二元一次方程组的应用(3)

合集下载

二元一次方程组的运用3(商品销售利润问题)

二元一次方程组的运用3(商品销售利润问题)

解得:
答:存教育储蓄的钱为1500元,存一年定期的钱为500元.
5、 某工厂去年的利润(总产值—总支出) 为200万元,今年总产值比去年增加了20%, 总支出比去年减少了10%,今年的利润为780 万元,去年的总产值、总支出各是多少万元?
思路点拨:设去年的总产值为x万元,总支出为y万元,则有
去年 今年
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元, 则列方程:
答:两件商品的进价分别为600元和400元。
3.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式 在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种 是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两 种储蓄各存了多少钱? (利息所得税=利息金额×20%,教育储蓄没有利息所得税) 思路点拨: 设教育储蓄存了x元,一年定期存了y元,我们可以根据题 意可列出表格:
二元一次方程组的应用
商品销售利润问题、
银行储蓄问题、增长率问题
例1、一件商品如果按定价打九折出售可以盈利20%;如果 打八折出售可以盈利10元,问此商品的定价是多少?
分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的 定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利 (0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元, 获利(0.8x-y)元,可得方程0.8x-y=10.

二元一次方程组解应用题3

二元一次方程组解应用题3

二元一次方程组解应用题(分配调运问题)某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?解:设到甲工厂的人数为x人,到乙工厂的人数为y人题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数可列方程为:x-9=2、抽5人后到甲工厂的人数=可列方程为:(金融分配问题)小华买了10分与20分的邮票共16枚,花了2元5角,问10分与20分的邮票各买了多小?解;设共买x枚10分邮票,y枚20分邮票题中的两个相等关系:1、10分邮票的枚数+20分邮票的枚数=总枚数可列方程为:2、10分邮票的总价+ =全部邮票的总价可列方程为:10X+ =(做工分配问题)小兰在玩具工厂劳动,做4个小狗、7个小汽车用去3小时42分,做5个小狗、6个小汽车用去3小时37分,平均做1个小狗、1个小汽车各用多少时间?题中的两个相等关系:1、做4个小狗的时间+ =3时42分可列方程为:2、+做6个小汽车的时间=3时37分可列方程为:(行程问题)甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

二人的平均速度各是多少?解:设甲每小时走x千米,乙每小时走y千米题中的两个相等关系:1、同向而行:甲的路程=乙的路程+可列方程为:2、相向而行:甲的路程+ =可列方程为:(倍数问题)某市现有42万人口,计划一年后城镇人口增加0.8%,农村人口增加工厂1.1%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?解:这个市现在的城镇人口有x万人,农村人口有y万人题中的两个相等关系:1、现在城镇人口+ =现在全市总人口可列方程为:2、明年增加后的城镇人口+=明年全市总人口可列方程为:(1+0.8%)x+ =(分配问题)某幼儿园分萍果,若每人3个,则剩2个,若每人4个,则有一个少1个,问幼儿园有几个小朋友?解:设幼儿园有x个小朋友,萍果有y个题中的两个相等关系:1、萍果总数=每人分3个+可列方程为:2、萍果总数=可列方程为:(浓度分配问题)要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)1.小林沿着笔直的公路靠右匀速行走,发现每隔5分钟从背后驶过一辆101路公交车,每隔3分钟从迎面驶来一辆101路公交车.假设每个每辆101路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.3.75分钟C.4分钟D.5分钟2.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.3.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是A.B.C.D.4.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.5.小明郊游时,早上8时下车,先走平路然后登山,到山顶后又沿原路返回到下车处,正好是下午3时.若他走平路每小时行4km,爬山时每小时走3km,下山时每小时走6km,小明从上午到下午一共走的路程是()A.28 km B.14km C.7km D.答案不唯一6.甲和乙骑摩托车分别从某大道上相距6000米的A、B两地同时出发,相向而行,匀速行驶一段时间后,到达C地的甲发现摩托车出了故障,立即停下电话通知乙,乙接到电话后立即以出发时速度的43倍向C地匀速骑行,到达C地后,用5分钟修好了甲摩托车,然后乙仍以出发时速度的43倍匀速向终点A地骑行,甲仍以原来速度向B地匀速骑行,2分钟后,发现乙的一件维修工具落在了自己车上,于是立即掉头并以原速度74倍的速度匀速返回(此时乙未到达A地).在这个过程中,两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(甲与乙打、接电话及掉头时间忽略不计)则当乙到达A地时,甲离A地的距离为________米.7.某快递公司要在规定的时间内把邮件从甲地送往乙地,快递车若以50公里/小时的速度行驶,会迟到24分钟;若以75公里/小时的速度行驶,可提前24分钟.则甲,乙两地的距离为___.8.一条船顺流航行,每小时航行20千米;逆流航行,每小时航行16千米.设这条轮船在静水中的速度是x千米/时,水流速度是y千米/时,根据题意,得方程组:______.9.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差_____分钟.10.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;火车的长度为________________. 11.小亮和小花约定周六早晨在一直线公路AB上进行(A→B→A)往返跑训练,两人同时从A点出发,小亮以较快的速度匀速跑到点B休息1分钟后立即原速跑回A点,小花先匀速慢跑了5分钟后,把速度提高到原来的53倍,又经过6分钟后超越了小亮一段距离,小花又将速度降低到出发时的速度,并以这一速度匀速跑到B点看到休息的小亮,然后立即以出发时的速度跑回A点.若两人之间的距离记为y(米),小花的跑步时间记为x(分),y和x的部分函数关系如图所示,则当小亮回到A点时小花距A点________米.12.已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,则火车的速度是_____. 13.小明和父亲在一直线公路AB上进行(A→B→A)往返跑训练,两人同时从A点出发,父亲以较快的速度匀速跑到点B休息2分钟后立即原速跑回A点,小明先匀速慢跑了3分钟后,把速度提高到原来的43倍,又经过6分钟后超越了父亲一段距离,小明又将速度降低到出发时的速度,并以这一速度匀速跑到B点看到休息的父亲,然后立即以出发时的速度跑回A点,若两人之间的距离记为y(米),小明的跑步时间记为x (分),y和x的部分函数关系如图所示,则当父亲回到A点时小明距A点______米.14.甲、乙二人都以不变的速度在环形路上跑步,如果甲乙同时同地出发,反向而行,每隔2分钟相遇一次;如果甲乙同时同地出发,同向而行,每隔6分钟相遇一次.则甲每分钟跑_____圈.15.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min.已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min.16.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.17.小刚和小亮两人骑自行车,在400米环形跑道上用不变的速度行驶,当他们按相反的方向行驶时,每20秒就相遇一次;若按同一方向行驶,那么每100秒钟相遇一次,问两个人的速度各是多少?18.甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分=小时;(2)相向而行时,汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;同向而行时,汽车行驶小时的路程=拖拉机行驶小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?19.某铁路桥长1800m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用25s,整列高铁在桥上的时间是20s,试求此列高铁的车速和车长. 20.科学考察队的一辆越野车需要穿越一片沙漠,但这辆车每次装满汽油最多只能行驶600km,队长想出一个方法,在沙漠中设若干个储油点(越野车穿越出沙漠,就可以另外加油).(1)如果穿越全程大于600km的沙漠,在沙漠中设一个储油点A,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点,然后返回出发点,加满油后再开往A,到A储油点时,取出储存的所有油放在车上,再从A出发到达终点,此时,这辆越野车穿越这片沙漠的最大行程是多少km?(2)如果穿越全程大于600km的沙漠,在沙漠中设2个储油点A,B,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点;然后返回出发点S加满油,到储油点A时取出储油点A的全部油放到车上,再到达储油点B,从车中取出部分油放进B储油点;然后返回出发点S加满油,到B储油点取出储存的所有油放在车上,最后到达终点.此时,这辆越野车穿越这片沙漠的最大行程是多少km?21.某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时.原路返回时,以每小时6千米的速度下坡,又以每小时4千米的速度走平路,共用了3.5小时.问平路和坡路的路程各多少千来?22.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5 km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米.23.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图像.(1)甲、丙两地间的路程为千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.24.甲.乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?A B C D四个车站的位置如图所示.25.己知,,,(1)求,A D两站之间的距离;(用含,a b的代数式表示)(2)一辆汽车从A站出发,每小时行驶60千米,经过B站到达C站(在B站没有停留).所用时间为1.5小时.汽车在C站短暂停留后,继续以相同速度行驶,再行驶2小时到达D站,求,a b的值以及汽车从B站行驶到C站一共用了多少小时?参考答案1.B【解析】【分析】设同向行驶的相邻两车的距离及车、小林的速度为未知数,等量关系为:5×车速-5×小林的速度=同向行驶的相邻两车的距离;3×车速+3×小林的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.【详解】设101路公交车的速度是x米/分,小林行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔5分钟从背后驶过一辆101路公交车,则5x−5y=s.①每隔3分钟从迎面驶来一辆101路公交车,则3x+3y=s.②由①,②可得s=308x,所以sx=308=3.75,即101路公交车总站发车间隔的时间是3.75分钟.故答案选:B.【点睛】本题考查了二元一次方程组的应用,解题的关键是熟练的掌握二元一次方程组的应用. 2.C【解析】解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意得:.故选C.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,根据等量关系再列出方程.3.D【解析】试题分析:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:。

第八章二元一次方程组应用题(3)

第八章二元一次方程组应用题(3)

一、数字问题1、一个两位数,比它十位上的数与个位上的数的和大9,如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数。

2、一个两位数,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。

二、利润问题1、“五一”黄金周,人民商场女装部推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客买了一套女装和一套男装,优惠前需付700元,而他实际付款580元。

问男装、女装原价各是多少元?2、某商场欲购甲、乙两种商品共50件,甲种商品每件进价为35元,利润率为20%;乙种商品进价为20元,利润率为15%,共获利278元,问甲、乙两种商品各购进多少件?三、配套问题1、某厂共有140名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多少名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?2、一张桌子由桌面和四条腿组成,1立方米的木材可制成桌面50张或制作桌腿300条,现有5立方米的木材,问应如何分配木材,可以使桌面和桌腿配套?3、某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12个或乙零件23个,应分配多少人生产甲零件,多少人生产乙零件,才能使每天生产的甲零件和乙零件刚好配套?(每3个甲零件和2个乙零件配成一套)4、用白铁皮做罐头盒,每张铁皮可制作盒身16个,或制作盒底43个,一个盒身与两个盒底配成一套罐头盒。

现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?5、某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只,先计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?四、行程问题1、甲、乙两人在东西方向的公路上行走,甲在乙的西边300米。

若甲、乙两人同时向东走30分钟,甲正好追上乙;若甲、乙两人同时相向而行,2分钟相遇,问甲乙两人的速度分别是多少?2、甲、乙两人骑自行车从相距34.5km 的两地相向出发,在甲走了1.5h ,乙走了2h 后相遇;第二次他们同时从两地相向出发,经过45h ,两个还相距9.5km 。

中考数学模拟测试试题(二元一次方程组的应用)(三)(无答案)(2021年整理)

中考数学模拟测试试题(二元一次方程组的应用)(三)(无答案)(2021年整理)

四川省雅安市2016届中考数学模拟测试试题(二元一次方程组的应用)(三)(无答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四川省雅安市2016届中考数学模拟测试试题(二元一次方程组的应用)(三)(无答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四川省雅安市2016届中考数学模拟测试试题(二元一次方程组的应用)(三)(无答案)的全部内容。

二元一次方程组的应用(3)一、选择题1.刘老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19 B.18 C.16 D.152.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,那么11只饭碗摞起来的高度更接近()A.21cm B.22cm C.23cm D.24cm二、填空题3.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有只,兔有只.4.一艘轮船顺水航行的速度是20海里/小时,逆水航行的速度是16海里/小时,则水流的速度是海里/小时.5.某地准备对一段长120m的河道进行清淤疏通.若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队先单独工作8天,则余下的任务由乙工程队单独完成需要3天.设甲工程队平均每天疏通河道xm,乙工程队平均每天疏通河道ym,则(x+y)的值为.6.某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备元钱买门票.7.水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为m.三、解答题8.苏州某旅行社组织甲、乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团各有多少人?9.夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料各一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?10.某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人,该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间?11.在水果店里,小李买了5kg苹果,3kg梨,老板少要2元,收了50元;老王买了11kg苹果,5kg梨,老板按九折收钱,收了90元,该店的苹果和梨的单价各是多少元?12.为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?13.2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?14.小锦和小丽购买了价格不相同的中性笔和笔芯,小锦买了20支笔和2盒笔芯,用了56元;小丽买了2支笔和3盒笔芯,仅用了28元.求每支中性笔和每盒笔芯的价格.15.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?16.海南五月瓜果飘香,某超市出售的“无核荔枝"和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?17.小张把两个大小不同的苹果放到天平上称,当天平保持平衡时的砝码重量如图所示.问:这两个苹果的重量分别为多少g?18.小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?19.某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.。

3.4二元一次方程组的应用(3)

3.4二元一次方程组的应用(3)
根据上表数据,求甲乙两种货车每辆货各是多少吨?当堂检测
小 结
知识回顾
1、一个长方形的周长是108cm,长比宽的2倍多6cm,求长方形的长与宽各是多 少? 2、某车间有90人,每人每天可以生产螺栓7600个或螺母8800个,如果一个螺 栓配两个螺母,试问应怎样分配人力,才能使每天生产的螺栓与螺母恰好配套?
例题分析
例4、某村18位农民筹集5万元资金,承包了一些低产田地。根据市场调查,他们计划对
种植作物的品种进行调整,改种蔬菜和荞麦,种这两种作物每公顷所需的人数和需投入的
资金如下表: 作物品种 蔬菜 荞麦 每公顷所需人数 5 4 每公顷投入资金/万元 1.5 1
在现有的条件下,这18位农民应承包多少公顷田地,怎样安排种植才能使所有的农民 都有工作,且资金正好够用?
自我练习
一批货物要运往某地,货主计划租用汽车运输公司的甲、乙两种货车,已知过去两次租用 这种货车的情况如下表: 第一次 甲种货车的车辆数(单位:辆) 乙种货车的车辆数(单位:辆) 累计运货吨数(单位:吨) 2 3 15.5 第二次 5 6 35

二元一次方程组的应用(三)

二元一次方程组的应用(三)
二元一次方程组的应用(三)
安县沙汀实验中学2016级数学组
类型五:增长率问题
例1:七(一)பைடு நூலகம்的一个综合实践活动 小组,去A,B两个超市调查去年和今年 “国庆节”期间的销售情况,如图是 调查后小敏与其他两位同学交流的情 况,根据他们的对话,请你分别求出 A,B两个超市今年“国庆节”期间的销 售额。
类型六:几何问题
课前预习:
例:练习册93页(例1)
对应练习: 1、练习册95页 6题
10题
探究2:书上99页
课题练习:
拓广探究: 书上98页 9题
两超市销售额 去年共为150 万元,今年共 为170万元。
A超市销售 额今年比去 年增长15%
B超市销售额 今年比去年增 长10%
课堂达标
2、夏季来临,天气逐渐炎热起来,某商店将某 种碳酸饮料每瓶的价格上调了10%,将某种果汁 饮料每瓶的价格下调了5%,已知调价前买这两 种饮料个一瓶共花费7元,调价后买上述碳酸饮 料3瓶和果汁饮料2瓶共花费17.5元,问这两种 饮料在调价前每瓶分别多少元?

(课件)二元一次方程组的应用 (3)

(课件)二元一次方程组的应用 (3)
①实际时间 ②实际时间 + 延误时间( 小时 小时) 计划时间( 小时 小时) 延误时间(0.5小时)= 计划时间(y小时) 提前时间( 小时 小时) 计划时间( 小时 小时) 提前时间(0.5小时) = 计划时间(y小时)
实际时间=甲乙两地间的距离 实际时间 甲乙两地间的距离 ÷ 速度
4、一辆汽车从甲地驶往乙地,途中要过 、一辆汽车从甲地驶往乙地, 一桥。用相同时间,若车速每小时60千米 千米, 一桥。用相同时间,若车速每小时 千米, 就能超过桥2千米 若车速每小时50千米 千米; 千米, 就能超过桥 千米;若车速每小时 千米,就 千米才到桥。 差3千米才到桥。问甲地与桥相距多远?用了 千米才到桥 问甲地与桥相距多远? 多长时间? 多长时间?
缺少化肥 化肥200千克 ①实际施肥 (6x) = 库存化肥 + 缺少化肥 千克 ②实际施肥 (余 千克
练习: 练习:
1、计划若干节车皮装运一批货物。如果 、计划若干节车皮装运一批货物。 每节装15.5吨,则有 吨装不下,如果每节装 每节装 吨 则有4吨装不下, 16.5吨,则还可多装 吨。问多少节车皮?多 还可多装8吨 问多少节车皮? 吨 少吨货物? 少吨货物?
例2、用白铁皮做罐头盒。 每张铁皮可制 例2、用白铁皮做罐头盒。每张铁皮可制 、 用白铁皮做罐头盒。 、用白铁皮做罐头盒。 盒身16个 ,或制盒底43个 ,一个盒身与两个盒 盒身16个 或制盒底43个 盒身 个,或制盒底 个,一个盒身与两个盒 盒身 个 或制盒底 个 底配成一套罐头盒。现有150张白铁皮,用多 罐头盒。 张白铁皮, 底配成一套罐头盒 现有150张白铁皮 底配成一套罐头盒。现有 底配成一套罐头盒。现有 张白铁皮 ,用多 张白铁皮, 少张制盒身,多少张制盒底,可以刚好配套? 少张制盒身,多少张制盒底,可以刚好配套? 少张制盒身,多少张制盒底,可以刚好配套? 少张制盒身,多少张制盒底,可以刚好配套? 设…..x张……y张。 张 张

二元一次方程组的应用

二元一次方程组的应用

二元一次方程组的应用二元一次方程组是数学中常见的问题形式,可以通过解方程组来求解未知数的取值。

在实际生活和工作中,二元一次方程组有着广泛的应用。

本文将讨论二元一次方程组的一些常见应用场景。

一、消费问题在购物中,我们常常需要计算多个商品的总价。

假设商品A的价格为x元,商品B的价格为y元,购买A商品m件,B商品n件,总花费为p元。

此时可以列出如下二元一次方程组:mx + ny = p (1)m + n = t (2)其中,t为商品的总件数,p为总花费金额。

通过求解方程组,可以得到商品A和商品B的价格。

二、速度问题在物理学中,速度问题通常为二元一次方程组的典型应用。

设一个物体的速度恒定不变,物体在t秒内运动了s米,根据匀速运动的定义,可以得到如下方程组:vt - s = 0 (3)v' - v = 0 (4)其中,v为物体的速度,s为物体的位移,v'为物体的平均速度。

通过解方程组,可以求解物体的速度和位移。

三、投资问题在投资领域,经常需要计算不同投资项目的收益率。

假设我们有两个投资项目A和B,投资A的金额为x元,投资B的金额为y元,A项目的收益率为r1,B项目的收益率为r2,可以列出如下方程组:rx = r1x + r2y (5)x + y = t (6)其中,t为总投资金额。

通过求解方程组,可以得到投资项目A和B的收益率。

四、运动员的成绩在体育竞技中,运动员的成绩常常可以用二元一次方程组来表示。

假设运动员A和运动员B分别参加了两个项目,A在第一个项目中获得了x分,在第二个项目中获得了y分,B在第一个项目中获得了p分,在第二个项目中获得了q分。

根据成绩的计算方法,可以列出如下方程组:x + y = t (7)p + q = t (8)其中,t为满分。

通过解方程组,可以得到运动员A和运动员B在两个项目中的得分情况。

五、人员分配问题在人员分配和调度问题中,可以利用二元一次方程组来求解不同人数的分配。

[初中数学]二元一次方程组8种典例应用

[初中数学]二元一次方程组8种典例应用

[初中数学]二元一次方程组8种典例应用二元一次方程大战应用题——实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想:列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:① 方程两边表示的是同类量;② 同类量的单位要统一;③ 方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释:(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

典型例题详解1.和差倍数问题知识梳理:和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:思路点拨:由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展:思路点拨:由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

2.产品配套问题典型例题:思路点拨:本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展:思路点拨:根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

3.工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用
二元一次方程组是由两个二元一次方程构成的方程组。

一个二元一次方程的一般形式为:
ax + by = c
其中,a、b、c为实数,且a与b不全为0。

一元一次方程组是指由两个这样的方程组成的方程组。

二元一次方程组及其求解在实际问题中有广泛的应用,例如:
1. 解决经济问题:经济学中常常使用二元一次方程组来描述供需关系、价格变化等。

通过求解方程组可以得到供求平衡点、市场均衡价格等。

2. 解决几何问题:几何学中常常需要求解含有两个未知数的方程组来求解几何问题,如求交点、平行线等。

3. 解决物理问题:在物理学中,二元一次方程组的应用非常广泛。

例如,求解加速度、速度、位移等问题都可以转化为求解方程组。

4. 解决工程问题:工程学中常常使用二元一次方程组来描述电路、力学等问题。

通过求解方程组可以计算电流、电压、力的大小等。

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题3(附答案)1.小林沿着笔直的公路靠右匀速行走,发现每隔5分钟从背后驶过一辆101路公交车,每隔3分钟从迎面驶来一辆101路公交车.假设每个每辆101路公交车行驶速度相同,而且101路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是()A.3分钟B.3.75分钟C.4分钟D.5分钟2.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.3.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x、y分钟,则列出的二元一次方程组是A.B.C.D.4.甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为()A.B.C.D.5.小明郊游时,早上8时下车,先走平路然后登山,到山顶后又沿原路返回到下车处,正好是下午3时.若他走平路每小时行4km,爬山时每小时走3km,下山时每小时走6km,小明从上午到下午一共走的路程是()A.28 km B.14km C.7km D.答案不唯一6.甲和乙骑摩托车分别从某大道上相距6000米的A、B两地同时出发,相向而行,匀速行驶一段时间后,到达C地的甲发现摩托车出了故障,立即停下电话通知乙,乙接到电话后立即以出发时速度的43倍向C地匀速骑行,到达C地后,用5分钟修好了甲摩托车,然后乙仍以出发时速度的43倍匀速向终点A地骑行,甲仍以原来速度向B地匀速骑行,2分钟后,发现乙的一件维修工具落在了自己车上,于是立即掉头并以原速度74倍的速度匀速返回(此时乙未到达A地).在这个过程中,两人相距的路程y(米)与甲出发的时间x(分)之间的关系如图所示(甲与乙打、接电话及掉头时间忽略不计)则当乙到达A地时,甲离A地的距离为________米.7.某快递公司要在规定的时间内把邮件从甲地送往乙地,快递车若以50公里/小时的速度行驶,会迟到24分钟;若以75公里/小时的速度行驶,可提前24分钟.则甲,乙两地的距离为___.8.一条船顺流航行,每小时航行20千米;逆流航行,每小时航行16千米.设这条轮船在静水中的速度是x千米/时,水流速度是y千米/时,根据题意,得方程组:______.9.滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差_____分钟.10.某铁路桥长1750m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了80s,整列火车完全在桥上的时间共60s;火车的长度为________________. 11.小亮和小花约定周六早晨在一直线公路AB上进行(A→B→A)往返跑训练,两人同时从A点出发,小亮以较快的速度匀速跑到点B休息1分钟后立即原速跑回A点,小花先匀速慢跑了5分钟后,把速度提高到原来的53倍,又经过6分钟后超越了小亮一段距离,小花又将速度降低到出发时的速度,并以这一速度匀速跑到B点看到休息的小亮,然后立即以出发时的速度跑回A点.若两人之间的距离记为y(米),小花的跑步时间记为x(分),y和x的部分函数关系如图所示,则当小亮回到A点时小花距A点________米.12.已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,则火车的速度是_____. 13.小明和父亲在一直线公路AB上进行(A→B→A)往返跑训练,两人同时从A点出发,父亲以较快的速度匀速跑到点B休息2分钟后立即原速跑回A点,小明先匀速慢跑了3分钟后,把速度提高到原来的43倍,又经过6分钟后超越了父亲一段距离,小明又将速度降低到出发时的速度,并以这一速度匀速跑到B点看到休息的父亲,然后立即以出发时的速度跑回A点,若两人之间的距离记为y(米),小明的跑步时间记为x (分),y和x的部分函数关系如图所示,则当父亲回到A点时小明距A点______米.14.甲、乙二人都以不变的速度在环形路上跑步,如果甲乙同时同地出发,反向而行,每隔2分钟相遇一次;如果甲乙同时同地出发,同向而行,每隔6分钟相遇一次.则甲每分钟跑_____圈.15.某景区游船码头派车原定于8点整准时到达景区入口接工作人员,由于汽车在路上因故障导致8:10时车还未到达景区入口,于是工作人员步行前往码头.走了一段时间后遇到了前来接他的汽车,他上车后汽车立即掉头继续前进.到达码头时已经比原计划迟到了20min.已知汽车的速度是工作人员步行速度的6倍,则汽车在路上因故障耽误的时间为____min.16.滴滴快车是一种便捷的出行工具,计价规则如下表:(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.17.小刚和小亮两人骑自行车,在400米环形跑道上用不变的速度行驶,当他们按相反的方向行驶时,每20秒就相遇一次;若按同一方向行驶,那么每100秒钟相遇一次,问两个人的速度各是多少?18.甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分=小时;(2)相向而行时,汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;同向而行时,汽车行驶小时的路程=拖拉机行驶小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?19.某铁路桥长1800m,现有一列高铁列车从桥上通过,测得此列高铁从开始上桥到完全过桥共用25s,整列高铁在桥上的时间是20s,试求此列高铁的车速和车长. 20.科学考察队的一辆越野车需要穿越一片沙漠,但这辆车每次装满汽油最多只能行驶600km,队长想出一个方法,在沙漠中设若干个储油点(越野车穿越出沙漠,就可以另外加油).(1)如果穿越全程大于600km的沙漠,在沙漠中设一个储油点A,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点,然后返回出发点,加满油后再开往A,到A储油点时,取出储存的所有油放在车上,再从A出发到达终点,此时,这辆越野车穿越这片沙漠的最大行程是多少km?(2)如果穿越全程大于600km的沙漠,在沙漠中设2个储油点A,B,越野车装满油从起点S出发,到储油点A时从车中取出部分油放进A储油点;然后返回出发点S加满油,到储油点A时取出储油点A的全部油放到车上,再到达储油点B,从车中取出部分油放进B储油点;然后返回出发点S加满油,到B储油点取出储存的所有油放在车上,最后到达终点.此时,这辆越野车穿越这片沙漠的最大行程是多少km?21.某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时.原路返回时,以每小时6千米的速度下坡,又以每小时4千米的速度走平路,共用了3.5小时.问平路和坡路的路程各多少千来?22.如图为地铁调价后的计价表.调价后小明、小伟从家到学校乘地铁分别需要4元和3元.由于刷卡坐地铁有优惠,因此,他们平均每次实付3.6元和2.9元.已知小明从家到学校乘地铁的里程比小伟从家到学校的里程多5 km,且小明每千米享受的优惠金额是小伟的2倍,求小明和小伟从家到学校乘地铁的里程分别是多少千米.23.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图像.(1)甲、丙两地间的路程为千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.24.甲.乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?A B C D四个车站的位置如图所示.25.己知,,,(1)求,A D两站之间的距离;(用含,a b的代数式表示)(2)一辆汽车从A站出发,每小时行驶60千米,经过B站到达C站(在B站没有停留).所用时间为1.5小时.汽车在C站短暂停留后,继续以相同速度行驶,再行驶2小时到达D站,求,a b的值以及汽车从B站行驶到C站一共用了多少小时?参考答案1.B【解析】【分析】设同向行驶的相邻两车的距离及车、小林的速度为未知数,等量关系为:5×车速-5×小林的速度=同向行驶的相邻两车的距离;3×车速+3×小林的速度=同向行驶的相邻两车的距离;把相关数值代入可得同向行驶的相邻两车的距离及车的速度关系式,相除可得所求时间.【详解】设101路公交车的速度是x米/分,小林行走的速度是y米/分,同向行驶的相邻两车的间距为s米.每隔5分钟从背后驶过一辆101路公交车,则5x−5y=s.①每隔3分钟从迎面驶来一辆101路公交车,则3x+3y=s.②由①,②可得s=308x,所以sx=308=3.75,即101路公交车总站发车间隔的时间是3.75分钟.故答案选:B.【点睛】本题考查了二元一次方程组的应用,解题的关键是熟练的掌握二元一次方程组的应用. 2.C【解析】解:设甲的速度为x千米/小时,乙的速度为y千米/小时,由题意得:.故选C.点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,根据等量关系再列出方程.3.D【解析】试题分析:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:。

2024年沪科版七年级数学上册 3.5 二元一次方程组的应用 课时 3(课件)

2024年沪科版七年级数学上册 3.5 二元一次方程组的应用  课时 3(课件)

随堂练习
解: 设每餐需要甲种原料 x g,乙种原料 y g.
根据题意,得
0.6x + 0.5y = 34, 0.08x + 0.04y = 4.
解方程组,得
x = 40, y = 20.
答:每餐需要甲种原料 40 g,乙种原料 20 g 恰好满足患者
的需要.
【教材P122 练习 第2题】
5. 向某地运送物资. 第一批 480 t,用 8 节火车车厢和20 辆卡车
故该商场有两种进货方案:
①购进 25 台甲种电视机和 25 台乙种电视机; ②购进 30 台甲种电视机和 20 台丙种电视机.
随堂练习
(2)方案①的利润为 200×25 + 250×25 =11 250(元), 方案②的利润为 200×30+300×20 =12 000(元). 因为 12 000 > 11 250,所以购进 30 台甲种电视机和 20 台 丙种电视机可使售完后获利最大,最大利润为 12 000 元.
随堂练习 分析:
图形 图① 图②
等量关系 一个塑料凳子的高度 + 多叠放 2 个塑料凳子增
加的高度 = 55 cm
一个塑料凳子的高度 + 多叠放 4 个塑料凳子增 加的高度 = 65 cm
随堂练习
解: 设 1 个塑料凳子的高度为 x cm,每叠放 1 个塑料凳子+ 2y = 55, x + 4y = 65.

8x + 20 y 115 4
解得 x = 5, y = 15.
解: 碰碰车每辆车租金 5 元,游船每条船租金 15 元.
随堂练习 2. 如图,塑料凳子轻便实用,在日常生活中随处可见. 若 3 个塑料凳子叠放在一起的高度如图①所示,5 个塑 料凳子叠放在一起的高度如图②所示,则当 10 个塑料 凳子整齐地叠放在一起时,其高度是多少厘米?

2020--2021学年苏科版七年级数学下册第十章《二元一次方程组》实际应用解(三)

2020--2021学年苏科版七年级数学下册第十章《二元一次方程组》实际应用解(三)

苏科版七年级数学下册第十章《二元一次方程组》实际应用解答题常考题(三)1.在期末一节复习课上,八年(一)班的数学老师要求同学们列二元一次方程组解下列问题:在我市“精准扶贫”工作中,甲、乙两个工程队先后接力为扶贫村庄修建3000m的村路,甲队每天修建150m,乙队每天修建200m,共用18天完成.(1)粗心的张红同学,根据题意,列出的两个二元一次方程,等号后面忘记写数据,得到了一个不完整的二元一次方程组,张红列出的这个不完整的方程组中未知数p表示的是,未知数q表示的是;张红所列出正确的方程组应该是;(2)李芳同学的思路是想设甲工程队修建了xm村路,乙工程队修建了ym村路.下面请你按照李芳的思路,求甲、乙两个工程队分别修建了多少天?2.在《二元一次方程组》这一章的复习课上,李老师让同学们根据下列条件探索还能求出哪些量.某电器公司计划用甲、乙两种汽车运送190台家电到农村销售,已知甲种汽车每辆可运送家电20台,乙种汽车每辆可运送家电30台,且规定每辆汽车按规定满载,一共用了8辆汽车运送.(1)小宇同学根据题意列出了一个尚不完整的方程组,请写出小宇所列方程组中未知数x,y表示的意义:x表示,y表示,该方程组中“?”处的数应是,“*”处的数应是.(2)小琼同学的思路是设甲种汽车运送m台家电,乙种汽车运送n台家电.下面请你按照小琼的思路列出方程组,并求甲种汽车的数量.(3)如果每辆甲种汽车的运费是180元,每辆乙种汽车的运费是300元,那么该公司运完这190台家电后的总运费是多少?3.某环卫公司通过政府采购的方式计划购进一批A,B两种型号的新能源汽车.据了解,2辆A型汽车和3辆B型汽车的进价共计80万元;3辆A型汽车和2辆B型汽车的进价共计95万元.(1)求A,B两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B种型号的新能源汽车数量多于A种型号的新能源汽车数量,请直接写出该公司的采购方案.4.丹东的草莓久负盛名,当下正是草莓的销售旺季,某日,我市一水果店以3650元购进两种不同品种的草莓,若按标价出售可获毛利润1600元(毛利润=售价﹣进价),这两种草莓的进价、标价如下表所示:价格/品种A品种B品种进价(元/千克)35 45标价(元/千克)50 65求这两个品种的草莓各购进多少千克.5.政府为应对新冠疫情,促进经济发展,对商家打折销售进行了补贴,不打折时,6个A 商品,5个B商品,总费用114元.3个A商品,7个B商品,总费用111元.打折后,小明购买了9个A商品和8个B商品共用了141.6元.(1)求出商品A、B每个的标价.(2)若商品A、B的折扣相同,商店打几折出售这两种商品?小明在此次购物中得到了多少优惠?6.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次 4 5 31第二次 3 6 30(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有45吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?7.由于酒泉独特的气候资源,生产的洋葱品质好、干物质含量高且耐储存,品质、色泽、风味明显优于其他洋葱产区,因而受到国内外客商青睐.现欲将一批洋葱运往外地销售,若用2辆A型车和1辆B型车载满洋葱一次可运走10吨;用1辆A型车和2辆B型车载满洋葱一次可运走11吨.现有洋葱31吨,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满洋葱.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满洋葱一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.8.甘肃省白银市具有悠久的历史和灿烂的文化,在历史长河中,黄河文化、西夏文化、中原文化等多种文化在这里相互渗透,融合发展.千姿百态、景象万千的景泰黄河石林,被称为“中华自然奇观”.寿鹿山、屈吴山、哈思山、铁木山等自然景观各具特色,引人入胜.一外地游客到某特产专营店,准备购买红枸杞和小口大枣两种盒装特产.若购买3盒红枸杞和2盒小口大枣共需285元;购买1盒红枸杞和3盒小口大枣共需270元.(1)请分别求出每盒红枸杞和每盒小口大枣的价格;(2)该游客购买了4盒红枸杞和2盒小口大枣,共需多少元?9.2019年2月《上海市生活垃圾管理条例》正式出台,其中规定生活垃圾分为可回收物、有害垃圾、湿垃圾、干垃圾四类.某校由六、七两个年级共17名同学组成了“垃圾分类宣传”志愿者小队,他们对本校每天的生活垃圾收集情况进行调查统计后发现:①由于宣传到位,学校现在每天生活垃圾的重量比原来每天400千克下降了20%;②其中可回收物重量和干垃圾重量之和占现在每天生活垃圾重量的,可回收物中废纸占70%;③由于部分同学对干垃圾的认识还不够清楚,因此,发现干垃圾中还有20%的废纸;④可回收物中的废纸与干垃圾中的废纸合在一起共重82千克.根据上述信息回答下面的问题:(1)学校现在每天生活垃圾重量是多少千克?(2)学校现在每天的可回收物和干垃圾各多少千克?(用二元一次方程组解)10.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,总费用为5700元,这所学校购买了多少个B型号篮球?11.喜迎元旦,某玩具店购进2022年冬奥会吉祥物冰墩墩与冬残奥会吉祥物雪容融共100个,花去3300元,这两种吉祥物的进价、售价如下表:进价(元/个)售价(元/个)冰墩墩30 40雪容融35 50 (1)求冰墩墩、雪容融各进了多少个?(2)如果销售完100个吉祥物所得的利润,全部捐赠,那么,该玩具店捐赠了多少钱?12.列二元一次方程组解应用题:小颖家离学校1880米,其中有一段为上坡路,另一段为下坡路.她跑步去学校共用了16分钟,已知小颖在上坡路上的平均速度是80米/分钟,在下坡路上的平均速度是200米/分钟.求小颖上坡、下坡各用了多长时间?13.购买铅笔7支,作业本3本,圆珠笔1支共需3元;购买铅笔10支,作业本4本,圆珠笔1支共需4元.问购买铅笔11支,作业本5本,圆珠笔2支共需多少元?14.司机小李驾车在公路上匀速行驶,他看到里程碑上的数是两位数,1小时后,看到里程碑上的数恰好是第一次看到的数颠倒了顺序的两位数,再过1小时后,第三次看到里程碑上的数又恰好是第一次见到的两位数字之间添上一个零的三位数,这三块里程碑上的数各是多少?15.疫情期间,为保护学生和教师的健康,某学校用33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照教育局要求,学校必须储备足够使用十天的口罩,该校师生共计800人,每人每天2个口罩,问购买的口罩数量是否能满足教育局的要求?参考答案1.解:(1)方程组中未知数p表示的是:甲工程队修建的天数,未知数q表示的是:乙工程队修建的天数,列出正确的方程组应该是:.故答案为:甲工程队修建的天数,乙工程队修建的天数,;(2)设甲工程队修建了xm村路,乙工程队修建了ym村路,根据题意,得,解得,所以甲工程队修建的天数==12(天),乙工程队修建的天数==6(天).答:甲、乙两个工程队分别修建了12天、6天.2.解:(1)依题意得:x表示使用甲种汽车的数量,y表示使用乙种汽车的数量,“?”处的数应是8,“*”处的数应是190.故答案为:使用甲种汽车的数量;使用乙种汽车的数量;8;190.(2)依题意得:,解得:,∴==5.答:使用甲种汽车5辆.(3)180×5+300×(8﹣5)=1800(元).答:该公司运完这190台家电后的总运费是1800元.3.解:(1)设A型汽车每辆的进价为x万元,B型汽车每辆的进价为y万元,依题意,得:,解得:,答:A型汽车每辆的进价为25万元,B型汽车每辆的进价为10万元.(2)设购进A型汽车m辆,购进B型汽车n辆,m<n,依题意,得:25m+10n=200,∴m=8﹣n.∵m,n均为正整数,∴n为5的倍数,∴或或,∵m<n,∴不合题意舍去,∴共2种购买方案,方案一:购进A型车4辆,B型车10辆;方案二:购进A型车2辆,B型车15辆.4.解:设A品种的草莓购进x千克,B品种的草莓购进y千克,由题意得:,解得:,答:A品种的草莓购进40千克,B品种的草莓购进50千克.5.解:(1)设每个A商品的标价为x元,每个B商品的标价为y元,依题意得:,解得:.答:每个A商品的标价为9元,每个B商品的标价为12元.(2)设商店打m折出售这两种商品,依题意得:9×9×+8×12×=141.6,解得:m=8,9×9+12×8﹣141.6=35.4(元).答:商店打8折出售这两种商品,小明在此次购物中得到了35.4元的优惠.6.解:(1)设甲种货车每辆能装货x吨,乙种货车每辆能装货y吨,依题意得:,解得:.答:甲种货车每辆能装货4吨,乙种货车每辆能装货3吨.(2)设租用甲种货车m辆,乙种货车n辆,依题意得:4m+3n=45,∴n=15﹣m.又∵m,n均为正整数,∴或或,∴共有3种租车方案,方案1:租用3辆甲种货车,11辆乙种货车;方案2:租用6辆甲种货车,7辆乙种货车;方案3:租用9辆甲种货车,3辆乙种货车.7.解:(1)设1辆A型车载满洋葱一次可运送x吨,1辆B型车载满洋葱一次可运送y吨,依题意,得:,解得:,答:1辆A型车载满洋葱一次可运送3吨,1辆B型车载满洋葱一次可运送4吨.(2)依题意,得:3a+4b=31,∵a,b均为正整数,∴或或.∴一共有3种租车方案,方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆;(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).∵940<980<1020,∴最省钱的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费为940元.8.解:(1)设每盒红枸杞的价格为x元,每盒小口大枣的价格为y元,由题意得:,解得:,答:每盒红枸杞的价格45元,每盒小口大枣的价格为75元;(2)4×45+2×75=330(元),答:该游客购买了4盒红枸杞和2盒小口大枣,共需330元.9.解:(1)400×(1﹣20%)=320(千克).答:学校现在每天生活垃圾重量是320千克;(2)设学校现在每天的可回收物有x千克,干垃圾有y千克,依题意得:,解得:.答:学校现在每天的可回收物有160千克,干垃圾有60千克.10.解:(1)设A型号篮球的价格为x元,B型号的篮球的价格为y元,依题意得:,解得:.答:A型号篮球的价格为50元、B型号篮球的价格为80元.(2)设这所学校买了m个A型号篮球,买了n个B型号篮球,依题意得:,解得:.答:这所学校购买了30个B型号篮球.11.解:(1)设冰墩墩进x个,雪容融进了y个,由题意可得:,解得:,答:冰墩墩进40个,雪容融进了60个;(2)∵利润=(40﹣30)×40+(50﹣35)×60=1300(元),∴玩具店捐赠了1300元.12.解:设小颖上坡用了x分钟,下坡用了y分钟,依题意得:,解得:.答:小颖上坡用了11分钟,下坡用了5分钟.13.解:设铅笔的单价为x元,作业本的单价为y元,圆珠笔的单价为z元,依题意得:,3×①﹣②得:11x+5y+2z=5.答:购买铅笔11支,作业本5本,圆珠笔2支共需5元.14.解:设第一次他看到的两位数的个位数为x,十位数为y,汽车行驶的速度为v,依题意得:,解得:x=6y.又∵x,y均为1~9内的自然数,∴x=6,y=1,∴10y+x=16,10x+y=61,100y+x=106.答:第一块里程碑上的数为16,第二块里程碑上的数为61,第三块里程碑上的数为106.15.解:(1)设学校购进甲种口罩x盒,购进乙种口罩y盒,依题意,得:,解得:.答:学校购进甲种口罩400盒,购进乙种口罩600盒.(2)购买的口罩总数为:400×20+600×25=23000(个),全校师生两周需要的用量为:800×2×10=16000(个).∵23000>16000,∴购买的口罩数量能满足教育局的要求.。

二元一次方程组的应用第3课时 配套问题(安徽)

二元一次方程组的应用第3课时 配套问题(安徽)
(1)若设每月生产 A 饮料 x 万瓶. ①用含 x 的代数式可表示每月生产 B 饮料____________万瓶; ②求每月生产 A,B 两种饮料各多少万瓶? (2)已知 A 饮料的成本价为每瓶 3 元,B 饮料的成本价为每瓶 2 元,由于冬季天冷影 响了 A 饮料的销售,该加工厂决定按照原价的 8 折出售,此时 A 饮料的利润率为 20%, 那么 A 饮料的原价是每瓶多少元?B 饮料的销售价为每瓶 2.4 元,该加工厂调价后每月
沪科版
第3章 一次方程与方程组
3.4 二元一次方程组的应用
第3课时 配套问题
知识点:配套问题[0 考/8 年]
1.某加工厂有工人 48 名,生产某种一个螺栓套两个螺母的配套产品,
每人每天平均生产螺栓 14 个或螺母 20 个,应分配多少人生产螺栓,多少
人生产螺母,能使生产出的螺栓和螺母刚好配套?设应安排 x 人生产螺栓,
利润 销售完 A,B 饮料总共获得的利润是多少?【温馨提示:利润率=成本】
解:(1)①(100-x) ②设A种饮料共需要添加剂为20x千克,则B种饮料共需要添加剂为30(100-x) 千克,由题意得:20x+30(100-x)=2700,解得:x=30,100-30=70(万瓶). 故每月生产A种饮料30万瓶,生产B种饮料70万瓶 (2)设A饮料的原价是每瓶m元,由题意得:0.8m-3=20%×3,解得:m=4.5 ,3×20%×30+(2.4-2)×70=46(万元).故A饮料的原价是每瓶4.5元,该加工厂 调价后每月销售完A,B饮料总共获得的利润是46万元
且停车场只有汽车和摩托车,这些车共有86个轮子,那么摩托车应为( )
A.14辆 BD.12辆
C.16辆 D.10辆
4.某纸盒厂有工人49名,生产带盖纸盒,每个工人每小时生产12个盒身或18个盒 盖,则分配_______个工人生产21盒身,分配_______个工人生产盒28盖,才能使生产的 纸盒配套.(一个盒身配两个盒盖)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题分析:某天,一蔬菜经营户用60元从 蔬菜批发市场购进西红柿和豆角共40Kg到 菜市场去卖,西红柿和豆角这天的批发价、 零售价(单位:元/Kg)1.8 2.5
问他当天卖完这些西红柿和豆角能赚多少 钱?
二元一次方程组的应用
(3)
例题分析:某中学组织一批学生春游,原计 划租用45座客车若干辆,但有15人没有座 位;若租用同样数量的60座客车,则多出一 辆,且其余客车恰好坐满。已知45座客车租 金为每辆220元,60座客车租金为每辆300 元,问:
(1)这批学生的人数是多少?原计划租用 多少辆45座客车? (2)若租用同一种车,要使每位学生都有 座位,应该怎样租用才合算?
相关文档
最新文档