24,当且仅当3a 2=2b 2,即a b =23时等号成立.16.[2014·全国新课标卷Ⅰ] 如图1-3,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°,以及∠MAC =75°,从C 点测得∠MCA =60°.已知山高BC =100 m ,则山高MN =________m.图1-3【答案】15018. [2014·福建卷] 已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间. 【解析】方法一: (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4=-2cos π4⎝⎛⎭⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1,所以T =2π2=π,故函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .方法二:f (x )=2sin x cos x +2cos 2x=sin 2x +cos 2x +1 =2sin ⎝⎛⎭⎫2x +π4+1.(1)f ⎝⎛⎭⎫5π4=2sin 11π4+1=2sinπ4+1=2.(2)因为T =2π2=π,所以函数f (x )的最小正周期为π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z .所以f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .16.[2014·安徽卷] 设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为 2.求cos A 与a 的值. 【解析】 由三角形面积公式,得12×3×1·sin A =2,故sin A =2 23. 因为sin 2A +cos 2A =1, 所以cos A =±1-sin 2A =±1-89=±13. ①当cos A =13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×13=8,所以a =2 2.②当cos A =-13时,由余弦定理得a 2=b 2+c 2-2bc cos A =32+12-2×1×3×⎝⎛⎭⎫-13=12,所以a =2 3.16.[2014·北京卷] 函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图像如图1-4所示.图1-4(1)写出f (x )的最小正周期及图中x 0,y 0的值; (2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.【解析】(1)f (x )的最小正周期为π. x 0=7π6,y 0=3.(2)因为x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0.于是,当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.18.[2014·湖北卷] 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天上午8时的温度; (2)求实验室这一天的最大温差.【解析】(1)f (8)=10-3cos ⎝⎛⎭⎫π12×8-sin ⎝⎛⎭⎫π12×8=10-3cos 2π3-sin 2π3=10-3×⎝⎛⎭⎫-12-32=10. 故实验室上午8时的温度为10 ℃.(2)因为f (t )=10-2⎝⎛⎭⎫32cos π12t +12sin π12t =10-2sin ⎝⎛⎭⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,所以-1≤sin ⎝⎛⎭⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎫π12t +π3=-1.于是f (t )在[0,24)上取得最大值12,最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.17.[2014·四川卷] 已知函数f (x )=sin ⎝⎛⎭⎫3x +π4.(1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝⎛⎭⎫α3=45cos ⎝⎛⎭⎫α+π4cos 2α,求cos α-sin α的值.【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z ,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z ,所以函数f (x )的单调递增区间为⎣⎡⎦⎤-π4+2k π3,π12+2k π3,k ∈Z . (2)由已知,得sin ⎝⎛⎭⎫α+π4=45cos ⎝⎛⎭⎫α+π4(cos 2α-sin 2α).所以sin αcos π4+cos αsin π4=45⎝⎛⎭⎫cos αcos π4-sin αsin π4(cos 2α-sin 2α), 即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α在第二象限内,得α=3π4+2k π,k ∈Z .此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. 16.[2014·广东卷] 已知函数f (x )=A sin ⎝⎛⎭⎫x +π3,x ∈R ,且f ⎝⎛⎭⎫5π12=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫π6-θ.16.[2014·江西卷] 已知函数f (x )=(a +2cos 2x )cos(2x +θ)为奇函数,且f ⎝⎛⎭⎫π4=0,其中a ∈R ,θ∈(0,π).(1)求a ,θ的值;(2)若f ⎝⎛⎭⎫α4=-25,α∈⎝⎛⎭⎫π2,π,求sin ⎝⎛⎭⎫α+π3的值. 【解析】(1)因为f (x )=(a +2cos 2x )cos(2x +θ)是奇函数,而y 1=a +2cos 2x 为偶函数,所以y 2=cos(2x +θ)为奇函数.又θ∈(0,π),得θ=π2,所以f (x )=-sin 2x ·(a +2cos 2x ).由f ⎝⎛⎭⎫π4=0得-(a +1)=0,即a =-1.(2)由(1)得,f (x )=-12sin 4x .因为f ⎝⎛⎭⎫α4=-12sin α=-25,所以sin α=45,又α∈⎝⎛⎭⎫π2,π,从而cos α=-35,所以有sin ⎝⎛⎭⎫α+π3=sin αcos π3+cos αsin π3=4-3 310.18.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .【解析】由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C . 因为tan A =13,所以cos C =2sin C , 所以tan C =12,所以tan B =tan[180°-(A +C )] =-tan(A +C )=tan A +tan Ctan A tan C -1=-1,所以B =135°.17.[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.【解析】(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.18.[2014·重庆卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且a +b +c =8.(1)若a =2,b =52,求cos C 的值;(2)若sin A cos 2B 2+sin B cos 2A2=2sin C ,且△ABC 的面积S =92sin C ,求a 和b 的值.【解析】(1)由题意可知c =8-(a +b )=72.由余弦定理得cos C =a 2+b 2-c22ab=22+⎝⎛⎭⎫522-⎝⎛⎭⎫7222×2×52=-15.(2)由sin A cos 2B 2+sin B cos 2A2=2sin C 可得sin A ·1+cos B 2+sin B ·1+cos A2=2sin C ,化简得sin A +sin A cos B +sin B +sin B cos A =4sin C .因为sin A cos B +cos A sin B =sin(A +B )=sin C ,所以sin A +sin B =3sin C . 由正弦定理可知a +b =3c .又a +b +c =8,所以a +b =6.由于S =12ab sin C =92sin C ,所以ab =9,从而a 2-6a +9=0,解得a =3,所以b =3.15.[2014·江苏卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55.(1)求sin ⎝⎛⎭⎫π4+α的值; (2)求cos ⎝⎛⎭⎫5π6-2α的值. 【解析】(1)因为α∈⎝⎛⎭⎫π2,π,sin α=55,所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α=22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1)知sin 2α=2sin αcos α=2×55× ⎝⎛⎭⎫-2 55=-45,cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫552=35, 所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos 2α+sin 5π6sin 2α= ⎝⎛⎭⎫-32×35+12×⎝⎛⎭⎫-45=-4+3 310.17.[2014·辽宁卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c .已知BA →·BC→=2,cos B =13,b =3.求:(1)a 和c 的值; (2)cos(B -C )的值.【解析】(1)由BA →·BC →=2,得c ·a cos B =2,又cos B =13,所以ac =6.由余弦定理,得a 2+c 2=b 2+2ac cos B , 又b =3,所以a 2+c 2=9+2×2=13.联立⎩⎪⎨⎪⎧ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2. (2)在△ABC 中,sin B =1-cos 2B =1-⎝⎛⎭⎫132=223.由正弦定理,得sin C =c b sin B =23×223=429.因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C =1-⎝⎛⎭⎫4292=79. 于是cos(B -C )=cos B cos C +sin B sin C = 13×79+2 23×4 29=2327.21.[2014·辽宁卷] 已知函数f (x )=π(x -cos x )-2sin x -2,g (x )=(x -π)1-sin x1+sin x+2xπ-1.证明: (1)存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0;(2)存在唯一x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0,且对(1)中的x 0,有x 0+x 1>π.【解析】证明:(1)当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=π+πsin x -2cos x >0,所以f (x )在区间⎝⎛⎭⎫0,π2上为增函数.又f (0)=-π-2<0,f ⎝⎛⎭⎫π2=π22-4>0,所以存在唯一x 0∈⎝⎛⎭⎫0,π2,使f (x 0)=0.(2)当x ∈⎣⎡⎦⎤π2,π时,化简得g (x )=(π-x )·cos x 1+sin x +2xπ-1.令t =π-x 则t ∈⎣⎡⎦⎤0,π2.记u (t )=g (π-t )=-t cos t 1+sin t -2πt +1,则u ′(t )=f (t )π(1+sin t ). 由(1)得,当t ∈(0,x 0)时,u ′(t )<0;当t ∈⎝⎛⎭⎫x 0,π2时,u ′(t )>0.所以在⎝⎛⎭⎫x 0,π2上u (t )为增函数,由u ⎝⎛⎭⎫π2=0知,当t ∈⎣⎡⎭⎫x 0,π2时,u (t )<0,所以u (t )在⎣⎡⎭⎫x 0,π2上无零点.在(0,x 0)上u (t )为减函数,由u (0)=1及u (x 0)<0知存在唯一t 0∈(0,x 0),使u (t 0)=0.于是存在唯一t 0∈⎝⎛⎭⎫0,π2,使u (t 0)=0.设x 1=π-t 0∈⎝⎛⎭⎫π2,π,则g (x 1)=g (π-t 0)=u (t 0)=0.因此存在唯一的x 1∈⎝⎛⎭⎫π2,π,使g (x 1)=0.由于x 1=π-t 0,t 0<x 0,所以x 0+x 1>π.16.[2014·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 a -c =66b ,sin B =6sin C . (1)求cos A 的值;(2)求cos ⎝⎛⎫2A -π6的值.【解析】(1)在△ABC 中,由b sin B =c sin C,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c . 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64.(2)在△ABC 中,由cos A =64,可得sin A =104.于是cos 2A =2cos 2A -1=-14,sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.18.[2014·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知4sin 2A -B2+4sin A sin B =2+ 2.(1)求角C 的大小;(2)已知b =4,△ABC 的面积为6,求边长c 的值. 【解析】(1)由已知得2[1-cos(A -B )]+4sin A sin B =2+2, 化简得-2cos A cos B +2sin A sin B =2, 故cos(A +B )=-22, 所以A +B =3π4,从而C =π4.(2)因为S △ABC =12ab sin C ,由S △ABC =6,b =4,C =π4,得a =3 2.由余弦定理c 2=a 2+b 2-2ab cos C ,得c =10. 19.[2014·湖南卷] 如图1-4所示,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,∠BEC =π3.(1)求sin ∠CED 的值; (2)求BE 的长.图1-4【解析】设∠CED =α.(1)在△CDE 中,由余弦定理,得 EC 2=CD 2+DE 2-2CD ·DE ·cos ∠EDC ,于是由题设知,7=CD 2+1+CD ,即CD 2+CD - 6=0,解得CD =2(CD =-3舍去).在△CDE 中,由正弦定理,得EC sin ∠EDC =CDsin α.于是,sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知,0<α<π3,于是由(1)知,cos α=1-sin 2α=1-2149=277.而∠AEB =2π3-α,所以cos ∠AEB =cos ⎝⎛⎭⎫2π3-α=cos 2π3cos α+sin 2π3sin α=-12cos α+32sin α=-12×277+32×217=714.在Rt △EAB 中,cos ∠AEB =EA BE =2BE,故BE =2cos ∠AEB =2714=47.18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan ∠BCO =43.(1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-6【解析】 方法一:(1)如图所示, 以O 为坐标原点, OC 所在直线为 x 轴, 建立平面直角坐标系xOy .由条件知A (0, 60), C (170,0),直线 BC 的斜率k BC =-tan ∠BCO =-43.又因为 AB ⊥BC, 所以直线AB 的斜率k AB =34.设点 B 的坐标为(a ,b ),则k BC =b -0a -170=-43, k AB =b -60a -0=34,解得a =80, b =120,所以BC =(170-80)2+(0-120)2=150.因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m, OM =d m (0≤d ≤60). 由条件知, 直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切, 故点 M (0, d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680 - 3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大, 即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大. 方法二:(1)如图所示, 延长 OA, CB 交于点F .因为 tan ∠FCO =43,所以sin ∠FCO =45, cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803, CF =OC cos ∠FCO =8503, 从而AF =OF -OA =5003.因为OA ⊥OC, 所以cos ∠AFB =sin ∠FCO =45.又因为 AB ⊥BC ,所以BF =AF cos ∠AFB =4003, 从而BC =CF -BF =150.因此新桥BC 的长是150 m.(2)设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因为OA ⊥OC, 所以sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35, 所以r =680-3d 5.因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨5680-3d5-(60-d )≥80,解得10≤d ≤35.故当d =10时, r =680 - 3d5最大,即圆面积最大,所以当OM =10 m 时, 圆形保护区的面积最大.17.[2014·新课标全国卷Ⅱ] 四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2.(1)求C 和BD ;(2)求四边形ABCD 的面积. 【解析】(1)由题设及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,故C =60°,BD =7.(2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C =⎝⎛⎭⎫12×1×2+12×3×2sin 60°=2 3.17.[2014·山东卷] △ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值;(2)求△ABC 的面积.【解析】(1)在△ABC 中, 由题意知,sin A =1-cos 2A =33. 又因为B =A +π2,所以sin B =sin ⎝⎛⎭⎫A +π2=cos A =63.由正弦定理可得,b =a sin Bsin A=3×6333=3 2. (2)由B =A +π2得cos B =cos ⎝⎛⎭⎫A +π2=-sin A =-33.由A +B +C =π,得C =π-(A +B ),所以sin C =sin[π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =33×⎝⎛⎭⎫-33+63×63=13. 因此△ABC 的面积S =12ab sin C =12×3×32×13=322.16.[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,且c =2a ,求cos B 的值.【解析】(1)∵a ,b ,c 成等差数列,∴a +c =2b .由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ). (2)由题设有b 2=ac ,c =2a , ∴b =2a .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34.。
2014年高考全国卷(课标Ⅰ-课标Ⅱ-大纲) 文综
2014年普通高等学校招生全国统一考试(新课标I)文科综合-地理第Ⅰ卷选择题(44分)本卷共 11 小题。
每小题 4 分,共 44分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
太阳能光热电站(图 1)通过数以十万计的反光版聚焦太阳能,给高塔顶端的锅炉加热,产生蒸汽,驱动发电机发电。
据此完成 1~3 题。
图11.我国下列地区中,资源条件最适宜建太阳能光热电站的是A.柴达木盆地B.黄土高原C.山东半岛D.东南丘陵2.太阳能光热电站可能会A.提升地表温度B.干扰飞机电子导航C.误伤途经飞鸟D.提高作物产量3.若在北回归线上建一太阳能光热电站,其高塔正午影长于塔高的比值为 P,则A.春、秋分日 P=0B.夏至日 P>0C.全年日 P<1D.冬至日 P>120 世纪 50 年代,在外国专家的指导下,我国修建了兰新铁路。
兰新铁路在新疆吐鲁番附近的线路如图 2所示。
读图 2,完成 4~6 题。
图24.推测外国专家在图示区域铁路选线时考虑的主导因素是A.河流B.聚落C.耕地D.地形5.后来,我国专家认为,兰新铁路在该区域的选线不合理,理由可能是A.线路过长B.距城镇过远C.易受洪水威胁D.工程量过大6.50 多年来,兰新铁路并没有改变该区域城镇的分布,是因为该区域的城镇分布受控于A.地形分布B.绿洲分布C.河流分布D.沙漠分布人类活动导致大气中含氮化合物浓度增加,产生沉降,是新出现的令人担忧的全球变化问题。
一科研小组选择受人类干扰较小的某地,实验模拟大气氮沉降初期对植被的影响。
实验地植被以灌木植物为主,伴生多年生草本植物。
表 1 数据为实验地以 2009 年为基数,2010-2013 年实验中植被的变化值(测量时间为每年9 月 30 日)。
据此完成 7~9 题。
7.实验期间植被变化表现为①生物量提高②生物量降低③植株密度改变④植被分布改变A.①③B.②③C.①④D.②④8.实验期间大气氮沉降导致灌木、草本两类植物出现此消彼长竞争的是A.植株数量B.总生物量C.地上生物量D.地下生物量9.根据实验结果推测,随着大气氮沉降的持续,植被未来变化趋势是A.灌木植物和草本植物繁茂B.灌木植物和草本植物萎缩C.灌木植物茂盛,草本植物萎缩D.灌木植物萎缩,草本植物茂盛图 3 显示某国移民人数及其占总人口比例的变化。
2014山东高考真题数学文(含解析)
第I卷(共 50 分) 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分. 在每小题给出的四个选项中,只有一项是 符合题目要求的. (1)已知 a, b R ,i 是虚数单位.若 a i = 2 bi ,则 (a bi) 2 ( (A) 3 4i (B) 3 4i (C) 4 3i ) (D) 4 3i
(C) 0 a 1, c 1 (D) 0 a 1, 0 c 1
(7)已知向量 a (1, 3), b (3, m) . 若向量 a, b 的夹角为
m(
π ,则实数 6
) (B) 3 (C)0 (D) 3
(A) 2 3
1 / 14
kPa) (8) 为了研究某药品的疗效, 选取若干名志愿者进行临床试验, 所有志愿者的舒张压数据 (单位: 的分组区间为 [12,13),[13,14),[14,15),[15,16),[16,17] ,将其按从左到右的顺序分别编号为第一 组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图.已知第一组与第二组 共有 20 人,第三组中没有疗效的有 6 人,则第三组中有疗效的人数为( (A)6 (B)8 (C)12 (D)18 )
(I)求 b 的值; (II)求 △ABC 的面积.
6 π ,B A . 3 2
4 / 14
(18) (本小题满分 12 分) 如图,四棱锥 P ABCD 中, AP 平面PCD, AD∥BC , AB BC
1 AD, E, F 分别为线段 2
AD, PC 的中点.
(I)求证: AP∥平面BEF ; (II)求证: BE 平面PAC .
2014年高考新课标大纲及解读:数学(文)
2014年高考新课标大纲及解读:数学(文)各地2014年高考试题使用版本:新课标全国卷分为:新课标全国卷(Ⅰ)和新课标全国卷(Ⅱ)。
01、新课标全国Ⅰ卷适用地区:河南、河北、山西02、新课标全国Ⅱ卷适用地区:青海、西藏、甘肃、贵州、内蒙古、新疆、宁夏、吉林、黑龙江、云南03、大纲版全国卷适用地区:广西(2015年使用新课标全国Ⅱ卷)04、所有科目全部自主命题:北京、上海、广东、山东、江苏、浙江、湖北、四川、天津、陕西、湖南、福建、重庆、安徽、辽宁、江西、海南考试吧整理:2014年高考新课标大纲及解读2014年高考考试说明(课程标准实验版)数学(文)I.考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩.按己确定的招生计划。
德、智、体全面衡量.择优录取.因此.高考应具有较高的信度,效度,必要的区分度和适当的难度.Ⅱ.考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通搞好总课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1和系列4的内容,确定文史类高考数学科考试内容。
数学科考试,要发挥数学作为主要基础学科的作用,要考察考生对中学的基础知、基本技能的掌握程度,要考查考生对数学思想方法和数学本质的理解水平,要考察考生进入高等学校继续学习的潜能。
一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实脸)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法期、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步孩进行运其。
处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明对知识的要求依次是了解、理解、掌握三个层次。
(1)了解:要求对所列知识的含义有初步的、感性的认识.知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识.知道知知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)
2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年全国普通高等学校招生统一考试文科数学(福建卷带解析)答案解析
2014年全国普通高等学校招生统一考试文科(福建卷)数学答案解析1、【答案】A【解析】试题分析:由已知,选A.考点:集合的运算.2、【答案】B【解析】试题分析:选B.考点:复数的四则运算.3、【答案】A【解析】试题分析:由已知得,所得圆柱的底面半径和高均为为,所以圆柱的侧面积为,选A. 考点:旋转体的侧面积.4、【答案】B【解析】试题分析:执行程序,,满足条件,不满足条件,输出选B.考点:算法与程序框图.5、【答案】C【解析】试题分析:全称命题的否定是存在性命题,所以,命题“”的否定是,选C.考点:全称命题与存在性命题.6、【答案】D【解析】试题分析:由已知得,圆心为,所求直线的斜率为,由直线方程的斜截式得,,即,故选D.考点:圆的方程,直线的垂直,直线方程.7、【答案】D【解析】试题分析:将函数的图象向左平移个单位,得到函数,因为,所以,选D.考点:三角函数图象的变换,三角函数诱导公式,三角函数的图象和性质.8、【答案】B【解析】试题分析:由函数的图象可知,所以,,及均为减函数,只有是增函数,选B.考点:幂函数、指数函数、对数函数的图象和性质.9、【答案】C【解析】试题分析:设长方体底面边长分别为,则,所以容器总造价为,由基本不等式得,,当且仅当底面为边长为的正方形时,总造价最低,选C.考点:函数的应用,基本不等式的应用.10、【答案】D【解析】试题分析:由已知得,而所以,选D.考点:平面向量的线性运算,相反向量.11、【答案】C【解析】试题分析:即圆心到原点距离的平方.画出可行域,由已知,当圆心为时,最大,此时,选C.考点:简单线性规划的应用,直线与圆的位置关系.12、【答案】A【解析】试题分析:不妨设是平面内符合条件的点,则由“L-距离”定义得(,).即时,;时,;时,;时,;时,;时,.故选A. 考点:新定义,绝对值的概念,分类讨论思想.13、【答案】【解析】试题分析:由随机数的概念及几何概型得,所以估计阴影部分的面积为. 考点:随机数,几何概型.14、【答案】【解析】试题分析:由余弦定理得,,解得.考点:余弦定理的应用.15、【答案】【解析】试题分析:令得,,只有符合题意;令得,,在同一坐标系内,画出的图象,观察知交点有,所以零点个数是.考点:分段函数,函数的零点,函数的图象和性质.16、【答案】【解析】试题分析:由已知,若正确,则或,即或或或均与“三个关系有且只有一个正确”矛盾;若正确,则正确,不符合题意;所以,正确,,故.考点:推理与证明.17、【答案】(1) .(2).【解析】试题分析:(1)设的公比为q,依题意得方程组,解得,即可写出通项公式.(2)因为,利用等差数列的求和公式即得.试题解析:(1)设的公比为q,依题意得,解得,因此,.(2)因为,所以数列的前n项和.考点:等比数列、等差数列.18、【答案】(1);(2),的单调递增区间为. 【解析】试题分析:思路一:(1)直接将代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简.得到.由,解得.思路二:先应用和差倍半的三角函数公式化简函数(1)将代入函数式计算;(2)由,解得.试题解析:解法一:(1)(2)因为.所以.由,得,所以的单调递增区间为. 解法二:因为(1)(2)由,得,所以的单调递增区间为.考点:和差倍半的三角函数公式,三角函数诱导公式,三角函数的图象和性质.19、【答案】(1)见解析.(2).【解析】试题分析:(1)由平面BCD,平面BCD,得到.进一步即得平面.(2)思路一:由平面BCD,得.确定.根据平面ABD,知三棱锥C-ABM的高,得到三棱锥的体积.思路二:由平面BCD知,平面ABD平面BCD,根据平面ABD平面BCD=BD,通过过点M作交BD于点N.得到平面BCD,且,利用计算三棱锥的体积. 试题解析:解法一:(1)∵平面BCD,平面BCD,∴.又∵,,平面ABD,平面ABD,∴平面.(2)由平面BCD,得.∵,∴.∵M是AD的中点,∴.由(1)知,平面ABD,∴三棱锥C-ABM的高,因此三棱锥的体积.解法二:(1)同解法一.(2)由平面BCD知,平面ABD平面BCD,又平面ABD平面BCD=BD,如图,过点M作交BD于点N.则平面BCD,且,又,∴.∴三棱锥的体积. 考点:垂直关系,几何体的体积,“间接法”、“等积法”.20、【答案】(1)该城市人均GDP达到了中等偏上收入国家标准.(2). 【解析】试题分析:(1)设该城市人口总数为a,通过计算该城市人均GDP由,作出结论.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:共10个,设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:,共3个,由古典概型概率的计算即得.试题解析:(1)设该城市人口总数为a,则该城市人均GDP为因为,所以该城市人均GDP达到了中等偏上收入国家标准.(2)“从5个行政区中随机抽取2个”的所有的基本事件是:共10个,设事件“抽到的2个行政区人均GDP都达到中等偏上收入国家标准”为M,则事件M包含的基本事件是:,共3个,所以所求概率为.考点:频率分布表,古典概型.21、【答案】(1).(2)当点P在曲线上运动时,线段AB的长度不变,证明见解析.【解析】试题分析:(1)思路一:设为曲线上任意一点,依题意可知曲线是以点为焦点,直线为准线的抛物线,得到曲线的方程为.思路二:设为曲线上任意一点,由,化简即得.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,得,应用导数的几何意义,确定切线的斜率,进一步得切线的方程为. 由,得.由,得.根据,得圆心,半径,由弦长,半径及圆心到直线的距离之关系,确定.试题解析:解法一:(1)设为曲线上任意一点,依题意,点S到的距离与它到直线的距离相等,所以曲线是以点为焦点,直线为准线的抛物线,所以曲线的方程为.(2)当点P在曲线上运动时,线段AB的长度不变,证明如下:由(1)知抛物线的方程为,设,则,由,得切线的斜率,所以切线的方程为,即.由,得.由,得.又,所以圆心,半径,. 所以点P在曲线上运动时,线段AB的长度不变.解法二:(1)设为曲线上任意一点,则,依题意,点只能在直线的上方,所以,所以,化简得,曲线的方程为.(2)同解法一.考点:抛物线的定义,导数的几何意义,直线方程,直线与抛物线的位置关系,直线与圆的位置关系.22、【答案】(1)当时,有极小值,无极大值.(2)见解析.(3)见解析.【解析】试题分析:(1)由,得.从而.令,得驻点.讨论可知:当时,,单调递减;当时,,单调递增.当时,有极小值,无极大值.(2)令,则.根据,知在R上单调递增,又,当时,由,即得.(3)思路一:对任意给定的正数c,取,根据.得到当时,.思路二:令,转化得到只需成立. 分,,应用导数研究的单调性. 思路三:就①,②,加以讨论.试题解析:解法一:(1)由,得.又,得.所以,.令,得.当时,,单调递减;当时,,单调递增.所以当时,有极小值,且极小值为,无极大值.(2)令,则.由(1)得,,即. 所以在R上单调递增,又,所以当时,,即.(3)对任意给定的正数c,取,由(2)知,当时,.所以当时,,即.因此,对任意给定的正数c,总存在,当时,恒有. 解法二:(1)同解法一.(2)同解法一.(3)令,要使不等式成立,只要成立.而要使成立,则只需,即成立.①若,则,易知当时,成立. 即对任意,取,当时,恒有.②若,令,则,所以当时,,在内单调递增.取,,易知,,所以.因此对任意,取,当时,恒有.综上,对任意给定的正数c,总存在,当时,恒有. 解法三:(1)同解法一.(2)同解法一.(3)①若,取,由(2)的证明过程知,,所以当时,有,即.②若,令,则,令得.当时,,单调递增.取,,易知,又在内单调递增,所以当时,恒有,即.综上,对任意给定的正数c,总存在,当时,恒有.考点:导数的计算及导数的应用,全称量词与存在量词,转化与化归思想,分类讨论思想.。
2014年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
2014年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=( )A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则( )A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=( )A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=( )A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是( )A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为( )A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=( )A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=( )A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是( )A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2) 二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为 .15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是 .16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN= m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C 交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2014年高考全国卷1文综试题及答案(word版)
2014年普通高等学校招生全国统一考试(新课标I)文综太阳能光热电站(图1)通过数以十万计的反光版聚焦太阳能,给高塔顶端的锅炉加热,产生蒸汽,驱动发电机发电。
据此完成1—3题.1.我国下列地区中,资源条件最适宜建太阳能光热电站的是:A。
柴达木盆地 B。
黄土高原 C。
山东半岛 D。
东南丘陵2。
太阳能光热电站可能会:A.提升地表温度B.干扰飞机电子导航C.误伤途径飞鸟 D。
提高作物产量3.若在北回归线上建一太阳能光热电站,其高塔正午影长于塔高的比值为P,则A。
春、秋分日P=0 B。
夏至日P>0 C。
全年日P〈1 D。
冬至日P〉120世纪50年代,在外国专家的指导下,我国修建了兰新铁路。
兰新铁路在新疆吐鲁番附近的线路如图2所示。
读图2,完成4-6题。
4、推测外国专家在图示区域铁路选线时考虑的主导因素是A、河流B、聚落 C耕地 D地形5、后来,我国专家认为,兰新铁路在该区域的选线不合理,理由可能是A、线路过长 B距城镇过远C、易受洪水威胁D、工程量过大6、50多年来,兰新铁路并没有改变该区域城镇的分布,是因为该区域的城镇分布受控于A、地形分布B、绿洲分布C、河流分布 D沙漠分布人类活动导致大气中含氮化合物浓度增加,产生沉降,是新出现的令人担忧的全球变化问题.一科研小组选择受人类干扰较小的某地,实验模拟大气氮沉降初期对植被的影响。
实验地植被以灌木植物为主,伴生多年生草本植物。
表1数据为实验地以2009年为基数,2010—2013年实验中植被的变化值(测量时间为每年9月30日).据此完成7-9题.7、实验期间植被变化表现为①生物量提高②生物量降低③植株密度改变④植被分布改变A、①③B、②③C、①④D、②④8、实验期间大气氮沉降导致灌木、草本两类植物出现此消彼长竞争的是A植株数量 B、总生物量 C、地上生物量 D、地下生物量9.根据实验结果推测,随着大气氮沉降的持续,植被未来变化趋势是A.灌木植物和草本植物繁茂 B. 灌木植物和草本植物萎缩C.灌木植物茂盛、草本植物萎缩 D.灌木植物萎缩、草本植物茂盛图3显示某国移民人数及其占总人口比例的变化。
2014年高考数学(文)真题分类汇编:函数与导数
第二单元函数与导数1.[2014·北京卷2] 下列函数中,定义域是R且为增函数的是() A.y=e-x B.y=x3 C.y=ln x D.y=|x|【答案】B2.[2014·山东卷3] 函数f(x)=1log2x-1的定义域为()A.(0,2) B.(0,2] C.(2,+∞) D.[2,+∞)【答案】C3.[2014·全国卷5] 函数y=ln(3x+1)(x>-1)的反函数是()A.y=(1-e x)3(x>-1) B.y=(e x-1)3(x>-1)C.y=(1-e x)3(x∈R) D.y=(e x-1)3(x∈R)【答案】D4.[2014·北京卷2] 下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x3 C.y=ln x D.y=|x|【答案】B5.[2014·湖南卷4] 下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1x2B.f(x)=x2+1 C.f(x)=x3D.f(x)=2-x【答案】A6.[2014·重庆卷4] 下列函数为偶函数的是()A.f(x)=x-1 B.f(x)=x2+x C.f(x)=2x-2-x D.f(x)=2x+2-x 【答案】D7.[2014·广东卷5] 下列函数为奇函数的是()A.2x-12x B.x3sin x C.2cos x+1 D.x2+2x【答案】A8.[2014·湖北卷9] 已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} 【答案】D9.[2014·山东卷9] 对于函数f(x),若存在常数a≠0,使得x取定义域内的每一个值,都有f(x)=f(2a-x),则称f(x)为准偶函数,下列函数中是准偶函数的是() A.f(x)=x B.f(x)=x2C.f(x)=tan x D.f(x)=cos(x+1)【答案】D10.[2014·江西卷10] 在同一直角坐标系中,函数y =ax 2-x +a2与y =a 2x 3-2ax 2+x +a (a ∈R )的图像不可能是( )【答案】B 11.[2014·全国卷] 奇函数f (x )的定义域为R .若f (x +2)为偶函数,且f (1)=1,则f (8)+f (9)=( )A .-2B .-1C .0D .1 【答案】D12.[2014·全国新课标卷Ⅰ] 设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数 【答案】C12.[2014·湖南卷] 若0<x 1<x 2<1,则( )A .e x 2-e x 1>ln x 2-ln x 1B .e x 2-e x 1<ln x 2-ln x 1C .x 2e x 1>x 1e x 2D .x 2e x 1<x 1e x 2 【答案】C12.[2014·辽宁卷] 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3] B.⎣⎡⎦⎤-6,-98 C .[-6,-2] D .[-4,-3] 【答案】C13.[2014·安徽卷] 设a =log 37,b =21.1,c =0.83.1,则( ) A .b <a <c B .c <a <b C .c <b <a D .a <c <b 【答案】B14.[2014·福建卷] 若函数y =log a x (a >0,且a ≠1)的图像如图1-2所示,则下列函数图像正确的是( )图1-2A B C D 【答案】B15.[2014·辽宁卷] 已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b 【答案】D16.[2014·山东卷] 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A .x 3>y 3 B .sin x >sin y C .ln(x 2+1)>ln(y 2+1) D.1x 2+1>1y 2+1【答案】A17.[2014·陕西卷] 下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝⎛⎭⎫12x【答案】B 18.[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B19.[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 【答案】B20.[2014·天津卷] 设a =log 2π,b =log 12π,c =π-2,则( )A .a >b >cB .b >a >cC .a >c >bD .c >b >a 【答案】C21. [2014·浙江卷] 在同一直角坐标系中,函数f (x )=x a (x >0),g (x )=log a x 的图像可能是( )A BC D 【答案】D22.[2014·山东卷] 已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图像如图1-1所示,则下列结论成立的是( )图1-1A .a >1,x >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1 【答案】D 23.[2014·四川卷] 已知b >0,log 5b =a ,lg b =c ,5d =10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c 【答案】B24.[2014·重庆卷] 若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A .6+2 3 B .7+23 C .6+4 3 D .7+4 3 【答案】D25.[2014·北京卷] 已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )的零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞) 【答案】C26.[2014·浙江卷] 已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9【答案】C27.[2014·重庆卷] 已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 【答案】A28.[2014·湖北卷] 已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3} 【答案】D29.[2014·江西卷] 已知函数f (x )=⎩⎪⎨⎪⎧a ·2x ,x ≥0,2-x ,x <0(a ∈R ).若f [f (-1)]=1,则a =( )A.14B.12 C .1 D .2 【答案】A30.[2014·北京卷] 加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),图1-2记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )图1-2A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟 【答案】B31.[2014·陕西卷] 如图1-2所示,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )图1-2A .y =12x 3-12x 2-xB .y =12x 3+12x 2-3xC .y =14x 3-xD .y =14x 3+12x 2-2x【答案】A32.[2014·新课标全国卷Ⅱ] 若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞) 【答案】D33.[2014·全国新课标卷Ⅰ] 已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1) 【答案】C34.[2014·湖南卷] 若f (x )=ln(e 3x +1)+ax 是偶函数,则a =________.【答案】-3235.[2014·安徽卷] 若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=______. 【答案】516、36.[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.【答案】(-∞,8]37.[2014·新课标全国卷Ⅱ] 偶函数y =f (x )的图像关于直线x =2对称,f (3)=3,则f (-1)=________.【答案】338.[2014·四川卷] 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 【答案】139.[2014·天津卷] 函数f (x )=lg x 2的单调递减区间是________. 【答案】(-∞,0)40.[2014·陕西卷] 已知4a =2,lg x =a ,则x =________.【答案】1041.[2014·安徽卷] ⎝⎛⎭⎫1681-34+log 354+log 345=________.【答案】27842.[2014·江苏卷] 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.【答案】⎝⎛⎭⎫-22,043.[2014·全国卷] 函数y =cos 2x +2sin x 的最大值为________. 【答案】3244.[2014·广东卷] 等比数列{a n }的各项均为正数,且a 1a 5=4,则log 2a 1+log 2a 2+log 2a 3+log 2a 4+log 2a 5=________.【答案】5 15.[2014·湖北卷] 如图1-4所示,函数y =f (x )的图像由两条射线和三条线段组成. 若∀x ∈R ,f (x )>f (x -1),则正实数a 的取值范围为________.【答案】⎝⎛⎭⎫0,1645.[2014·江苏卷] 已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【答案】⎝⎛⎭⎫0,1246.[2014·全国新课标卷Ⅰ] 设函数f (x )=⎩⎪⎨⎪⎧e -,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.【答案】(-∞,8]47.[2014·福建卷] 函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是________.【答案】248.[2014·浙江卷] 设函数f (x )=⎩⎪⎨⎪⎧x 2+2x +2,x ≤0,-x 2, x >0.若f (f (a ))=2,则a =________.【答案】249.[2014·天津卷] 已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0.若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.【答案】(1,2)50.[2014·广东卷] 曲线y =-5e +3在点(0,-2)处的切线方程为________. 【答案】5x +y +2=051.[2014·江苏卷] 在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.【答案】-352.[2014·江西卷] 若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P 的坐标是________.【答案】(e ,e) [解析] 由题意知,y ′=ln x +1,直线斜率为2.由导数的几何意义知,令ln x +1=2,得x =e ,所以y =eln e =e ,所以P (e ,e).53.[2014·安徽卷] 若直线l 与曲线C 满足下列两个条件:(i)直线l 在点P (x 0,y 0)处与曲线C 相切;(ii)曲线C 在点P 附近位于直线l 的两侧.则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号). ①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3;②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2; ③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x ; ④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x ; ⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x . 【答案】①③④54.[2014·四川卷] 以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数φ(x )组成的集合:对于函数φ(x ),存在一个正数M ,使得函数φ(x )的值域包含于区间[-M ,M ].例如,当φ1(x )=x 3,φ2(x )=sin x 时,φ1(x )∈A ,φ2(x )∈B .现有如下命题:①设函数f (x )的定义域为D ,则“f (x )∈A ”的充要条件是“∀b ∈R ,∃a ∈D ,f (a )=b ”; ②若函数f (x )∈B ,则f (x )有最大值和最小值;③若函数f (x ),g (x )的定义域相同,且f (x )∈A ,g (x )∈B ,则f (x )+g (x )∈/B ;④若函数f (x )=a ln(x +2)+xx 2+1(x >-2,a ∈R )有最大值,则f (x )∈B .其中的真命题有________.(写出所有真命题的序号) 【答案】①③④55.[2014·江西卷] 将连续正整数1,2,…,n (n ∈N *)从小到大排列构成一个数123…n ,F (n )为这个数的位数(如n =12时,此数为123456789101112,共有15个数字,F (12)=15),现从这个数中随机取一个数字,p (n )为恰好取到0的概率.(1)求p (100);(2)当n ≤2014时,求F (n )的表达式;(3)令g (n )为这个数中数字0的个数,f (n )为这个数中数字9的个数,h (n )=f (n )-g (n ),S ={n |h (n )=1,n ≤100,n ∈N *},求当n ∈S 时p (n )的最大值.解:(1)当n =100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p (100)=11192.(2)F (n )=⎩⎪⎨⎪⎧n ,1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1107,1000≤n ≤2014.(3)当n =b (1≤b ≤9,b ∈N *),g (n )=0;当n =10k +b (1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g (n )=k ; 当n =100时,g (n )=11,即g (n )= ⎩⎪⎨⎪⎧0,1≤n ≤9,k ,n =10k +b ,11,n =100.1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N , 同理有f (n )=⎩⎪⎨⎪⎧0,1≤n ≤8,k ,n =10k +b -1,1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,n -80,89≤n ≤98,20,n =99,100.由h (n )=f (n )-g (n )=1,可知n =9,19,29,39,49,59,69,79,89,90,所以当n ≤100时,S ={9,19,29,39,49,59,69,79,89,90}. 当n =9时,p (9)=0.当n =90时,p (90)=g (90)F (90)=9171=119.当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )=g (n )F (n )=k 2n -9=k 20k +9,由y =k20k +9关于k单调递增,故当n =10k +9(1≤k ≤8,k ∈N *)时,p (n )的最大值为p (89)=8169.又8169<119,所以当n ∈S 时,p (n )的最大值为119.56.[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13.(3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0, 故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.57.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ;当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有 g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.58.[2014·江苏卷] 已知函数f (x )=e x +e -x ,其中e 是自然对数的底数. (1)证明:f (x )是R 上的偶函数.(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围.(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.19.解: (1)证明:因为对任意 x ∈R ,都有f (-x )=e -x +e -(-x )=e -x +e x =f (x ), 所以f (x )是R 上的偶函数.(2)由条件知 m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令 t =e x (x >0),则 t >1,所以 m ≤-t -1t 2-t +1=-1t -1+1t -1+ 1对任意 t >1成立.因为t -1+1t -1+ 1≥2(t -1)·1t - 1+1=3, 所以 -1t -1+1t -1+ 1≥-13,当且仅当 t =2, 即x = ln 2时等号成立. 因此实数 m 的取值范围是⎝⎛⎦⎤-∞,-13. (3)令函数 g (x )=e x +1e x - a (-x 3+3x ),则g ′ (x ) =e x -1ex +3a (x 2-1).当 x ≥1时,e x -1e x >0,x 2-1≥0.又a >0,故 g ′(x )>0,所以g (x )是[1,+∞)上的单调递增函数, 因此g (x )在[1,+∞)上的最小值是 g (1)= e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+ 3x 0 )<0 成立,当且仅当最小值g (1)<0,故 e +e -1-2a <0, 即 a >e +e -12.令函数h (x ) = x -(e -1)ln x -1,则 h ′(x )=1-e -1x . 令 h ′(x )=0, 得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调递减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调递增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时, h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. 故①当a ∈⎝⎛⎭⎫e +e-12,e ⊆(1,e)时, h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.59.[2014·全国卷] 函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论f (x )的单调性;(2)若f (x )在区间(1,2)是增函数,求a 的取值范围.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=0的判别式Δ=36(1-a ).(i)若a ≥1,则f ′(x )≥0,且f ′(x )=0当且仅当a =1,x =-1时成立.故此时f (x )在R 上是增函数.(ii)由于a ≠0,故当a <1时,f ′(x )=0有两个根;x 1=-1+1-a a ,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)是减函数;当x ∈(x 1,x 2)时f ′(x )>0,故f (x )在(x 1,x 2)是增函数.(2)当a >0,x >0时,f ′(x )=3ax 2+6x +3>0,故当a >0时,f (x )在区间(1,2)是增函数.当a <0时,f (x )在区间(1,2)是增函数当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎡⎭⎫-54,0∪(0,+∞).60.[2014·陕西卷] 设函数f (x )=ln x +mx ,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值;(2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.解:(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -e x 2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减;当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增. ∴x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0),设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图像(如图所示),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立.(*) 设h (x )=f (x )-x =ln x +mx -x (x >0),∴(*)等价于h (x )在(0,+∞)上单调递减. 由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝⎛⎭⎫x -122+14(x >0)恒成立, ∴m ≥14⎝⎛⎭⎫对m =14,h ′(x )=0仅在x =12时成立, ∴m 的取值范围是⎣⎡⎭⎫14,+∞.61.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 20.解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.62.[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3, 所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 63.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减;当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .所以当x >x 0时,e x >x 2>1cx ,即x <c e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法二:(1)同方法一. (2)同方法一.(3)证明:令k =1c (k >0),要使不等式x <c e x 成立,只要e x >kx 成立.而要使e x >kx 成立,则只需要x >ln(kx ), 即x >ln x +ln k 成立.①若0<k ≤1,则ln k ≤0,易知当x >0时,x >ln x ≥ln x +ln k 成立. 即对任意c ∈[1,+∞),取x 0=0, 当x ∈(x 0,+∞)时,恒有x <c e x .②若k >1,令h (x )=x -ln x -ln k ,则h ′(x )=1-1x =x -1x ,所以当x >1时,h ′(x )>0,h (x )在(1,+∞)上单调递增.取x 0=4k ,h (x 0)=4k -ln(4k )-ln k =2(k -ln k )+2(k -ln 2), 易知k >ln k ,k >ln 2,所以h (x 0)>0.因此对任意c ∈(0,1),取x 0=4c ,当x ∈(x 0,+∞)时,恒有x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x . 方法三:(1)同方法一. (2)同方法一.(3)证明:①若c ≥1,取x 0=0, 由(2)的证明过程知,e x >2x ,所以当x ∈(x 0,+∞)时,有c e x ≥e x >2x >x , 即x <c e x .②若0<c <1,令h (x )=c e x -x ,则h ′(x )=c e x -1. 令h ′(x )=0得x =ln 1c.当x >ln 1c时,h ′(x )>0,h (x )单调递增.取x 0=2ln 2c,则h (x 0)=c e2ln 2c -2ln 2c=2⎝⎛⎭⎫2c -ln 2c , 易知2c -ln 2c>0,又h (x )在(x 0,+∞)内单调递增,所以当x ∈(x 0,+∞)时,恒有h (x )>h (x 0)>0, 即x <c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x <c e x .64.[2014·江苏卷] 已知函数f 0(x )=sin xx (x >0),设f n (x )为f n -1(x )的导数,n ∈N *.(1)求2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N *,等式⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=22都成立. 解: (1)由已知,得f 1(x )=f ′0(x )=⎝⎛⎭⎫sin x x ′=cos x x -sin xx 2, 于是f 2(x )=f 1′(x )=⎝⎛⎭⎫cos x x ′-⎝⎛⎭⎫sin x x 2′= -sin x x -2cos x x 2+2sin xx3, 所以f 1⎝⎛⎭⎫π2=-4π2,f 2⎝⎛⎭⎫π2=-2π+16π3. 故2f 1⎝⎛⎭⎫π2+π2f 2⎝⎛⎭⎫π2=-1.(2)证明:由已知得,xf 0(x )=sin x ,等式两边分别对x 求导,得f 0(x )+xf 0′(x )=cos x , 即f 0(x )+xf 1(x )=cos x =sin ⎝⎛⎫x +π2. 类似可得2f 1(x )+xf 2(x )=-sin x =sin(x +π), 3f 2(x )+xf 3(x )=-cos x =sin ⎝⎛⎭⎫x +3π2, 4f 3(x )+xf 4(x )=sin x =sin(x +2π).下面用数学归纳法证明等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立,即kf k -1(x )+xf k (x )=sin ⎝⎛⎭⎫x +k π2. 因为[kf k -1(x )+xf k (x )]′=kf k -1′(x )+f k (x )+xf k ′(x )=(k +1)f k (x )+xf k +1(x ),⎣⎡⎦⎤sin ⎝⎛⎭⎫x +k π2′=cos ⎝⎛⎭⎫x +k π2·⎝⎛⎭⎫x +k π2′=sin ⎣⎡⎦⎤x +(k +1)π2,所以(k +1)f k (x )+xf k +1(x )=sin ⎣⎡⎦⎤x +(k +1)π2, 因此当n =k +1时,等式也成立.综合(i)(ii)可知,等式nf n -1(x )+xf n (x )=sin ⎝⎛⎭⎫x +n π2对所有的n ∈N *都成立. 令x =π4,可得nf n -1⎝⎛⎭⎫π4+π4f n⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+n π2(n ∈N *), 所以⎪⎪⎪⎪nf n -1⎝⎛⎭⎫π4+π4f n ⎝⎛⎭⎫π4=(n ∈N *).65.[2014·全国新课标卷Ⅰ] 设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1,f (1))处的切线斜率为0. (1)求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围. 解:(1)f ′(x )=ax +(1-a )x -b .由题设知f ′(1)=0,解得b =1, (2)f (x )的定义域为(0,+∞), 由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=ax +(1-a )x -1=1-a x ⎝⎛⎭⎫x -a 1-a (x -1).(i)若a ≤12,则a 1-a ≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)上单调递增.所以,存在x 0≥1,使得f (x 0)<a 1-a 的充要条件为f (1)<a a -1,即1-a 2-1<aa -1,解得-2-1<a <2-1.(ii)若12<a <1,则a 1-a>1,故当x ∈⎝⎛⎭⎫1,a1-a 时,f ′(x )<0;当x ∈⎝⎛⎭⎫a1-a ,+∞时,f ′(x )>0.f (x )在⎝⎛⎭⎫1,a 1-a 上单调递减,在⎝⎛⎭⎫a1-a ,+∞上单调递增.所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝⎛⎭⎫a 1-a <aa -1. 而f ⎝⎛⎭⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>aa -1,所以不合题意.(iii)若a >1, 则f (1)=1-a 2-1=-a -12<a a -1,符合题意.综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).66.[2014·山东卷] 设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.解:(1)由题意知,当a =0时,f (x )=x -1x +1,x ∈(0,+∞).此时f ′(x )=2(x +1)2,所以f ′(1)=12. 又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0.(2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增. 当a <0时,令g (x )=ax 2+(2a +2)x +a , 由于Δ=(2a +2)2-4a 2=4(2a +1), ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减. ③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .因为x 1=a +1-2a +1-a=a 2+2a +1-2a +1-a>0,所以,x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得,当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.67.[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).(1)证明:数列{b n }为等比数列;(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列{a n b 2n }的前n 项和S n .解:(1)证明:由已知得,b n =2a n >0,当n ≥1时,b n +1b n=2a n +1-a n =2d .故数列{b n }是首项为2a 1,公比为2d 的等比数列.(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),其在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2,所以d =a 2-a 1=1,a n =n ,b n =2n ,a n b 2n =n ·4n .于是,S n =1×4+2×42+3×43+…+(n -1)×4n -1+n ×4n ,4S n =1×42+2×43+…+(n -1)×4n +n ×4n +1,因此,S n -4S n =4+42+…+4n -n ·4n +1=4n +1-43-n ·4n +1=(1-3n )4n +1-43,所以,S n =(3n -1)4n +1+49.68.[2014·天津卷] 已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1,求a 的取值范围.解:(1)由已知,有f ′(x )=2x -2ax 2(a >0).令f ′(x )=0,解得x =0或x =1a.所以,f (x )的单调递增区间是⎝⎭⎫0,1a ;单调递减区间是(-∞,0),⎝⎛⎭1a ,+∞. 当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝⎛⎭⎫1a =13a 2. (2)由f (0)=f ⎝⎛⎭⎫32a =0及(1)知,当x ∈⎝⎛⎭⎫0,32a 时,f (x )>0;当x ∈⎝⎛⎭⎫32a ,+∞时,f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B ,显然0∉B .下面分三种情况讨论:(i)当32a >2,即0<a <34时,由f ⎝⎛⎭⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (ii)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0).由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B ,所以A ⊆B .(iii)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减,故B =⎝⎛⎭⎫1f (1),0,A =(-∞,f (2)),所以A 不是B 的子集.综上,a 的取值范围是⎣⎡⎦⎤34,32.69.[2014·四川卷] 已知函数f (x )=e x -ax 2-bx -1,其中a ,b ∈R ,e =2.718 28…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1.21.解:(1)由f (x )=e x -ax 2-bx -1,得g (x )=f ′(x )=e x -2ax -b ,所以g ′(x )=e x -2a . 当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增,因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1), 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增, 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b .综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)证明:设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知, f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减. 则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2.故g (x )在区间(0,1)内至少有两个零点.由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点;当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点,都不合题意.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )),x 2∈(ln(2a ),1),必有 g (0)=1-b >0,g (1)=e -2a -b >0. 由f (1)=0有a +b =e -1<2,有g (0)=a -e +2>0,g (1)=1-a >0. 解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.70.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. 解: (1)f (x )的定义域为(-∞,+∞), f ′(x )=1+a -2x -3x 2.令f ′(x )=0,得x 1=-1-4+3a3,x 2=-1+4+3a 3,且x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,-1-4+3a 3和 ⎝ ⎛⎭⎪⎫-1+4+3a 3,+∞内单调递减,在⎝⎛⎭⎪⎫-1-4+3a 3,-1+4+3a 3内单调递增.(2)因为a >0,所以x 1<0,x 2>0,①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增,所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1,由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减,因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值.71.[2014·北京卷] 已知函数f (x )=2x 3-3x . (1)求f (x )在区间[-2,1]上的最大值;(2)若过点P (1,t )存在3条直线与曲线y =f (x )相切,求t 的取值范围;(3)问过点A (-1,2),B (2,10),C (0,2)分别存在几条直线与曲线y =f (x )相切?(只需写出结论)解:(1)由f (x )=2x 3-3x 得f ′(x )=6x 2-3.令f ′(x )=0,得x =-22或x =22. 因为f (-2)=-10,f ⎝⎛⎭⎫-22=2,f ⎝⎛⎭⎫22=-2,f (1)=-1, 所以f (x )在区间[-2,1]上的最大值为f ⎝⎛⎭⎫-22= 2. (2)设过点P (1,t )的直线与曲线y =f (x )相切于点(x 0,y 0),则y 0=2x 30-3x 0,且切线斜率为k =6x 20-3,所以切线方程为y -y 0=(6x 20-3)(x -x 0), 因此t -y 0=(6x 20-3)(1-x 0),整理得4x 30-6x 20+t +3=0, 设g (x )=4x 3-6x 2+t +3,则“过点P (1,t )存在3条直线与曲线y =f (x )相切”等价于“g (x )有3个不同零点”. g ′(x )=12x 2-12x =12x (x -1).当x 变化时,g (x )与g ′(x )的变化情况如下:所以,g (0)=t +3是g (x )的极大值,g (1)=t +1是g (x )的极小值.结合图像知,当g (x )有3个不同零点时,有⎩⎪⎨⎪⎧g (0)=t +3>0,g (1)=t +1-0,解得-3<t <-1.故当过点P (1,t )存在3条直线与曲线y =f (x )相切时,t 的取值范围是(-3,-1).(3)过点A (-1,2)存在3条直线与曲线y =f (x )相切; 过点B (2,10)存在2条直线与曲线y =f (x )相切; 过点C (0,2)存在1条直线与曲线y =f (x )相切. 72.[2014·福建卷] 已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x ;(3)证明:对任意给定的正数c ,总存在x 0,使得当x ∈(x 0,+∞)时,恒有x <c e x . 解:方法一:(1)由f (x )=e x -ax , 得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增. 所以当x =ln 2时,f (x )有极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4, f (x )无极大值.(2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x . 由(1)得,g ′(x )=f (x )≥f (ln 2)=2-ln 4>0, 即g ′(x )>0.所以g (x )在R 上单调递增,又g (0)=1>0, 所以当x >0时,g (x )>g (0)>0,即x 2<e x .(3)证明:对任意给定的正数c ,取x 0=1c ,由(2)知,当x >0时,x 2<e x .。
2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)
2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
2014年普通高等学校招生全国统一考试(新课标全国卷)1
2014年普通高等学校招生全国统一考试(新课标全国卷)文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在本试卷和答题卡相应位置。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð A .{}1,2 B .{}3,4,5 C .{}1,2,3,4,5D .∅2.复数21ii++ (i 为虚数单位)在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知a 是第二象限角,5sin ,cos 13a a ==则A .1213-B .513- C .513 D .12134.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≤+012y x y x ,则y x z +=2的最大值和最小值分别为A .4和3B .4和2C .3和2D .2和05.某三棱锥的三视图如右图所示,则该三棱锥的体积是A .16B .13C .23D .1(第5题图)6.双曲线122=-y x 的顶点到其渐近线的距离等于A .21 B .22 C .1 D .27.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是A .1B .2C .4D .78.设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为A .直角三角形B .锐角三角形C .钝角三角形D .不确定9.设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 (D )45 10.已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则A .4-B .3-C .-2D .-111.函数)1ln()(2+=x x f 的图象大致是A .B .C .D .侧视图正视图图 112已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有A .10个B .9个C .8个D .1个第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. 13.若2、a 、b 、c 、10成等差数列,则c a -=____________14圆心在原点上与直线20x y +-=相切的圆的方程为15.从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________. 16.已知正四棱锥O-ABCD 的体积为,底面边长为,则以O 为球心,OA 为半径的球的表面积为________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{n a }的前n 项和为S n ,且S n =22n n +,n ∈N + (1)求数列{n a }的通项公式;(2)已知数列{b n }的通项公式为2n n b =,n n n c a b =,求数列{n c }的前n 项和T n .18.(本小题满分12分) 某校从高一年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[)[)[]40,50,50,60,,90,100⋅⋅⋅,得到如图所示的频率分布直方图.(1)若该校高一年级共有学生1000人,试估计成绩不低于60分的人数;(2)为了帮助学生提高数学成绩,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[]90,100中选两位同学,共同帮助[)40,50中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙恰好被安排在同一小组的概率.19.(本小题满分12分)已知正三棱柱111ABC A B C -中,2AB =,1AA =D 为AC 的中点,E 点在线段1AA 上(1)当1:1:2AE EA =时,求证1DE BC ⊥;(2)当E 点为1AA 的中点时,求三棱锥1B C DE -的体积.20.(本小题满分12分)椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1(0)F c -,,2(0)F c ,.已知M 在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;(2)设与MO (O 为坐标原点)垂直的直线l 交椭圆于,A B (,A B 不重合)两点,且直线l 与x 轴相交于点(1,0)N -,求OB OA ⋅的值.21.(本小题满分12分)已知函数2()(1)x f x ax x e =+-,其中e 是自然对数的底数,a R ∈.(1)若1=a ,求曲线)(x f 在点))1(,1(f 处的切线方程; (2)若021<<-a ,求()f x 的单调区间.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号. 22.(本小题满分10分)【选修4-1:几何证明选讲】23.(本小题满分10分)【选修4-4:坐标系与参数方程】已知曲线4cos (t )3sin tt -+⎧⎨+⎩为参数 28cos :(3sin x C y θθθ=⎧⎨=⎩为参数).(1)把12,C C 的参数方程化为普通方程;(2)求1C 上的动点M 到直线32(2x tt y t =+⎧⎨=-+⎩为参数)距离的最小值.24.(本小题满分10分)【选修4-5:不等式选讲】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年普通高等学校招生全国统一考试数学(文科)(课标I )一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M={x|-1<x <3},N={x|-2<x <1}则M ∩N=( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-2、若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α3、设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2 4、已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25 D. 1 5、设函数)(),(x g x f 的定义域都为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数6、设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. ADB.AD 21 C. BC D. BC 217、在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③8、如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱9、执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( ) A.203 B.72 C.165 D.15810、已知抛物线C :x y =2的焦点为F,A(x 0,y 0)是C 上一点,x F A 045=,则x 0=( ) A. 1 B. 2 C. 4 D. 811、设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =A .-5 B. 3C .-5或3 D. 5或-312、已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A.()2,+∞B.()1,+∞C.(),2-∞-D.(),1-∞-第II 卷二、填空题:本大题共4小题,每小题5分13、将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_14、甲、乙、丙三位同学被问到是否去过A 、B 、C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为____ ____.15、设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是__ _____.16、如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =_ ___m .三、解答题:解答应写出文字说明,证明过程或演算步骤.17、(本小题满分12分)已知{}n a是递增的等差数列,2a,4a是方程2560x x-+=的根。
(I)求{}n a的通项公式;(II)求数列2n na⎧⎫⎨⎬⎩⎭的前n项和.18、(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分[75,85) [85,95) [95,105) [105,115) [115,125)组频数 6 26 38 22 8(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19、(本题满分12分)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,CB 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A A B C -的高.已知点)2,2(P ,圆C :0822=-+y y x ,过点P 的动直线l 与圆C 交于B A ,两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OM OP =时,求l 的方程及POM ∆的面积设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b;(2)若存在01,x ≥使得()01a f x a <-,求a 的取值范围。
请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.22、(本小题满分10分)选修4-1,几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(I )证明:D E ∠=∠;(II )设AD 不是O 的直径,AD 的中点为M ,且M B M C =,证明:ABC ∆为等边三角形.23、(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线194:22=+y x C ,直线⎩⎨⎧-=+=t y t x l 222:(t 为参数) (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求PA 的最大值与最小值.24、(本小题满分10分)选修4-5;不等式选讲若,0,0>>b a 且ab ba =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由.参考答案一、选择题1-5. BABDA 6-10. CCBDC 11-12. BA 二、填空题13. 2314. A 15. (,8]-∞ 16. 150三、解答题 17. 解:(1)方程2560x x -+=的两个根为2,3,由题意得因为242,3a a ==设数列{}n a 的公差为d ,则422a a d -=,故12d =,从而132a = 所以{}n a 的通项公式为112n a n =+ (2)设{}2n n a 的前n 项和为n S ,由(1)知1222n n n a n ++=,则 2313412...2222n n n n n S +++=++++ ①341213412...22222n n n n n S ++++=++++ ② ①-②得 3412131112...242222n n n n n S ++++=++++- 123112(1)4422n n n -++=+-- 所以,1422n n n S ++=-18.解:(1)…………………………4分(2)质量指标值的样本平均数为806902610038110221208100100x ⨯+⨯+⨯+⨯+⨯==质量指标值的样本方差为所以,这种产品质量指标的平均数估计值为100,方差的估计值为104.……………………………………10分(3)依题意38228100++= 68% < 80%所以该企业生产的这种产品不符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定。
……………………………………12分 19.(1)证明:连接1BC ,则O 为1B C 与1BC 的交点,因为侧面11BB C C 为菱形,所以11B C BC ⊥又AO ⊥平面11BB C C ,所以1B C AO ⊥,故1B C ABO ⊥平面 由于A B⊂平面,故1B C A B ⊥……………………………6分(2)解:做OD BC ⊥,垂足为D ,连接AD ,做OH AD ⊥,垂足为H 。
由于,BC AO BC OD ⊥⊥,故BC AOD ⊥平面,所以OH BC ⊥ 又OH AD ⊥,所以OH ABC ⊥平面因为160CBB ∠= ,所以1CBB ∆为等边三角形,又1BC =,可得34OD = 由于1AC AB ⊥,所以11122AO B C == 由OH AD OD OA ⋅=⋅,且2274AD OD OA =+=,得2114OH = 又O 为1B C 的中点,所以点1B 到平面ABC 的距离为217,故三棱柱111ABC A B C -的高为217………………………………………………………………………………12分 20.解:(1)方法一:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4,设(,)M x y ,则(,4),(2,2)CM x y MP x y =-=--, 由题设知0CM MP ⋅=,故(2)(4)(2)0x x y y -+--=,即22(1)(3)2x y -+-=由于点P 在圆C 的内部,所以M 的轨迹方程是22(1)(3)2x y -+-=……………6分 方法二:圆C 的方程可化为22(4)16x y +-=,所以,圆心为(0,4)C ,半径为4, 设(,)M x y ,设24,2AB CM y y k k x x --==-, 则24,2AB CM y y k k x x--==- 所以2412AB CM y y k k x x--==-- 化简得,222680x y x y +--+=,即22(1)(3)2x y -+-= 所以M 的轨迹方程是22(1)(3)2x y -+-=(2)方法一:由(1)可知M 的轨迹是以点(1,3)N 为圆心,2为半径的圆 由于||||OP OM =,故O 在线段PM 的垂直平分线上, 又P 在圆N 上,从而ON PM ⊥因为ON 的斜率为3,所以l 的斜率为13-,所以l 的方程为1833y x =-+又||||22OM OP ==,O 到l 的距离为410410,||55PM =,所以POM ∆的面积为165 方法二:依题意,||22OP =,因为||||22OM OP == 所以,M 也在228x y +=上所以222282680x y x y x y ⎧+=⎪⎨+--+=⎪⎩ 两式相减,得26160x y --+=,即1833y x =-+,此方程也就是l 的方程由(1)知,M 的轨迹方程是22(1)(3)2x y -+-=, 设此方程的圆心为N ,则(1,3)N 所以|198|10d +-=又22||(12)(32)2NP =-+-= 所以2410||2255MP =-=O 到l 的距离810h =所以,184101625510POM S ∆=⨯⨯=综上所述,l 的方程为1833y x =-+,POM ∆的面积为16521.(1)解:()(1)af x a x b x'=+--由题设知(1)(1)0f a a b '=+--=解得1b =……………………………………………………………………………4分(2)解:()f x 的定义域为(0,)+∞,由(1)知,21()ln 2a f x a x x x -=+-, 1()(1)1()(1)1a a af x a x x x x x a-'=+--=---(ⅰ)若12a ≤,则11aa≤-, 故当(1,)x ∈+∞时,()0,()f x f x '>在(1,)+∞单调递增, 所以,存在01x ≥,使得0()1a f x a <-的充要条件为(1)1af a <-, 即1121a a a --<-, 解得2121a --<<- (ⅱ)若112a <<,则11aa>-, 故当(1,)1ax a ∈-时,()0f x '<; 当(,)1ax a∈+∞-时,()0f x '>;所以()f x 在(1,)1a a -单调递减,在(,)1a a+∞-单调递增, 所以,存在01x ≥,使得0()1a f x a <-的充要条件为()11a af a a <--而21()ln 112(1)11a a a af a a a a a a =++>-----,所以不合题意 (ⅲ)若1a >,则11(1)1221a a af a ---=-=<- 综上所述,a 的取值范围是(21,21)(1,)---⋃+∞……………………………12分22.(本小题满分10分)(1)证明:由题设得,A ,B ,C ,D 四点共圆,所以,D CBE ∠=∠又CB CE = ,CBE E ∴∠=∠所以D E ∠=∠………………………5分(2)证明:设BC 的中点为N ,连结MN ,则由MB MC =知MN BC ⊥,故O 在直线MN 上又AD 不是O 的直径,M 为AD 的中点,故OM AD ⊥,即MN AD ⊥所以//AD BC ,故A CBE ∠=∠又CBE E ∠=∠,故A E ∠=∠,由(1)知,D E ∠=∠,所以A D ∆为等边三角形。