高考数学模拟复习试卷试题模拟卷232 5
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。
A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。
A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。
A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。
A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。
A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。
A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。
A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。
)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。
高考数学模拟考试试卷.doc
高考数学模拟考试试卷理科数学一、选择题:(每小题5分,共50分)1.设复数z 满足关系式i z z +=+2,那么z 等于 A.i +-43 B.i -43 C.i --43 D.i +432.已知等差数列}{n a 中,1697=+a a ,14=a ,则16a 的值是A.15B.22C.31D.64 3.若命题p :B A x ⋃∈,则p ⌝是A.B x A x ∉∉且B.B x A x ∉∉或C.B A x ⋂∉D.B A x ⋂∈4.一植物园参观路径如右图所示,若要全部参观并且路线不重复,则不同 的参观路线种数共有 A. 6种B. 8种C. 36种D. 48种5.已知空间直角坐标系O xyz -中有一点)2,1,1(--A ,点B 是xOy 平面内的直线 1x y +=上的动点,则,A B 两点的最短距离是B. C.3 D.1726.若不等式na nn )1(2)1(1-+<-+对任意正整数n 恒成立,则实数a 的取值范围是A. )1,2[-B. )1,2(-C. )1,25[-D. )1,25(- 7.点),(b a M 在由不等式组⎪⎩⎪⎨⎧≤+≥≥200y x y x 确定的平面区域内,则点),(b a b a N -+所在平面区域的面积是A. 1B. 2C. 4D.88.如图,三棱锥ABC P -中,⊥PA 平面ABC ,BC AB ⊥,1==AB PA ,2=BC ,则三棱锥ABC P -的外接球表面积为A. π4B. π3C. π2D. π9.设M 是ABC ∆内任一点,且,30,320=∠=⋅BAC AC AB 设MAB MAC MBC ∆∆∆,,的面积分别为z y x ,,,且21=z ,则在平面直角中坐标系中,以,x y 为坐标的点),(y x 的轨迹图形是10.对于集合P 、Q , 定义},|{Q x P x x Q P ∉∈=-且,()()P Q P Q Q P ⊕=--,设集合},4|{2R x x x y y A ∈-==,},3|{R x y y B x∈-==,则A B ⊕等于 A. (]4,0- B. [)4,0- C. ()[),40,-∞-+∞ D. (](),40,-∞-+∞二、填空题(每小题5分,共25分)11.如图所示两个带指针的转盘,每个转盘被分成5个区域,指针落在5个区域的可能性相等,每个区域 内标有一个数字,则两个指针同时落在奇数所在区 域内的概率为 .12.函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡π2,0上的最大值为 .13.设121112084)3()3()4()1(a x a x a x x +++++=++ ,则=++++12420a a a a .14.点P 是双曲线)0,0(1:22221>>=-b a by a x C 和圆22222:b a y x C +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 是双曲线1C 的两个焦点,则双曲线1C 的离心率为 。
高考数学模拟试题及答案(人教版)23
高考模拟试卷数学卷本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟. 考生注意:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上. 2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么 球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B = 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是p 台体的体积公式:那么n 次独立重复试验中恰好发生 )(312211S S S S h V ++=k 次的概率:()(1)k k n kn n P k C p p -=-第Ⅰ卷 选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x≥2},B={x|x<m+1},若B ⊆∁R A,则m 的取值范围为 ( )A.(-∞,1]B.(-∞,1)C.[1,+∞)D.[-1,2] 2.已知0<a <2,复数z 的实部为1,虚部为a ,则 ||z 的取值范围是 ( )A.(1,5)B.(1,3)3.若a,b 是两个非零的平面向量,则 “|a |=|b |”是“(a+b )·(a-b )=0”的 ( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件4.若函数2()x f x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )5.对于函数2()cos[3()]6f x x x π=+,下列说法正确的是 ( )A. (x)f 是奇函数且在(,)66ππ-内递减 B. (x)f 是奇函数且在(,)66ππ-内递增 C. (x)f 是偶函数且在(0,)6π内递减 D. (x)f 是偶函数且在(0,)6π内递增6.若x, y满足4240,y0kx yy xx+≤⎧⎪-≤⎨⎪≥≥⎩且z=5y-x的最小值为-8,则k的值为()A.12- B.12C.-2D.27.设随机变量ξ的分布列为下表所示且E(ξ)=1.6,则a-b= ()8.存在一点P,使线的离心率为A B C D9.如图,正方形BCDE的边长为a,已知AB=3BC,将△ABE沿边BE折起,折起后A点在平面BCDE上的射影为D点,关于翻折后的几何体有如下描述:①AB与DE所成角的正切值是2;②AB∥CE;③V B-ACE=16a3;④平面ABC⊥平面ACD.其中正确的有( )D.①②④10.若2()f x x px q=++的图象经过两点(,0),(,0)αβ,() AC注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11.若双曲线221x ky-=的一个焦点是(3,0),则实数k =_______,该双曲线的焦点到其中一条渐近线的距离是________。
高三数学模拟试题含答案
高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
高三数学模拟试题试卷答案
一、选择题(每题5分,共50分)1. 若函数f(x) = 2x + 1在区间[1, 3]上单调递增,则函数g(x) = x^2 - 2x + 1在区间[1, 3]上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A2. 已知等差数列{an}的前n项和为Sn,若a1 = 2,S5 = 25,则公差d为:A. 1B. 2C. 3D. 4答案:B3. 若复数z = 1 + bi(b∈R)在复平面上对应的点为P,则|OP|的值为:A. 1B. √2C. √(1+b^2)D. √(1-b^2)答案:C4. 函数y = log2(x+1)的图像在以下哪个象限:A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A5. 已知三角形ABC的三个内角A、B、C满足A + B + C = π,若sinA = 1/2,sinB = √3/2,则cosC的值为:A. 1/2B. √3/2C. 1/4D. 3/4答案:D6. 已知数列{an}满足an = an-1 + 2(n≥2),且a1 = 1,则数列{an}的前n项和Sn为:A. n^2 + nB. n^2 + 2nC. n^2 + n + 2D. n^2 + 2n + 1答案:A7. 已知函数f(x) = x^3 - 3x + 2,若f'(x) = 0的解为x1、x2,则f(x)的极值点为:A. x1、x2B. x1C. x2D. 无极值点答案:A8. 若函数f(x) = ax^2 + bx + c(a、b、c为常数)的图像开口向上,且顶点坐标为(1, -2),则a、b、c的取值范围分别为:A. a > 0,b = -2,c = -2B. a > 0,b = -2,c ≠ -2C. a ≠ 0,b = -2,c = -2D. a ≠ 0,b = -2,c ≠ -2答案:A9. 已知数列{an}满足an = 2an-1 + 1(n≥2),且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^n - 2D. an = 2^n + 2答案:A10. 若函数f(x) = |x-1| + |x+2|在x = -1处的导数存在,则f(-1)的值为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题5分,共25分)11. 函数f(x) = (x-1)/(x+1)的对称轴方程为______。
2023届高三新高考数学原创模拟试题(含答案解析)
2023届高三新高考数学原创模拟试题学校:___________姓名:___________班级:___________考号:___________A .||OQB .|5.若()20230112x a a x -=++A .2-B .-6.函数y=ax 2+bx 与y=log b aA ..C ..7.以()x φ表示标准正态总体在区间内取值的概率,若随机变量()2,N μσ,则概率(P ξμ-A .()()φμσφμσ+--()() 11φφ--C .1 μφσ-⎛⎫⎪⎝⎭.()2φμσ-8.若干个能确定一个立体图形的体积的量称为该立体图形的“基本量1111ABCD A B C D -,下列四组量中,一定能成为该长方体的“基本量”的是(A .1AB ,AC ,1AD 的长度B .AC ,1B D ,1AC 的长度D .1AC ,BD ,1CC 的长度二、多选题三、双空题13.设i 是虚数单位,已知2i 3-是关于x 的方程220(,)x px q p q ++=∈R 的一个根,则p =________,q =________.四、填空题五、双空题16.正方形ABCD 位于平面直角坐标系上,其中(1,1)A ,(1,1)B -,(1,1)C --,(1,1)D -.考虑对这个正方形执行下面三种变换:(1)L :逆时针旋转90︒.(2)R :顺时针旋转90︒.(3)S :关于原点对称.上述三种操作可以把正方形变换为自身,但是A ,B ,C ,D 四个点所在的位置会发生变化.例如,对原正方形作变换R 之后,顶点A 从(1,1)移动到(1,1)-,然后再作一次变换S 之后,A 移动到(1,1)-.对原来的正方形按1a ,2a ,L ,k a 的顺序作k 次变换记为12k a a a ,其中{,,}i a L R S ∈,1,2,,i k = .如果经过k 次变换之后,顶点的位置恢复为原来的样子,那么我们称这样的变换是k -恒等变换.例如,RRS 是一个3-恒等变换.则3-恒等变换共________种;对于正整数n ,n -恒等变换共________种.六、解答题17.如图,在四棱锥P ABCD -中,底面为直角梯形,AD BC ∥,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M ,N 分别为PC ,PB 的中点.(1)证明:PB DM ⊥.(2)求BD 与平面ADMN 所成角的正弦值.18.十字测天仪广泛应用于欧洲中世纪晩期的航海领域,主要用于测量太阳等星体的方位,便于船员确定位置.如图1所示,十字测天仪由杆AB 和横档CD 构成,并且E 是CD 的中点,横档与杆垂直并且可在杆上滑动.十字测天仪的使用方法如下:如图2,手持(1)在某次测量中,40AE =,横档的长度为20,求太阳高度角的正弦值.(2)在杆AB 上有两点1A ,2A 满足1212AA AA =.当横档CD 的中点E 位于度角为(1,2)i i α=,其中1α,2α都是锐角.证明:122αα<.19.设正项数列{}n a 满足11a =,12121n n n a a a ++=-,*n ∈N .数列{}n x 满足π0,2n x ⎛⎫∈ ⎪⎝⎭,*n ∈N .已知如下结论:当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin tan <<x x x (1)求{}n x 的通项公式.(2)证明:222212π11112111n n n a a a -<+++<+++ .20.椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,O 为坐标原点.椭圆C 于A ,B 两点.(1)若直线l 与x 轴垂直,并且OA OB ⊥,求a 的值.(2)若直线l 绕点F 任意转动,当A ,O ,B 不共线时,都满足AOB ∠取值范围.21.某校20名学生的数学成绩(1,2,,20)i x i = 和知识竞赛成绩(1,i y i =学生编号i 123456789数学成绩i x 1009996939088858380知识竞赛成绩iy 29016022020065709010060参考答案:【详解】,,或是,,根据集合元素的互异性,集合为,共含有9.AC【分析】对于A:根据线面平行分析判断;对于D:根据线面、面面垂直的判定定理分析判断【详解】对于选项A:因为D,DF⊂平面PDF,BC⊄平面PDF所以BC∥平面PDF,故A正确;对于选项B:因为D,E分别是且PA与AC夹角为60︒,所以异面直线对于选项C:因为E是BC的中点,且同理可得:AE BC ⊥,PE AE E = ,,PE AE ⊂平面PAE ,所以DF ⊥平面PAE ,且DF ⊂平面ABC ,所以平面PAE ⊥平面ABC ,故C 正确;对于选项D :取底面ABC 的中心O ,连接PO ,则PO ⊥平面ABC ,但PO 与平面PDF 相交,所以平面PDF 与平面ABC 不垂直,故D 错误;故选:AC.10.ABD【分析】由n S 与n a 的关系得出n a 与1n a -的关系式即可判断ABD ,通过举反例即可判断出C .【详解】对于A ,当2n ≥时,n n S a =且11n n S a --=,两式相减可得11n n n n n a S S a a --=-=-,即10n a -=.所以{}n a 是恒为0的数列,即{}n a 是公差为0的等差数列,故A 正确;对于B ,当2n ≥时,n n S na =且11(1)n n S n a --=-,两式相减可得11(1)n n n n n a S S na n a --=-=--,即1(1)(1)n n n a n a --=-,所以1n n a a -=,即{}n a 是常数列,是公差为0的等差数列,故B 正确;对于C ,如果10a ≠,令1n =可得21a =,当2n ≥时,1n n n S a a +=且11n n n S a a --=,两式相减可得()111n n n n n n a S S a a a -+-=-=-,如果0n a ≠,则111n n a a +--=,这并不能推出{}n a 是等差数列,例如:考虑如下定义的数列{}n a :1,1,2,2,3,3,L ,则其通项公式可写成2n a n =,21n a n -=.则()222122111(2)(1)nnn k k n n k k S a a k n n a a -+===+==+=∑∑,)DN.由(1)可知PB⊥平面BDN∠是BD与平面ADMN所成角.2AD AB BC a====,于是另一方面,22BD AB AD=+=因此,在直角三角形BDN中,sinBD与平面ADMN所成角的正弦值为(1)8 17证明见解析【分析】(1)方法一,根据三边长度,利用余弦定理,求方法二,先求sin CAE∠,再根据二倍角公式求)如图:轴垂直,则直线l :1x =,联立直线与椭圆方程可得2b a =±.所以不妨设1,A ⎛ ⎝,所以4210b OA OB a ⋅=-= ,则b a,所以210a a --=,解得)如图:(i )若直线AB 与x 轴垂直,由(1)可知钝角,只需4210b OA OB a ⋅=-< ,即21b a >.代入152-(舍去).)若直线AB 与x 轴不垂直,设()11,A x y ,221b a =-,椭圆方程变为222211x y a a +=-.联立直线与椭圆方程选做(ii )问:根据()g x 的单调性,可知:()g x 在区间π3π2π,2π()22m m m ⎛⎫++∈ ⎪⎝⎭Z 即()1,m m a b +()g x 在ππ2,2π()22m m m π⎛⎫-++∈ ⎪⎝⎭Z 即(),m m b a 中的值域为结合①②两式以及()1(0)g g b >,可知当N m ∈时,()g x 在πππ,π[0,22m m ⎛⎫-+++∞ ⎪⎝⎭I 当21m k =-时,()()()211,k k k A g a g b --=;当2m k =。
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试
高考模拟复习试卷试题模拟卷高三数学高三第三次调研考试数 学(文科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 一、选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数321iz i i =+-(i 为虚数单位)的共轭复数为() (A )12i +(B )1i -(C )1i -(D )12i -(2)已知集合{}1,0=A ,{}A y A x y x z zB ∈∈+==,,,则B 的子集个数为()(A )3 (B )4 (C )7 (D )8(3)已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2log 25=c ,则c b a ,,的大小关系为()(A )a b c <<(B )b a c <<(C )c a b <<(D )a c b <<(4)已知向量()1,3a =,()3,b m =,若向量b 在a 方向上的投影为3,则实数m =()(A )3 (B )3-(CD )-(5)设n S 为等差数列{}n a 的前n 项和,且65101=-+a a a ,则11S =()(A )55 (B )66 (C )110 (D )132 (6)已知34cos sin =+θθ)40(πθ<<,则θθcos sin -的值为() (A )32(B )32-(C )31(D )31-(7)已知圆O :224x y +=上到直线:l x y a +=的距离等于1的点恰有3个,则实数a 的值为()(A )B (C)(D )-或(8)某程序框图如图所示,该程序运行后输出的S 的值是()(A )1007(B ) (C )(D )3024(9)已知双曲线122=-my x 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为()(A )03=±y x (B )03=±y x (C )02=±y x (D )02=±y x (10)记数列{}n a 的前n 项和为n S ,若2(1)4n n S a n++=,则n a =() (A )2n n (B )12n n -(C )2nn (D )12n n - (11)某几何体的三视图如图,其正视图中的曲线部分为半个圆弧,则该几何体的表面积为() (A )π42616++ (B )π32616++ (C )π42610++ (D )π32610++(12)如图,偶函数()x f 的图象如字母M ,奇函数()x g 的图象如字母N , 若方程()()0=x g f ,()()0=x f g 的实根个数分别为m 、n ,则m n +=()(A )18 (B )16 (C )14 (D )12第Ⅱ卷本卷包括必考题和选考题两部分。
全国高考数学模拟试卷(4套)
全国高考数学模拟试卷(4套)一、选择题(共30题,每题2分,共60分)1. 已知函数 $ f(x) = x^2 4x + 3 $,则下列哪个选项是正确的?A. $ f(x) $ 在 $ x = 2 $ 处取得最小值B. $ f(x) $ 在 $ x = 2 $ 处取得最大值C. $ f(x) $ 在 $ x = 2 $ 处取得极值D. $ f(x) $ 在 $ x = 2 $ 处无极值2. 若 $ \log_2 8 = x $,则 $ x $ 的值为多少?A. 3B. 4C. 5D. 63. 已知等差数列 $ \{a_n\} $,若 $ a_1 = 3 $,$ a_3 = 9 $,则 $ a_5 $ 的值为多少?A. 12B. 15C. 18D. 214. 若 $ \sin^2 x + \cos^2 x = 1 $,则下列哪个选项是正确的?A. $ \sin x $ 和 $ \cos x $ 必须同时为正B. $ \sin x $ 和 $ \cos x $ 必须同时为负C. $ \sin x $ 和 $ \cos x $ 一正一负D. $ \sin x $ 和 $ \cos x $ 可以同时为零5. 若 $ \frac{a}{b} = \frac{c}{d} $,则下列哪个选项是正确的?A. $ a + c = b + d $B. $ ad = bc $C. $ a c = b d $D. $ \frac{a}{c} = \frac{b}{d} $6. 已知 $ a $、$ b $、$ c $ 是等边三角形的三边长,则下列哪个选项是正确的?A. $ a^2 + b^2 = c^2 $B. $ a^2 + c^2 = b^2 $C. $ b^2 + c^2 = a^2 $D. $ a = b = c $7. 若 $ \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 $,则下列哪个选项是正确的?A. 该方程表示椭圆B. 该方程表示双曲线C. 该方程表示抛物线D. 该方程表示圆8. 已知 $ \sqrt{3} $ 是方程 $ x^2 2x + 1 = 0 $ 的根,则该方程的另一根为多少?A. $ 1 \sqrt{3} $B. $ 1 + \sqrt{3} $C. $ 2 \sqrt{3} $D. $ 2 + \sqrt{3} $9. 若 $ a $、$ b $、$ c $ 是三角形的三边长,且 $ a^2 +b^2 = c^2 $,则下列哪个选项是正确的?A. 该三角形是等腰三角形B. 该三角形是等边三角形C. 该三角形是直角三角形D. 该三角形是钝角三角形10. 若 $ \frac{1}{x} + \frac{1}{y} = \frac{1}{z} $,则下列哪个选项是正确的?A. $ x + y = z $B. $ xy = z $C. $ \frac{1}{x} + \frac{1}{y} = z $D. $ x + y + z = 0 $二、填空题(共10题,每题2分,共20分)11. 已知 $ f(x) = 2x + 1 $,若 $ f(3) = 7 $,则 $ f(1)$ 的值为______。
2023届高考全国甲卷乙卷全真模拟(四)数学试卷及答案
2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i+B .1i-C .1i5+D .1i5-2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .43.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =异面直线AE 与BC 所成角的余弦值为()A .3B .3C .22D .26.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .2167.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫ ⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π128.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A .3B .12C D .49.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .411.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a<<D .b<c<a第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy bx x ==--=-∑∑,ˆˆay bx =-.18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=2023年高考数学全真模拟卷四(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知复数z 满足2i 3i 0z z --+=,则z 的共轭复数z =()A .1i +B .1i-C .1i5+D .1i5-【答案】B【分析】由复数的除法运算求出z ,再根据共轭复数的概念可得z .【详解】由2i 3i 0z z --+=,得3i 12i z -=-(3i)(12i)(12i)(12i)-+=-+55i 1i 5+==+,所以1i z =-.故选:B2.设集合(){},A x y y x ==,(){}3,B x y y x ==,则A B ⋂的元素个数是()A .1B .2C .3D .4【答案】C【分析】联立3,y x y x ==求出交点坐标,从而得到答案.【详解】联立3y x y x=⎧⎨=⎩,即3x x =,解得:0x =或1±,即()()(){}0,0,1,1,1,1A B =-- ,故A B ⋂的元素个数为3.故选:C3.设命题p :若,x y R ∈,则“0x y >>”是“22x y >”的必要不充分条件;命题q :“0x ∀>,21x >”的否定是“0x ∃≤,21x ≤”,则下列命题为真命题的是()A .p q ∧B .()()p q ⌝∧⌝C .p q∨D .()p q ∧⌝【答案】B【分析】先判断命题p 和命题q 的真假,再根据复合命题真假的判定方法,即可得出结果.【详解】根据不等式的性质,若0x y >>,则22x y >;反之,若22x y >,则220x y ->,即()()0x y x y +->,因为,x y 正负不确定,所以不能推出0x y >>,因此“0x y >>”是“22x y >”的充分不必要条件,即命题p 为假命题;所以p ⌝为真命题;命题q :“0x ∀>,21x >”的否定是“0x ∃>,21x ≤”,故命题q 为假命题;q ⌝为真命题;所以p q ∧为假,p q ∨为假,()p q ∧⌝为假,()()p q ⌝∧⌝为真.即ACD 错,B 正确.故选:B.4.已知()f x 是偶函数,在(-∞,0)上满足()0xf x '>恒成立,则下列不等式成立的是()A .()34()()5f f f <<--B .()()()435f f f <->-C .()()()534f f f -<-<D .()()()453f f f <-<-【答案】A【分析】由题干条件得到(),0x ∈-∞时,()0f x '<,故()f x 在(),0∞-上单调递减,结合()f x 为偶函数,得到()f x 在()0,∞+上单调递增,从而判断出大小关系.【详解】(),0x ∈-∞时,()0xf x '>即()0f x '<,∴()f x 在(),0∞-上单调递减,又()f x 为偶函数,∴()f x 在()0,∞+上单调递增.∴()()()345f f f <<,∴()()()345f f f -<<-.故选:A .5.在长方体1111ABCD A B C D -中,点E 为1AC 的中点,12AB AA ==,且AD =面直线AE 与BC 所成角的余弦值为()A .23B C D 【答案】C【分析】将异面直线AE 与BC 所成角转化为EAD ∠或其补角,再通过边的计算得到4EAD π∠=,即可求解.【详解】连接1,,DE AC A D ,由BC AD ∥可得EAD ∠或其补角即为异面直线AE 与BC 所成角,又1A A ⊥面ABCD ,AC ⊂面ABCD ,则1A A AC ⊥,则111222AE A C ==⨯,同理可得1A D DC ⊥,1122DE AC ==,则222AE DE AD +=,4EAD π∠=,则异面直线AE 与BC 所成角的余弦值为cos4π=故选:C.6.美国在今年对华为实行了禁令,为了突围实现技术自主,华为某分公司抽调了含甲、乙的5个工程师到华为总部的4个不同的技术部门参与研发,要求每个工程师只能去一个部门,每个部门至少去一个工程师,且甲乙两人不能去同一个部门,则不同的安排方式一共有()种A .96B .120C .180D .216【答案】D【解析】根据题意,先将5人分成4组,减去甲乙在一起的1组,然后4组再安排到4个不同的部门可得答案.【详解】由()24541216C A -=故选:D.7.将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,所得图象经过点π,12⎛⎫⎪⎝⎭,则ϕ的最小值为()A .π12B .π4C .3π4D .11π12【答案】C【分析】利用三角函数图象平移规律得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫ ⎪⎝⎭和ϕ的范围可得答案.【详解】将函数sin 2y x =的图象向左平移(0)ϕϕ>个单位长度后,得到函数[]sin 2()y x ϕ=+的图象,由所得图象经过点π,12⎛⎫⎪⎝⎭,可得()sin π21ϕ+=,则ππ22π2k ϕ+=+,k ∈Z ,则ππ4k ϕ=-+,k ∈Z ,又0ϕ>,所以ϕ的最小值为3π4.故选:C .8.在区间[]22-,上随机取一个数k ,使直线()2y k x =+与圆221x y +=相交的概率为()A B C .6D 【答案】C【分析】求出直线与圆相交时k 的取值范围,利用几何概型的概率公式可求得所求事件的概率.【详解】因为圆221x y +=的圆心为()0,0,半径1r =,直线()2y k x =+与圆221x y +=相交,所以圆心到直线()2y k x =+的距离1d =,解得33k -<<,所以,直线()2y k x =+与圆221x y +=相交的概率为346P ==,故选:C .9.某班同学利用课外实践课,测量北京延庆会展中心冬奥会火炬台“大雪花”的垂直高度MN .在过N 点的水平面上确定两观测点,A B ,在A 处测得M 的仰角为30°,N 在A 的北偏东60°方向上,B 在A 的正东方向30米处,在B 处测得N 在北偏西60°方向上,则MN =()A .10米B .12米C .16米D .18米【答案】A【分析】由已知分析数据,在NAB △中,由正弦定理可求得NA ,在直角MNA △中,可求得MN .【详解】由已知得,30MAN ∠=︒,30NAB NBA ∠=∠=︒,30AB =米在NAB △中,由正弦定理可得30sin120sin 30NA=︒︒,求得NA =米在直角MNA △中,tan 3010M NA N ⋅︒==米故选:A 10.已知函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()f x 的零点个数为()A .1B .2C .3D .4【答案】C【分析】根据题意求导后结合已知极值,得出27b c =-⎧⎨=-⎩,即可根据导数得出其单调性,再结合特值得出其零点个数.【详解】由题意得()232f x x bx c ¢=++,因为函数()()3220f x x bx cx b b =+++<在=1x -处有极值,且极值为8,则()2118f b c b -=-+-+=,()1320f b c '-=-+=,解得27b c =-⎧⎨=-⎩(经检验适合题意),或33b c =⎧⎨=⎩(经检验不合题意舍去)故()32274f x x x x =--+,()()()2347137f x x x x x '=--=+-,当(),1x ∈-∞-或7,3⎛⎫+∞ ⎪⎝⎭时,()0f x ¢>,即函数()f x 单调递增,当71,3x ⎛⎫∈- ⎪⎝⎭时,()0f x '<,即函数()f x 单调递减,又因为()30f -<,()10f ->,()10f <,()40f >,则()f x 有3个零点,故选:C.11.两个长轴在x 轴上、中心在坐标原点且离心率相同的椭圆.若A ,B 分别为外层椭圆的左顶点和上顶点,分别向内层椭圆作切线AC ,BD ,切点分别为C ,D ,且两切线斜率之积等于23-,则椭圆的离心率为()A .13B C D 【答案】B【分析】法一,用判别式等于零求两条切线得斜率,因为它们相乘等于23-,可得2223b a =,所以椭圆的离心率为e 3=;法二,用极点极线得方法得到两条切线得斜率,再根据条件即得.【详解】法一:设内椭圆方程为()222210x y a b a b +=>>,外椭圆为()222220x y m m a b+=>,切线AC 的方程为()1y k x ma =+,联立()1222222,,y k x ma b x a y a b ⎧=+⎨+=⎩消去y 可得:()2222322422211120b a k x ma k x m a k a b +++-=,因为直线AC 为椭圆的切线,所以()()26422224222111Δ440m a k b a k m a k a b =-+-=,化简可得:2212211b k a m =⋅-,设直线BD 的方程为:2y k x mb =+,同理可得()222221b k m a =-,因为两切线斜率之积等于23-,所以2223b a =,所以椭圆的离心率为e =故选:B.法二;设内层椭圆:22221x y a b +=,外层椭圆:22222x y m a b+=.设切点()111,P x y ,()222,P x y ,(),0A ma ,()0,B mb ,切线1l :11221x x y ya b +=,切线2l :22221x x y y a b+=,∴21121x b k a y =-⋅①,22222x b k a y =-⋅②,又∵11AP k k =,即211211x y b a y x ma-⋅=-,即222222111b x b m ax a y -+=,即22222222111b m ax a y b x a b =+=,∴1mx a =,同理22BP k k =,∴2my b =,∴21y b x a=,将1P ,2P 代入椭圆22221x y a b +=中得:221222y b x a =,经分析得:12y b x a =-,由①②可知22212122212x x b b k k a y y a ⎛⎫=⋅=- ⎪⎝⎭,∴2223b a =,∴2221e 13b a =-=,∴e 3=.故选:B.12.已知3e a -=,ln1.01b =,sin 0.02c =,则()A .a b c <<B .b a c <<C .c b a <<D .b<c<a【答案】D【分析】先利用不等式()sin 0x x x >>比较a ,c 的大小,再构造函数,利用函数的单调性比较b ,c 的大小,即可得到结果.【详解】如图,单位圆A 中,BAC θ∠=,BD AC ⊥于D ,则BC 的长度l θ=,sin BD θ=,则由图易得,l BC BD >>,即sin θθ>,所以3321110.02sin 0.02e 350e c a -==>>=>=.设()()sin 2ln 1f x x x =-+,0,6x π⎛⎫∈ ⎪⎝⎭,则()112cos 21011f x x x x '=->->++,所以()f x 在0,6π⎛⎫⎪⎝⎭上单调递增,则()0.010f >,即sin 0.02ln1.01>,即b c <.综上,b<c<a .故选:D .第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若双曲线221x my +=的焦距等于虚轴长的3倍,则m 的值为______.【答案】8-【分析】先将双曲线化为标准形式,进而得到2211,a b m ==-,211c m=-,根据题意列出方程,求出m 的值.【详解】221x my +=化为标准方程:2211y x m-=-,则2211,a b m ==-,故211c m =-,则可得:=8m =-,故答案为:8-14.向量()2,1a =-r ,()2,3b =-r ,(),1c m =- ,c b ⊥r r,则a c -= ___.【答案】172【分析】利用平面向量垂直的坐标表示可求得实数m 的值,再利用平面向量的坐标运算以及向量模的坐标运算可求得结果.【详解】由已知可得230c b m ⋅=--= ,解得32m =-,则3,12c ⎛⎫=-- ⎪⎝⎭,所以,1,22a c ⎛⎫-=- ⎪⎝⎭ ,因此,a c -== .15.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知向量cos,12A B m +⎛⎫= ⎪⎝⎭,且254m = .若2c =,且ABC 是锐角三角形,则22a b +的取值范围为______.【答案】20,83⎛⎤⎥⎝⎦【分析】化简254m = 可得2π3A B +=,即π3C =,由正弦定理可得22168πsin 2336a b A ⎛⎫+=+- ⎪⎝⎭,再结合ABC 是锐角三角形,即可求出ππ62A <<,则可写出22a b +的取值范围.【详解】由题意得()221cos 5cos 11224A B A B m +++=+=+= ,所以()1cos 2A B +=-,因为0πA B <+<,所以2π3A B +=,所以()ππ3C A B =-+=,由正弦定理得sin sin sin a b c A B C ===,所以a A ,2πsin 3b B A ⎛⎫=⋅- ⎪⎝⎭,则2222162sin sin 33a b A A π⎡⎤⎛⎫+=+- ⎪⎢⎥⎝⎭⎣⎦1684cos 2cos 2333A A π⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦1681cos 2cos 22332A A A ⎛⎫=-- ⎪ ⎪⎝⎭168πsin 2336A ⎛⎫=+- ⎪⎝⎭.因为ABC 是锐角三角形,所以π02A <<,π02B <<,又2π3B A =-,所以ππ62A <<,即ππ5π2666A <-<,所以1πsin 2126A ⎛⎫<-≤ ⎪⎝⎭,所以20168πsin 283336A ⎛⎫<+-≤ ⎪⎝⎭,故222083a b <+≤.故答案为:20,83⎛⎤ ⎥⎝⎦.16.如图,ED 是边长为2的正三角形ABC 的一条中位线,将ADE V 沿DE 折起,构成四棱锥F BCDE -,若EF CD ⊥,则四棱锥F BCDE -外接球的表面积为__________.【答案】112π【分析】根据给定的几何体,确定四边形BCDE 外接圆圆心,进而求出外接球半径即可计算作答.【详解】取BC 中点G ,连接AG 交DE 于H ,连接,,,FH EG DG FG ,如图,因为ED 是边长为2的正ABC 平行于BC 的中位线,则,AG ED FH ED ⊥⊥,H 是AG 中点,,,AG FH H AG FH =⊂ 平面AFG ,则有ED ⊥平面AFG ,ED ⊂平面BCDE ,有平面AFG ⊥平面BCDE ,显然有112GE GD GC GB =====,则G 是四边形BCDE 外接圆圆心,在平面AFG 内过G 作直线l AG ⊥,因为平面AFG ⋂平面BCDE AG =,因此l ⊥平面BCDE ,则四棱锥F BCDE -的外接球球心O 在直线l 上,过F 作FQ AG ⊥于Q ,FQ ⊂平面AFG ,有FQ ⊥平面BCDE ,则有//OG FQ ,连接,FO BO ,四边形FOGQ 为直角梯形,因为//,EG CD FE CD ⊥,则有FE EG ⊥,FG =,在AFG 中,FH AH HG ==,则AFG 是直角三角形,90AFG ∠= ,而AG =则1AF =,于是得3AF FG FQ AG ⋅==,过O 作OP FQ ⊥于P ,有PQ OG =,2FG OP GQ AG ===OB OF R ==,Rt OBG △与Rt OFP 中,222222OB BG OG OF OP FP ⎧=+⎨=+⎩,即222214)3R OG R OG ⎧=+⎪⎨=+-⎪⎩,解得44OG R ==,所以四棱锥F BCDE -外接球的表面积为21142S R ππ==.故答案为:112π三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分三、解答题17.2022年卡塔尔世界杯开幕式在美丽的海湾球场举行,中国制造在这届世界杯中闪亮登场,由中国铁建承建的卢赛尔球场是全球首个在全生命周期深入应用建筑信息模型技术的世界杯主场馆项目.场馆的空调是我们国家的海信空调,海信空调为了了解市场情况,随机调查了某个销售点五天空调销售量y (单位:台)和销售价格x (单位:百元)之间的关系,得到如下的统计数据:销售价格x 2428303236销售量y340330300270260(1)通过散点图发现销售量y 与销售价格x 之间有较好的线性相关关系,求出y 关于x 的线性回归方程ˆˆˆybx a =+.(2)若公司希望每天的销售额到达最大,请你利用所学知识帮公司制定一个销售价格(注:销售额=销售价格×销售量).附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()121ˆni ii n ii x x yy b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)7.5525ˆyx =-+(2)35百元【分析】(1)根据已知求得回归方程的系数,即可得回归方程;(2)利用销售额的公式可得到()27.5359187.5zx =--+ ,利用二次函数的性质即可求解【详解】(1)2428303236305x ++++==,3403303002702603005y ++++==,6402302(30)6(40)7.536ˆ4436b-⨯-⨯+⨯-+⨯-==-+++,3007.530ˆ525a=+⨯=,∴y 关于x 的线性回归方程为7.5525ˆyx =-+(2)设销售额为 ()227.55257.5359187.5zx y x x x ==-+=--+ ,070x ≤≤,当35x =百元时,此时销售额到达最大,该值为max 9187.5z =百元18.已知数列{}n a 的前n 项和为n S ,且123n n n S S a +=++,11a =.(1)证明:数列{}3n a +是等比数列,并求数列{}n a 的通项公式;(2)若()2log 3n n n b a a =⋅+,求数列{}n b 的前n 项和n T .【答案】(1)证明过程见详解,123n n a +=-(2)2239222n n T n n n+=⋅--【分析】(1)先利用n a 与n S 之间的关系化简已知等式,得到1n a +,n a 间的关系,从而可求得数列{}3n a +的首项和公比,即可求得数列{}n a 的通项公式;(2)先求得数列{}n b 的通项公式,再根据分组求和和错位相减即可求得n T .【详解】(1)因为123n n n S S a +=++,所以123n n n S S a +-=+,得123n n a a +=+,即()1323n n a a ++=+,又11a =,所以数列{}3n a +是首项为4,公比为2的等比数列,所以113422n n n a -++=⋅=,得123n n a +=-.(2)由题意得()()()()()1111223log 21231231n n n n n b n n n ++++=-⋅=+⋅-=+-+,所以()()2316332232122n n n n T n +++=⨯+⨯+++⨯-.令()231223212n n P n +=⨯+⨯+++⨯ ,则()3422223212n n P n +=⨯+⨯+++⨯ ,两式相减,得()()()223412222212222212412221n n n n n n P n n n ++++--=⨯++++-+⨯=+-+⨯=-⋅- ,故22n n P n +=⋅,所以2239222n n T n n n +=⋅--.19.如图,在四棱锥M ABCD -中,底面ABCD 是平行四边形,4AB =,AD =,MC ==45ADC ∠︒,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD 上的点(含端点).(1)若E 为线段AD 的中点,证明:平面MOE ⊥平面MAD ;(2)若3AE DE =,求二面角D ME O --的余弦值.【答案】(1)证明见解析【分析】(1)在△ADO 中,利用勾股定理证明ED ⊥EO ,再结合ED ⊥MO 即可证明AD ⊥平面MOE ,从而可证明平面MOE ⊥平面MAD ;(2)连接OA ,证明DO OA ⊥,以O 为坐标原点,建立空间直角坐标系,利用空间向量即可求解二面角的余弦值.【详解】(1)∵AD ⊂平面ABCD ,MO ⊥平面ABCD ,∴MO AD ⊥.∵O 为线段CD 的中点,E 为线段AD 的中点,∴2DO =,DE =∵=45ADC ∠︒,由余弦定理得22222222EO =+-⨯⨯,则222EO DE DO +=,则DE EO ⊥.∵MO EO O ⋂=,,MO EO ⊂平面MOE ,∴AD ⊥平面MOE ,又∵AD ⊂平面MAD ,∴平面MOE ⊥平面MAD .(2)连接OA ,由(1)知当E 为线段AD的中点时,AE DE EO ===,则A 、O 、D 三点在以AD 为直径的圆上,故DO OA ⊥.故以O为原点,建立如图所示的空间直角坐标系,又MC =2MO =,∴(0,0,0)O ,(2,0,0)D ,(0,2,0)A ,(0,0,2)M .又3AE DE =,则13,,022E ⎛⎫⎪⎝⎭,∴(0,0,2)OM = ,(2,0,2)DM =- ,(2,2,0)DA =-,13,,022OE ⎛⎫= ⎪⎝⎭.设平面MAD 的法向量为()111,,m x y z = ,则1111220220DM m x z DA m x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,,解得1111x z x y =⎧⎨=⎩,,取11x =,则平面MAD 的一个法向量为(1,1,1)m =.设平面MEO 的法向量为()222,,x n y z = ,则2221302220OE n x y OM n z ⎧⋅=+=⎪⎨⎪⋅==⎩,,解得22230x y z =-⎧⎨=⎩,,取23x =,则平面MEO 的一个法向量为(3,1,0)n =-.则30cos 15m n m n m n⋅⋅==⋅,则二面角D ME O --的余弦值为15.20.已知函数()2()4e 6x f x x x x =--+,()()ln 1g x x a x =-+,1a >-.(1)求()f x 的极值;(2)若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,求实数a 的取值范围.(3e 20.09≈)【答案】(1)极大值()2ln 28ln 28-+-,极小值为39e -(2)361,e ⎛⎫-- ⎪⎝⎭【分析】(1)求出()f x ',令()0f x '=,得3x =或ln 2x =,再列出,(),()x f x f x '的变化关系表,根据表格和极值的概念可求出结果;(2)根据(1)求出()f x 在[]1,3上的最小值为3(3)9e f =-,则将若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,转化为3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,再构造函数3ln 9e ()x h x x-+=,23e ,e x ⎡⎤∈⎣⎦,转化为min 1()a h x +<,利用导数求出min ()h x 代入可得解【详解】(1)由()2()4e 6x f x x x x =--+,得()()()e 4e 263e 26x x xf x x x x x '=+--+=--+()()3e 2x x =--,令()0f x '=,得3x =或ln 2x =,,(),()x f x f x '的变化关系如下表:x (),ln 2-∞ln 2()ln 2,33()3,+∞()f x '+0-+()f x 单调递增极大值单调递减极小值单调递增由表可知,当ln 2x =时,()f x 取得极大值,为(ln 2)f =()()2ln 2ln 24e ln 26ln 2--+()2ln 28ln 28=-+-,当3x =时,()f x 取得极小值,为()32(3)34e 318f =--+39e =-.(2)由(1)知,()f x 在[]1,3上单调递减,所以当[]1,3x ∈时,3min ()(3)9e f x f ==-,于是若存在[]11,3x ∈,对任意的232e ,e x ⎡⎤∈⎣⎦,使得不等式()()21g x f x >成立,则()()3ln 19e 1x a x a -+>->-在23e ,e ⎡⎤⎣⎦上恒成立,即3ln 9e 1x a x-++<在23e ,e ⎡⎤⎣⎦上恒成立,令3ln 9e ()x h x x -+=,23e ,e x ⎡⎤∈⎣⎦,则min 1()a h x +<,()321ln 9e ()x x x h x x⋅--+'=3210e ln xx -+=,因为23e ,e x ⎡⎤∈⎣⎦,所以[]ln 2,3x ∈,33310e ln 12e ,13e x ⎡⎤-+∈--⎣⎦,因为3e 20.09≈,所以313e 1320.097.090-≈-=-<,所以()0h x '<,所以()h x 单调递减,故333min 33ln e e 96()(e )1e e h x h +-===-,于是3611e a +<-,得36e a <-,又1a >-,所以实数a 的取值范围是361,e ⎛⎫-- ⎪⎝⎭.21.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l yx =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()0102020222y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224 y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y+∈,4,PAB S ⎡∈⎣△(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数).(1)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,求曲线C 极坐标方程;(2)若点A ,B 为曲线C 上的两个点且OA OB ⊥,求证:2211||||OA OB +为定值.【答案】(1)2243sin 1ρθ=+(2)证明见解析【分析】(1)先消去参数ϕ化为直角坐标方程,再根据公式cos x ρθ=,sin y ρθ=化为极坐标方程即可得解;(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ,将,A B 的极坐标代入曲线C 的极坐标方程,根据极径的几何意义可求出结果.【详解】(1)由2cos sin x y ϕϕ=⎧⎨=⎩得2222cos sin 14x y ϕϕ+=+=,所以曲线C 的直角坐标方程为2214x y +=.将cos x ρθ=,sin y ρθ=代入到2214x y +=,得2222cos sin 14ρθρθ+=,得2243sin 1ρθ=+,所以曲线C 的极坐标方程为:2243sin 1ρθ=+.(2)由于OA OB ⊥,故可设()1,A ρθ,2π,2B ⎛⎫+ ⎪⎝⎭ρθ21243sin 1ρθ=+,2222443cos 1n π23si 1ρθθ⎛⎫+ ⎝=⎭=++⎪,所以2222121111||||OA OB ρρ+=+()()223sin 13cos 1544θθ+++==.即2211||||OA OB +为定值54.[选修4-5:不等式选讲]23.已知函数()|2||3|f x x x =++.(1)求函数()y f x =的最小值M ;(2)若0,0a b >>且a b M +=【答案】(1)3M =;试卷第17页,共17页.【分析】(1)利用零点分段法将()f x 写出分段函数的形式,画出图象,由图象可以看出函数()f x 的最小值;(2)由(1)知3a b +=,23≥,的最小值.【详解】(1)由于()()()()33323330330x x f x x x x x x x ⎧--<-⎪=++=--≤≤⎨⎪+>⎩,作出此函数图象如图所示:由图象可知函数()f x 的最小值为()03f =,即3M =.(2)由(1)知3a b +=,所以2924a b ab +⎛⎫≤= ⎪⎝⎭,所以149ab ≥,23≥,当且仅当32a b ==时等号成立,3+≥≥=,当且仅当32a b ==时等号成立.。
高考数学模拟考试试卷(含有答案)
高考数学模拟考试试卷(含有答案)本试卷共19题。
全卷满分120分。
考试用时120分钟注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡的非答题区域均无效。
3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z 则T S ( ) A .∅ B .S C .T D .Z2.已知复数z 满足1z =且有510z z ++=则z = ( )A .12-±B .12±C .22±D i 12±3.已知α,β均为锐角,且sin cos()sin ααββ+=则tan α的最大值是 ( )A .4B .2CD 4.为了激发同学们学习数学的热情,某学校开展利用数学知识设计LOGO 的比赛,其中某位同学利用函数图像的一部分设计了如图的LOGO ,那么该同学所选的函数最有可能是 ( )A .()sin x x x f -=B .()sin cos f x x x x =-C .()221f x x x =-D .()3sin f x x x =+5.如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (nx ',n y ')则200n n n y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .10006.表面积为4π的球内切于圆锥则该圆锥的表面积的最小值为( ) A .4πB .8πC .12πD .16π7.已知定点(,0)P m ,动点Q 在圆O :2216x y +=上,PQ 的垂直平分线交直线 OQ 于M 点,若动点M 的轨迹是双曲线则m 的值可以是 ( ) A .2B .3C .4D .58.设cos0.1a =和10sin0.1b =,110tan 0.1c =则 ( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<二、选择题:本题共3小题,每小题6分,共18分。
2023年普通高等学校招生全国统一考试新高考仿真模拟卷数学(一)(含答案解析)
2023年普通高等学校招生全国统一考试�新高考仿真模拟卷数学(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}24xA x =<,{}1B =≤,则A B = ()A .()0,2B .[)1,2C .[]1,2D .()0,12.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-3.()()51223x x -+的展开式中,x 的系数为()A .154B .162C .176D .1804.已知1tan 5α=,则2cos 2sin sin 2ααα=-()A .83-B .83C .38-D .385.何尊是我国西周早期的青铜礼器,其造形浑厚,工艺精美,尊内底铸铭文中的“宅兹中国”为“中国”一词的最早文字记载.何尊的形状可以近似地看作是圆台与圆柱的组合体,高约为40cm ,上口直径约为28cm ,下端圆柱的直径约为18cm .经测量知圆柱的高约为24cm ,则估计该何尊可以装酒(不计何尊的厚度,403π1266≈,1944π6107≈)()A .312750cmB .312800cmC .312850cm D .312900cm 6.已知()f x 是定义域为R 的奇函数,满足()()2f x f x =-,则()2022f =()A .2B .1C .1-D .07.在四棱锥P ABCD -中,ABCD 是边长为2的正方形,AP PD ==PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为()A .4πB .8πC .136π9D .68π38.已知抛物线C :24y x =,O 为坐标原点,A ,B 是抛物线C 上两点,记直线OA ,OB 的斜率分别为1k ,2k ,且1212k k =-,直线AB 与x 轴的交点为P ,直线OA 、OB 与抛物线C 的准线分别交于点M ,N ,则△PMN 的面积的最小值为()A B .4C .4D .2二、多选题9.已知函数()()1cos 02f x x x ωωω=+>的图像关于直线6x π=对称,则ω的取值可以为()A .2B .4C .6D .810.在菱形ABCD 中,2AB =,60DAB ∠= ,点E 为线段CD 的中点,AC 和BD 交于点O ,则()A .0AC BD ⋅= B .2AB AD ⋅= C .14OE BA ⋅=-D .52OE AE ⋅=11.一袋中有3个红球,4个白球,这些球除颜色外,其他完全相同,现从袋中任取3个球,事件A “这3个球都是红球”,事件B “这3个球中至少有1个红球”,事件C “这3个球中至多有1个红球”,则下列判断错误的是()A .事件A 发生的概率为15B .事件B 发生的概率为310C .事件C 发生的概率为335D .1(|)31P A B =12.对于函数()()32,f x x x cx d c d =+++∈R ,下列说法正确的是()A .若0d =,则函数()f x 为奇函数B .函数()f x 有极值的充要条件是13c <C .若函数f (x )有两个极值点1x ,2x ,则4412281x x +>D .若2c d ==-,则过点()20,作曲线()y f x =的切线有且仅有3条三、填空题13.已知样本数据1-,1-,2,2,3,若该样本的方差为2s ,极差为t ,则2s t=______.14.已知圆O :221x y +=与直线l :=1x -,写出一个半径为1,且与圆O 及直线都相切的圆的方程:______.15.已知椭圆()222210x y a b a b+=>>的左顶点为A ,左焦点为F ,过F 作x 轴的垂线在x轴上方交椭圆于点B ,若直线AB 的斜率为32,则该椭圆的离心率为______.16.已知f (x )是偶函数,当0x ≥时,()()2log 1f x x =+,则满足()2f x x>的实数x 的取值范围是______.四、解答题17.已知数列{}n a 是等差数列,1324,,a a a a +成等比数列,56a =.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求证:()221n n S n +<+.18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos sin cos c B a A b C =-.(1)判断ABC 的形状;(2)若a =,D 在BC 边上,2BD CD =,求cos ADB ∠的值.19.如图,在直三棱柱111ABC A B C -中,D 、E 分别是AB 、1BB 的中点,12AA AC CB ==,AB =.(1)求证:1//BC 平面1ACD ;(2)若1BC =,求四棱锥1C A DBE -的体积;(3)求直线1BC 与平面1A CE 所成角的正弦值.20.新高考模式下,数学试卷不分文理卷,学生想得高分比较困难.为了调动学生学习数学的积极性,提高学生的学习成绩,张老师对自己的教学方法进行改革,经过一学期的教学实验,张老师所教的80名学生,参加一次测试,数学学科成绩都在[]50,100内,按区间分组为[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.(1)求这80名学生的平均成绩(同一区间的数据用该区间中点值作代表);(2)按优秀与非优秀用分层抽样方法随机抽取10名学生座谈,再在这10名学生中,选3名学生发言,记优秀学生发言的人数为随机变量X ,求X 的分布列和期望.21.已知12,F F 分别为双曲线()222210,0x y a b a b-=>>左、右焦点,(P 在双曲线上,且124PF PF ⋅=.(1)求此双曲线的方程;(2)若双曲线的虚轴端点分别为12,B B (2B 在y 轴正半轴上),点,A B 在双曲线上,且()22B A B B μμ=∈R ,11B A B B ⊥,试求直线AB 的方程.22.已知函数()()211e 12x f x a x a ax a =---+++,()R a ∈.(1)当1a =时,求f (x )的单调区间;(2)当310,e a ⎛⎫∈ ⎪⎝⎭时,求证:函数f (x )有3个零点.参考答案:1.B【分析】化简集合A 和B ,即可得出A B ⋂的取值范围.【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤∴{}12A B x x ⋂=≤<故选:B.2.D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.3.C【分析】根据二项式定理可求得()523x +展开式通项,由此可确定12,T T ,结合多项式乘法运算进行整理即可确定x 的系数.【详解】()523x + 展开式的通项公式为:()55155C 2323C rr r r r r rr T x x --+=⋅⋅=⋅;当1r =时,412523C 240T x x =⨯=;当0r =时,51232T ==;x ∴的系数为24023224064176-⨯=-=.故选:C.4.A【分析】利用二倍角公式化简为正、余弦的齐次分式,分式上下同除2cos α,代入1tan 5α=可得答案.【详解】2222cos 2cos sin sin sin 2sin 2sin cos αααααααα-=--22111tan 825123tan 2tan 255ααα--===---,故选:A.5.C【分析】根据圆柱和圆台的体积公式计算可得结果.【详解】下端圆柱的体积为:224π91944π⋅=6107≈3cm ,上端圆台的体积为:()22116π1414993⨯+⨯+16π4033=⨯1612663≈⨯6752=3cm ,所以该何尊的体积估计为61076752+=128593cm .因为12850最接近12859,所以估计该何尊可以装酒128503cm .故选:C 6.D【分析】根据函数()f x 是定义域为R 的奇函数,且()()2f x f x =-得出函数()f x 是周期为4的周期函数,进而求解.【详解】因为函数()f x 是定义域为R 的奇函数,且()()2f x f x =-,所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=,即函数()f x 是周期为4的周期函数,因为函数()f x 是定义域为R 的奇函数,所以(0)0f =,因为()()2f x f x =-,所以(2)(0)0f f ==,又因为202245052=⨯+,所以(2022)(2)0f f ==,故选:D .7.C【分析】将该四棱锥的外接球放在一个长方体内,画出图形,利用已知条件找出球心,建立相应的关系式,求出外接球的半径,利用球体表面积公式计算即可.【详解】由题意将该四棱锥放在一个长方体的中,如图①所示:取AD 的中点H ,连接PH ,连接,AC BD 交于1O ,由AP PD ==,则在等腰PAD 中有:PH AD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD ⋂平面ABCD=AD ,则PH ⊥平面ABCD ,又112AH AD ==,所以在Rt PAH △中,3PH =,由底面为正方形ABCD ,所以它的外接圆的圆心为对角线的交点1O ,连接1O H ,则1PH O H ⊥,PAD 外接圆的圆心为2O ,且在PH 上,过点1O ,2O 分别作平面ABCD 与平面PAD 的垂线,则两垂线必交于点O ,点O 即为四棱锥P ABCD -外接球的球心,且1OO ⊥平面ABCD ,又PH ⊥平面ABCD ,即2O H ⊥平面ABCD ,所以1OO ∥PH ,所以四边形12OO HO 为矩形.如图②连接2AO ,则22AO PO =,在2Rt AO H 中,22223O H PH PO PH AO AO =-=-=-,所以()2222222213AO AH HO AO =+=+-,解得253AO =,所以254333O H =-=,所以1243OO O H ==,在图①中连接OB ,由112O B BD ==,所以在1Rt OO B中,OB ====即四棱锥P ABCD-外接球的半径为3R OB ==,所以四棱锥P ABCD-外接球的表面积为:221364πR 4ππ9S ==⨯=⎝⎭,故选:C.8.D【分析】设出A 、B 的坐标,由1212k k =-解得12y y 的值,再分别求出点M 、点N 的坐标,求得||MN 的式子,研究AB l 恒过x 轴上的定点可得点P 的坐标,进而用方法1基本不等式或方法2函数思想求得三角形面积的最小值.【详解】设211(,)4y A y ,222(,)4y B y ,则114k y =,224k y =,∴12121612k k y y ==-∴1232y y =-,∴设OA l :14y x y =,令=1x -得:14y y =-,∴14(1,M y --,同理:24(1,N y --∴12121212||44||||4||8y y y y MN y y y y --=-+==,设AB l :x my t =+,221044x my t y my t y x=+⎧⇒--=⎨=⎩20m t ∆=+>,124y y m +=,124y y t =-,又∵1232y y =-,∴432t -=-,解得:8t =,∴AB l :8x my =+恒过点(8,0),∴AB l 与x 轴交点P 的坐标为(8,0),即:(8,0)P ,∴点P 到准线=1x -的距离为8+1=9.方法1:1211||1321||||2888y y MN y y -==+≥⨯,当且仅当1||y =.∴19||9||222PMN S MN MN =⨯=≥△,∴△PMN的面积的最小值为2.方法2:12||||8y y MN -====∵20m ≥∴||MN ≥=m =0时取得最小值.∴19||9||222PMN S MN MN =⨯=≥△,∴△PMN的面积的最小值为2.故选:D.9.AD【分析】首先将函数()f x 化成一个三角函数,然后根据对称轴公式求得ω的表达式,对整数k 赋值求得结果.【详解】()()1cos sin 26f x x x x ωωωπ=+=+,因为函数()f x 的图象关于直线6x π=对称,所以662k ωπππ+=+π,k ∈Z ,解得26k ω=+,因为0ω>,所以当0k =时,2ω=;所以当1k =时,8ω=.故选:AD.10.ABD【分析】以O 为坐标原点可建立平面直角坐标系,利用平面向量数量积的坐标运算依次验证各个选项即可.【详解】 四边形ABCD 为菱形,AC BD ∴⊥,则以O 为坐标原点,,OC OD正方向为,x y轴,可建立如图所示平面直角坐标系,2AB AD == ,60DAB ∠= ,2BD ∴=,OA OC ==()0,0O ∴,()A ,()0,1B -,()0,1D,12E ⎫⎪⎪⎝⎭,对于A ,AC BD ^ ,0AC BD ∴⋅=,A 正确;对于B,)1AB =-,)AD =,312AB AD ∴⋅=-=,B 正确;对于C,12OE ⎫=⎪⎪⎝⎭,()BA = ,31122OE BA ∴⋅=-+=- ,C 错误;对于D,12OE ⎫=⎪⎪⎝⎭,12AE ⎫=⎪⎪⎝⎭ ,915442OE AE ∴⋅=+= ,D 正确.故选:ABD.11.ABC【分析】根据题意求出基本事件总数、满足条件的基本事件数,利用古典概型概率公式及条件概率公式求解即可.【详解】由题意7个球中任取3个球的基本事件总数为:37C 35=这3个球都是红球的基本事件数为:33C 1=,所以事件A 发生的概率为:1()35P A =,故A 错误,这3个球中至少有1个红球的基本事件数为:1221334343C C C C +C 1812131⋅+⋅=++=,所以事件B 发生的概率为:31()35P B =,故B 错误,这3个球中至多有1个红球的基本事件数为:123344C C C 18422⋅+=+=,事件C 发生的概率为22()35P C =,故C 错误,因为1()()35P AB P A ==,所以由条件概率公式得:1()135(|)31()3135P AB P A B P B ===,故D 正确,故选:ABC.12.BCD【分析】对于A :利用奇偶性的定义直接判断;对于B :利用极值的计算方法直接求解;对于C :先求出13c <,表示出244122161692781c x x c +=-+,即可求出;对于D :设切点()00,x y ,由导数的几何意义得到3200025460x x x --+=.设()322546g x x x x =--+,利用导数判断出函数()g x 有三个零点,即可求解.【详解】对于A :当0d =时,()32f x x x cx =++定义域为R .因为()()()()()3232f x x x c x x x cx f x -=-+-+-=-+-≠-,所以函数()f x 不是奇函数.故A 错误;对于B :函数()f x 有极值⇔()f x 在R 上不单调.由()32f x x x cx d =+++求导得:()232f x x x c =++'.()f x 在R 上不单调⇔()f x '在R 上有正有负⇔4430c ∆=-⨯>⇔13c <.故B 正确.对于C :若函数f (x )有两个极值点1x ,2x ,必满足0∆>,即13c <.此时1x ,2x 为2320x x c ++=的两根,所以1212233x x c x x ⎧+=-⎪⎪⎨⎪=⎪⎩.所以()22212121242293c x x x x x x +=+-=-.所以()()222244222212121242216162293992781c c c x x x xx x c +=+-=--=-+对称轴164272329c -=-=⨯,所以当13c <时,()224412216162116116292781932738181c x x +=-+>⨯-⨯+=.即4412281x x +>.故C 正确;对于D :若2c d ==-时,()3222f x x x x =+--.所以()2322f x x x '=+-.设切点()00,x y ,则有:()3200002000002203222y x x x y f x x x x ⎧=+--⎪-⎨=+-=⎪-⎩',消去0y ,整理得:3200025460x x x --+=不妨设()322546g x x x x =--+,则()26104g x x x '=--.令()0g x '>,解得:2x >或13x <-;令()0g x '<,解得:123x -<<.所以()g x 在1,3⎛⎫-∞- ⎪⎝⎭,()2,+∞上单调递增,在1,23⎛⎫- ⎪⎝⎭上单调递减.所以()()()()()32111119254660333327g x g =-=-----+=>极大值,()()322225242660g x g ==⨯-⨯-⨯+=-<极小值.所以作出的图像如图所示:因为函数()g x 有三个零点,所以方程3200025460x x x --+=有三个根,所以过点()20,作曲线()y f x =的切线有且仅有3条.故D 正确.故选:BCD.13.710##0.7【分析】根据极差的定义可得()314t =--=,先求出平均数,再从方差,从而可求2s t.【详解】极差()314t =--=,平均数为()()1122315-+-+++=,故方差()()()()()222222114111*********s ⎡⎤=--+--+-+-+-=⎣⎦.所以21475410s t ==.故答案为:710.14.()2221x y +-=(答案不唯一)【分析】根据圆的圆心和半径,结合直线和圆的位置关系及两个圆的位置关系计算即可.【详解】设圆心C 为()00,x y ,由已知圆C 与直线l :=1x -相切,圆C 与圆O :221x y +=相切,可得0112x ⎧--==,即得0002x y =⎧⎨=⎩或0002x y =⎧⎨=-⎩或0020x y =-⎧⎨=⎩,且已知半径为1,所以圆的方程可以为:()2221x y +-=或()2221x y ++=或()2221x y ++=故答案为:()2221x y +-=(答案不唯一)15.12##0.5【分析】由题意设(),0A a -,2,b B c a ⎛⎫- ⎪⎝⎭,再由232AB b a k c a -==-+结合222a b c =+,即可得出答案.【详解】由题意可得,(),0A a -,(),0F c -,令椭圆()222210x y a b a b +=>>中x c =-,解得:2b y a =±,所以2,b B c a ⎛⎫- ⎪⎝⎭,而2032AB b a k c a -==-+,则2232a c a c a c a a -+==-+,解得:12e =.故答案为:12.16.()(),01,-∞⋃+∞【分析】利用奇偶性和函数的单调性解不等式.【详解】当0x ≥时,()()2log 1f x x =++,函数在[)0,∞+上单调递增,∴()(0)0f x f ≥=,又()f x 是偶函数,所以()f x 的值域为[)0,∞+.当0x ≥时,()()2log 1f x x =++,不等式()2f x x >()22log 1x x +>,即()22log 10x x+->,设()22()log 1g x x x =++-,由函数y =()2log 1y x =+,2y x=-在()0,∞+上都是增函数,得()g x 在()0,∞+上是增函数,由(1)0g =,则()0(1)g x g >=解得1x >;当0x <时,由函数值域可知()0f x >,此时20x<,所以()2f x x >恒成立;综上可知,满足()2f x x>的实数x 的取值范围是()(),01,-∞⋃+∞.故答案为:()(),01,-∞⋃+∞17.(1)1n a n =+(2)证明见解析【分析】(1)根据等比数列定义和等差数列通项公式可构造方程组求得1,a d ,进而确定n a ;(2)利用裂项相消法可求得n S ,整理即可证得结论.【详解】(1)设等差数列{}n a 的公差为d ,1324,,a a a a + 成等比数列,()23124a a a a ∴=+,即()()2111224a d a a d +=+,又5146a a d =+=,则由()()2111122446a d a a d a d ⎧+=+⎪⎨+=⎪⎩得:121a d =⎧⎨=⎩或163a d =-⎧⎨=⎩,当16a =-,3d =时,30a =,不满足1324,,a a a a +成等比数列,舍去;12a ∴=,1d =,()211n a n n ∴=+-=+.(2)由(1)得:()()111111212n n a a n n n n +==-++++,1111111111233445112n S n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=-+-+-+⋅⋅⋅+-+- ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()112222n n n =-=++,()221n n S n n ∴+=<+.18.(1)直角三角形(2)0【分析】(1)根据正弦定理的边角互化,即可得到结果;(2)由(1)中结论即可得到cos B ∠,从而得到AD 的值,然后在ABD △中结合余弦定理即可得到结果.【详解】(1)因为cos sin cos c B a A b C =-,由正弦定理可得,2sin cos sin cos sin C B B C A+=即()2sin sin B C A+=所以()2sin sin ,0,πsin 1A A A A =∈⇒=且()0,πA ∈,所以π2A =即ABC 是直角三角形.(2)在直角ABC 中,有22223b c a b +==,即222c b =,所以c ,又因为2BD CD =,所以23BD BC ==且cos cB a ==在ABD △中,由余弦定理可得,222222423cos 23b b AD AB BD AD B AB BD +-+-∠==⋅解得AD =,在ABD △中由余弦定理可得,22222224233cos 0233b b b AD BD AB ADB AD BD +-+-∠=⋅19.(1)证明见解析(2)235【分析】(1)连接1AC 交1AC 于点F ,连接EF ,则F 为1AC 的中点,利用中位线的性质可得出1DF //BC ,再利用线面平行的判定定理可证得结论成立;(2)过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,证明出CM ⊥平面11AA B B ,计算出CM 的长以及四边形1A DBE 的面积,利用锥体的体积公式可求得四棱锥1C A DBE -的体积;(3)设1BC =,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面1A CE 所成角的正弦值.【详解】(1)证明:连接1AC 交1AC 于点F ,连接EF ,则F 为1AC 的中点,因为D 、F 分别为AB 、1AC 的中点,则1DF //BC ,因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ,1//BC ∴平面1ACD .(2)解:因为1BC =,则122AA AC CB ===,AB ==222AC BC AB ∴+=,即AC BC ⊥,过点C 在平面ABC 内作CM AB ⊥,垂足为点M ,因为1AA ⊥平面ABC ,CM ⊂平面ABC ,1CM AA ∴⊥,又因为CM AB ⊥,1AB AA A ⋂=,AB 、1AA ⊂平面11AA B B ,CM ∴⊥平面11AA B B ,由等面积法可得5AC BC CM AB ⋅==,因为1AA ⊥平面ABC ,AB ⊂平面ABC ,1AA AB ∴⊥,又因为11//AA BB 且11AA BB =,故四边形11AA B B 为矩形,所以,1111111212AA D A B E AA B B A DBE S S S S ⎫=--=+=⎪⎪⎝⎭△△矩形四边形111123353C A DBE A DBE V S CM -∴=⋅=⨯=四边形.(3)解:不妨设1BC =,因为AC BC ⊥,1CC ⊥平面ABC ,以点C 为坐标原点,CA 、CB 、1CC 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,1,0B 、()0,0,0C 、()10,0,2C 、()12,0,2A 、()0,1,1E ,设平面1A CE 的法向量为(),,n x y z = ,()12,0,2CA = ,()0,1,1CE = ,则12200n CA x z n CE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取1x =,可得()1,1,1n =- ,因为()10,1,2BC =-,则111cos ,BC nBC n BC n⋅<>==--⋅,因此,直线1BC 与平面1A CE20.(1)73.5(2)分布列见解析;期望()910E X =【分析】(1)根据频率分布直方图估计平均数的方法直接计算即可;(2)根据频率分布直方图可确定优秀与非优秀学生对应的频率,根据分层抽样原则可确定10名学生中优秀学员的人数,由此可得X 所有可能的取值,根据超几何分布概率公式可求得X 每个取值对应的概率,由此可得分布列;由数学期望计算公式可求得期望.【详解】(1)80名学生的平均成绩为()550.01650.03750.03850.025950.00510⨯+⨯+⨯+⨯+⨯⨯=73.5.(2)根据频率分布直方图知:优秀学员对应的频率为()0.0250.005100.3+⨯=,则非优秀学员对应的频率为10.30.7-=,∴抽取的10名学生中,有优秀学生100.33⨯=人,非优秀学生100.77⨯=人;则X 所有可能的取值为0,1,2,3,()37310C 3570C 12024P X ====;()1237310C C 63211C 12040P X ====;()2137310C C 2172C 12040P X ====;()33310C 13C 120P X ===;X ∴的分布列为:X123P72421407401120∴数学期望()721719012324404012010E X =⨯+⨯+⨯+⨯=.21.(1)22145x y-=(2)2y x =2y x =-【分析】(1)根据平面向量数量积坐标运算和点在双曲线上,可构造方程组求得22,a b 的值,由此可得双曲线方程;(2)由2,,A B B 三点共线可设:AB y kx =,与双曲线方程联立可得韦达定理的结论,利用向量垂直的坐标表示,代入韦达定理结论可解方程求得k 的值,由此可得直线AB 方程.【详解】(1)设()1,0F c -,()()2,00F c c >,则(1PF c =-- ,(2PF c =-,212854PF PF c ∴⋅=-+=,解得:3c =,229a b ∴+=;又P 在双曲线上,则22851a b-=,24a ∴=,25b =,∴双曲线的方程为:22145x y -=.(2)由(1)得:(10,B,(2B ,()22B A B B μμ=∈R,2,,A B B ∴三点共线,直线AB斜率显然存在,可设:AB y kx =,()11,A x y ,()22,B x y ,由22145y kx x y ⎧=⎪⎨-=⎪⎩得:()2254400k x ---=,()22540Δ801040k k ⎧-≠⎪∴⎨=->⎪⎩,即252k <且254k ≠,12x x ∴+=1224054x x k =--,11B A B B ⊥,110B A B B ∴⋅=,又(111,B A x y =,(122,B B x y =,()1112121212125B A B B x x y y x x y y y y ∴⋅=+=+++(()1212125x x kx kx k x x =++++()()()222121222401801202005454k k k x x x x k k+=++++=-++=--,解得:2k =±,满足252k <且254k ≠,∴直线AB方程为:2y x =+2y x =.【点睛】关键点点睛:本题考查直线与椭圆的综合应用问题,解题关键是能够利用平面向量垂直关系的坐标表示来构造等量关系,结合韦达定理的结论得到关于所求变量的方程的形式,从而解方程求得变量的值.22.(1)函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1).(2)证明过程见详解【分析】(1)因为1a =,所以函数()()212e 22x f x x x x =--++,对函数求导,利用导函数的正负来判断函数的单调性即可求解;(2)对函数进行求导,求出导函数的零点,根据条件可得:函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,然后利用零点存在性定理即可证明.【详解】(1)因为1a =,所以函数()()212e 22x f x x x =--++,所以()e (2)e 1(1)(e 1)x x x f x x x x '=+--+=--,当1x >或0x <时,()0f x '>,此时函数()f x 单调递增;当01x <<时,()0f x '<,此时函数()f x 单调递减;综上:函数()f x 的单调递增区间为(,0)-∞和(1,)+∞,单调递减区间为(0,1).(2)因为函数()()211e 12x f x a x a ax a =---+++,所以()e (1)e ()e ()()(e 1)x x x x f x a a x a x a a x a x a x a a '=+---+=---=--,令()0f x '=可得:x a =或ln x a =-,因为310,e a ⎛⎫∈ ⎪⎝⎭,所以ln 3a ->,当x a <或ln x a >-时,()0f x '>,此时函数()f x 单调递增;当ln a x a <<-时,()0f x '<,此时函数()f x 单调递减;所以函数()f x 在(,)a -∞和(ln ,)a -+∞上单调递增,在(,ln )a a -上单调递减,故当x a =时,函数取极大值()()22e 10102aaf a a a f a =-+++>=->,因为当2x =-时,221(2)(3)10ef a a a -=-+--<;所以0(2,)x a ∃∈-,使得0()0f x =;当ln x a =-时,函数取极小值,ln 2211(ln )(ln 1)e (ln )ln 1ln ln (ln )22a f a a a a a a a a a a a a --=-----++=---1ln (1ln )02a a a =-++<,(因为ln 3a ->,所以13ln 22a <-,因为3110e 2a <<<,所以312a +<,也即11ln 02a a ++<)所以0(,ln )x a a '∃∈-,使得0()0f x '=;又当x →+∞时,()f x →+∞,所以0(ln ,)x a ''∃∈-+∞,使得0()0f x ''=;故当310,e a ⎛⎫∈ ⎪⎝⎭时,函数()f x 有3个零点.【点睛】函数零点的求解与判断方法:答案第17页,共17页(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b <,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用导数求出函数的极值点,再利用零点存在性定理进行判断零点的个数.。
高中高考数学模拟试卷试题含答案.docx
16.有以下几个命 :
①曲x2-(y+1)2=1按a=(-1,2)平移可得曲
(x+1)2-(y+3)2=1
②与直相交,所得弦2
③A、B两个定点,m常数,, 点P的 迹
④若 的左、右焦点分F1、F2,P是 上的任意一点, 点F2关于∠F1PF2的外角平分 的 称点M的 迹是
B.向右平移个单位
C.向左平移个单位
D.向右平移个单位
5.如图,是一程序框图,则输出结果中()
.
精品文档
A.B.
C.D.
6.平面的一个充分不必要条件是()
A.存在一条直B.存在一个平面
C.存在一个平面D.存在一条直
7.已知以F1(-2,0),F2(2,0) 焦点的 与直有且 有一个交点, 的
()
A.B.C.D.
在答题卡上把所选题目对应的题号涂黑.
22.(本小题满分10分)
[几何证明选讲]如图,E是圆内两弦AB和CD的交点, 直线EF//CB,交AD的延长线于F,FG切圆于G,求证:
(1)∽;
(2)EF=FG.
23.[选修4-4:坐标系与参数方程]
已知曲线C:(t为参数),C:(为参数).
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
8.O是平面上一定点,A、B、C是平面上不共 的三个点, 点P足
,p的 迹一定通 △ABC的 ( )
A.外心B.重心C.内心D.垂心
9. {an}是等差数列,从{a1,a2,a3,⋯,a20}中任取3个不同的数,使3个数仍成等差数列, 不同的等差数列最多有 ( )
A.90个B.120个C.180个D.200个
高考数学模拟试卷附答案解析
高考数学模拟试卷附答案解析请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数f(x)是定义域为R的偶函数,且满足f(x)=f(2一x),当x e[0,1]时,f(x)=x,则函数F(x)=f(x)+x+4在区间[一9,10]上零点的个数为() 1一2xA.9B.10C.18D.202.如图,ABC中经A=2经B=60。
,点D在BC上,经BAD=30。
,将△ABD沿AD旋转得到三棱锥B,一ADC,分别记B,A,B,D与平面ADC所成角为C,β,则C,β的大小关系是()A.C<β<2C B.2C<β<3CC.β<2C,2C<β<3C两种情况都存在D.存在某一位置使得β>3a3.为计算S=1一2x2+3x22一4x23+...+100x(一2)99,设计了如图所示的程序框图,则空白框中应填入()A.i<100B.i>100C.i<100D.i之1004.已知定义在[1,+伪)上的函数f(x)满足f(3x)=3f(x),且当1<x<3时,f(x)=1一x一2,则方程f (x )=f (2019)的最小实根的值为()A .168B .249C .411D .5615.已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线PA ,PB ,P 为两切线的交点O 为坐标原点若PA .PB =0,则直线OA 与OB 的斜率之积为()11A .—-B .—3C .—-486.在复平面内,复数z =a +bi (a ,b e R )对应向量OZ (O 为坐标原点),设OZ =r ,以射线Ox 为始边,OZ 为终边旋转的角为θ,则z =r (cos θ+isin θ),法国数学家棣莫弗发现了棣莫弗定理:z 1=r (cos θ+isin θ),111z 2=r 2(cos θ2+isin θ2),则z 1z 2=r 2cos r (cos θ+isin θ)n =r n (cos n θ+isinn θ)(θ+θ)+isin (θ+121,已知z =(3+i )4θ2),由棣莫弗定理可以导出复数乘方公式:,则z =()A .23B .4C .83D .167.已知我市某居民小区户主人数和户主对户型结构的满意率分别如图和如图所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为A .240,18C .240,208.直角坐标系xOy 中,双曲线边三角形,则该双曲线的离心率x 2y 2—a 2b 2e =()A .43B .54B .200,20D .200,18=1(a ,b >0)与抛物线y 2=2bx?相交于A 、B 两点,若ΔOAB 是等C .65D .76119.在平行四边形ABCD 中,AB =3,AD =2,AP =AB,AQ =AD,若CP .CQ =12,则经ADC =()32A .5π6B .3π4C .2π3D .π210.在ABC 中,角A ,B,C 的对边分别为a ,b,c ,若c —a cos B =(2a —b)cos A ,则ABC 的形状为()D .—4A .直角三角形C .等腰或直角三角形B .等腰非等边三角形D .钝角三角形11.若复数z =21+i,其中i 为虚数单位,则下列结论正确的是()A .z 的虚部为-iB .z =2C .z 的共轭复数为-1-iD .z 2为纯虚数12.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为()A .C .3336B .D .63336二、填空题:本题共4小题,每小题5分,共20分。
高考数学模拟试题及答案
高考数学模拟试题及答案[说明:以下是一份数学模拟试卷,包含20道题目和对应的答案解析。
请按照试题进行答题,并在答案解析中查看详细的解题过程。
希望对您的备考有所帮助。
]Part I 选择题(共10题,每题4分,共40分)1. 若集合 A = {1, 2, 3, 4},集合 B = {3, 4, 5, 6},则A∩B = ( )。
A. {1, 2, 3, 4}B. {3, 4}C. {3, 4, 5, 6}D. {}2. 函数 y = 2^(x-1) 的图像是一条( )。
A. 直线B. 双曲线C. 抛物线D. 指数曲线3. 已知函数 f(x) = x^2 - 3x + 2,则 f(3) = ( )。
A. -2B. 0C. 2D. 44. 若sinθ = 0.8,0<θ<π/2,则cosθ = ( )。
A. 0.2B. 0.4C. 0.6D. 0.85. 已知一边长度为 a 的正方形的对角线长为 d,则 a/d = ( )。
A. √2B. 1C. 1/√2D. √2/26. 若函数 f(x) 为奇函数,则 f(-2) = ( )。
A. -f(2)B. f(2)C. 0D. -f(-2)7. 一枚硬币正面向上的概率为 0.6,抛掷该枚硬币10次,正面向上次数是 4 的概率是 ( )。
A. 0.2508B. 0.3024C. 0.2016D. 0.40328. 空间直角坐标系中,已知直线L1: 3x + 4y + λ = 0,L2: 2x + 5y - 1 = 0 相交于点 P(1, -1),则λ = ( )。
A. 3B. 4C. -3D. -49. 设复数 z 满足 |z-1| = |z-2|,则 z 等于 ( )。
A. 1B. 2C. 3D. 410. 已知对数函数y = logₐx 的图像经过点 (2, 1/3),则 a 的值为 ( )。
A. 2B. 1/2C. 1/3D. 3Part II 解答题(共10题,每题6分,共60分)11. 已知三角形 ABC,其中∠B = 100°,∠C = 25°,AD 为高,垂足为 D。
高考模拟卷数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,是奇函数的是:A. \( f(x) = x^2 + 1 \)B. \( f(x) = \frac{1}{x} \)C. \( f(x) = |x| \)D. \( f(x) = x^3 \)2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是:A. 1B. 2C. 3D. 43. 在直角坐标系中,点P(3,4)关于直线y=x的对称点是:A. (3,4)B. (4,3)C. (3,-4)D. (-4,3)4. 若\( a^2 + b^2 = 25 \),且\( a - b = 3 \),则\( ab \)的最大值为:A. 12B. 15C. 18D. 205. 在三角形ABC中,若\( \angle A = 30^\circ \),\( \angle B = 45^\circ \),则\( \angle C \)的度数是:A. 105°B. 120°C. 135°D. 150°6. 已知函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(2) \)的值为:A. 3B. 5C. 7D. 97. 在等比数列中,若前三项分别为2,6,18,则该数列的公比是:A. 2B. 3C. 6D. 98. 若\( \sin \alpha = \frac{1}{2} \),\( \cos \beta = \frac{\sqrt{3}}{2} \),则\( \tan(\alpha + \beta) \)的值为:A. 1B. -1C. 0D. 无解9. 已知圆的方程为\( x^2 + y^2 - 4x + 6y - 12 = 0 \),则该圆的半径是:A. 2B. 3C. 4D. 510. 在直角坐标系中,点A(2,3)到直线\( 2x - y + 1 = 0 \)的距离是:A. 1B. 2C. 3D. 411. 若\( \log_2(x - 1) = 3 \),则\( x \)的值为:A. 3B. 4C. 5D. 612. 若\( \frac{a}{b} = \frac{c}{d} \),且\( a \neq 0 \),\( b \neq 0 \),\( c \neq 0 \),\( d \neq 0 \),则\( \frac{a + c}{b + d} \)的值为:A. 1B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 无法确定二、填空题(本大题共6小题,每小题5分,共30分)13. 函数\( f(x) = x^3 - 3x \)的极值点是______。
高三数学模拟试卷含答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数$f(x) = 2x^3 - 3x^2 + 4x + 1$,则$f(x)$的对称中心为()A. $(0, 1)$B. $(1, 2)$C. $(1, 1)$D. $(1, 0)$2. 若$a, b, c$是等差数列,且$a + b + c = 9$,$ab + bc + ca = 15$,则$abc$的值为()A. 9B. 12C. 18D. 243. 已知圆的方程为$x^2 + y^2 - 4x - 6y + 9 = 0$,则该圆的半径为()A. 1B. 2C. 3D. 44. 函数$f(x) = \frac{x^2 - 4x + 3}{x - 1}$的图像与直线$y = x$的交点个数是()A. 1B. 2C. 3D. 45. 在直角坐标系中,若点$A(2, 3)$关于直线$y = x$的对称点为$B$,则点$B$的坐标为()A. $(3, 2)$B. $(2, 3)$C. $(3, 3)$D. $(2, 2)$6. 已知函数$f(x) = \log_2(x + 1)$,若$f(3) = f(x)$,则$x$的值为()A. 2B. 3C. 4D. 57. 若$\sin\alpha + \cos\alpha = \sqrt{2}$,则$\sin\alpha\cos\alpha$的值为()A. $\frac{1}{2}$B. $\frac{\sqrt{2}}{2}$C. $\frac{1}{\sqrt{2}}$D. 08. 在三角形ABC中,$AB = 3$,$AC = 4$,$BC = 5$,则$\cos B$的值为()A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$9. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_3 = 18$,$S_6 = 54$,则数列的公差为()A. 2B. 3C. 4D. 510. 若函数$f(x) = x^3 - 6x^2 + 9x$在区间$[1, 3]$上单调递增,则$f(2)$的值为()A. 1B. 3C. 5D. 7二、填空题(本大题共5小题,每小题10分,共50分)11. 函数$f(x) = x^2 - 2x + 1$的图像的对称轴为______。
高三数学模拟试题及答案
高三数学模拟试题及答案一、选择题(每题4分,共40分)1.(4分)已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求f(x)的单调递增区间。
A. (-∞, -1) ∪ (2, +∞)B. (-∞, 2) ∪ (4, +∞)C. (-∞, 1) ∪ (4, +∞)D. (-∞, 2) ∪ (3, +∞)2.(4分)设等差数列{an}的首项为a1,公差为d,若a1 = 2,a2 + a5 = 10,则数列{an}的前10项和S10为多少?A. 120B. 110C. 100D. 903.(4分)已知三角形ABC中,∠A = 60°,AB = 3,AC = 4,求BC 的长度。
A. √13B. √21C. √33D. √374.(4分)若复数z满足|z - 1| = |z + 1|,则z在复平面内对应的点的轨迹是什么?A. 直线y = xB. 直线y = -xC. 直线y = x + 2D. 直线y = -x + 25.(4分)已知数列{bn}满足b1 = 1,bn = (1/2)^(n-1) * (bn-1 +1),求b5的值。
A. 2B. 3C. 4D. 56.(4分)在直角坐标系中,圆的方程为(x - 2)^2 + (y + 3)^2 = 9,若圆与直线2x - y + 6 = 0相交,求交点坐标。
A. (1, -3)B. (3, 0)C. (2, -1)D. (0, 2)7.(4分)已知函数g(x) = x^2 - 4x + 3,求g(x)在区间[0, 3]上的最大值和最小值。
A. 最大值3,最小值0B. 最大值4,最小值0C. 最大值3,最小值-1D. 最大值4,最小值-18.(4分)已知等比数列{cn}的前n项和为Sn,若S3 = 7,S6 = 21,求S9。
A. 35B. 56C. 63D. 729.(4分)在三维直角坐标系中,点A(1, 2, 3)、B(4, 5, 6)和C(7, 8, 9),求三角形ABC的体积。
高三数学高考模拟试题及答案
高三数学高考模拟试题及答案第一部分选择题1. 已知函数 $f(x) = \dfrac{x^2 - 4}{x - 2}$,则 $f(x)$ 的极限为()A. $\dfrac{1}{2}$B. $-2$C. $+\infty$D. $-\infty$2. 如图,对数函数 $y=\log_{\frac{1}{2}}(x-1)$ 的图像经过两点 $P(4,3)$,$Q(8,y)$。
则 $y=$()A. 3B. 5C. 6D. 73. 在 $\triangle ABC$ 中,$AB=3$,$BC=\dfrac{5}{2}$,$\angle C=90^\circ$,$D$ 为 $BC$ 的中点,$E$ 为 $AC$ 上一点,$BE$ 延长线交 $AD$ 于点 $F$。
则 $EF=$()A. $\dfrac{5}{3}$B. $\dfrac{25}{24}$C. $\dfrac{7}{4}$D. $\dfrac{17}{8}$4. 已知函数 $f(x)=\dfrac{2\sin x+\cos x}{\sin x-2\cos x}$,则$f\left(\dfrac{\pi}{2}+x\right)=$()A. $1+f(x)$B. $1-f(x)$C. $f(x)-1$D. $-1-f(x)$5. 已知 $x>2$,$\log_2{(2x-3)}+\log_2{(x+1)}=4$,则 $x=$()A. 3B. 5C. 7D. 9答案:1. D2. B3. B4. A5. C第二部分简答题1. 证明 $x+y\geqslant 2\sqrt{xy}$ 为二次函数 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$ 的非负性。
2. 已知 $a^2+b^2=1$,求 $\dfrac{5a+12b}{13}$ 的最大值。
3. 在动态规划中,解决问题的一般步骤是什么?4. 概率统计中,什么是贝叶斯公式?其应用场景有哪些?5. 对于某个事件的先验概率为 $p(A)$,我们观测到了该事件发生,且得到了一个新的条件概率,那么它的后验概率为什么?答案:1. 将二次函数化为顶点式 $y=\left(x-\dfrac{y}{2}\right)^2-\dfrac{y^2}{4}$,则$y\geqslant 0$。
2022-2023学年全国高中高三下数学人教A版高考模拟(含解析)
2022-2023学年全国高三下数学高考模拟考试总分:110 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 设全集,已知集合,,则 A.B.C.D.2. 已知数列为等差数列,为其前项和,,且成等比数列,则( )A.B.C.D.或3. 已知直线在平面内,直线不在平面内,则” ”是“ "( )A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件又非必要条件4. 已知四面体为正四面体,则下列判断错误的是( )A.B.C.U =R A ={x |−3x +2≥0}x 2B ={x |1<<4}2x (A)∩B =(∁U ){x |1≤x ≤2}{x |1<x ≤2}{x |1<x <2}{x |0<x <2}{}a n S n n =12S 3,,a 1a 2a 6=a 1033284428n αm αm//n m //αABCD AB =CDAC =BDAB ⊥ACAB ⊥CDD.5. 某公司新研发了一款手机应用,投入市场三个月后,公司对部分用户做了调研,抽取了位使用者,每人填写一份综合评分表(满分为分).现随机从男、女使用者的评分表中各抽取份作为样本,经统计得到茎叶图.根据以上茎叶图可知( )A.男性使用者评分的平均数大于女性使用者评分的平均数B.男性使用者评分的中位数大于女性使用者评分的中位数C.男性使用者评分的极差大于女性使用者评分的极差D.男性使用者评分的方差小于女性使用者评分的方差6. 在的展开式中,常数项为A.B.C.D.7. 我国古代数学名著《九章算术》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”,如图,三棱柱为一个“堑堵”.底面是以为斜边的直角三角形且=,=,点在棱上,且,当的面积取最小值时,三棱锥的外接球表面积为( )A.B.AB ⊥CDAPP 40010020(x −)2x26( )−6060−120120ABC −A 1B 1C 1△ABC AB AB 5AC 3P BB 1PC ⊥PC 1△APC 1P −ABCC.D.8. 已知 ,则,,的大小关系为( )A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 设为复数,则下列命题中正确的是A.若,则B.若,则的最大值为C.D.10. 关于函数,下列结论中正确的是( )A.是偶函数B.在区间单调递增C.是周期函数D.的最大值为 11. 已知抛物线的焦点为,直线经过点交于,两点,交轴于点,若,则( )A.B.点的坐标为C.D.弦的中点到轴的距离为30π45πa =0.2,b =log 0.50.50.2c =12a b c a >b >ca >c >bb >a >cb >c >az ( )z =(1+2i)2z =−3−4i|z|=1|z +i|2=|z z 2|2|z =z |2z¯¯¯f(x)=sin |x|+|sin x|f(x)f(x)(,π)π2f(x)f(x)2C :=mx (m >0)y 2F (4,0)l F C A B y P =2PB −→−BF −→−m =8B (,±)8346–√3|AB|=503AB y 133(x)=+ln x212. 已知函数,则以下结论正确的是( )A.函数的单调减区间是B.函数有且只有个零点C.存在正实数,使得成立D.对任意两个正实数,,且,若,则卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 若平面向量满足,则的最大值为________.14. 若角的终边经过点,则的值为________.15. 设随机变量服从正态分布,若,则________. 16. 已知函数已知函数,则()________;函数的单调递减区间是________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 设数列的前项和为,已知=,=,.(1)证明:为等比数列,求出的通项公式;(2)若=,求的前项和;(3)在(2)的条件下判断是否存在正整数使得=成立?若存在,求出所有值;若不存在,说明理由. 18. 某中学调查了该校某班名同学参加棋艺社团和武术社团的情况,数据如下表所示:参加棋艺社团未参加棋艺社团参加武术社团未参加武术社团能否有的把握认为参加棋艺社团和参加武术社团有关?已知既参加棋艺社团又参加武术社团的名同学中,有名男同学,名女同学.现从这名同学中随机选人参加综合素质大赛,求被选中的女生人数的分布列.附:,.f (x)=+ln x 2xf (x)(0,2)y =f (x)−x 1k f (x)>kx x 1x 2>x 1x 2f ()=f ()x 1x 2+>4x 1x 2,,a →b →c →⋅(+)=0,||=1,|+−2|=2a →a →c →c →a →b →c →⋅a →b →αP(1,−2)tan 2αξN(0,1)P(ξ>1)=p P(−1<ξ<0)=f(x)={ −+2x,x ≤2x 2lo x −1,x >2g 2f f(4)f(x){}a n n S n a 11−2S n+1S n 1n ∈N ∗{+1}S n {}a n b n {}b n n T n n ⋅T n 2n−1n +50n 501012820(1)95%(2)1046106X =K 2n(ad −bc)2(a +b)(c +d)(a +c)(b +d)n =a +b +c +d P (≥)2019. 如图,在直角中,直角边,为的中点,为的中点,将三角形沿着折起,使为翻折后所在的点),连接.求证:求直线与面所成角的正弦值.20. 如图所示,在等腰梯形中,,将三角形沿折起,使平面平面.求证:;求与平面所成角的正弦值.21. 已知函数.讨论函数的单调性;已知函数(其中是的导函数),若函数有两个极值点,且,求的取值范围.22. 已知双曲线的左右两个顶点是,.若是上的任意点,求证:点到双曲线的两条渐近线的距离的乘积是一个常数;是上的任意点,设点的坐标为,求的最小值;若曲线上的动点,关于轴对称,直线与交于点,求动点的轨迹的方程.P (≥)K 2k 00.100.050.025k 0 2.7063.8415.024△ABC AC =2,∠A =60∘M AB Q BC △AMC MC M ⊥MB,(A 1A 1A MQ (1)MQ ⊥BA 1(2)MB MC A 1ABCD AD//BC,AD =CD =AB,∠ABC =60∘ABD BD ABD ⊥BCD (1)AB ⊥CD (2)AB ACD f (x)=x −−a ln x,(a ∈R)1x(1)f (x)(2)g(x)=(x)+2ln x −ax x 2f ′(x)f ′f (x)g(x),x 1x 2<<e x 1x 2g()−g()x 1x 2C :−=1x 24y 2A 1A 2(1)P C P C (2)P C A (5,0)|PA |(3)C P Q x P A 1Q A 2M M D参考答案与试题解析2022-2023学年全国高三下数学高考模拟一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】C【考点】交、并、补集的混合运算【解析】根据不等式求出集合的等价条件,利用补集交集的定义进行计算即可.【解答】,,,则,2.【答案】D【考点】等比数列的性质等差数列的性质【解析】此题暂无解析【解答】此题暂无解答3.【答案】A【考点】A ={x |−3x +2≥0}={x |x ≥2或x ≤1}x 2B ={x |1<<4}={x |0<x <2}2x A ={x |1<x <2}∁U (A)∩B ={x |1<x <2}∁U必要条件、充分条件与充要条件的判断直线与平面平行的性质【解析】此题暂无解析【解答】解:先讨论充分性,即考虑“”能否推出 ” ”.因为直线在平面内,直线不在平面内,,所以,所以“”是“ ”的充分条件讨论必要性,即考虑“”能否推出“”.因为直线在平面内,直线不在平面内,,所以 或者,异面,所以“ ”是 ”的非必要条件故选.4.【答案】C【考点】正多面体【解析】此题暂无解析【解答】解:∵四面体为正四面体,∴四面体是以为底面的正三棱锥,各个面都是等边三角形,各个棱都相等,∴,,与的夹角为,与异面垂直.∴只有错误.故选.5.【答案】D【考点】极差、方差与标准差众数、中位数、平均数、百分位数m//n m//αn αm αm//n m//αm//n m//α.m//αm//n n αm αm//αm//n m n m//n m//α.A ABCD D −ABC ABC AB =CD AC =BD AB AC 60∘AB CD C C【解析】无【解答】解:由茎叶图可知女性使用者的评分大多在区间内,男性使用者的评分大多在区间内,故男性使用者的评分的平均数小于女性使用者的评分的平均数.女性使用者的评分的中位数为,男性使用者的评分的中位数为,女性使用者的评分的极差为,男性使用者的评分的极差为,则,,项均不正确.由茎叶图可知,男性使用者的评分相对于女性使用者的评分要集中一些,故男性使用者的评分的方差小于女性使用者评分的方差.故选.6.【答案】B【考点】二项展开式的特定项与特定系数【解析】此题暂无解析【解答】解:常数项为.故选.7.【答案】D【考点】二面角的平面角及求法直线与平面所成的角【解析】由已知证明,设=,=,则=,求得,,,由,得=,可得,写出三角形的面积,利用基本不等式求最值,得到对应的,设三棱锥的外接球的半径为,由图可知,线段为外接球的直径,得到外接球的半径,代入球的表面积公式得结论.【解答】[80,90)[70,80)84.574.592−67=2589−67=22A B C D =60C 26(−2)2B AP ⊥PC 1BB 1z BP t P B 1z −t AP PC 1AC 1AP ⊥PC 1z t+APC 1AP P −ABC R AP由堑堵的定义可知,为直角三角形,由已知可得,平面平面,且平面平面=,而,∴平面,而平面,∴,又,=,,∴平面,于是,设=,==,∴=,=,,由,得=,整理得=,∴,则===,当且仅当,即=时的侧面积取得最小值为,此时=,设三棱锥的外接球的半径为,由图可知,故所求外接球的表面积=.8.【答案】A【考点】指数式、对数式的综合比较对数值大小的比较【解析】此题暂无解析【解答】3.∵,∴,又,∴∴故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】△ABC B C ⊥B 1C 1ABC B C∩B 5C 1ABC BC AC ⊥BC AC ⊥B C B 1C 4P ⊂C 1B C B 1C 6AC ⊥PC 1PC ⊥PC 1AC ∩PC C AC P ⊥C 7APC AP ⊥PC 1BB 1z BP P t 4z −t AP AP ⊥PC 18+z 225++16+(z −t t 2)2z t+18t 418AP P −ABC R S 0.2>0.5=1log 0.5log 0.5a >1c ==<<=1120.510.50.20.501>b >c a >b >c AA,B,D【考点】复数代数形式的乘除运算复数的模复数的代数表示法及其几何意义【解析】由题意,根据复数的运算性质对选项和,设,,再结合复数的模的公式以及相关运算对剩下的选项进行分析求解.【解答】解:已知为复数,若,则,故选项正确;若,即,此时,所以的轨迹是以原点为圆心,为半径的圆;而表示到点的距离,其最大值为圆的直径,最大值为,故选项正确;不妨设,,则,,可得,故选项错误;而,所以,故选项正确.故选.10.【答案】A,D【考点】三角函数的最值复合三角函数的单调性三角函数的周期性及其求法函数奇偶性的判断【解析】此题暂无解析【解答】解:,∴是偶函数,故正确;A B z =a +bi =a −bi z¯¯¯z z =(1+2i =−3+4i )2=−3−4i z ¯¯¯A |z|=1+=1x 2y 2|z +i|=(x +1+)2y 2−−−−−−−−−−−√(x,y)1(x +1+)2y 2−−−−−−−−−−−√(x,y)(−1,0)2B z =a +bi =a −bi z ¯¯¯=(a +bi =−+2abi z 2)2a 2b 2|z|=+a 2b 2−−−−−−√|z =+≠−+2abi |2a 2b 2a 2b 2C z =(a +bi)(a −bi)=+z ¯¯¯a 2b 2z =|z z¯¯¯|2D ABD f(−x)=sin |−x|+|sin(−x)|=sin |x|+|sin x|=f(x)f(x)A ∈(,π)π当时,,此时在递减,故错误;当时,,当时,,,可以发现在上是周期为的周期函数,根据是偶函数,易知在上不是周期函数,故错误;当时,,当等号成立,故正确.故选.11.【答案】C,D【考点】抛物线的标准方程抛物线的求解与抛物线有关的中点弦及弦长问题抛物线的定义【解析】此题暂无解析【解答】解:由,得,错误;过作垂直于轴,垂足为,则,因为,所以,所以,所以,所以,代入,得,即点的坐标为,错误;不妨取点,此时直线与联立,得,故,由抛物线的定义可知,,正确;弦的中点到轴的距离为,正确.当点时,同理可知正确.故选.x ∈(,π)π2f(x)=sin x +sin x =2sin x f(x)(,π)π2B x ∈[0,π]f(x)=2sin x x ∈[π,2π]f(x)=0⋯f(x)[0,+∞)2πf(x)f(x)R C x >0f(x)=sin x +|sin x|≤|sin x|+|sin x|≤2x =+2kπ(k ≥0,k ∈Z)π2D AD F (4,0)m =16A B BD y D BD//OF =2PB −→−BF −→−=|PB||PF|23==|BD||OF||PB||PF|23|BD|=|OF|=2383=x B 83=16x y 2=±y B 86–√3B(,±)8386–√3B B (,−)8386–√3l :y =2(x −4)6–√=16x y 23−26x +48=0x 2+=x A x B 263|AB|=++8=x A x B 503C AB y a ==+x A x B 2133D B (,)8386–√3C 、D CD12.【答案】A,B,D【考点】利用导数研究函数的单调性利用导数研究与函数零点有关的问题利用导数研究不等式恒成立问题【解析】A .求函数的导数,利用导数来研究函数的单调性进行判断;B .求函数的导数,结合函数的单调性,结合函数单调性和零点个数进行判断即可;C .利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值进行判断即可;D .令,求函数的导数,研究函数的单调性进行证明即可.【解答】解:,函数的定义域为,函数的导数,令,则,∴函数的单调减区间是,故正确;,,,函数在上单调递减,且,,∴函数有且只有个零点,故正确;,若,可得,令,则,令,则,∴在上,函数单调递增,上函数单调递减,∴ ,,∴在上单调递减,函数无最小值,∴不存在正实数,使得恒成立,故错误;,令,则 ,,令,,,g(x)=+2x 2ln x x g(t)=f (2+t)−f (2−t)A (0,+∞)(x)=−+=f ′2x 21x x −2x 2(x)<0f ′0<x <2f (x)(0,2)A B y =f (x)−x =+ln x −x 2x ∴=−+−1=<0y ′2x 21x −+x −2x 2x 2(0,+∞)f (1)−1=2+ln 1−1=1>0f (2)−2=1+ln 2−2=ln 2−1<0y =f (x)−x 1B C f (x)>kx k <+2x 2ln x x g(x)=+2x 2ln x x (x)=g ′−4+x −x ln x x 3h (x)=−4+x −x ln x (x)=−ln x h ′x ∈(0,1)h (x)x ∈(1,+∞)h (x)h (x)≤h (1)<0∴(x)<0g ′g(x)=+2x 2ln x x (0,+∞)k f (x)>kx C D t ∈(0,2)2−t ∈(0,2)2+t >2g(t)=f (2+t)−f (2−t)=+ln(2+t)−−ln(2−t)22+t 22−t =+ln 4t −4t 22+t 2−t t)=+⋅4(−4)−822则,,∴在上单调递减,则,令,由,得,则,当时,显然成立,∴对任意两个正实数,,且,若,则,故正确.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】平面向量数量积的运算向量的模【解析】本题考查平面向量数量积、向量的模,属中档题。
高考数学模拟复习试卷试题模拟卷232 5
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节 几何概型A 基础巩固训练1.在区间[0,π]上随机取一个数x ,则事件“sin x≥cos x”发生的概率为( ) A.14 B.12 C.34 D .1 【答案】 C【解析】 ∵sin x≥cos x ,x ∈[0,π], ∴π4≤x≤π, ∴事件“sin x≥cos x”发生的概率为π-π4π-0=34.2.(·西城模拟)在区间[0,2]上任取两个实数a ,b ,则函数f(x)=x3+ax -b 在区间[-1,1]上有且只有一个零点的概率是( )A.18B.14C.34D.78【答案】D3.如图10-6-8所示,墙上挂有一边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是( ) A .1-π4B.π4C .1-π8D.与a 的取值有关【解析】 由题意知,阴影部分的面积为a2-4×14×π⎝⎛⎭⎫a 22=⎝⎛⎭⎫1-π4a2,故概率为1-π4. 【答案】 A4. (·阜阳模拟)一艘轮船从O 点的正东方向10 km 处出发,沿直线向O 点的正北方向10 km 处的港口航行,某台风中心在点O ,距中心不超过r km 的位置都会受其影响,且r 是区间[5,10]内的一个随机数,则轮船在航行途中会遭受台风影响的概率是( ) A.2-12B.1-22C.2-1D.2- 2【答案】 D【解析】 以O 为圆心,r 为半径作圆,易知当r >52时,轮船会遭受台风影响,所以P =10-5210-5=10-525=2- 2. 5.在棱长为2的正方体ABCD -A1B1C1D1中,点O 为底面ABCD 的中心,在正方体ABCD -A1B1C1D1内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 【答案】1-π12B 能力提升训练1. 【高考辽宁卷第6题】若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π【答案】B2. 在区间(0,1)内任取两个实数,则这两个实数的和大于13的概率为()A.1718B.79C.29D.118【答案】A3.【湖北八校高三第二次联考数学试题】记集合{}22(,)|4A x y x y=+≤和集合{}(,)|20,0,0B x y x y x y=+-≤≥≥表示的平面区域分别为1Ω和2Ω,若在区域1Ω内任取一点(,)M x y,则点M落在区域2Ω的概率为.【答案】12πBAyxO4.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A .18B .116C .127D .2764【答案】A【解析】根据几何概型知识,概率为体积之比,即P =4-2343=18. 5. (·福建三明质量检测)已知集合M ={x|-2≤x ≤8},N ={x|x2-3x +2≤0},在集合M 中任取一个元素x ,则“x ∈(M ∩N)”的概率是( )A .110B .16C .310D .12【答案】A【解析】因为N ={x|x2-3x +2≤0}=[1,2],所以M ∩N =[1,2],所以所求的概率为2-18+2=110.C 思维扩展训练1. 【东莞市高三模拟考试一】已知(2,1)A ,(1,2)B -,31,55C ⎛⎫- ⎪⎝⎭,动点(,)P a b 满足02OP OA ≤⋅≤且02OP OB ≤⋅≤,则点P 到点C 的距离大于14的概率为( )A .5164π-B .564πC .116π- D .16π 【答案】A2. 【高考重庆卷第15题】某校早上8:00开始上课,假设该校学生小张与小王在早上7:30—7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_____(用数字作答)【答案】932【解析】用x表示小张到校的时间,3050x≤≤,用y表示小王到校的时间,3050y≤≤则所有可能的结果对应直角坐标平面内的正方形区域ABCD记“小张比小王至少早到5分钟”为事件M,则M所对区域为图中的阴影部分DEF∆所以()1151592202032DEFABCDSP AS∆⨯⨯===⨯正方形,所以答案应填:932.3. (济南市高三3月考模拟考试)如图,长方体ABCD—A1B1C1D1,有一动点在此长方体内随机运动,则此动点在三棱锥A—A1BD内的概率为.【答案】164. 【北京市丰台区高三一模】设不等式组2210x yy⎧+-≤⎨≥⎩,表示的平面区域为M,不等式组201t x ty t-≤≤⎧⎪⎨≤≤-⎪⎩,表示的平面区域为N.在M内随机取一个点,这个点在N内的概率的最大值是_________.【答案】2π5. 若k∈[-3,3],则k的值使得过A(1,1)可以作两条直线与圆(x-k)2+y2=2相切的概率等于( )A .12B .13C .23D .34【答案】C【解析】点在圆外,过该点可做两条直线与圆相切.故使圆心与点A 的距离大于半径即可,即(1-k)2+1>2,解得k <0或k >2,所以所求k ∈[-3,0)∪(2,3],所求概率P =46=23.高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥 B.三棱柱C.四棱锥 D.四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm,O′C′=2cm,则原图形是()A.正方形 B.矩形C.菱形D.一般的平行四边形题型二空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为()A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A .48B .32+817C .48+817D .80(2)把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成三棱锥C -ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22C.14D.24题型三空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A .0B .1C .2D .3【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()123π+ (B) 136π (C) 73π (D) 52π 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )85.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于( )1112A .822+B .1122+C .1422+D .156.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A )223π(B )423π()22π()42π7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13(B )122+(C )23 (D )228.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.10.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .711.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .412.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16πC .9π D.27π414.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【高考押题】1.下列结论中正确的是()A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A .20B .15C .12D .103.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2πD.4π34.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A .72cm3B .90cm3C .108cm3D .138cm35.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.7.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm,且其侧面积等于两底面面积之和,求棱台的高.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷【考情解读】1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y =c(c 为常数),y =x ,y =1x ,y =x2,y =x3,y =x 的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如y =f(ax +b)的复合函数)的导数.【重点知识梳理】1.函数f(x)在点x0处的导数 (1)定义函数y =f(x)在点x0的瞬时变化率lim Δx→0fx0+Δx -f x0Δx=l ,通常称为f(x)在点x0处的导数,并记作f′(x0),即lim Δx→0f x0+Δx -f x0Δx=f′(x0). (2)几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y =f(x)在点(x0,f(x0))的切线的斜率等于f′(x0). 2.函数f(x)的导函数如果f(x)在开区间(a ,b)内每一点x 导数都存在,则称f(x)在区间(a ,b)可导.这样,对开区间(a ,b)内每个值x ,都对应一个确定的导数f′(x).于是,在区间(a ,b)内,f′(x)构成一个新的函数,我们把这个函数称为函数y =f(x)的导函数,记为f′(x)(或y ′x 、y′). 3.基本初等函数的导数公式y =f(x) y′=f′(x) y =C y =xn y =xμ (x>0,μ≠0) y =ax (a>0,a≠1)y =exy =logax(a>0,a≠1,x>0)y =ln x y =sin x y =cos xy′=0y′=nxn -1,n 为自然数 y′=μxμ-1,μ为有理数y′=axln a y′=ex y′=1xln a y′=1x y′=cos x y′=-sin x4(1)[f(x)±g (x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎡⎦⎤f x g x ′=f′x g x -f x g′x [g x ]2 (g(x)≠0). 5.复合函数的导数复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u·u′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【高频考点突破】考点一 利用定义求函数的导数例1、利用导数的定义求函数f(x)=x3在x =x0处的导数,并求曲线f(x)=x3在x =x0处的切线与曲线f(x)=x3的交点.【方法技巧】求函数f(x)的导数步骤: (1)求函数值的增量Δf =f(x2)-f(x1); (2)计算平均变化率Δf Δx =f x2-f x1x2-x1;(3)计算导数f′(x)=lim Δx→0ΔfΔx .【变式探究】利用导数的定义,求: (1)f(x)=1x在x =1处的导数; (2)f(x)=1x +2的导数.考点二 导数的运算 例2、求下列函数的导数: (1)y =ex·ln x ; (2)y =x ⎝⎛⎭⎫x2+1x +1x3;(3)y =sin2⎝⎛⎭⎫2x +π3;(4)y =ln(2x +5). 【方法规律】(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;(2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量;(3)复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导. 【变式探究】求下列各函数的导数: (1)y =11-x +11+x ;(2)y =cos 2xsin x +cos x ;(3)y =(1+sin x)2; (4)y =ln x2+1.考点三 导数的几何意义 例3、已知曲线y =13x3+43.(1)求曲线在点P(2,4)处的切线方程; (2)求曲线过点P(2,4)的切线方程; (3)求斜率为1的曲线的切线方程.【探究提高】利用导数研究曲线的切线问题,一定要熟练掌握以下条件:(1)函数在切点处的导数值也就是切线的斜率.即已知切点坐标可求切线斜率,已知斜率可求切点坐标.(2)切点既在曲线上,又在切线上.切线有可能和曲线还有其它的公共点.【变式探究】已知抛物线y =ax2+bx +c 通过点P(1,1),且在点Q(2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.【真题感悟】【高考新课标1,文14】已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.【高考天津,文11】已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a 的值为.【高考陕西,文15】函数在其极值点处的切线方程为____________. (·陕西卷)设函数f(x)=ln x +mx ,m ∈R.(1)当m =e(e 为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f′(x)-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.(·安徽卷)设函数f(x)=1+(1+a)x -x2-x3,其中a>0. (1)讨论f(x)在其定义域上的单调性;(2)当x ∈[0,1]时,求f(x)取得最大值和最小值时的x 的值. (·北京卷)已知函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y =f(x)相切,求t 的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y =f(x)相切?(只需写出结论)(·福建卷)已知函数f(x)=ex -ax(a 为常数)的图像与y 轴交于点A ,曲线y =f(x)在点A 处的切线斜率为-1.(1)求a 的值及函数f(x)的极值; (2)证明:当x >0时,x2<ex ;(3)证明:对任意给定的正数c ,总存在x0,使得当x ∈(x0,+∞)时,恒有x <cex. (·广东卷)曲线y =-5ex +3在点(0,-2)处的切线方程为________.(·江苏卷)在平面直角坐标系xOy 中,若曲线y =ax2+b x (a ,b 为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.(·江苏卷)已知函数f0(x)=sin x x (x>0),设fn(x)为fn -1(x)的导数,n ∈N*.(1)求2f1⎝⎛⎭⎫π2+π2f2⎝⎛⎭⎫π2的值;(2)证明:对任意的n ∈N*,等式⎪⎪⎪⎪nfn -1⎝⎛⎭⎫π4+π4fn ⎝⎛⎭⎫π4=22都成立.(·全国新课标卷Ⅰ] 设函数f(x)=aln x +1-a2x2-bx(a≠1),曲线y =f(x)在点(1, f(1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f(x0)<aa -1,求a 的取值范围.(·山东卷)设函数f(x)=aln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f(x)在点(1,f(1))处的切线方程; (2)讨论函数f(x)的单调性.(·四川卷)设等差数列{an}的公差为d ,点(an ,bn)在函数f(x)=2x 的图像上(n ∈N*). (1)证明:数列{bn}为等比数列;(2)若a1=1,函数f(x)的图像在点(a2,b2)处的切线在x 轴上的截距为2-1ln 2,求数列{anb2n }的前n 项和Sn.(·天津卷)已知函数f(x)=x2-23ax3(a >0),x ∈R. (1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1,求a 的取值范围.【押题专练】1.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+x2,则f′(1)=() A .-1 B .-2 C .1 D .22.等比数列{an}中,a1=2,a8=4,函数f(x)=x(x -a1)(x -a2)…(x -a8),则f′(0)=(). A .26 B .29 C .212 D .215 3.已知f(x)=xln x ,若f′(x0)=2,则x0=(). A .e2 B .e C.ln 22 D .ln 24.设函数f(x)是R 上以5为周期的可导偶函数,则曲线y =f(x)在x =5处的切线的斜率为() A .-15 B .0 C.15 D .55.设f0(x)=sin x ,f1(x)=f′0(x),f2(x)=f′1(x),…,fn +1(x)=f′n(x),n ∈N ,则f2 013(x)等于(). A .sin x B .-sin x C .cos x D .-cos x6.已知函数f(x )的导函数为f′(x),且满足f(x)=2xf′(1)+ln x ,则f′(1)=(). A .-e B .-1 C .1 D .e7.已知函数f(x)=f′⎝⎛⎭⎫π2sin x +cos x ,则f ⎝⎛⎭⎫π4=________.8.函数)()(3R x ax x x f ∈+=在1=x 处有极值,则曲线)(x f y =在原点处的切线方程是___ __.9.若过原点作曲线y =ex 的切线,则切点的坐标为________,切线的斜率为________. 10.已知函数f(x)在R 上满足f(x)=2f(2-x)-x2+8x -8,则曲线y =f(x)在x =1处的导数f′(1)=________.11.已知f1(x)=sin x +cos x ,记f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn -1′(x)(n ∈N*,n≥2),则f1⎝⎛⎭⎫π2+f2⎝⎛⎭⎫π2+…+f2 012⎝⎛⎭⎫π2=________.12.求下列函数的导数. (1)y =x2sin x ;(2)y =ex +1ex -1;(3)y =log2(2x2+3x +1). 13.求下列函数的导数: (1)y =(2x +1)n ,(n ∈N*); (2)y =ln(x +1+x2); (3)y =2xsin(2x +5).14.设函数f(x)=x3+2ax2+bx +a ,g(x)=x2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f(x)与y =g(x)在点(2,0)处有相同的切线l.(1)求a 、b 的值,并写出切线l 的方程;(2)若方程f(x)+g(x)=mx 有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x ∈[x1,x2],f(x)+g(x)<m(x -1)恒成立,求实数m 的取值范围.15.设函数f(x)=ax -bx ,曲线y =f(x)在点(2,f(2))处的切线方程为7x -4y -12=0. (1)求f(x)的解析式;(2)证明:曲线y =f(x)上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。