高三三角函数模拟题
高三数学(文)三角函数大题20道训练(附详答)
文数20道三角大题1.已知锐角三角形ABC 的内角A ,B ,C 的对边分别为c b a ,,,且Aa cbsin )(222.cos 3A bc (Ⅰ)求A 的值;(Ⅱ)求C B cos cos 的取值范围。
2如图,平面四边形ABCD 中,13AB ,三角形ABC的面积为25ABCS,3cos 5DAC,120ACAB ,求: (1)AC 的长; (2)cos BAD3已知函数.cos 212cos 2sin )(xx x x f (I )求f(x)的值域;(II )若x x f x2cos ,523)(),4,4(求且的值.4.已知函数2()sin cos 3cos f x x x x .(Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62上的最大值和最小值5. 已知:a R aa x x x f ,.(2sin 3cos 2)(2为常数)(1)若R x,求)(x f 的最小正周期;(2)若)(x f 在[,]66上最大值与最小值之和为3,求的值;(3)在(2)条件下)(x f 经过怎样的变换后得到x ysin ,写出其变换步骤6. 已知)1),6cos(2(),sin 2,1(xb x a ,函数)()(R xb c x f (1)求函数)(x f 的单调递减区间;(2)若)32cos(,58)(x x f 求的值。
7. 已知:在△ABC 中,a,b,c 分别是角A 、B 、C 所对的边,向量m =(23sin2B ,23),n =(sin2B +2π,1)且m ·n =3.(1)求角B 的大小;(2)若角B 为锐角,a=6,S △ABC =63,求b 的值.8. 已知A 、B 、C 是△ABC 的三个内角,向量(1,3),(cos ,sin ),mnA A 且 1.m n(1)求角A ;(2)若221sin 23,tan sin cos BCBB求的值。
9.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且acbca 21222(Ⅰ)求B cos 的值;(Ⅱ)求B CA 2cos 2sin 2的值.10.已知ABC 中,内角A B C 、、的对边的边长为a b c 、、,且co s (2)c o s .b C a c B (1)求角B 的大小;(2)若22cos cos ,yA C 求y 的最小值.11. 如图,已知平面四边形ABCD 中,BCD 为正三角形,AB =AD=1,∠BAD=,记四边形ABCD 的面积为S.(I)将S 表示为的函数;(Ⅱ)求S 的最大值及此时的大小.12.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且ab bac222.(Ⅰ)若3tan tan (1tan tan )3A BA B ,求角B ;(Ⅱ)设(sin ,1)mA ,(3,cos 2)n A ,试求n m 的最大值.13.设函数333()sincos (0),22f x xx xR,且以2为最小正周期。
高三数学(文)三角函数大题20道训练(附详答)
IL6 2
f (x)= 2cosx •. 3sin 2x a.(a R, a为常数)
[丿逛]
f(X)在6’6上最大值与最小值之和为3,求的值;
(2)条件下f(x)经过怎样的变换后得到y=sinx,写出其变换步骤
6.已知a=(1,2sinx),b=(2cos(x ),1),函数f(x)二c b(x R)
2
10.已知ABC中,内角A、B、C的对边的边长为a b、c,且bcsC(2a . B
(1)求角B的大小;
(2)若y = cos2A-cos2C,求y的最小值.
11.如图,已知平面四边形ABCD中,也BCD为正三角形,AB= AD=1,/BAD=,记四边形ABCD勺面积为S.
(1)求函数f(x)的单调递减区间;
8兀
(2)若f(x) ,求cos(2x-§)的值。
7.已知:在厶ABC中,a,b,c分别是角A、B、C所对的边,向量m=(23sin号,),
n=(sin寻+扌,1)且m•n=、.3•
(1)求角B的大小;
(2)若角B为锐角,a=6,S^abc=6 .. 3求b的值.
8.已知A、B、C是△ABC的三个内角,向量m=(1,-.,③,n = (cosA,sin A),
S 4
且m n = -1.
(1)求角A;
•2f2 f
(2)若sin B -cos B
1
9.在:ABC中,角A,B,C所对的边分别是a,b,c,且a2c2-b2ac
2
(i)求cosB的值;
r A +C
(u)求sin—— -cos2B的值.
文数20道三角大题
..3bc cos A.
高三年第一次月考三角函数和函数
阿拉尔市鹏源教育培训学校高三年级数学第一次月考考察范围:三角函数(主),函数(次),总分:150分,考试时间:120分钟命题教师:杨疆 姓名: 得分:一、填空题(每题5分,共60分)1.(2011湖北理3)已知函数()cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为___________________2.(2011辽宁理7)设sin 1+=43πθ(),则sin 2θ=____________3.(2011全国大纲理14)已知a ∈(2π,π),sin α=,则tan2α=___________4.(2011江苏7)已知,2)4tan(=+πx 则cos2x 的值为__________sin 2x 的值为_________5.(2011全国新课标理5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=__________6.(2012学年度第一学期上海市普陀区高三年级质量调研第6题) 已知s i n 2m πα⎛⎫+=⎪⎝⎭,则()c o s πα-= .7.(2011浙江理6)若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=,则c o s ()2βα+=______ 8.(2011山东理6)若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=_________9.(2011辽宁理16)已知函数)(x f =Atan (ωx+ϕ)(2||,0πϕω<>),y=)(x f 的部分图像如图,则=)24(πf _______10. (02年春)已知x x x f +-=11)(.若),2(ππα∈,则(cos )f α-=______.11. 函数y =的定义域是___________.12. 函数为单调递减的奇函数,若则的取值范围是_______。
2024届高三数学一轮复习-三角函数与解三角形 第4练 二倍角公式及应用(解析版)
B. cos A cos B
C. sin 2A sin 2B
D. cos 2A cos 2B
12.(2023·全国·高三专题练习)给出下列说法,其中正确的是( )
A.若 cos 1 ,则 cos 2 7
3
9
C.若 x 1 ,则 x 1 的最小值为 2
2
x
B.若 tan 2 4 ,则 tan 1
D. 5 或
5
5
)
D. 24 25
7.(2023·全国·高三专题练习)下列四个函数中,最小正周期与其余三个函数不同的是( )
A. f x cos2 x sin x cos x
B. f x 1 cos 2 x
2sin x cos x
C.
f
x
cos
x
π 3
cos
x
π 3
D.
f
x
sin
D
不
正确,
故选:BC.
10.AD
【分析】根据二倍角正弦公式、辅助角公式,结合正弦型函数的单调性、平移的性质、对称
性、换元法逐一判断即可.
【详解】 f (x) sin x cos x 1 sin 2x, g(x) sin x cos x 2 sin(x π ) ,
2
4
当
x
0,
π 4
时,
3 5 8
2
5 1 5 1.
16
4
故选:D.
2.B 【分析】根据三角恒等变换公式求解.
【详解】
sin
π 6
cos
3 sin 1 cos cos 3 ,
2
2
5
所以 3 sin 1 cos 3 ,
三角函数高三计算题解析
三角函数高三计算题解析一、单选题1.(2024·湖北·二模)若ππcos ,,tan 223sin αααα⎛⎫∈-= ⎪-⎝⎭,则πsin 23α⎛⎫-= ⎪⎝⎭()A .718-B .718-C .18-D .182.(23-24高三下·重庆·阶段练习)若,π2α⎛⎫∈ ⎪⎝⎭,且cos 13αα=,则sin 212α⎛⎫- ⎪⎝⎭的值为()A B .338C .D .3.(2024·全国·模拟预测)已知角θ的顶点为坐标原点,始边与x轴的正半轴重合,点2023π2023πsin,cos46P⎛⎫⎪⎝⎭在角θ的终边上,则sin21cos2θθ=+()AB.C D.4.(2024·陕西咸阳·二模)当函数3sin4cosy x x=+取得最小值时,sin6x⎛⎫+=⎪⎝⎭()A.4+-B.310+-C.310+D.410+5.(2024·安徽·模拟预测)已知()tan 4αβ-=,()()sin 3cos αβαβ-=+,则tan tan αβ-=()A .12B .35C .65D .536.(2024·山东泰安·一模)若2πcos 24sin 22αα⎛⎫+-=- ⎪⎝⎭,则tan2α=()A .2-B .12-C .2D .127.(2024·贵州毕节·模拟预测)已知sin 125α⎛⎫+= ⎪⎝⎭,0,2α⎛⎫∈ ⎪⎝⎭,则cos 3α⎛⎫+= ⎪⎝⎭()A .10-B .5-C .4D .34-8.(2024·福建泉州·模拟预测)若0,2α⎛⎫∈ ⎪⎝⎭,3sin 2cos 2sin cos 20αααα+=,则tan α=()A .4B .2C .12D .149.(2024·河北·模拟预测)已知1tan 22θ=-,则3cos sin cos θθθ=+()A .925-B .925C .2725-D .272510.(2024·江苏盐城·模拟预测)在ABC 中,已知tan tan tan tan 1A B A B ++=,则cos 2sin C C +的值为()A .2B .2C D .11.(2024·辽宁·一模)已知,αβ满足πππ2π,44αβ≤≤-≤≤,且553π32cos 5,962sin252ααββ⎛⎫-+=+=- ⎪⎝⎭,则24πsin 994αβ⎛⎫+-=⎪⎝⎭()A B C D12.(23-24高三下·内蒙古锡林郭勒盟·开学考试)若cos 20501)a -=,则=a ()A .12B .1C .32D .213.(23-24高三下·江苏扬州·阶段练习)已知()cos(),cos 35αβαβ+=-=,则2log (tan tan )αβ-=()A .12B .12-C .2D .2-【答案】D根据余弦的和差角公式求得tan tan αβ,再求结果即可.【详解】因为()11cos(),cos35αβαβ+=-=,14.(2024高三·全国·专题练习)已知sin 1523α︒⎛⎫-= ⎪⎝⎭,则()cos 30α︒-=()A .13B .13-C .23D .23-【答案】A 【详解】因为sin (15°-)=,所以cos (30°-α)=cos 2(15°-)=1-2sin2(15°-)=1-2×=.15.(2024·吉林白山·二模)若πcos 43πcos 4αα⎛⎫+ ⎪⎝⎭=⎛⎫- ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .7-B .7C .17-D .17【详解】因为πcos cos sin 1tan 43πcos sin 1tan cos 4αααααααα⎛⎫+ ⎪--⎝⎭===++⎛⎫- ⎪⎝⎭,故1tan 2α=-,则22122tan 42tan21tan 3112ααα⎛⎫⨯- ⎪⎝⎭===--⎛⎫-- ⎪⎝⎭,故4π1tan2tanπ34tan 27π441tan2tan 143ααα---⎛⎫-== ⎪⎝⎭+⋅-.故选:B.16.(23-24高三下·江西·开学考试)已知α为锐角,且πtan tan 14αα⎛⎫++= ⎪⎝⎭,则sin 21cos 2αα+=()A .12B .3-C .2-D .13【答案】C 【分析】根据已知条件结合两角和的正切公式可得出关于tan α的方程,由已知可得出tan 0α>,可得出关于tan α的方程,求出tan α的值,利用二倍角的正弦和余弦公式可求得所求代数式的值.【详解】因为α为锐角,则tan 0α>,则πtantan π4tan tan tan π41tan tan 4ααααα+⎛⎫++=+⎪⎝⎭-1tan tan 11tan ααα+=+=-,整理可得2tan 3tan 0αα-=,解得tan 3α=,所以,()()()22222cos sin sin 21cos 2sin cos sin cos 2cos sin cos sin cos sin αααααααααααααα++++==--+cos sin 1tan 132cos sin 1tan 13αααααα+++====----.故选:C.17.(2023·全国·高考真题)已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=().A .79B .19C .19-D .79-18.(2021·全国·高考真题)若tan 2θ=-,则sin 1sin 2sin cos θθ+=+()A .65-B .25-C .25D .6519.(2021·全国·高考真题)若0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A .15B C D20.(1995·全国·高考真题)已知θ是第三象限的角,且44sin cos 9+=θθ,那么sin 2θ的值为A B .C .23D .23-。
2022学年高三上(编号:1-25)三角函数小题汇编(教师版)
2022学年高三上(编号:1-25)三角函数小题汇编(教师版)一、选择题1:(2023届如皋市高三上期初调研解析第1题)1:(2022⋅全国⋅模拟题)声音是由物体振动产生的声波,我们听到的声音中包含着正弦函数.若某声音对应的函数近似为()1sin sin 22f x x x =+,则下列叙述正确的是( )A .2x π=为()f x 的对称轴 B .3,02π⎛⎫⎪⎝⎭为()f x 的对称中心C .()f x 在区间[]0,10上有3个零点D .()f x 在区间57,33ππ⎡⎤⎢⎥⎣⎦上单调递增方法提供与解析:(嘉兴陈超群)知识点:含sin x 函数的单调性问题、求正弦(型)函数的对称轴、对称中心、二倍角正弦公式、正弦(型)函数零点、利用导数研究函数的零点问题(或方程的根)分析:本题考查三角函数的图像与性质,利用导数研究函数单调性,属较难题.利用诱导公式,计算可知22f x f x ππ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,3322f x f x ππ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭即可判定选项A 、B ,求出()f x 的零点即可判定选项C ;利用导数求出函数()f x 的增区间,即可判定选项D . 解析:因为()11sin sin 2cos sin 22222f x x x x x πππ⎛⎫⎛⎫+=+++=- ⎪ ⎪⎝⎭⎝⎭,()11sin sin 2cos sin 22222f x x x x x πππ⎛⎫⎛⎫-=-+-=+ ⎪ ⎪⎝⎭⎝⎭,所以22f x f x ππ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭. 所以2x π=不是()f x 的对称轴,故A 错误; 因为()3311sin sin 32cos sin 22222f x x x x x πππ⎛⎫⎛⎫+=+++=--⎪ ⎪⎝⎭⎝⎭, ()3311sin sin 32cos sin 22222f x x x x x πππ⎛⎫⎛⎫-=-+-=-+ ⎪ ⎪⎝⎭⎝⎭,所以3322f x f x ππ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭. 所以3,02π⎛⎫⎪⎝⎭不是()f x 的对称中心,故B 错误;因为()()1sin sin 2sin sin cos sin 1cos 2f x x x x x x x x =+=+=+,令()0f x =,则sin 0x =或cos 1x =-,所以,x k k Z π=∈或,x k k Z ππ=+∈.因为[]0,10x ∈,所以0,,2,3x πππ=. 所以()0f x =有四个零点,故C 错误;()()()2'cos cos 22cos cos 1cos 12cos 1f x x x x x x x =+=+-=+-.令()'0f x >,解得1cos 2x >,解得22,33k x k k Z ππππ-+<<+∈.所以()f x 在57,33ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,故选D2:(2023届麓山国际实验学校高三上入学考解析第6题) 2:关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎫⎛ ⎪⎝⎭单调递增③()f x 的最大值为2;④()f x 在[],ππ-有4个零点。
高三三角函数专题训练及答案
肇庆市实验中学2005届高三《三角函数》专题训练三角函数训练(一)-同角三角函数关系1.命题p :α是第二象限角,命题q:α是钝角,则p 是q 的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 2.若角α满足sin αcos α<0,cos α-sin α<0,则α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.集合M ={x |x =42ππ±k ,k ∈Z }与N ={x |x =4πk ,k ∈Z }之间的关系是( ) A.M N B.N MC.M =ND.M ∩N=∅4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是( )A.(1)、(2)B.(2)、(3)C.(1)、(3)D.(2)、(4)5.设a <0,角α的终边经过点P (-3a ,4a ),那么sin α+2cos α的值等于( )A.52B.-52C.51D.-51 6.若cos(π+α)=-23,21π<α<2π,则sin(2π-α)等于( )A.-23 B.23 C.21 D.±237.已知sin α>sin β,那么下列命题成立的是( )A.若α、β是第一象限角,则cos α>cos βB.若α、β是第二象限角,则tan α>tan βC.若α、β是第三象限角,则cos α>cos βD.若α、β是第四象限角,则tan α>tan β8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是( )A.2B.1sin 2C.2sin1D.sin2 9.如果sin x +cos x =51,且0<x <π,那么cot x 的值是( )A.-34B.-34或-43C.-43D.34或-4310.已知①1+cos α-sin β+sin αsin β=0,②1-cos α-cos β+sin αcos β=0.则sin α的值为( )A.3101- B.351- C.212- D.221-三角函数训练(二)-同角三角函数关系1.tan300°+cot765°的值是_______.2.已知tan α=3,则sin 2α-3sin αcos α+4cos 2α的值是______.3.若扇形的中心角为3π,则扇形的内切圆的面积与扇形面积之比为______. 4.若θ满足cos θ>-21,则角θ的取值集合是______.5.设一扇形的周长为C (C >0),当扇形中心角为多大时,它有最大面积?最大面积是多少?6.设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=42x ,求sin α与tan α的值.7.已知sin α是方程5x 2-7x -6=0的根,求)(cos )2cos()2cos()2(tan )23sin()23sin(22απαααπαππα-⋅+⋅--⋅-⋅--的值. 8.已知sin α+cos α=-553,且|sin α|>|cos α|,求cos 3α-sin 3α的值. 9.已知sin(5π-α)=2 cos(27π+β)和3cos(-α)=- 2cos(π+β), 且0<α<π,0<β<π,求α和β的值.1.若sin532=θ,542cos -=θ则θ在( ) A.第一象限 B.第二象限C.第三象限 D.第四象限 2.cos2125π+cos 212π+cos 125πcos 12π的值等于 ( ) A.26 B.23 C.45 D.1+433.已知π<α<23π,且sin (23π+α)=54,则tan 2α等于 ( ) A.3 B.2 C.-2 D.-34.若tan θ+cot θ=m,则sin2θ等于 ( ) A.m 1 B.m 2 C.2m D.21m5.下列关系式中不正确...的是 ( ) A.sin α+sin β=2sin2βα+cos2βα-B.sin α-sin β=2cos 2βα+cos 2βα-C.cos α+cos β=2cos 2βα+cos 2βα-D.cos α-cos β=2sin 2βα+sin 2αβ-6.如果tan 312=α,那么cos α的值是 ( )A.53B.54C.-53 D.-54 7.化简)4sin()4cos()4sin()4cos(x x x x ++++-+ππππ的值是 ( )A.tan 2xB.tan2xC.-tan x D.cot x8.若sin α=135,α在第二象限,则tan 2α的值为 ( )A.5B.-5C.51 D.-511.设5π<θ<6π,cos2θ=a ,则sin 4θ等于 ( ) A.-21a + B.-21a- C.-21a + D.-21a - 2.若tannmA =2,则mcos A -nsin A 等于 ( ) A.n B.-n C.-m D.m3.若tan α=-2且sin α<0,则cos α= .4.tan5π+tan 52π+tan 53π+tan 54π= .5.已知sin θ=-53,3π<θ<27π,则tan 2θ= .6.已知sin α=31,2π<α<3π,那么sin 2α+cos 2α= .7.cos 85πcos 8π= .8.sin (θ+75°)+cos (θ+45°)-3cos (θ+15°)= . 9.已知π<θ<23π,cos θ=-54,则cos 2θ= . 10.tan19°+tan26°+tan19°tan26°= . 11.若cos (α+β)=54,cos (α-β)=-54,且2π<α-β<π,23π<α+β<2π,则cos2α= ,cos2β= .12.求2sin160°-cos170°-tan160°sin170°的值.13.已知sin (x -43π)cos (x -4π)=-41,求cos4x 的值. 14.求证tan xx x x x 2cos cos sin 22tan 23+=- 15.若函数y=x 2-4px -2的图象过点(tan α,1),及点(tan β,1).求2cos2αcos2β+p sin2(α+β)+2sin 2(α-β)的值.三角函数训练(五)- 两倍角公式1.如果,532cos =θ那么θθ44cos sin +的值是( ) A .251 B.1 C.2517 D.2517-2.若,135)4cos(=+A π求sin2A 的值. 3.求证:αααααsin cos 1cos 1sin 2tan -=+=.4.已知,31)sin()sin(=-+βαβα求证:αβα422cos sin 2sin 41++为定值.5.已知α、)2,0(πβ∈,且,02sin 22sin 3,1sin 2sin 322=-=+βαβα求证:,22πβα=+并求αsin 、βsin 、αcos 、βcos 的值.6.若,cos sin ,cos sin ,40b a =+=+<<<ββααπβα则( )A .a <b B.a >b C.ab <1 D.ab >2 7.已知θ是第三象限角,且95cos sin 44=+θθ,那么θ2sin 等于( ) A .322 B. 322- C. 32 D.32-1.命题甲:“x 是第一象限角”,命题乙:“sin x 是增函数”,则命题甲是命题乙的( ) A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件2.右图是函数y =2sin(ωx +ϕ)(|ϕ|<2π=的图象,那么( )A.ω=1110,ϕ=6π B.ω=1110,ϕ=-6πC.ω=2,ϕ=6πD.ω=2,ϕ=-6π3.已知cos x =94,x ∈(-2π,0),则x 的值是( ) A.-arccos 94 B.π-arccos 94C.arccos 94D.2π-arccos 944.要得到函数y =sin(2x -4π)的图象,只要将y =sin2x 的图象( )A.向左平移4πB.向右平移4πC.向左平移8πD.向右平移8π5.函数y =sin 2(ωx )-cos 2(ωx )的周期T =4π,那么常数ω为( ) A.21 B.2 C.41D.4 6.函数y =sin(2x +25π)的图象的一条对称轴方程为( )A.x =45πB.x =-2πC.x =8πD.x =4π7.函数y =logcos1cos x 的值域是( )A.[-1,1]B.(-∞,+∞)C.(-∞,]0D.[0,+)∞]8.如果|x |≤4π,那么函数f (x )=cos 2x +sin x 的最小值是( ) A.212- B.221- C.-212+ D.-19.函数f (x )=sin 25π+x ,g(x )=cos 25π+x ,则( )A.f (x )与g(x )皆为奇函数B.f (x )与g(x )皆为偶函数C.f (x )是奇函数,g(x )是偶函数D.f (x )是偶函数,g(x )是奇函数1.下列函数中,图象关于原点对称的是( )A.y =-|sin x |B.y =-x ²sin |x |C.y =sin(-|x |)D.y =sin |x |2.函数y =3sin(πx +3)的振幅是 ,周期是 ,初相是 .3.2sin2cos cos x x xy -=的值域是 .4.若函数y =Acos(ωx -3)的周期为2,则ω= ;若最大值是5,则A = .5.在下列函数中:①y =4sin(x -3π),②y =2sin(x -65π),③y =2sin(x +6π),④y=4sin(x +3π),⑤y =sin(x -613π)关于直线x =65π对称的函数是 (填序号).6.使函数y =2tan x 与y =cos x 同时为单调递增的区间是 .7.函数y =tan x 53的周期为 ,y =sin 22x 的周期是 ,y =-cos(5x+6π)的周期是 . 8.在y =arcsin x 中,x ∈ ,y ∈ 的一个 .9.利用单位圆将sin2,sin3,sin4由小到大排列的顺序为 . 10.由y =sin x 变为y =A sin(ωx +ϕ),若“先平移,后伸缩”,则应平移 个单位;若“先伸缩,后平移”,则应平移 个单位即得y =sin(ωx +ϕ);再把 坐标 原来的A 倍,就是y =A sin(ωx +ϕ)(其中A >0).11.y =(2+cos x )(5-cos x )的最大值为 ,最小值为 . 12.求)1lg(tan 1cos 2+-=x x y 的定义域.13.已知函数y =a-bcos x 的最大值是23,最小值是-21,求函数y =-4asin3bx 的最大值、最小值、周期、振幅、频率.14.若f (x )=A sin(x -3π)+B ,且f (3π)+f (2π)=7,f (π)-f (0)=23,求f (x ). 15.若⎩⎨⎧=+=θθθθcos sin cos sin y x ,试求y =f (x )的解析式.三角函数训练(八)- 正、余弦定理1.在△ABC 中,已知C=2B ,求证:c 2-b 2=ab . 2.在△ABC 中,,22=c a >b ,C = 4π,且有tan A ²tan B =6,试求a 、b 以及此三角形的面积.3.已知△ABC 的面积为1,tan B =2tan ,21-=C ,求△ABC 的各边长. 4.已知:k 是整数,钝角△ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c(1)若方程组⎪⎩⎪⎨⎧+=+=+)1(32722k y kx ky x 有实数解,求k 的值. (2)对于(1)中的k 值,若,2sin k C =且有关系式C c B b A b c 222sin sin sin )(=+-,试求A 、B 、C 的度数.5.求值:︒︒+︒+︒80cos 20sin 380cos 20sin 226.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c =2b , A –C =3π,求sin B 的值.7.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,那么cos C 的值为( ) A .-41 B .41 C .- 32 D .32 8.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度.三角函数训练(一)答案1、解析:“钝角”用集合表示为{α|90°<α<180°},令集合为A ;“第二象限角”用集合表示为{α|k ²360°+90°<α<k ²360°+180°,k ∈Z },令集合为B .显然A B . 答案:B2、解析:由sin αcos α<0知sin α与cos α异号;当cos α-sin α<0,知sin α>cos α.故sin α>0,cos α<0.∴α在第二象限.答案:B3、解法一:通过对k 的取值,找出M 与N 中角x 的所有的终边进行判断.解法二:∵M ={x |x =4π²(2k ±1),k ∈Z },而2k ±1为奇数,∴M N . 答案:A4、解析:787°=2³360°+67°,-957°=-3³360°+123°. -289°=-1³360°+71°,1711°=4³360°+271°. ∴在第一象限的角是(1)、(3). 答案:C5、解析:∵r=a a a 5)4()3(22-=+-.α为第四象限.∴53cos ,54sin ==-==r x r y αα.故sin α+2cos α=52. 答案:A6、解析:∵cos(π+α)=-21,∴cos α=21,又∵23π<α<2π. ∴sin α=-23cos 12-=-α.故sin(2π-α)=-sin α=23. 答案:B7、答案:D8、解析:∵圆的半径r =1sin 2,α=2 ∴弧度l=r ²α=1sin 2. 答案:B9、分析:若把sin x 、cos x 看成两个未知数,仅有sin x +cos x =51是不够的,还要利用sin 2x +cos 2x =1这一恒等式.解析:∵0<x <π,且2sin x cos x =(sin x +cos x )2-1=-2524. ∴cos x <0.故sin x -cos x =57cos sin 4)cos (sin 2=-+x x x x ,结合sin x +cos x =51,可得sin x =54,cos x =-53,故co t x =-43.答案:C10、分析:已知条件复杂,但所求很简单,由方程思想,只要由①、②中消去β即可. 解析:由已知可得:sin β=ααsin 1cos 1-+,cos β=ααsin 1cos 1--.以上两式平方相加得:2(1+cos 2α)=1-2sin α+sin 2α. 即:3sin 2α-2sin α-3=0.故sin α=3101-或sin α=3101+ (舍). 答案:A三角函数训练(二)答案1、解析:原式=tan(360°-60°)+cot (2³360°+45°)=-tan60°+cot45°=1-3. 答案:1-32、分析:将条件式化为含sin α和cos α的式子,或者将待求式化为仅含tan α的式子.解法一:由tan α=3得sin α=3cos α,∴1-cos 2α=9cos 2α. ∴cos 2α=101. 故原式=(1-cos 2α)-9cos 2α+4cos 2α=1-6cos 2α=52. 解法二:∵sin 2α+cos 2α=1.∴原式=52194991tan 4tan 3tan cos sin cos 4cos sin 3sin 222222=++-=++-=++-ααααααααα. 答案:523、分析:扇形的内切圆是指与扇形的两条半径及弧均相切的圆. 解析:设扇形的圆半径为R ,其内切圆的半径为r ,则由扇形中心角为3π知:2r +r =R ,即R =3r .∴S 扇=21αR 2=6πR 2,S 圆=9πR 2.故S 扇∶S 圆=23. 答案:234、分析:对于简单的三角不等式,用三角函数线写出它们的解集,是一种直观有效的方法.其过程是:一定终边,二定区域;三写表达式.解析:先作出余弦线OM =-21,过M 作垂直于x 轴的直线交单位圆于P 1、P 2两点,则OP 1、OP 2是cos θ=21时θ的终边.要cos θ>-21,M 点该沿x 轴向哪个方向移动?这是确定区域的关键.当M 点向右移动最后到达单位圆与x 轴正向的交点时,OP 1、OP 2也随之运动,它们扫过的区域就是角θ终边所在区域.从而可写出角θ的集合是{θ|2k π-32π<θ<2k π+32π,k ∈Z }.答案:{θ|2k π-32π<θ<2k π+32π,k ∈Z } 5、解:设扇形的中心角为α,半径为r ,面积为S ,弧长为l,则:l+2r =C ,即l=C -2r .∴16)4()2(212122C C r r r C lr S +--=⋅-==.故当r =4C 时,S max =162C ,此时:α=.2422=-=-=CCC rrC r l∴当α=2时,S max =162C .6、解:由三角函数的定义得:cos α=52+x x ,又cos α=42x , ∴34252±=⇒=+x x x x . 由已知可得:x <0,∴x =-3.故cos α=-46,sin α=410,ta n α=-315. 7、解:∵sin α是方程5x 2-7x -6=0的根.∴sin α=-53或sin α=2(舍). 故sin 2α=259,cos 2α=⇒2516tan 2α=169. ∴原式=169tan cot )sin (sin tan )cos (cos 222==⋅-⋅⋅-⋅ααααααα. 8、分析:对于sin α+cos α,sin α-cos α及sin αcos α三个式子,只要已知其中一个就可以求出另外两个,因此本题可先求出sin αcos α,进而求出sin α-cos α,最后得到所求值.解:∵sin α+cos α=-553, ∴两边平方得:1+2sin αcos α=⇒59sin αcos α=52. 故(cos α-sin α)2=1-2sin αcos α=51.由sin α+cos α<0及sin αcos α>0知sin α<0,cos α<0. 又∵|sin α|>|cos α|,∴-sin α>-cos α cos α-sin α>0. ∴cos α-sin α=55. 因此,cos 3α-sin 3α=(cos α-sin α)(1+sin αcos α)=55³(1+52)=2557.评注:本题也可将已知式与sin 2α+cos 2α=1联解,分别求出sin α与cos α的值,然后再代入计算.9、分析:运用诱导公式、同角三角函数的关系及消元法.在三角关系式中,一般都是利用平方关系进行消元.解:由已知得sin α=2sin β ①3cos α=2cos β ②由①2+②2得sin 2α+3cos 2α=2.即:sin 2α+3(1-sin 2α)=2. ∴sin 2α=⇒21sin α=±22,由于0<α<π,所以sin α=22. 故α=4π或43π. 当α=4π时,cos β=23,又0<β<π,∴β=6π, 当α=43π时,cos β=-23,又0<β<π,∴β=65π.综上可得:α=4π,β=6π或α=43π,β=65π.三角函数训练(三)答案1、解:由sin532=θ>22,cos 2θ=-54<-22 得2θ为第二象限角. 即2kπ+43π<2θ<2kπ+π (k∈Z)∴4kπ+23π<θ<4kπ+2π (k∈Z)∴θ在第四象限. 答案:D 2、解:原式=sin 212π+cos 212π+sin 12πcos 12π=1+21sin 6π=45 答案:C 3、解:由sin (23π+α)=-cos α=54,π<α<23π,得cos α=-54,2π<2α<43π∵cos α=1-2sin22α ∴sin 2α=10103 cos2α=-1010∴tan 2α=-3 答案:D4、解:∵tan θ+cot θ=tan θ+θtan 1=m 即:m =+θθtan 1tan 2 又∵sin2θ=m2tan 1tan 22=+θθ 答案:B5、解:因为sin α-sin β=2cos 2βα+sin2βα-.答案:B6、解:cos α=549119112tan 12tan 122=+-=+-αα. 答案:B7、解:原式=x x x x x x x x 2cos 12sin )22sin(1)22cos()]4sin()4[cos()4(sin )4(cos 222+-=+++=++++-+πππ x x x tan cos 2cos sin 22-=-=α答案:C 8、解:由sin α=135,α在第二象限得cos α=-1312. ∴tan2α=5cos 1sin =+αα答案:A三角函数训练(四)答案1、解:∵cos 2θ=1-2sin 24θ 5π<θ<6π 45π<4θ<23π ∴sin 24θ=21a - 即sin4θ=-21a -. 答案:D2、解:mcos A -nsin A =m².2tan 12tan22tan 12tan 1222m AAn A A -=+⋅-+- 答案:C3、解:由⎪⎩⎪⎨⎧-==+2cos sin 1cos sin 22αααα得cos α=55.答案:55 4、解:原式=tan 5π+tan 52π+tan (π-52π)+tan (π-5π)=tan 5π+tan52π-tan52π-tan 5π=0. 答案:0 5、解:∵3π<θ<27π ∴23π<2θ<47π又∵sin θ=532tan 12tan22-=+θθ∴tan2θ=-3. 答案:-36、解:∵2π<α<3π ∴π<2α<23π(sin2α+cos 2α)2=1+sin α=34∴sin2α+cos 2α=-332. 答案:-332 7、解:cos85πcos 8π=cos (2π+8π)cos 8π =-sin 8πcos 8π=-21sin 4π=-42. 答案:-42 8、解:设θ+15°=α原式=sin (α+60°)+cos (α+30°)-3cos α=sin αcos60°+cos αsin60°+cos αcos30°-sin αsin30°-3cos α=0. 答案:09、解:由π<θ<23π得2π<2θ<43π 又cos θ=2cos 22θ-1=-54∴cos2θ=-1010. 答案:-101010、解:原式=tan (19°+26°)(1-tan19°tan26°)+tan19°tan26°=1. 答案:111、解:∵2α=(α+β)+(α-β)∴cos2α=cos [(α+β)+(α-β)]=-257∵2β=(α+β)-(α-β) ∴cos2β=cos [(α+β)-(α+β)]=-1. 答案:-257-1 12、解:原式=2sin20°+cos10°+tan20°sin10°.360sin 220cos 20cos 60sin 220cos 80sin 40sin 20cos 10cos 40sin 20cos )10sin 20sin 20cos 10(cos 20cos 20sin 2=︒=︒︒︒=︒︒+︒=︒︒+︒=︒︒︒+︒︒+︒︒=13、解:由sin (x -43π)cos (x -4π)=-41 ⇒21[sin (2x -π)+sin (-2π)]=-41⇒sin2x =-21⇒cos4x =1-2sin 22x =21.14、证明:左边=2cos23cos 2sin23cos 2cos 23sin 2cos 2sin 23cos 23sin x x x x x x x x x x -=- x x x x x x x 2cos cos sin 2)cos 2(cos 21)223sin(+=+-=右边. 15、解:由条件知tan α、tan β是方程 x 2-4px -2=1的两根.∴⎩⎨⎧-==+3tan tan 4tan tan βαβαp∴tan (α+β)=p p=--)3(14.∴原式=2cos2αcos2β+tan (α+β)sin2(α+β)+2sin 2(α-β)=cos2(α+β)+cos2(α-β)+2sin 2(α+β)+2sin 2(α-β)=cos2(α+β)+cos2(α-β)+[1-cos2(α+β)]+[1-cos2(α-β)]=2三角函数训练(五)答案1、分析:先化简θθ44cos sin +为(.c o s s i n 2)c o s s i n 22222θθθθ-+即为.)c o s (s i n 212θθ-然后用倍角公式:.22sin cos sin θθθ=⋅用532cos =θ可得2516)2(sin 2=θ ∴原式.251725421=⋅-= 答案:C2、分析:角2A 与A +4π不是倍角关系,但)4(222A A +=+ππ,故我们可以结合诱导公式与倍角公式来解决这个问题.解:169119)135(21]1)4(cos 2[)4(2cos )22cos(2sin 22=⨯-=-+-=+-=+-=A A A A πππ3、分析:因为α是2α的半角.所以可以将等式右边用倍角公式展开证得.证明:∵2tan 2cos2sin2cos 22cos2sin2cos 1sin 2αααααααα==⋅=+ 同理,2tan 2cos2sin2cos2sin22sin 2sin cos 12ααααα===- 所以原式成立.4、分析:求证一个三角函数式为定值,就是证它等于一个常数.我们发现已知条件算式的左边是两个角的正弦函数相乘的形式,所以我们得用如下公式:).cos()cos(sin sin 2βαβαβα+--=证明:∵)]()cos[()]()cos[(βαβαβαβα--+--++ )sin()sin()cos()cos(βαβαβαβα-+--+=)sin()sin()cos()cos(βαβαβαβα-+--+-)sin()sin(2βαβα-⋅+-=∴32312)sin()sin(22cos 2cos -=⨯-=-+-=-βαβαβα ∵αβα422cos sin 2sin 41++)(324121)32(21414121)2cos 2(cos 21)2cos 2(sin 412cos 412cos 21412cos 21212sin 41)]2cos 1(21[)2cos 1(212sin 41222222常数=++-⨯+=++-++=+++-+=++-+=βαααααβααβα ∴原命题成立.5、分析:本题前半部分实际上是一个给值求角类型题,因此在确定βα2+范围的前提下,利用两个已知条件,求得βα2+的某一三角函数值.而要求βα2+的三角函数值必须用到和角公式,且应找到β2sin 、β2cos 与角α的三角函数值之间的关系.解:由已知得:ααββαcos sin 32sin sin 21sin 322=-=即αβ2sin 32cos = ① ααβcos sin 32sin = ② ∴βαβαβα2sin sin 2cos cos )2cos(-=+0c o s s i n 3s i n s i n 3c o s 2=⋅-⋅=ααααα∵α、)2,0(πβ∈, ∴)23,0(2πβα∈+ 于是有22πβα=+,原式成立.由①2+②2得:22222)cos sin 3()sin 3(2sin 2cos αααββ+=+1sin 9 sin 9)cos (sin sin 922222==+=ααααα即得∵)2,0(πα∈, ∴322sin 1cos 31sin 2=-==ααα 将91sin 2=α代入1sin 2sin 322=+βα得:1sin 2)31(322=+⨯β 即31sin 2=β ∵)2,0(πβ∈ ∴33sin =β 36c o s =β6、分析:此题可用倍角公式化简后再比较.把a =+ααcos sin 的两边平方,则有ααsin 2sin 2+αα2cos cos +22sin 1a =+=α,同理.2sin 12b =+β因,40πβα<<<所以,2220πβα<<<则,,2sin 2sin 22b a <<βα而a >0,b >0,则有a <b .答案:A7、分析:此题主要考查同角三角函数关系及倍角公式22244)cos (sin cos sin θθθθ+=+θθ22cos sin 2-,95)2(sin 2112=-=θ则,98)2(sin 2=θ因θ为第三象限角,则,0cos ,0sin <<θθ即.02sin cos sin 2>=⋅θθθ所以.3222sin =θ 答案:A三角函数训练(六)- 三角函数图象和性质答案1、解析:由x 是第一象限角推不出sin x 是增函数,如)62sin(3sin ,623ππππππ+〉+〈但; 由sin x 是增函数也推不出x 是第一象限角,如sin x 在区间]0,2[π-是增函数,但]0,2[π-内的所有角都不是第一象限角.答案:D2、解析:由点(0,1)在其图象上,可知1=2sin ϕ,又|ϕ|<2π,∴ϕ=6π.又∵1211πω+6π=2π⇒ω=2. 答案:C3、解析:∵arccos 94∈(0,2π),而x ∈(-2π,0) ∴x =-arccos 94. 答案:A4、解析:当x →x -8π时,2x →2(x -8π)=2x -4π答案:D5、解析:∵y =-cos(2ωx ),T =ϖπ22=4π ∴ω=41.答案:C6、解析:∵y =sin(2x +25π)=cos2x , ∴x =-2π是它的一条对称轴. 答案:B7、解析:由题意知0<cos1<1,0<cos x ≤1,∴y ≥0. 答案:D8、解析:f (x )=(1-sin 2x )+sin x =-(sin x -21)2+45 由|sin x |≤22,知当sin x =-22时 f (x )min=-(-22-21)2+45=221-.答案:B9、解析:∵f (x )=sin =25π+x =sin(25π+2x )=cos 2xg(x )=cos(2x +25π)=-sin 2x答案:D三角函数训练(七)- 三角函数图象和性质答案1、解析:∵点(x ,y )关于原点的对称点P (-x ,-y ),把P 点坐标逐一代入选择支,知y =-x ²sin |x |关于原点对称.答案:B2、答案:3 2 33、解析:由2sin2cos cos x x x y -==2sin 2cos 2sin 2cos 22x x x x --=)42sin(22sin 2cos π+=+x x x , x ≠2k π+2π+,k ∈Z ∴y ≠±)42sin(,2π+∴x <1∴y ∈(-2,2) 答案:(-2,2) 4、答案:π 5 5、解析:∵y =4sin(65π-3π)=4sin 2π=4,y 取最大值.∴x =65π为它的一个对称轴. 又y =sin(65π-613π)=sin 23π=-1 ∴x =65π是对称轴. 答案:①⑤6、解析:当x ∈(k π-2π,k π+2π)时,y =2tan x 是增函数, 当x ∈(k π-π,k π)时,y =cos x 是增函数,∴当x ∈(k π-2π,k π)时,y =2tan x 与y =cos x 均是增函数. 答案:(k π-2π,k π)k ∈Z 7、答案:35π 2π 52π 8、答案:[0,1] [0,2π] 角 9、答案:sin4<sin3<sin210、答案:|ϕ | |2ϕ| 纵 扩大到 11、解析:∵y =-cos 2x +3cos x +10=-(cos x -23)2+449 当cos x =-1时,y min=6当cos x =1时,y min=12答案:12 612、解:由题意得)(322242)(4324232320tan 1tan 21cos 11tan 01tan 11cos 2Z k k x k k x k k x Z k k x k k x k x x x x x x ∈+≤〈〈〈-⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧≠∈+〈〈-+≤≤-⇒⎪⎪⎩⎪⎪⎨⎧≠-〉≥⇒⎪⎩⎪⎨⎧≠+〉+≥-πππππππππππππππ或 13、解:当b>0时x y b a b a b a 3sin 21212123-=⇒⎪⎩⎪⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧-=-=+x b a b a b a b 3sin 21212123,0⇒=⎪⎩⎪⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧-=+=-〈时当 ∴最小值是-2,最大值是2,T =32π A =-2(b>0)或2(b<0=,f =π23. 14、解:由已知得:3)3sin(2)(3232232372132)0()(7)2()3()3sin()(+π-=⇒⎩⎨⎧==⇒⎪⎪⎩⎪⎪⎨⎧=-++=++⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-π=π+π+π-=x x f B A B A B A B A B f f f f B x A x f 15、解:由x =sin θ+cos θ⇒x 2=1+2sin θcos θ⇒sin θcos θ=212-x ∴y =f (x )=sin θcos θ=212-x 又x =sin θ+cos θ=2sin(θ+4π) 而|sin(θ+4π)|≤1 ∴|x |≤2, ∴y =f (x )=21x 2-21,x ∈[-2,2]. 三角函数训练(八)- 正、余弦定理答案1、分析:利用正弦定理的变式a =2R sin A ,b =2R sin B .证明:设△ABC 的外接圆半径为R .∵C =2B ,sin(B+C )=sin AabB A R BC B C R B C B C B C B C R B C B C R B C R b c ==-+⋅=+-⋅-+⋅=-+=-=-∴sin sin 4 )sin()sin(4 2cos 2sin 22cos 2sin24 )sin )(sin sin (sin 4 )sin (sin 4222222222 则原式成立.2、分析:由已知可求tan A +tan B ,这样可求得tan A 和tan B 的值.只需求sin A 、sin B 的值,就可利用正弦定理求a 、b.解:∵tan A +tan B =tan(A +B )²(1-tan A tan B )=-tan C (1-tan A tan B )=-tan 4π(1-6)=5 又∵tan A ²tan B =6,且a >b ,则tan A >tan B∴tan A =3,tan B =2 则552sin ,10103sin ==B A 由正弦定理,得5106221010322sin sin =⋅==CA c a 52422558510621sin 215582255222sin sin =⋅⋅⋅===⋅==∆C ab S C B c b ABC 3、分析:综合利用同角三角函数关系式、正弦定理和三角形的面积公式进行计算. 解:∵tan B =21,∴sin B =552cos ,55=B 又∵tan C =-2,55cos ,552sin -==∴C C b B A b a Bb A a CB C B C B A 53sin sin sin sin 53552552)55(55 sin cos cos sin )sin(sin ==∴==⋅+-⋅=+=+= 则 则S ΔABC =15525321sin 212=⋅⋅=b C ab 解得3,315==a b 则再由正弦定理得3152sin sin ==A C a c 4、分析:由方程组有实数解,求得k 值,由已知关系式,讨论k 的取值范围和角的取值.解:(1)将原方程组消去y 后 ,化为:0373222=+-+-k k kx x由Δ)373(4422+--=k k k ≥0得3722+-k k ≤0即(k -3)(2k -1)≤0,21≤k ≤3 ∵k 为整数,∴k =1,2,3(2)∵△ABC 为钝角三角形∴0<sin C <1∴k 取1,22sin =C ,则C 为45°或135° 0))((0)(sin 2,sin 2,sin 2sin sin sin )(222332222=----=-+⋅-∴====+-bc b c a b c c b a b c CR c B R b A R a Cc B b A b c 则而若c=b ,则B =45°或135°,与△ABC 是钝角三角形相矛盾.∴a 2-c 2-b 2-bc =0 则212222-=-+bc a c b ∴cos A =-21,A =120° ∵C =45°,C =135°(舍去),B =180°-120°-45°=15°5、分析:根据原式的结构特征,联想到余弦定理,所以可用构造三角形的方法求值. 解:构造△ABC ,使A =20°,B =10°,C =150°,设△ABC 的外接圆的半径为R .由正弦定理得:a =2R sin20°,b =2R sin10°,c =2R sin150°∵c 2=a 2+b 2–2ab cos C4180cos 20sin 380cos 20sin 150cos 10sin 20sin 810sin 420sin 422222222=︒︒+︒+︒︒︒︒-︒+︒=∴即R R R R6、分析:本题考查学生分析题意,运用三角知识进行三角变换及发掘三角形中隐含条件的能力.要解决这个问题,必须具备一些相关知识,包括正弦定理、诱导公式、和差化积、同角三角函数基本关系、倍角公式等知识,因此,这是一道较综合的考题.从已知条件出发,可将边的关系运用正弦定理化为角的关系,然后进行正确的三角变换,从而将此问题解决.解:∵a+c =2b ,∴sin A +sin C =2sin B 由和差化积公式得2cos 2sin 42cos 2sin 2B B C A C A =-+ 8394134322cos 2sin2sin 4132sin 12cos 20432sin 2sin 2233,02cos 2sin2=⨯⨯===-=∴<<==∴=->=+B B B B B B B B C A B C A 于是即ππ 7、分析:先用正弦定理:C c B b A a sin sin sin ==可求出a ∶b ∶c =3∶2∶4, 所以可设a =3k ,b =2k ,c =4k ,再用余弦定理:kk k k k C ab c b a C 2321649cos 2cos 222222⋅⋅-+=-+=可得 即.41cos -=C 答案:A8、分析:先画图,再利用正弦定理求解.解:如图所示,∠SMN =15°+30°=45°∠SNM =180°-45°-30°=105°∴∠NSM=180°-45°-105°=30°)26(2021)26(10)26(10105sin 2030sin -=÷--=∴︒=︒MN MN 由正弦定理 答:货轮的速度为)26(20-里/小时.。
高三数学三角函数练习题
高三数学三角函数练习题1. 已知角A的终边经过点P(-3, 4),求角A的三角函数值。
解析:根据点P的坐标可以得出三角形的边长。
设角A的终边与x轴的交点为Q,连接OQ。
则OQ = OP = √((-3)^2 + 4^2) = √(9+16)= √25 = 5。
所以sinA = PQ/OQ = 4/5,cosA = OQ/OQ = 5/5 = 1,tanA =PQ/OQ = 4/5。
答案:sinA = 4/5,cosA = 1,tanA = 4/5。
2. 已知tanA = -3/4,求sinA和cosA的值。
解析:根据三角函数间的关系式,我们可以利用勾股定理求出A的终边与x轴的交点的坐标。
设角A的终边与x轴的交点为Q,连接OQ。
由于tanA = PQ/OQ = -3/4,我们可以设定PQ = -3x,OQ = 4x,其中x为一个正数。
根据勾股定理可得4x^2 + (-3x)^2 = OQ^2 = 16x^2,化简得25x^2 = 16x^2,解得x = 0。
所以OQ = 4x = 0,PQ = -3x = 0。
根据点的坐标可知,角A的终边与x轴无交点,因此sinA和cosA不存在。
答案:sinA和cosA不存在。
3. 已知sinA = 1/2,求A的余弦值。
解析:根据sinA = 1/2可知,A为30度或150度。
计算A的余弦值时我们可以利用三角函数间的关系式cos^2A + sin^2A = 1,代入已知条件即可得到cosA的值。
由于sinA = 1/2,代入可得cosA^2 + (1/2)^2 = 1,化简得cosA^2 = 3/4,解得cosA = ±√3/2。
根据A的角度在第一象限或第二象限,所以cosA = √3/2。
答案:cosA = √3/2。
4. 已知cosA = -2/3,求A的正切值。
解析:根据cosA = -2/3可知,A的终边位于x轴右侧,并与x轴夹角大于90度。
高三文科周末辅导11(三角函数专题练习)
1.已知函数2()2cos 3sin 2x f x x =-. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若α为第二象限角,且1()33f πα-=,求cos21tan αα-的值.2.设函数23()3sin sin cos (0)2f x x x x ωωωω=-->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π. (Ⅰ)求ω的值; (Ⅱ)求()f x 的单调增区间,对称轴,对称中心; (III )求()f x 在区间3[,]2ππ上的最大值和最小值; (IV)求()f x 在区间 上的单调区间.3.在△ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,已知向量(2,),(cos ,cos ),p c a b q B C =-= p q ⊥ 且. (1)求角B 的大小; (2)若b =23,求△ABC 面积的最大值.4.在ABC ∆中,角A B C 、、的对边分别为a b c ,,,且满足2cos .c b A =(1)求证:A B =;(2)若ABC ∆的面积152S =,4cos 5C =,c 求的值.16、解:(Ⅰ)因为 ()1cos 3sin f x x x =+- ……………………1分 12cos()3x π=++, ……………………3分所以函数()f x 的周期为2π,值域为[1,3]-. ……………………5分 (Ⅱ)因为 1()33f πα-=, 所以 112cos =3α+,即1cos 3α=-. ……………………6分 因为 22cos 2cos sin cos sin 1tan cos ααααααα-=-- ……………………8分 cos (cos sin )ααα=+2cos cos sin ααα=+, ……………………10分 因为α为第二象限角, 所以 22sin 3α=. ……………………11分 所以 cos 21221221tan 999αα-=-=-. 【解析】(1)p q ⊥ 由,可得(2)cos cos 0p q c a B b c =-+= ,由正弦定理:sin cos 2sin cos sin cos 0,sin()2sin cos .C B A B B C C B A B -+=+=从而(3分) 又B + C =π– A ,sin(C + B ) = sin A ,且sin A >0,故1cos ,(0,),23B B B ππ=∈∴=又(6分)(2)由余弦定理b2 = a2 + c2– 2ac cos B = a2 + c2 –ac≥ac,又b =23,从而ac≤12 (9分)故113sin1233222ABCS ac B=≤⨯⨯=,因此当a = c =23时,△ABC的面积最大且最大值为33.。
高三数学(文) 三角函数大题20道训练(附详答)
高三数学(文) 三角函数大题20道训练(附详答)1. 题目已知函数 $f(x) = \\cos(x) + \\sin(x)$ 在区间 $[0, 2\\pi]$ 上有若干个不同的零点,试求这些零点的个数并说明理由。
解答要求 $f(x) = \\cos(x) + \\sin(x) = 0$,可以将其转化为 $f(x) = \\cos(x) = -\\sin(x)$。
根据三角函数的性质,当 $x =\\frac{3\\pi}{4} + n\\pi$ 时,f(f)=0,其中f为整数。
在区间 $[0, 2\\pi]$ 上,f(f)=0的解有两种情况:1.当f=0时,$x = \\frac{3\\pi}{4}$;2.当f=1时,$x = \\frac{7\\pi}{4}$。
因此,函数f(f)在区间$[0, 2\\pi]$ 上有两个不同的零点。
2. 题目已知 $\\sin(A) = \\frac{1}{\\sqrt{2}}$,$\\cos(B) =\\frac{\\sqrt{3}}{2}$,且f,f是锐角,求 $\\sin(A + B)$ 的值。
解答根据三角函数的加法公式,$\\sin(A + B) = \\sin(A)\\cos(B) + \\cos(A)\\sin(B)$。
已知$\\sin(A) = \\frac{1}{\\sqrt{2}}$,$\\cos(B) = \\frac{\\sqrt{3}}{2}$。
由于f,f是锐角,所以 $\\sin(A) > 0$,$\\cos(B) > 0$。
因此,$\\sin(A + B) = \\frac{1}{\\sqrt{2}} \\times\\frac{\\sqrt{3}}{2} + \\cos(A)\\sin(B)$。
由于 $\\sin(A) = \\frac{1}{\\sqrt{2}}$,可以推导出$\\cos(A) = \\frac{1}{\\sqrt{2}}$。
高三数学三角函数单元练习 (有答案)
高三数学三角函数单元练习 班级 姓名一、选择题:(本大题共12小题,每小题5分,满分60分) 1.函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4x π=-D .2x π=-2.已知α为第二象限角,3sin 5α=,则sin 2α=( )A .2425-B .1225-C .1225D .24253.将函数()sin (0)f x x ωω=>的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是( )A .13B .1C .53D .24.函数2sin (09)63x y x ππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为 ( )A .2B .0C .-1D .1--5.已知sin cos αα-=,α∈(0,π),则sin 2α=( )A .-1B .2-C .2D .1 6.已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ= ( )A .π4B .π3C .π2D .3π47.若sin cos 1sin cos 2αααα+=-,则tan2α=( )A .-34B .34C .-43D .438.下列函数中,周期为π,且在[,]42ππ上为减函数的是 A.sin(2)2y x π=+B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+ 9.要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象 ( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 10.若函数[]()sin (0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ= ( )A .2π B .23π C .32πD .53π11.若02πα<<,02πβ-<<,1cos()43πα+=,cos()42πβ-=,则c o s ()2βα+=( ) A. B. C. D.12.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= ( ) (A )()f x (B)()f x - (C) ()g x (D )()g x -二、填空题:本大题共4小题,每小题5分,满分20分. 13.当函数sin (02)y x x x π=≤<取最大值时,x =____. 14.已知α是第二象限的角,tan α=1/2,则cos α=__________ 15.函数2()sin(2)4f x x x π=--的最小正周期是__________________ .16.已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . 三、解答题:本大题共2小题,共20分.解答应写出文字说明,证明过程或演算步骤.17.已知函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期及最大值; (II)若(,)2παπ∈,且2f α=(),求α的值.18.已知函数21()cossin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()f α=求sin 2α的值.19.函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π,(1)求函数()f x 的解析式;(2)设(0,)2πα∈,则()22f α=,求α的值.20.已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.21..已知函数()cos 46x f x A π⎛⎫=+ ⎪⎝⎭,x ∈R ,且3f π⎛⎫⎪⎝⎭(Ⅰ)求A 的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,4304317f απ⎛⎫+=- ⎪⎝⎭,28435f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.22.已知函数1()2sin(),.36f x x x R π=-∈(1)求5()4f π的值; (2)设106,0,,(3),(32),22135f a f ππαββπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值.【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(si n =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.1. 解析:由90≤≤x 可知67363ππππ≤-≤-x ,可知]1,23[)36sin(-∈-ππx ,则2sin [63x y ππ⎛⎫=-∈ ⎪⎝⎭,则最大值与最小值之和为2答案应选A.2. 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-故选A【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.3. 【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,πω=544ππ-,∴ω=1,∴4πϕ+=2k ππ+(k Z ∈), ∴ϕ=4k ππ+(k Z ∈),∵0ϕπ<<,∴ϕ=4π,故选A.4. 【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果.5. 【答案】C【解析】把4x π=-代入后得到()1f x =-,因而对称轴为4x π=-,答案C 正确.【考点定位】此题主要考查三角函数的图像和性质,代值逆推是主要解法. 6.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos 0α<,而3sin 5α=,故4cos 5α==-,所以24sin 22sin cos 25ααα==-,故选答案A.7.答案C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,. 【解析】由[]()sin(0,2)3x f x ϕϕπ+=∈为偶函数可知,y 轴是函数()f x 图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故3(0)sin13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈,而[]0,2ϕπ∈,故0k =时,32πϕ=,故选答案C. 8. 【解析】选C cos 2cos(21)y x y x =→=+左+1,平移12解析:()242sin 22-⎪⎭⎫⎝⎛+=πx x f 故最小正周期为π,本题主要考察了三角恒等变换及相关公式,属中档题【解析】5-解析:(Ⅰ)1cos cos 34364f A A A ππππ⎛⎫⎛⎫=⨯+=== ⎪ ⎪⎝⎭⎝⎭所以2A =. (Ⅱ)4143042cos 42cos 2sin 3436217f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以15sin 17α=.212842cos 42cos 34365f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以4cos 5β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以8c o s n17α=,3sin 5β=,所以()8415313c o s c os c o s s i n s i n 17517585αβαβαβ+=-=⨯-⨯=-.(1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)( [来源:] )(4x cos 22π+=所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-=257251814cos 212=-=+-=)(πα, [点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.已知向量1(cos ,),,cos2),2x x x x =-=∈a b R , 设函数()·f x =a b . (Ⅰ) 求f (x)的最小正周期.(Ⅱ) 求f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(Ⅰ) ()·f x =a b =)62sin(2cos 212sin 232cos 21sin 3cos π-=-=-⋅x x x x x x .最小正周期ππ==22T .所以),62sin()(π-=x x f 最小正周期为π. (Ⅱ)上的图像知,在,由标准函数时,当]65,6-[sin ]65,6-[)62(]2,0[ππππππx y x x =∈-∈.]1,21[)]2(),6-([)62sin()(-=∈-=πππf f x x f . 所以,f (x) 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值分别为21,1-.已知函数21(2cos 1)sin 2cos 42f x x x x =-+(). (I)求f x ()的最小正周期及最大值;(II)若(,)2παπ∈,且2f α=(),求α的值. 【答案】解:(I)因为21(2cos 1)sin 2cos 42f x x x x =-+()=1cos 2sin 2cos 42x x x +=1(sin 4cos 4)2x x +=)24x π+,所以()f x 的最小正周期为2π,最大值为2.(II)因为2f α=(),所以sin(4)14πα+=. 因为(,)2παπ∈, [来源:学#科#网Z#X#X#K] 所以9174(,)444πππα+∈,所以5442ππα+=,故916πα=.设函数2()sin cos (0)f x x x x ωωωω=->,且()y f x =的图象的一个对称中心到最近的对称轴的距离为4π,(Ⅰ)求ω的值 (Ⅱ)求()f x 在区间3[,]2ππ上的最大值和最小值 【答案】已知函数f(x)=(1) 求2()3f π的值; (2) 求使 1()4f x <成立的x 的取值集合【答案】解: (1)41)212cos 232(sin 21)3sin sin 3cos (cos cos )(+⋅+⋅=⋅+⋅⋅=x x x x x x f ππ41)32(.414123sin 21)32(41)62sin(21-==-=+=⇒++=ππππf f x 所以. (2)由(1)知, [来源:学|科|网Z|X|X|K])2,2()62(0)62sin(4141)62sin(21)(f ππππππk k x x x x -∈+⇒<+⇒<++=.),12,127(.),12,127(Z k k k Z k k k x ∈--∈--∈⇒ππππππππ所以不等式的解集是:已知函数()4cos sin()16f x x x π=+-。
高三 三角函数和解三角形大题专题训练
高三三角函数和解三角形大题专题训练1.己知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最小正周期和单调递增区间;(2)若()f α=,π3π,88α⎛⎫∈- ⎪⎝⎭,求sin 2α的值.2.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎝⎭,且()f x 图象的相邻两条对称轴之间的距离为2π,再从条件①、条件②、条件③中选择两个作为一组已知条件.条件①:()f x 的最小值为2-;条件②:()f x 图象的一个对称中心为5,012π⎛⎫⎪⎝⎭;条件③;()f x 的图象经过点5,16π⎛⎫- ⎪⎝⎭.(1)确定()f x 的解析式;(2)将()f x 纵坐标不变横坐标变为原来的2倍,再将图像向右平移6π个单位,然后横坐标不变纵坐标变为原来的12,就得到了()g x 的图像,令2()()cos 1h x g x x =-+,求()g x 的最值及取得最值时x 的值3.如图,一个半径为4米的筒车按逆时针方向每π分钟转1圈,筒车的轴心O 距水面的高度为2米,设筒车上的某个盛水筒W 到水面的距离为d (单位:米)(在水面下d 则为负数).若以盛水筒w 刚浮出水面时开始计算时间,则d 与时间t (单位:分钟)之间的关系为d =A sin(t ωϕ+)+K ,0,0,22A ππωϕ⎛⎫>>-<< ⎪⎝⎭(1)求A ,,ωϕ,K 的值,并求盛水筒W 出水后至少经过多少时间就可到达最高点?(2)某时刻t 0(单位:分钟)时,盛水筒矿在过点O 的竖直直线的左侧,到水面的距离为5米,再经过6π分钟后,盛水筒W 是否在水中?4.已知函数()22sin cos 222x x xf x =+(1)求函数()f x 的单调递增区间;(2)若不等式()3f x m -≤对任意ππ,63x ⎡⎤∈-⎢⎥⎣⎦恒成立,求整数m 的最大值;(3)若函数()π2g x f x =-⎛⎫ ⎪⎝⎭,将函数()g x 的图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移π12个单位,得到函数()y h x =的图像,若关于x 的方程()()1sin cos 02h x k x x -+=在π5π,1212x ⎡⎤∈-⎢⎣⎦上有解,求实数k 的取值范围.5.在ABC 中,内角,,A B C 的对边分别为,,a b c ,且22cos c a b A -=,3b =.(1)求B 的大小;(2)若a =ABC 的面积;(3)求a c+的最大值.6.在ABC 中,,,a b c 分别为角,,A B C 所对的边,已知()2cos cos a c B b C -=.(1)求角B 的值;(2)若ABC 为锐角三角形,且1b =,求ABC 的面积的取值范围.7.从①()()()a c a c b a b -+=-cos sin C c A =,③2π5cos cos24C C ⎛⎫++= ⎪⎝⎭三个条件中任选一个补充在下面问题中,并解答:已知ABC 三个内角A ,B ,C 的对边分别为a ,b ,c ,已知_________.(1)求角C 的大小;(2)若ABC 为锐角三角形,2b =,求a 的取值范围.8.如图,已知在平面四边形ABCD 中,AB =1AD DC ==.(1)若120C ∠=︒,BD =ABCD 的面积;(2)若1BC =.(i 1cos BAD BCD ∠∠=+;(ii )若ABD △,BCD △面积依次为1S ,2S ,求2212S S +的最大值.9.已知平面向量a ,b ,c 满足a = ,2a b -= ,2a b a ⋅= .(1)求b的值;(2)若()()0c a c b -⋅-= ,当c r 取得最大值时,求以b ,c为邻边的三角形面积.10.在ABC 中,a b c 、、分别是角、、A B C 的对边,向量()2,m a c b =+,向量()cos ,cos n B C = ,且m n ⊥ .(1)求B 的大小;(2)设点D 在边AC 上,且2,BD BD =是ABC 的角平分线,求a c +的最小值参考答案1.【详解】(1)因为()21sin sin cos 2f x x x x =+-()1cos 2111sin 2sin 2cos 22222x x x x -=+-=-π224x ⎛⎫=- ⎪⎝⎭,故()f x 的最小正周期为2π2ππ2T ω===,由πππ2π22π242k x k -≤-≤+,k Z ∈,解得:π3π88k x k ππ-≤≤+()k Z ∈,所以函数()f x 的单调递增区间为:π3ππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k Z ∈,(2)因为()6f α=,则πsin 2246x ⎛⎫-= ⎪⎝⎭,即π1sin 243x ⎛⎫-= ⎪⎝⎭,因为π3π,88α⎛⎫∈- ⎪⎝⎭,所以πππ2,422α⎛⎫-∈- ⎪⎝,则πcos 24α⎛⎫-= ⎪⎝⎭所以ππππππsin 2sin 2sin 2coscos 2sin 444444αααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎦13=2.【详解】解:(1)由于函数()f x 图象上两相邻对称轴之间的距离为2π,所以()f x 的最小正周期22T ππ=⨯=,22T πω==.此时()sin(2)f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5,012π⎛⎫ ⎪⎝⎭,所以52()12k k Z πϕπ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以6π=ϕ,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5,16π⎛⎫- ⎪⎝⎭,则5(16f π=-,即52sin()13πϕ+=-,51sin()32πϕ+=-.因为||2ϕπ<,所以7513636πππϕ<+<,所以51136ππϕ+=,6π=ϕ,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5,012π⎛⎫ ⎪⎝⎭,所以52()12k k Z πϕπ⨯+=∈,所以5()6k k Z πϕπ=-∈.因为||2ϕπ<,所以6π=ϕ,此时1k =.所以()sin(2)6f x A x π=+.因为函数()f x 的图象过点5,16π⎛⎫- ⎪⎝⎭,所以5()16f π=-,即sin(A 5)136ππ+=-,11sin 16A π=-,所以2A =,所以()2sin(2)6f x x π=+.(2)将()2sin(26f x x π=+纵坐标不变横坐标变为原来的2倍,得到2sin()6y x π=+再将2sin()6y x π=+图象向右平移6π个单位,得到2sin y x =,然后横坐标不变纵坐标变为原来的12,就得到了()sin g x x =的图象,可得22291()()cos 1sin cos 1cos 42h x g x x x x x ⎛⎫=-+=-+=-+ ⎪⎝⎭,可得当1cos 2x =-,即223x k ππ=+,或423x k ππ=+,k Z ∈时,()h x 取得最大值94.当cos 1x =,即2x k =π,k Z ∈时,()h x 取得最小值0.3.【详解】(1)d 与时间t (单位:分钟)之间的关系为d =A sin (t ωϕ+)+K ,0,0,22A ππωϕ⎛⎫>>-<< ⎪⎝⎭d 的最大值为6,最小值-2,所以4,2A K ==,每π分钟转1圈,所以周期2,2T ππωω===,所以()4sin 22d t ϕ=++,由题0t =时,0d =,即104sin 2,sin 2ϕϕ=+=-,,226πππϕϕ-<<=-,令64sin 22,sin 21,663t t t πππ⎛⎫⎛⎫=-+-== ⎪ ⎪⎝⎭⎝⎭,所以盛水筒W 出水后经过3π分钟后达到最高点;(2)由题00354sin 22,sin 2664t t ππ⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭,0cos 264t π⎛⎫-= ⎪⎝⎭(舍去)00313sin 2sin 2666342428t t ππππ⎛⎛⎫⎛⎫-⎛⎫⎛⎫+-=++=⨯+-⨯= ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以再经过6π分钟后,3742082d =⨯+=>,盛水筒W 不在水中.4.【详解】解:(1)由题意得,()22sin cos 222x x x f x =+2sin 2cos 12x x ⎫=+-⎪⎭sin x x =π2sin 3x ⎛⎫=+ ⎪⎝⎭.由22232πππππk x k -+≤+≤+,k ∈Z ,得5ππ2π2π66k x k -+≤≤+,k ∈Z ,可得函数()f x 的单调递增区间为5ππ2π,2π66k k ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(2)因为ππ,63x ⎡⎤∈-⎢⎥⎣⎦,所以ππ2π633x ≤+≤,所以1πsin 123x ⎛⎫≤+≤ ⎪⎝⎭,所以当π6x =-时,()f x 的最小值为1;当π6x =时,()f x 的最大值为2,所以()12f x ≤≤.由题意得,()33f x m -≤-≤,所以()33m f x m -≤≤+对一切ππ,63x ⎡⎤∈-⎢⎥⎣⎦恒成立,所以3132m m -≤⎧⎨+≥⎩,解得14m -≤≤,所以整数m 的最大值为4.(3)由题意知,()ππππ2sin 2sin 2236g x f x x x ⎛⎫⎛⎫⎛⎫=-=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将函数()g x 的图像上各点的横坐标缩短到原来的12倍(纵坐标不变),得π2sin 26y x ⎛⎫=+ ⎪⎝⎭,再向右平移π12个单位得()ππ2sin 22sin 2126h x x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,因为关于x 的方程()()1sin cos 02h x k x x -+=在区间π5π,1212⎡⎤-⎢⎥⎣⎦上有解,整理得:()sin 2sin cos 0x k x x -+=,即()2sin cos sin cos 0x x k x x -+=(*)在区间π5π,1212⎡⎤-⎢⎥⎣⎦上有解,令πsin cos 4t x x x ⎛⎫=+=+∈ ⎪⎝⎭⎣,(*)式可转化为:210t kt --=在2t ∈⎣内有解,所以1k t t =-,2t ∈⎣,又因为y t =和1y t =-在2t ∈⎣为增函数,所以1y t t =-在2⎣为增函数,所以当t =1k t t =-取得最小值;当t =1k t t =-,所以k ⎡∈⎢⎣⎦,综上所述:k的取值范围为22⎡⎤⎢⎥⎣⎦.5.【详解】(1)在ABC 中由正弦定理得sin sin sin a b cA B C==,因为22cos c a b A -=,所以2sin sin 2sin cos C A B A -=,所以2sin()sin 2sin cos A B A B A +-=,所以2sin cos sin 0A B A -=,因为(0,)A π∈,sin 0A ≠,所以1cos 2B =,3B π=.(2)在ABC 中由余弦定理得2222cosa c ac B +-,所以260c --=,所以c =,所以ABC 的面积为1sin 22ABC S ac B == .(3)由(2)得229a c ac +-=即2()93a c ac +=+,因为2()4a c ac +≤,所以223()9()4a c a c +≤++,所以36a c <+≤(当且仅当3a c ==时取等号).设t a c =+,则(]3,6t ∈,且293t ac -=,所以293ac t a c t-=+.设2919()33t f t t t t -⎛⎫==- ⎪⎝⎭,则()f t 在区间(]3,6上单调递增,所以()f t 的最大值为()362f =.所以aca c +的最大值为32.6.【详解】(1)在ABC 中,由正弦定理得:(2sin sin )cos sin cos A C B B C -=,即2sin cos sin cos sin cos sin()sin A B B C C B B C A =+=+=,而()0,A π∈,则sin 0A >,1cos 2B =,又()0,B π∈,所以3B π=;(2)ABC中,由正弦定理得:sin sin sin a b c A B C ===,a A c C ==,由(1)知3B π=,则有23C A π=-,而ABC 是锐角三角形,于是有022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62A ππ<<,从而得121sin sin()(sin )232ABC S ac B AA A A A π==-=+ 11cos 2(sin 2)4226612A A A π-=+⋅=-+,因52(,)666A πππ-∈,则1sin(2)126A π<-≤,因此得64ABC S <≤,所以ABC的面积的取值范围.7.【详解】(1)选①:∵()()()a c a c b a b -+=-,∴222a c ab b -=-.∴222a b c ab +-=.∴2221cos 222a b c ab C ab ab +-===.又∵()0,πC ∈,∴3C π=.cos sin C c A =,cos sin sin A C C A =.∵()0,πA ∈,∴sin 0A ≠,sin C C =,∴tan C =又∵()0,πC ∈,∴π3C =.选③:∵2π5cos cos 24C C ⎛⎫++= ⎪⎝⎭,∴()225sin cos 1cos cos 4C C C C -+=-+=.∴21cos cos 04C C -+=.∴1cos 2C =.又∵()0,πC ∈,∴π3C =.(2)由正弦定理sin sin sin a b cA B C==,∴2sin sin a A B=.∴()π2sin 2sin 2sin 3sin sin sin B B CA aB B B ⎛⎫+ ⎪+⎝⎭===sin 1sin tan B B B B==+.∵ABC 为锐角三角形,π3C =,可得2ππ032π02B B ⎧<-<⎪⎪⎨⎪<<⎪⎩,解得:ππ62B <<,∴tan B ⎫∈+∞⎪⎪⎝⎭,∴(1tan B ∈∴()0,3tan B∈,∴14a <<.∴a 的范围是()1,4.8.【详解】解:(1)设BC x =,BCD △中2222cos BD DC BC DC BC C =+-⋅∠,即213122x x ⎛⎫=+-⋅- ⎪⎝⎭,解得1x =,即1BC =,111sin12024BCD S =⨯⨯⨯︒△.ABD △中,222cos2AD AB BD A AD AB +-∠==⋅即sin 6A ∠,1124ABD S =⨯ .所以平面四边形ABCD 的面积为444BCD ABD S S +=△△;(2)ABD △中,2222cos 4BD AD AB AD AB BAD BAD ∠∠=+-⋅=-,BCD △2222s 2co 2BD DC BC DC BC BCD ∠=-=+-⋅,所以422cos BAD BCD -∠=-∠1cos BAD BCD ∠∠=+;(ii )112ABD S BAD ∠=⨯△,即()22213sin 1cos 44BAD B D S A ∠∠=-=.111sin 2BCD S BCD =⨯⨯⨯∠△,即()222211sin 1cos 44S BCD BCD =∠=-∠.所以()()()222222123111cos 1cos 43cos cos 444S S B BAD BAD CD BCD ∠∠+=--∠=--∠+,(1cos BAD BCD ∠∠=+∈,即()223cos 1cos BAD BCD ∠∠=+,()cos 1BCD ∠∈-,所以()()22222121co 114cos 2cos 2cos 34s 4S S BCD BCD BC BCD D ∠⎡⎤+=--∠=+-∠-∠+⎣⎦()2221174cos 24411cos o 2c s 2BCD B B D D C C ∠∠⎛⎫+++ ⎪⎝⎡⎤⎡⎤=--∠=-⎢⎥⎣⎦⎢⎥⎣⎦⎭,当1cos 2BCD ∠=-时,2212S S +取得最大值,为177428⨯=.9.【详解】解:(1) ||a =||2a b -= ,2a b a ⋅=,∴222222||234a b a a b b b a b -=-⋅+=-=-=,∴2||7b =,则||b =(2)设,,c OC a OA b OB === ,c a OC OA AC -=-= ,c b OC OB BC-=-= 因为()()0c a c b -⋅-= ,所以0AC BC ⋅= ,即AC BC ⊥ ,∴点C 在以AB 为直径的圆周上运动,显然,当OC 经过圆的圆心即AB 的中点D 时,||c取得最大值,此时||31max OD DC c =+=,且1||2,||||12OD CD BD AB ==== ,∴tan ,63DOA DOA ADO CDB ππ∠=∠=∠=∠=,BCD ∴△为等边三角形,以b为邻边的三角形为BOC ,∴1||||sin 2BOC S CB CO BCD =∠10.【详解】(1)(),2cos cos 0m n m n a c B b C ⊥∴⋅=+⋅+⋅=,∴由正弦定理得2sin cos sin cos sin cos 0A B C B B C ⋅+⋅+⋅=,又()1,0,,sin 0,cos 2A B A B π∈∴≠=- ,23B π∴=.(2)BD Q 为ABC 的角平分线:123ABD CBD ABC π∴∠=∠=∠=,又BCD BAD ABC S S S += ,111sin sin sin 222BD BC CBD AB BD ABD AB BC ABC ∴⋅⋅∠+⋅⋅∠=⋅⋅∠,即22sin 2sin sin 333a c c a πππ⨯+⨯=⋅⋅,22a c ac ∴+=即1112c a +=,112()222228c a c a a c a c c a a c a c ⎛⎫⎛⎫⎛⎫∴+=++=++≥+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4a c ==时,等号成立,故a c +的最小值为8.。
高三数学汇编:2024年高三数学一模试题好题汇编三角函数(解析版)
三角函数题型01任意角的三角函数题型02两角和与差的三角函数题型03三角函数的图象与性质题型04解三角形题型01任意角的三角函数1(2024·辽宁沈阳·统考一模)sin x =1的一个充分不必要条件是.【答案】x =π2(答案不唯一)【分析】根据三角函数的性质结合充分不必要条件即可求解.【详解】因为x =π2时sin x =1,由sin x =1可得x =π2+2k π,k ∈Z ,故sin x =1的一个充分不必要条件是x =π2,故答案为:x =π2(答案不唯一)2(2024·重庆·统考一模)英国著名数学家布鲁克·泰勒(Taylor Brook )以微积分学中将函数展开成无穷级数的定理著称于世泰勒提出了适用于所有函数的泰勒级数,泰勒级数用无限连加式来表示一个函数,如:sin x =x -x 33!+x 55!-x 77!+⋯,其中n !=1×2×3×⋯×n .根据该展开式可知,与2-233!+255!-277!+⋯的值最接近的是()A.sin2° B.sin24.6°C.cos24.6°D.cos65.4°【答案】C【分析】观察题目将其转化为三角函数值,再将弧度制与角度制互化,结合诱导公式判断即可.【详解】原式=sin2≈sin 2×57.3° =sin 90°+24.6° =cos24.6°,故选:C .3(2024·福建厦门·统考一模)若sin α+π4 =-35,则cos α-π4 =.【答案】-35/-0.6【分析】应用诱导公式有cos α-π4 =cos α+π4 -π2=sin α+π4 ,即可求值.【详解】cos α-π4 =cos α+π4 -π2=sin α+π4 =-35.故答案为:-354(2024·山东济南·山东省实验中学校考一模)下列说法正确的是()A.cos2sin3<0B.若圆心角为π3的扇形的弧长为π,则扇形的面积为3π2C.终边落在直线y =x 上的角的集合是α α=π4+2k π,k ∈ZD.函数y =tan 2x -π6 的定义域为x x ≠π3+k π2,k ∈Z ,π为该函数的一个周期【答案】ABD【分析】根据三角函数在各象限内的符号可判断出A 正确;根据扇形弧长和面积公式可知B 正确;由终边相同的角的集合表示方法可知C 错误;根据正切型函数定义域和周期的判断方法可知D 正确.【详解】对于A ,∵2,3均为第二象限角,∴cos2<0,sin3>0,∴cos2sin3<0,A 正确;对于B ,设扇形的半径为r ,则π3r =π,解得:r =3,∴扇形的面积S =12×π3×32=3π2,B 正确;对于C ,终边落在直线y =x 上的角的集合为α α=π4+k π,k ∈Z ,C 错误;对于D ,由2x -π6≠π2+k πk ∈Z 得:x ≠π3+k π2k ∈Z ,∴y =tan 2x -π6 的定义域为x x ≠π3+k π2,k ∈Z ;又tan 2x +π -π6 =tan 2π+2x -π6 =tan 2x -π6 ,∴π是y =tan 2x -π6 的一个周期,D 正确.故选:ABD .5(2024·山东济南·山东省实验中学校考一模)已知函数f (x )=cos xx,若A ,B 是锐角△ABC 的两个内角,则下列结论一定正确的是()A.f (sin A )>f (sin B )B.f (cos A )>f (cos B )C.f (sin A )>f (cos B )D.f (cos A )>f (sin B )【答案】D【分析】由已知可得π2>A >π2-B >0,根据余弦函数的单调性,得出cos A <sin B ,由f x 的单调性即可判断选项.【详解】因为f (x )=cos x x ,所以f (x )=-x sin x -cos xx 2,当x ∈0,π2 时,sin x >0,cos x >0,所以-x sin x -cos xx2<0,即f (x )<0,所以f x 在0,π2上单调递减.因为A ,B 是锐角△ABC 的两个内角,所以A +B >π2,则π2>A >π2-B >0,因为y =cos x 在0,π2 上单调递减,所以0<cos A <cos π2-B =sin B <1<π2,故f (cos A )>f (sin B ),故D 正确.同理可得f (cos B )>f (sin A ),C 错误;而A ,B 的大小不确定,故sin A 与sin B ,cos A 与cos B 的大小关系均不确定,所以f (sin A )与f (sin B ),f (cos A )与f (cos B )的大小关系也均不确定,AB 不能判断.故选:D6(2024·河北·校联考一模)在△ABC 中,若A =nB n ∈N * ,则()A.对任意的n ≥2,都有sin A <n sin BB.对任意的n ≥2,都有tan A <n tan BC.存在n ,使sin A >n sin B 成立D.存在n ,使tan A >n tan B 成立【答案】AD【分析】根据给定条件,举例说明判断BD;构造函数,借助导数探讨单调性判断AC.【详解】在△ABC中,当A=3B时,n=3,取B=π12,则A=π4,tan A=1,tan B=tanπ3-π4=3-11+3=2-3,3tan B=3(2-3),则tan A>3tan B,B错,D对;显然0<A<π0<B<π0<C<π,即0<nB<π0<B<π0<π-B-nB<π,则0<B<πn+1,令f(x )=sin nx-n sin x,0<x<πn+1,n≥2,f (x)=n cos nx-n cos x=n(cos nx-cos x)<0,因此函数f(x)在0,πn+1上单调递减,则f(x)<f(0)=0,即sin nB<n sin B,从而sin A<n sin B,A对,C错.故选:AD【点睛】思路点睛:涉及不同变量的数式大小比较,细心挖掘问题的内在联系,构造函数,分析并运用函数的单调性求解作答.题型02两角和与差的三角函数7(2024·广西南宁·南宁三中校联考一模)若cosα+π4=35,则sin2α=()A.725B.-725C.925D.-925【答案】A【分析】根据二倍角的余弦公式和诱导公式即可.【详解】cos2α+π4=2cos2α+π4-1=2×35 2-1=-725,所以sin2α=-cos2α+π2=725,故选:A.8(2024·黑龙江齐齐哈尔·统考一模)已知cosα+π6=14,则sin2α-π6=()A.78B.-78C.38D.-38【答案】A【分析】利用换元法,结合诱导公式、二倍角公式等知识求得正确答案.【详解】设α+π6=t,则α=t-π6,cos t=14,sin2α-π6=sin2t-π6-π6=sin2t-π2=-cos2t=-2cos2t-1=-2×142-1=78.故选:A9(2024·辽宁沈阳·统考一模)已知sinπ2-θ+cosπ3-θ=1,则cos2θ-π3=()A.13B.-13C.33D.-33【答案】B【分析】根据和差角公式以及诱导公式可得32cos θ+32sin θ=1,由辅助角公式以及二倍角公式即可求解.【详解】由sin π2-θ+cos π3-θ =1得cos θ+12cos θ+32sin θ=1,进而可得32cos θ+32sin θ=1,结合辅助角公式得3cos θ-π6=1,则cos θ-π6 =33,∴cos 2θ-π3 =2cos 2θ-π6 -1=-13,故选:B .10(2024·浙江·校联考一模)已知α是第二象限角,β∈0,π2,tan α+π4 =-14,现将角α的终边逆时针旋转β后得到角γ,若tan γ=17,则tan β=.【答案】198/2.375【分析】由两角和的正切公式先得tan α=-53,进一步由两角差的正切公式即可求解.【详解】由题意tan α+π4 =tan α+11-tan α=-14,且γ=α+β,tan γ=tan α+β =17,解得tan α=-53,所以tan β=tan α+β-α =17--53 1+-53 ×17=198.故答案为:198.11(2024·安徽合肥·合肥一六八中学校考一模)已知tan α-11+tan α=2,则sin 2α+π6的值为()A.-4+3310B.-4-3310C.4+3310D.4-3310【答案】A【分析】先由已知条件求出tan α的值,再利用三角函数恒等变换公式求出sin2α,cos2α的值,然后对sin 2α+π6利用两角和的正弦公式化简计算即可【详解】由tan α-11+tan α=2,得tan α=-3,所以sin2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=-610=-35,cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=1-910=-45,所以sin 2α+π6 =sin2αcos π6+cos2αsinπ6=-35×32+-45 ×12=-4+3310,故选:A12(2024·江西吉安·吉安一中校考一模)已知α∈0,π ,且3tan α=10cos2α,则cos α可能为()A.-1010B.-55C.1010D.55【答案】B【分析】由3tan α=10cos2α得3tan α=10×1-tan 2α1+tan 2α,化简后可求出tan α,再利用同角三角函数的关系可求出cos α.【详解】由3tan α=10cos2α,得3tan α=10(cos 2α-sin 2α),所以3tan α=10×cos 2α-sin 2αcos 2α+sin 2α,所以3tan α=10×1-tan 2α1+tan 2α,整理得3tan 3α+10tan 2α+3tan α-10=0,(tan α+2)(3tan 2α+4tan α-5)=0,所以tan α+2=0或3tan 2α+4tan α-5=0,所以tan α=-2或tan α=-2±193,①当tan α=-2时,sin αcos α=-2,α∈π2,π ,因为sin 2α+cos 2α=1,所以5cos 2α=1,所以cos α=±55,因为α∈π2,π ,所以cos α=-55,②当tan α=-2+193时,sin αcos α=-2+193,α∈0,π2,因为sin 2α+cos 2α=1,所以19-23cos α 2+cos 2α=1,由于α∈0,π2 ,所以解得cos α=932-419,③当tan α=-2-193时,sin αcos α=-2-193,α∈π2,π ,因为sin 2α+cos 2α=1,所以-19-23cos α 2+cos 2α=1,由于α∈π2,π ,所以解得cos α=-932+419,综上,cos α=-55,或cos α=932-419,或cos α=-932+419,故选:B13(2024·吉林延边·统考一模)已知函数f x =12-sin 2ωx +32sin2ωx ,ω>0 的最小正周期为4π.(1)求ω的值,并写出f x 的对称轴方程;(2)在△ABC 中角A ,B ,C 的对边分别是a ,b ,c 满足2a -c cos B =b ⋅cos C ,求函数f A 的取值范围.【答案】(1)ω=14,x =2π3+2k π,k ∈Z(2)12,1 【分析】(1)利用三角函数的恒等变换化简函数f (x )=sin 2ωx +π6,再根据周期求出ω的值,利用整体法即可求解对称轴.(2)把已知的等式变形并利用正弦定理可得cos B =12,故B =π3,故f (A )=sin 12A +π6 ,0<A <2π3,根据正弦函数的定义域和值域求出f A 的取值范围.【详解】(1)f x =12-sin 2ωx +32sin2ωx =12+32sin2ωx -sin 2ωx =12+32sin2ωx -1-cos2ωx2=32sin2ωx +12cos2ωx =sin 2ωx +π6 .∵T =2π2ω=4π,∴ω=14.故f x =sin 12x +π6 令12x +π6=π2+k π,k ∈Z ,解得x =2π3+2k π,k ∈Z ,故对称轴方程为:x =2π3+2k π,k ∈Z(2)由2a -c cos B =b ⋅cos C 得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin B cos C +cos B sin C =sin (B +C )=sin A .∵sin A ≠0,∴cos B =12,B ∈0,π ,∴B =π3.∴f (A )=sin 12A +π6 ,0<A <2π3,∴π6<A 2+π6<π2,∴12<sin A 2+π6 <1,∴f (A )∈12,1 题型03三角函数的图象与性质14(2024·福建厦门·统考一模)已知函数f (x )=2sin 2x -π3,则()A.f (x )的最小正周期为π2B.f (x )的图象关于点2π3,0 成中心对称C.f (x )在区间0,π3上单调递增D.若f (x )的图象关于直线x =x 0对称,则sin2x 0=12【答案】BC【分析】根据正弦型函数的性质,结合代入法、整体法逐一判断各项正误.【详解】由f (x )=2sin 2x -π3 ,最小正周期T =2π2=π,A 错;由f 2π3=2sin 2×2π3-π3 =0,即2π3,0 是对称中心,B 对;由x ∈0,π3 ,则2x -π3∈-π3,π3 ,显然f (x )在区间0,π3 上单调递增,C 对;由题意2x 0-π3=k π+π2⇒2x 0=k π+5π6,故sin2x 0=±12,D 错.故选:BC15(2024·吉林延边·统考一模)将函数f x =sin ωx +π6 (ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.13B.23C.43D.53【答案】B【分析】得出平移后的方程后,再根据正弦型函数的性质即可得到答案.【详解】结合题意可得f x +π2 =sin ωx +π2 +π6 =sin ωx +π2ω+π6,(ω>0),因为曲线C 关于y 轴对称,所以π2ω+π6=k π+π2,k ∈Z ,解得ω=2k +23,k ∈Z ,因为ω>0,所以当k =0时,ω有最小值23.故选:B .16(2024·黑龙江齐齐哈尔·统考一模)已知函数f x =cos2x +a cos x +2,则下列说法正确的有()A.当a =0时,f x 的最小正周期为πB.当a =1时,f x 的最小值为78C.当a =3时,f x 在区间0,2π 上有4个零点D.若f x 在0,π3 上单调递减,则a ≥2【答案】AB【分析】根据三角函数的周期性、含cos x 的二次项函数的值域、三角函数的零点、单调性等知识对选项进行分析,从而确定正确答案.【详解】当a =0时,f x =cos2x +2,所以f x 的最小正周期为π,A 选项正确;当a =0时,f x =cos2x +cos x +2=2cos 2x +cos x +1=2cos x +14 2+78≥78,所以f x 的最小值为78,B 选项正确;当a =4时,f x =cos2x +3cos x +2=2cos 2x +3cos x +1=2cos x +1 cos x +1 ,令f x =0,解得cos x =-12或cos x =-1,此时x =2π3或x =4π3或x =π,f x 在区间0,2π 上有3个零点,C 选项错误;f x =cos2x +a cos x +2=2cos 2x +a cos x +1,设t =cos x ,cos x 在0,π3 上单调递减,则t ∈12,1 ,根据复合函数的单调性,g t =2t 2+at +1在12,1 上单调递增,所以-a 4≤12,解得a ≥-2,D 选项错误.故选:AB17(2024·湖南长沙·雅礼中学校考一模)已知函数f (x )=sin ωx +3cos ωx (ω>0)满足:f π6=2,f 2π3=0,则()A.曲线y =f (x )关于直线x =7π6对称 B.函数y =f x -π3是奇函数C.函数y =f (x )在π6,7π6单调递减 D.函数y =f (x )的值域为[-2,2]【答案】ABD【分析】用辅助角公式化简f (x ),再利用f π6=2,f 2π3 =0,得出ω的取值集合,再结合三角函数性质逐项判断即可.【详解】f (x )=2sin ωx +π3,所以函数y =f (x )的值域为[-2,2],故D 正确;因为f 2π3=0,所以2π3ω+π3=k 1π,k 1∈Z ,所以ω=3k 1-12,k 1∈Z ,因为f π6 =2,所以π6ω+π3=π2+2k 2π,k 2∈Z ,所以ω=12k 2+1,k 2∈Z ,所以3k 1-12=12k 2+1,即k 1=8k 2+1,所以ω∈{1,13,25,37⋯},因为f 7π6 =2sin 12k 2+1 7π6+π3 =2sin 14k 2π+3π2=-2,所以曲线y =f (x )关于直线x =7π6对称,故A 正确;因为f x -π3 =2sin 12k 2+1 x -π3 +π3 =2sin 12k 2+1 x -4k 2π =2sin 12k 2+1 x即f x -π3 =-f -x -π3,所以函数y =f x -π3是奇函数,故B 正确;取ω=13,则最小正周期T =2πω=2π13<7π6-π6=π,故C 错误.故选:ABD 18(2024·辽宁沈阳·统考一模)如图,点A ,B ,C 是函数f x =sin ωx +φ (ω>0)的图象与直线y =32相邻的三个交点,且BC -AB =π3,f -π12=0,则()A.ω=4B.f 9π8 =12C.函数f x 在π3,π2上单调递减D.若将函数f x 的图象沿x 轴平移θ个单位,得到一个偶函数的图像,则θ 的最小值为π24【答案】ACD【分析】令f x =32求得x A ,x B ,x C 根据BC -AB =π3求得ω=4,根据f -π12=0求得f x 的解析式,再逐项验证BCD 选项.【详解】令f x =sin ωx +φ =32得,ωx +φ=π3+2k π或ωx +φ=2π3+2k π,k ∈Z ,由图可知:ωx A +φ=π3+2k π,ωx C +φ=π3+2k π+2π,ωx B +φ=2π3+2k π,所以BC =x C -x B =1ω-π3+2π ,AB =x B -x A =1ω⋅π3,所以π3=BC -AB =1ω-2π3+2π ,所以ω=4,故A 选项正确,所以f x =sin 4x +φ ,由f -π12=0得sin -π3+φ =0,所以-π3+φ=π+2k π,k ∈Z ,所以φ=4π3+2k π,k ∈Z ,所以f x =sin 4x +4π3+2k π =sin 4x +4π3 =-sin 4x +π3 ,f 9π8 =-sin 9π2+π3 =-12,故B 错误.当x ∈π3,π2 时,4x +π3∈5π3,2π+π3,因为y =-sin t 在t ∈5π3,2π+π3 为减函数,故f x 在π3,π2上单调递减,故C 正确;将函数f x 的图象沿x 轴平移θ个单位得g x =-sin 4x +4θ+π3,(θ<0时向右平移,θ>0时向左平移),g x 为偶函数得4θ+π3=π2+k π,k ∈Z ,所以θ=π24+k π4,k ∈Z ,则θ 的最小值为π24,故D 正确.故选:ACD .19(2024·重庆·统考一模)已知f x =2a sin ωx ⋅cos ωx +b cos2ωx ω>0,a >0,b >0 的部分图象如图所示,当x ∈0,3π4时,f x 的最大值为.【答案】3【分析】由图象求出函数f x 的解析式,然后利用正弦型函数的基本性质可求得函数f x 在0,3π4上的最大值.【详解】因为f x =2a sin ωx ⋅cos ωx +b cos2ωx =a sin2ωx +b cos2ωx ω>0,a >0,b >0 ,设f x =A sin 2ωx +φ A >0,ω>0 ,由图可知,函数f x 的最小正周期为T =4×π6+π12 =π,则2ω=2πT =2ππ=2,又因为A =f x max -f x min 2=2+22=2,则f x =2sin 2x +φ ,因为f -π12 =2sin φ-π6 =2,可得sin φ-π6 =1,所以,φ-π6=π2+2k πk ∈Z ,则φ=2π3+2k πk ∈Z ,则f x =2sin 2x +2π3+2k π =2sin 2x +2π3 ,当0≤x ≤3π4时,2π3≤2x +2π3≤13π6,故f x max =2sin 2π3=2×32= 3.故答案为:3.20(2024·云南曲靖·统考一模)函数f x =A sin ωx +φ (其中A >0,ω>0,φ ≤π2)的部分图象如图所示,则()A.f 0 =-1B.函数f x 的最小正周期是2πC.函数f x 的图象关于直线x =π3对称D.将函数f x 的图象向左平移π6个单位长度以后,所得的函数图象关于原点对称【答案】AC【分析】利用图象求出函数f x 的解析式,代值计算可判断A 选项;利用正弦型函数的周期性可判断B 选项;利用正弦型函数的对称性可判断C 选项;利用三角函数图象变换可判断D 选项.【详解】由图可知,A =f x max -f x min 2=2--22=2,函数f x 的最小正周期T 满足3T 4=7π12--π6 =3π4,则T =π,ω=2πT =2ππ=2,B 错;所以,f x =2sin 2x +φ ,f -π6 =2sin 2×-π6 +φ =2sin φ-π3 =-2,可得sin φ-π3 =-1,因为-π2≤φ≤π2,所以,-5π6≤φ-π3≤π6,则φ-π3=-π2,可得φ=-π6,所以,f x =2sin 2x -π6 ,则f 0 =2sin -π6=-1,A 对;f π3 =2sin 2×π3-π6 =2sin π2=2=f x max ,所以,函数f x 的图象关于直线x =π3对称,C 对;将函数f x 的图象向左平移π6个单位长度以后,得到函数y =2sin 2x +π6 -π6 =2sin 2x +π6 的图象,所得函数为非奇非偶函数,D 错.故选:AC .21(2024·浙江·校联考一模)已知函数y =2sin ωx +φ ,该图象上最高点与最低点的最近距离为5,且点1,0 是函数的一个对称点,则ω和φ的值可能是()A.ω=-π3,φ=-π3B.ω=-π3,φ=2π3C.ω=π3,φ=π3D.ω=π3,φ=2π3【答案】D【分析】由题意首先得ω=π3,进一步由ω+φ=k π,k ∈Z ,对比选项即可得解.【详解】由题意函数的周期T 满足,T 2=52-42=3=2π2ω ,所以ω=±π3,又点1,0 是函数的一个对称点,所以ω+φ=k π,k ∈Z ,所以ω=π3φ=k π-π3,k ∈Z 或ω=-π3φ=k π+π3,k ∈Z,对比选项可知,只有当ω=π3φ=2π3k =1时满足题意.故选:D .22(2024·广东深圳·校考一模)已知函数f x =cos ωx +π3+1(ω>0)的最小正周期为π,则f x 在区间0,π2上的最大值为()A.12B.1C.32D.2【答案】C【分析】由周期公式求得ω,结合换元法即可求得最大值.【详解】由题意T =2πω=π,解得ω=2,所以f x =cos 2x +π3+1,当x ∈0,π2 时,t =2x +π3∈π3,4π3,所以f x 在区间0,π2 上的最大值为cos π3+1=32,当且仅当x =0时等号成立.故选:C .23(2024·山西晋城·统考一模)若函数f (x )=cos ωx (0<ω<100)在π,5π2上至少有两个极大值点和两个零点,则ω的取值范围为.【答案】85,2 ∪125,100 【分析】先求出极大值点表达式,利用题干条件列不等式赋值求解.【详解】令ωx =2k π,k ∈Z ,得f (x )的极大值点为x =2k πω,k ∈Z ,则存在整数k ,使得ω>02k πω>π2k +1 πω<5π2,解得4(k +1)5<ω<2k (k ∈N *).因为函数y =cos x 在两个相邻的极大值点之间有两个零点,所以4(k +1)5<ω<2k (k ∈N *).当k =1时,85<ω<2.当k =2时,125<ω<4.当k ≥2时,4(k +1)5<4(k +2)5<2k .又0<ω<100,所以ω的取值范围为85,2 ∪125,4 ∪165,6 ∪⋅⋅⋅∪2045,100 =85,2 ∪125,100 .故答案为:85,2 ∪125,100【点睛】关键点点睛:本题考查三角函数的图象及其性质,求出4k +15<ω<2k k ∈N * 并赋值计算是解决问题关键.24(2024·广西南宁·南宁三中校联考一模)在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.在适当的直角坐标系下,某个简谐运动可以用函数f x =A sin ωx +φ A >0,ω>0,φ <π 的部分图象如图所示,则下列结论正确的是()A.ω=2,频率为1π,初相为π6B.函数f x 的图象关于直线x =-π6对称C.函数f x 在π12,13π24上的值域为0,2 D.若把f x 图像上所有点的横坐标缩短为原来的23倍,纵坐标不变,再向左平移π12个单位,则所得函数是y =2sin 3x +π12【答案】BCD【分析】根据图象求出三角函数解析式,再根据正弦函数图象与性质以及函数平移的原则即可判断.【详解】由图象可得A =2,34T =13π12-π3=3π4,∴T =π,频率是1T =1π,ω=2ππ=2,∵f π3 =2,∴f π3 =2sin 2π3+φ =2,即sin 2π3+φ =1,∴2π3+φ=2k π+π2(k ∈Z ),∴φ=2k π-π6(k ∈Z ),∵|φ|<π,∴φ=-π6,对于A ,∴f (x )=2sin 2x -π6 ,初相是-π6,故A 错误;对于B ,f -π6 =2sin -π3-π6=-2,故B 正确;对于C ,因为x ∈π12,13π24 ,所以2x -π6∈0,11π12,∴f (x )=2sin 2x -π6在π12,13π24上的值域为[0,2],故C 正确;对于D ,把f (x )的横坐标缩短为原来的23倍,纵坐标不变,得到的函数为y =2sin 3x -π6,又向左平移π12个单位,得到的函数为y =2sin 3x +π12 -π6 =2sin 3x +π12 ,故D 正确;故选:BCD .题型04解三角形25(2024·河南郑州·郑州市宇华实验学校校考一模)如图,为了测量某湿地A ,B 两点间的距离,观察者找到在同一直线上的三点C ,D ,E .从D 点测得∠ADC =67.5°,从C 点测得∠ACD =45°,∠BCE =75°,从E 点测得∠BEC =60°.若测得DC =23,CE =2(单位:百米),则A ,B 两点的距离为()A.6B.22C.3D.23【答案】C【分析】在△ADC 中,求得AC =DC ;在△BCE 中,利用正弦定理求得BC ;再在△ABC 中,利用余弦定理即可求得结果.【详解】根据题意,在△ADC 中,∠ACD =45°,∠ADC =67.5°,DC =23,则∠DAC =180°-45°-67.5°=67.5°,则AC =DC =23,在△BCE 中,∠BCE =75°,∠BEC =60°,CE =2,则∠EBC =180°-75°-60°=45°,则有CE sin ∠EBC =BC sin ∠BEC ,变形可得BC =CE ⋅sin ∠BEC sin ∠EBC =2×3222=3,在△ABC 中,AC =23,BC =3,∠ACB =180°-∠ACD -∠BCE =60°,则AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =9,则AB =3.故选:C .【点睛】本题考查利用正余弦定理解三角形,涉及距离的求解,属基础题.26(2024·广东深圳·校考一模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2a cos A ,则cos A =()A.13B.24C.33D.63【答案】D【分析】由已知结合余弦定理进行化简即可求解.【详解】解:因为c =2a cos A ,由余弦定理可得c =2a ⋅b 2+c 2-a 22bc,将a =3,b =5代入整理得c =26,所以cos A =c 2a =63.故选:D .27(2024·河南郑州·郑州市宇华实验学校校考一模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c -b =2b cos A ,则下列结论正确的有()A.A =2BB.B 的取值范围为0,π4C.ab的取值范围为2,3 D.1tan B -1tan A+2sin A 的最小值为22【答案】AC【分析】用正弦定理可判断A 项,由锐角三角形可判断B 项,用倍角公式可判断C 项,切化弦后用取等条件即可判断D 项.【详解】在△ABC 中,由正弦定理可将式子c -b =2b cos A 化为sin C -sin B =2sin B cos A ,把sin C =sin A +B =sin A cos B +cos A sin B 代入整理得,sin A -B =sin B ,解得A -B =B 或A -B +B =π,即A =2B 或A =π(舍去),所以A =2B ,选项A 正确;选项B :因为△ABC 为锐角三角形,A =2B ,所以C =π-3B ,由0<B <π2,0<2B <π2,0<π-3B <π2,解得B ∈π6,π4 ,故选项B 错误;选项C :a b=sin A sin B =sin2B sin B =2cos B ,因为B ∈π6,π4 ,所以cos B ∈22,32 ,2cos B ∈2,3 ,即ab的取值范围为2,3 ,故选项C 正确;选项D :1tan B -1tan A +2sin A =sin A -B sin A sin B +2sin A =1sin A+2sin A ≥21sin A ×2sin A =22,当且仅当1sin A=2sin A 即sin A =±22时取等,但因为B ∈π6,π4 ,所以A =2B ∈π3,π2 ,sin A ∈32,1 ,无法取到等号,故D 错.故选:AC .28(2024·福建厦门·统考一模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a 2cos B +ab cos A =2c .(1)求a ;(2)若A =2π3,且△ABC 的周长为2+5,求△ABC 的面积.【答案】(1)a =2;(2)34.【分析】(1)应用正弦边角关系及和角正弦公式有a sin (A +B )=2sin C ,再由三角形内角性质即可求边长;(2)应用余弦定理及已知得b 2+c 2+bc =4且b +c =5,进而求得bc =1,最后应用面积公式求面积.【详解】(1)由题设a (a cos B +b cos A )=2c ,由正弦定理有a (sin A cos B +sin B cos A )=2sin C ,所以a sin (A +B )=2sin C ,而A +B =π-C ,故a sin C =2sin C ,又sin C >0,所以a =2.(2)由(1)及已知,有cos A =b 2+c 2-a 22bc =b 2+c 2-42bc=-12,可得b 2+c 2+bc =4,又a +b +c =2+5,即b +c =5,所以(b +c )2-bc =5-bc =4⇒bc =1,故S △ABC =12bc sin A =34.29(2024·广西南宁·南宁三中校联考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a -bc=sin A -sin Csin A +sin B.(1)求角B 的大小;(2)若b =2,求△ABC 周长的最大值.【答案】(1)B =π3(2)6【分析】(1)根据题意利用正、余弦定理进行边角转化,进而可得结果;(2)根据a 2+c 2-b 2=ac ,结合基本不等式运算求解.【详解】(1)因为a -b c =sin A -sin C sin A +sin B,由正弦定理可得a -b c =a -ca +b ,整理得a 2+c 2-b 2=ac ,由余弦定理可得cos B =a 2+c 2-b 22ac =ac 2ac =12,且B ∈0,π ,所以B =π3.(2)由(1)可知:a 2+c 2-b 2=ac ,整理得a +c 2-4=3ac ,即ac =a +c 2-43,因为ac ≤a +c24,当且仅当a =c =2时,等号成立,则a +c 2-43≤a +c 24,可得a +c 2≤16,即a +c ≤4,所以△ABC 周长的最大值为4+2=6.30(2024·山东济南·山东省实验中学校考一模)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且cos C =-14,c =2a .(1)求sin A 的值;(2)若△ABC 的周长为18,求△ABC 的面积.【答案】(1)158(2)315【分析】(1)由正弦定理边化角结合同角三角函数关系求解;(2)由余弦定理解方程得边长,再利用面积公式求解.【详解】(1)因为0<C <π,cos C =-14,所以sin C =1-cos 2C =154.因为c =2a ,所以sin C =2sin A ,则sin A =sin C 2=158.(2)因为cos C =-14,所以c 2=a 2+b 2+12ab .因为c =2a ,所以3a 2-12ab -b 2=0,解得b =32a .因为△ABC 的周长为18,所以a +b +c =92a =18,解得a =4,则b =6,c =8.故△ABC 的面积为12bc sin A =12×6×8×158=315.31(2024·浙江·校联考一模)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知c 2b 2+c 2-a2=sin Csin B.(1)求角A ;(2)设边BC 的中点为D ,若a =7,且△ABC 的面积为334,求AD 的长.【答案】(1)A =π3(2)132【分析】(1)根据正弦定理和题中所给式子化简计算得到b 2+c 2-a 2=bc ,再结合余弦定理即可求出角A ;(2)根据三角形面积公式得到bc =3和b 2+c 2=10,再结合中线向量公式计算即可.【详解】(1)在△ABC 中,由正弦定理得,sin C sin B =cb,因为c 2b 2+c 2-a 2=sin C sin B ,所以c 2b 2+c 2-a 2=cb ,化简得,b 2+c 2-a 2=bc ,在△ABC 中,由余弦定理得,cos A =b 2+c 2-a 22bc=12,又因为0<A <π,所以A =π3(2)由S △ABC =12bc sin A =34bc =334,得bc =3,由a 2=b 2+c 2-2bc cos A ,得7=b 2+c 2-3,所以b 2+c 2=10.又因为边BC 的中点为D ,所以AD =12AB +AC,所以AD =12(AB +AC )2=12b 2+c 2+2bc cos A =12×10+2×3×12=13232(2024·河南郑州·郑州市宇华实验学校校考一模)已知在△ABC 中,3sin (A +B )=1+2sin 2C2.(1)求角C 的大小;(2)若∠BAC 与∠ABC 的内角平分线交于点Ⅰ,△ABC 的外接圆半径为2,求△ABI 周长的最大值.【答案】(1)π3;(2)4+23.【分析】(1)利用降幂公式、两角和的正弦公式变形可得sin C +π6=1,再根据角的范围可得解;(2)利用正弦定理求出AB ,求出∠AIB ,设出∠ABI ,将AI ,BI 用∠ABI 表示,根据三角函数知识求出AI +BI 的最大值可得解.【详解】(1)∵3sin (A +B )=1+2sin 2C2,且A +B +C =π,∴3sin C =1+1-cos C =2-cos C ,即3sin C +cos C =2,∴sin C +π6=1.∵C ∈(0,π),∴C +π6∈π6,7π6 ,∴C +π6=π2,即C =π3.(2)∵△ABC 的外接圆半径为2,∴由正弦定理知,AB sin ∠ACB =ABsin π3=2×2=4,∴AB =23,∵∠ACB =π3,∴∠ABC +∠BAC =2π3,∵∠BAC 与∠ABC 的内角平分线交于点Ⅰ,∴∠ABI +∠BAI =π3,∴∠AIB =2π3,设∠ABI =θ,则∠BAI =π3-θ,且0<θ<π3,在△ABI 中,由正弦定理得,BI sin π3-θ =AI sin θ=AB sin ∠AIB =23sin 2π3=4,∴BI =4sin π3-θ ,AI =4sin θ,∴△ABI 的周长为23+4sin π3-θ +4sin θ=23+432cos θ-12sin θ +4sin θ=23+23cos θ+2sin θ=4sin θ+π3+23,∵0<θ<π3,∴π3<θ+π3<2π3,∴当θ+π3=π2,即θ=π6时,△ABI 的周长取得最大值,最大值为4+23,故△ABI 的周长的最大值为4+23.【点睛】关键点点睛:将AI ,BI 用∠ABI 表示,根据三角函数知识求出AI +BI 的最大值是解题关键.33(2024·辽宁沈阳·统考一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2=ac +a 2.(1)求证:B =2A ;(2)当3c +7a 3b取最小值时,求cos B 的值.【答案】(1)证明见解析(2)cos B =-13【分析】(1)利用余弦定理并结合正弦函数两角和差公式化简即可求解.(2)利用基本不等式求得3c +7a 3b的最小值时的取等条件b =233a ,再结合余弦定理从而求解.【详解】(1)证明:由余弦定理知b 2=a 2+c 2-2ac cos B ,又因为b 2=a 2+ac ,所以a 2+ac =a 2+c 2-2ac ⋅cos B ,化简得a =c -2a cos B ,所以sin A =sin C -2sin A cos B ,因为A +B +C =π,所以sin A =sin A +B -2sin A cos B ,所以sin A =sin A cos B +cos A sin B -2sin A cos B =cos A sin B -sin A cos B ,所以sin A =sin B -A ,因为A ∈0,π ,B -A ∈-π,π ,所以A =B -A 或A +B -A =π(舍),所以B =2A .(2)由题知,3c +7a 3b =3ac +7a 23ab =3b 2-a 2 +7a 23ab=b a +43⋅a b ≥243=433,当且仅当b =233a 时取等,又因为b 2=ac +a 2,所以c =13a ,所以cos B =a 2+c 2-b22ac=a 2+13a 2-233a22a ×13a=-13.34(2024·重庆·统考一模)在梯形ABCD 中,AB ⎳CD ,∠ABC 为钝角,AB =BC =2,CD =4,sin ∠BCD =154.(1)求cos ∠BDC ;(2)设点E 为AD 的中点,求BE 的长.【答案】(1)78;(2)342【分析】(1)在△BCD 中利用余弦定理求出BD ,再利用二倍角的余弦公式计算即得.(2)利用(1)的结论,借助向量数量积求出BE 的长.【详解】(1)在梯形ABCD 中,由AB ⎳CD ,∠ABC 为钝角,得∠BCD 是锐角,在△BCD 中,sin ∠BCD =154,则cos ∠BCD =1-sin 2∠BCD =14,由余弦定理得BD =22+42-2×2×4×14=4,即△BCD 为等腰三角形,所以cos ∠BDC =cos (π-2∠BCD )=-cos2∠BCD =1-2cos 2∠BCD =78.(2)由AB ⎳CD ,得∠ABD =∠BDC ,由点E 为AD 的中点,得BE =12(BA +BD),所以|BE |=12BA 2+BD 2+2BA ⋅BD =1222+42+2×2×4×78=342.35(2024·山西晋城·统考一模)在△ABC 中,AB =33,AC =53,BC =73.(1)求A 的大小;(2)求△ABC 外接圆的半径与内切圆的半径.【答案】(1)A =2π3(2)32【分析】(1)由余弦定理即可求解;(2)由正弦定理求出外接圆半径,由等面积法求出内切圆半径.【详解】(1)由余弦定理得cos A =AB 2+AC 2-BC 22AB ⋅AC=-12,因为0<A <π,所以A =2π3.(2)设△ABC 外接圆的半径与内切圆的半径分别为R ,r ,由正弦定理得2R =BC sin A=7332=14,则R =7.△ABC 的面积S =12AB ⋅AC ⋅sin A =4534,由12r (AB +AC +BC )=S ,得r =2S AB +AC +BC =32.36(2024·黑龙江齐齐哈尔·统考一模)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知B =π4,4b cos C =2c +2a .(1)求tan C ;(2)若△ABC 的面积为32,求BC 边上的中线长.【答案】(1)tan C =12(2)52.【分析】(1)利用正弦定理以及三角恒等变换的知识求得tan C .(2)根据三角形ABC 的面积求得ac ,根据同角三角函数的基本关系式求得sin A ,cos A ,利用正弦定理、向量数量积运算来求得BC 边上的中线长.【详解】(1)由正弦定理可得c sin C=bsin B ,所以4sin B cos C =2sin C +2sin A ,即22cos C =2sin C +2sin A ,又A +B +C =π,所以22cos C =2sin C +2sin π4+C =22sin C +2cos C ,整理得2cos C =22sin C ,解得tan C =12;(2)依题意,12ac sin B =12ac ×22=32,解得ac =32,又tan A =tan 3π4-C =-1-tan C1-tan C =-3,所以A 为钝角,所以由sin A cos A=-3sin 2A +cos 2A =1 ,解得sin A =310,cos A =-110,由正弦定理可得c a =sin Csin A=15310=23,又ac =32,所以a =3,c =2,b =c sin Bsin C=2×2215=5,设BC 的中点为D ,则AD =12AB +AC,所以AD 2=14(AB +AC )2=b 2+c 2+2bc cos A 4=2+5+2×2×5×-1104=54,所以BC 边上的中线长为52.37(2024·云南曲靖·统考一模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c =2a cos C -2b .(1)求A ;(2)线段BC 上一点D 满足BD =14BC ,AD =BD=1,求AB 的长度.【答案】(1)A =2π3;(2)477.【分析】(1)由余弦边角关系及已知得-bc =b 2+c 2-a 2,再由余弦定理即可求A ;(2)由题设得∠ADB=π-2B,且AD=BD=1,BC=4,C=π3-B,在△ADB、△ABC应用正弦定理得AB=2cos B、tan B=32,0<B<π3,即可求AB的长度.【详解】(1)由题设及余弦定理知:c=2a×a2+b2-c22ab-2b=a2+b2-c2b-2b,所以-bc=b2+c2-a2,又cos A=b2+c2-a22bc=-12,A∈(0,π),所以A=2π3.(2)由题设∠ADB=π-2B,且AD=BD=1,BC=4,C=π3-B,在△ADB中ADsin B=ABsin(π-2B)=ABsin2B,则AB=2cos B,在△ABC中ABsinπ3-B=BCsin2π3=83,则AB32cos B-12sin B=83,综上,可得tan B=32,0<B<π3,则cos B=27,故AB=477.。
高三三角函数习题练习-含解析
三角函数习题练习一、单选题(共12题)1.若则( )A. B. C. D.2.将函数图象上所有的点的横坐标伸长到原来的2倍(纵坐标不变),再把图象向左平移个单位长度,所得的图象关于轴对称,则()A. B. C. D.3.若,则的值为A. B. C. D.4.(2013•四川)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()(4题)(5题)A. B. C. D.5.(2016•全国)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+ )D.y=2sin(x+ )6.(2018•天津)将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递增B.在区间上单调递减C.在区间上单调递增D.在区间上单调递减7.(2018•卷Ⅰ)已知函数f(x)=2cos2x-sin2x+2,则()A.f(x)的最小正周期为π,最大值为3B.f(x)的最小正周期为π,最大值为4C.f(x)的最小正周期为2π,最大值为3D.f(x)的最小正周期为2π,最大值为48.(2018•卷Ⅲ)若,则=()A. B. C.- D.-9.若锐角满足,则()A. B. C. D.10.(2013•浙江)已知,则tan2α=()A. B. C. D.11.(2013•辽宁)在△ABC,内角A,B,C所对的边长分别为a,b,c.asinBcosC+csinBcosA= b,且a>b,则∠B=()A. B. C. D.12.设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>cB.b>c>aC.c>b>aD.c>a>b二、填空题(共4题;共0分)13.函数()的部分图象如图所示,则________;函数在区间上的零点为________.(13题)(14题)14.函数的图象如右图所示,则的表达式是________.15.函数的部分图象如图所示,将函数的图象向右平移个单位后得到函数的图象,若函数在区间上的值域为,则________.16.在中,角所对的边分别为,,的面积,则的周长为________.三、解答题(共6题;共0分)17.已知函数(1)用“五点作图法”在给定的坐标系中,画出函数在上的图象.(2)先将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求的对称中心.18.已知函数的部分图象如图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位得到函数,当时,求函数的值域.19.如图四边形中,分别为的内角的对边,且满足.(1)证明:;(2)若,设, 求四边形面积的最大值.20.已知函数的部分图象如图所示.(1)求的值及的单调增区间;(2)求在区间上的最大值和最小值.21.函数的部分图象如图所示.(1)求及图中的值;(2)设,求函数在区间上的最大值和最小值.22.已知函数的部分图象如图所示.(1)将函数的图象保持纵坐标不变,横坐标向右平移个单位后得到函数的图象,求函数在上的值域;(2)求使的x的取值范围的集合.三角函数习题练习答案第 1 题:【答案】C【解析】【解答】,所以,第 2 题:【答案】A【解析】【解答】横坐标伸长到原来的2倍,说明周期变成原来的2倍,则,再把图象向左平移个单位长度,说明,而关于y轴对称,则,结合,计算得到,故答案为:A。
三角函数高三练习题
三角函数高三练习题1. 某直角三角形中,已知一条直角边的长度为3,另一条直角边的长度为4。
求该直角三角形的正弦、余弦和正切值。
解析:根据勾股定理,直角三角形的斜边可以通过勾股定理求解。
假设斜边的长度为c,有:c² = a² + b²c² = 3² + 4²c² = 9 + 16c² = 25c = 5根据三角函数的定义:正弦函数(sin):对于一个直角三角形,正弦值等于其斜边与直角边的比值。
sinθ = 斜边/斜边sinθ = 5/5sinθ = 1余弦函数(cos):对于一个直角三角形,余弦值等于其直角边与斜边的比值。
cosθ = 直角边/斜边cosθ = 3/5正切函数(tan):对于一个直角三角形,正切值等于其直角边与另一条直角边的比值。
tanθ = 直角边/直角边tanθ = 3/42. 某航班飞机正从一个城市出发,飞向目的地的方位角为30°,飞行距离为800 km。
请问飞机在飞行过程中,x轴和y轴上的分量是多少?解析:根据三角函数的定义:余弦函数(cos):对于某一角度的余弦值等于该角度的邻边与斜边的比值。
正弦函数(sin):对于某一角度的正弦值等于该角度的对边与斜边的比值。
根据题意,目的地的方位角为30°,飞行距离为800 km。
假设x轴上的分量为x,y轴上的分量为y,则有:cos30° = x/800sin30° = y/800cos30° = √3/2sin30° = 1/2根据上述计算可得:x = cos30° * 800 = (√3/2) * 800 ≈ 692.82 kmy = sin30° * 800 = (1/2) * 800 = 400 km所以飞机在飞行过程中,x轴上的分量约为692.82 km,y轴上的分量约为400 km。
高三数学-三角函数的图象与性质、三角恒等变换-专题练习及答案
高三数学专题练习三角函数的图象与性质、三角恒等变换【重点把关】1.(2016·榆林一模)已知π,π2a æöÎç÷èø,且()3sin π5a +=-,则tan a =等于( )A .34-B .43 C .34D .43-2.(2016·湖南衡阳一模)已知角j 的终边经过点()4,3P -,函数()()()sin 0f x x w j w =+>的图象的相邻两条对称轴之间的距离等于π2,则π4f æöç÷èø的值为( )A .35 B .45C .35-D .45-3.(2016·四川卷,文4)为了得到函数πsin 3y x æö=+ç÷èø的图象,只需把函数sin y x =的图象上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度4.(2016·河南郑州一模)函数()11πsin 2tan cos 2223f x x x =+的最小正周期为( )A .π2 B .πC .2πD .4π 5.(教材拓展)函数πsin 23y x æö=-ç÷èø的单调递减区间是( )A .π2ππ,π,63k k k éù-+-+ÎêúëûZ B .π5π2π-,2π,1212k k k éù+ÎêúëûZ C .πππ-,π,63k k k éù-+ÎêúëûZ D .π5ππ,π,1212k k k éù++ÎêúëûZ 6.(2016·河南开封一模)已知函数()()π2sin πsin 3f x x x j æö=+++ç÷èø的图象关于原点对称,其中()0,πj Î,则j =________.7.(2016·吉林白山一模)已知1sin cos 3a a =+,且π0,2a æöÎç÷èø),则cos 2πsin 4a a æö+ç÷èø的值为________.8.(2016·湖南常德模拟)已知函数()()2cos 2cos 0f x x x x w w w w =+>,且()f x 的最小正周期为π.(1)求w 的值及()f x 的单调递减区间;(2)将函数()f x 的图象向右平移π6个单位长度后得到函数()g x 的图象,求当π0,2x éùÎêúëû时()g x 的最大值.【能力提升】9.(2016·湖北八校联考)若()()()2cos 20f x x j j =+>的图象关于直线π3x =对称,且当j 取最小值时,0π0,2x æö$Îç÷èø,使得()0f x a =,则a 的取值范围是( )A .(]1,2-B .[)2,1--C .()1,1--D .[)2,1-10.(2016·山东青岛一模)已知函数()()()sin 000πf x A x A w j w j =+>><<,,是偶函数,它的部分图象如图所示.M 是函数()f x 图象上的点,K ,L 是函数()f x 的图象与x 轴的交点,且KML D 为等腰直角三角形,则()f x =________.11.(2016·北京卷,文16)已知函数()()2sin cos cos 20f x x x x w w w w =+>的最小正周期为π.(1)求w 的值;(2)求()f x 的单调递增区间.12.(2016·河北石家庄二模)已知函数()()π4cos sin 06f x x x a w w w æö=++>ç÷èø图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(1)求a 和w 的值;(2)求函数()f x 在[]0,π上的单调递减区间.【创新选做】13.(2016·江西南昌模拟)已知函数()π1sin ,62f x x x w æö=-+Îç÷èøR ,且()12f a =-,()12f b =,若a b -的最小值为3π4,则函数的单调递增区间为( )A .π2π,π2π,2k k k éù-++ÎêúëûZB .π3π,π3π,2k k k éù-++ÎêúëûZC .5ππ2π,2π,2k k k éù++ÎêúëûZ D .5ππ3π,3π,2k k k éù++ÎêúëûZ高三数学专题练习三角函数的图象与性质、三角恒等变换答 案【重点把关】1~5.ADABD6.π67.8.解:(1)()21cos 2f x x xw w ++π=2sin 216x w æö++ç÷èø.因为2πππ2T w =Þ=,所以1w =.从而()π=2sin 216f x x æö++ç÷èø,令()ππ3π2π22π262k x k k +£+£+ÎZ ,得()π3πππ62k x k k +££+ÎZ ,所以()f x 的单调递减区间为π2ππ,π,63k k k éù++ÎêúëûZ .(2)()πππ2sin 212sin 21666g x x x éùæöæö=-++=-+ç÷ç÷êúèøèøëû,因为π0,2x éùÎêúëû,所以ππ5π2666x -£-£,所以当ππ262x -=,即π3x =时,()max 2113g x =´+=.【能力提升】9.D10.1cos π2x 11.解:(1)因为()2sin cos cos 2f x x x xw w w =+sin 2cos 2x xw w =+π24x w æö=+ç÷èø,所以()f x 的最小正周期2ππ2T w w ==.依题意,π=πw ,解得1w =.(2)由(1)知()π24f x x æö=+ç÷èø.函数sin y x =的单调递增区间为()ππ2π,2π+22k k k éù-ÎêúëûZ .由πππ2π22π,242k x k k -£+£+ÎZ ,得3ππππ,88k x k k -££+ÎZ .所以()f x 的单调递增区间为()3πππ,π88k k k éù-+ÎêúëûZ .12.解:(1)()π4cos sin 6f x x x a w w æö=++ç÷èø14cos cos 2x x x a w w w ö=++÷÷ø2cos 2cos 11x x x aw w w =+-++22cos 21x x aw w =+++π2sin 216x A w æö=+++ç÷èø.当πsin 216x w æö+=ç÷èø时,()f x 取得最大值213a a ++=+,又()f x 图象上最高点的纵坐标为2,所以32a +=,即1a =-.又()f x 图象上相邻两个最高点的距离为π,所以()f x 的最小正周期为πT =,故2π22Tw ==,1w =.(2)由(1)得()π2sin 26f x x æö=+ç÷èø,由ππ3π2π22π,262k x k k +£+£+ÎZ ,得π3πππ,62k x k k +££+ÎZ .令0k =,得π2π63x ££.故函数()f x 在[]0,π上的单调递减区间为π2π,63éùêúëû.【创新选做】13.B高三数学专题练习三角函数的图象与性质、三角恒等变换解析【重点把关】1.解析:因为α∈(,π),sin(π+α)=-sin α=-,即sin α=,所以cos α=-=-,则tan α==-,故选A.2.解析:由题意得ω=2,cos j=-,所以f()=sin(2×+j)=cos j=-,选D.3.解析:由y=sin x图象上所有的点向左移动个单位长度就得到函数y=sin(x+)的图象,故选A.4.解析:函数f(x)=sin 2x+tan cos 2x=sin 2x+cos 2x=sin(2x+)的最小正周期为=π.故选B.5.解析:函数y=sin(-2x)=-sin(2x-)的单调递减区间,即函数y=sin(2x-)的单调递增区间.令2kπ-≤2x-≤2kπ+,k∈Z,求得kπ-≤x≤kπ+,k∈Z,故函数y=sin(2x-)的单调递增区间,即函数y=sin(-2x)的单调递减区间为[kπ-,kπ+],k∈Z.故选D.6.解析:化简可得f(x)=-2sin xsin(x++j),因为函数图象关于原点对称,故f(-)=-f(),代值计算可得-2×(-)sin j=-(-2)×sin(+j),化简可得sin j=sin(+j),又j∈(0,π),所以j++j=π,解得j=.答案:7.解析:因为sin α=+cos α,即sin α-cos α=,所以===-.答案:-8.【能力提升】9.解析:因为函数f(x)=2cos(2x+j)(j>0)的图象关于直线x=对称,所以+j=kπ,k∈Z,所以j=kπ-,k∈Z,当j(j>0)取最小值时j=,所以f(x)=2cos(2x+),因为x0∈(0,),所以2x0+∈(,),所以-1≤cos(2x0+)<,所以-2≤f(x0)<1,因为f(x0)=a,所以-2≤a<1.故选D.10.解析:由图象可知,A=,又f(x)=Asin(ωx+j)是偶函数,所以j=+2kπ,k∈Z,又因为0<j<π,所以j=.如图,过点M作MN⊥KL于N,因为△KLM为等腰直角三角形,所以MN=KN=NL=,KL=1,所以函数f(x)的周期T=2,即=2,ω=π.综上知,函数f(x)=cos πx.答案:cos πx11.12.【创新选做】13.解析:因为f(x)=sin(ωx-)+,且f(α)=-,所以sin(ωα-)+=-,解得sin(ωα-)=-1,同理可得sin(ωβ-)=0,由|α-β|的最小值为和三角函数图象可得·=,解得ω=,所以f(x)=sin(x-)+,由2kπ-≤x-≤2kπ+,k∈Z,可得3kπ-≤x≤3kπ+π,k∈Z,所以函数的单调递增区间为[3kπ-,3kπ+π]k∈Z.故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟试题
一、选择题
1、若sin2x>0,cosx<0.则角x是()
A、第一象限角
B、第二象限角
C、第三象限角
D、第四象限角
2、将函数y=cos2x的图像按向量(*/4,1)平移后得到函数f(x)的图像,那么()
A、f(x)=-sin2x+1
B、f(x)=sin2x+1
B、C、f(x)=-sin2x-1 D、f(x)=sin2x-1
3、函数f(x)=|sinx=cosx|的最小正周期是()
A、*/4
B、*/2
C、 *
D、2*
4、sin14cos16+sin76cos74的值是()
A、1/2
B、-1/2
C、√3/2
D、-√3/2
5、(1+tan1)(1+tan2).....(1+tan48)(1+tan49)=( )
A、(2)48
B、(2)44
C、(2)46
D、(2)50
6、函数f(x)=sinxcosx+√3/2cos2x的最小正周期和振幅分别是( )
A、* 1
B、* 2
C、2* 1
D、2* 2
7、函数f(x)=sin(2x-*/4)在区间(0,*/2)上的最小值是()
A、-1
B、√2/2
C、-√2/2
D、0
8、已知a=(2,3) b=(-4,7) ,则a在b上的投影值为()
A、√13
B、√65
C、√13/5
D、√65/5
9、sin2cos3tan5的值()
A、小于0
B、大于0
C、等于0
D、不存在
10、若三点A(2,3) B(3,a) C(4,b)共线,则有( )
A、a=3 b=-5
B、a-b+1=0
C、2a-b=3
D、a-2b=0
11、已知函数f(x)=2sin(wx+p),xƐR其中w>0 -*<p≤*,若f(x)的最小正周期为6*,且当X=*/2时取得最大值,则()
A、f(x)在区间(-2*,0)上是增函数
B、f(x)在区间(-3*,-* )上是增函数
C、f(x)在区间(3*,5*)上是减函数
D、f(x)在区间(4*,6*)上是减函数
12、已知函数f(x)=Asin(wx+p),在一个周期内当X=*/12时,有最大值2,当X=7*/12时,有最小值-2,那么()
A、f(x)=1/2sin(2x+*/3)
B、 f(x)=2sin(2x+*/3)
C、f(x)=2sin(2x+*/6)
D、 f(x)=1/2sin(2x+*/6)
二、填空题
13、如果cosa=-12/13 aƐ(*,3*/2)那么cos(a+*/4)=()
14、已知aƐ(*,3*/2),tana=2则sina=()
15、已知tan(x+*/4)=2,则 tanx/tan2x=()
16、已知函数y=f(x)的图像上的每一点的纵坐标扩大到原来的4倍,横坐标扩大到原来的2倍,然后把所有的图像沿X轴向左平移*/2,这样得到的曲线与原来的相同,则已知的数y=f(x)的解析式为()
三、解答题
17、设a为锐角,若cos(a+*/6)=4/5,求sin(2a+*/12)的值
18、已知a=(1,2)b=(-3 .2), 当K为何值时,
(1)Ka+b 与a-3b垂直?
(2)ka+b 与a—3b平行?平行时它们是同向还是反向。
19、已知函数f(x)=cosxcos(x—*/3)
(1)、求f(2*/3)的值
(2)、求使f(x)<1/4成立的 X的取值范围
20、已知a>0函数y=-asin2x --√3asin2x +2a+b xƐ〖0,*/2〗若函数的值域为〖-5,1〗,求a b的值
21、函数f(x)=A(wx-*/2)+1(A>0,w>0)的最大值为3,其图像相邻的两条对称轴之间的距离为*/2
(1)求函数的解析式
(2)设aƐ(0,*/2) f(a/2)=2,求a的值。