人教初中数学七下一元一次不等式教案
人教版七年级数学下册9.2.1一元一次不等式优秀教学案例
在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。
人教版七年级下册9.2一元一次不等式教案设计
9.2一元一次不等式
课型
新授课
教法
引导、探究
教学目标
1、了解一元一次不等式的概念;会解一元一次不等式,并且会在数轴上表示其解集。
2、经历解一元一次方程和解一元一次不等式的比较,体会类比思想。
3、培养良好的学习习惯。
教学重点
一元一次不等式的概念;解一元一次不等式
教学难点
解一元一次不等式
教学过程
程序
提问
巡视
板书
讲评
板书
巡视
巡视,个别指导
板书
巡视,规范步骤,个别指导;讲评
板书
回答问题
讨论
做笔记
独立完成
做笔记
独立完成
指名板演
做笔记
合作完成;校对
做笔记
理
解
性
诊
断
与
矫
治
P124练习第1、2题
巡视,规范书写格式;个别指导
讲评
请学生板演,其余同学在自己的本子上完成
讨论完成
巩
固
练
习
1、解不等式 ,
并在数轴上表示其解集。
师生总结归纳:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集。
P122 例题
师生共同总结归纳:
(1)解一元一次不等式的基本步骤:去分母,去括号,移项,合并同类项,系数化为1.
(2)对比两个不等式的解题过程,进行到系数化为1这一步时,需要特别注意:若未知数的系数是正数,则不等号的方向不变;若未知数的系数是负数,则不等号的方向改变。
问题1:判断下列哪些是一元一次不等式?
x-7=19,x-7>19,3x=5x+3,
3x≤5x+3,-4x=5,-4x≠5.
人教版数学七年级下册9.3一元一次不等式组解一元一次不等式组教学设计
4.培养学生严谨、细致的学习态度,让他们明白在数学学习中,细节决定成败。
二、学情分析
在本章节的学习中,七年级学生已经具备了一定的数学基础,掌握了线性方程组的相关知识,但对于一元一次不等式组的认识尚处于初级阶段。学生在此阶段对于不等式的概念、性质和图像表示有一定的了解,但在解决实际问题时,可能还无法熟练地将不等式组应用于问题求解。此外,学生在解决不等式组问题时,可能存在以下困难:
1.对于多个不等式组成的复杂关系,学生可能难以理清思路,容易混淆。
2.学生在运用高斯消元法求解不等式组时,可能会出现计算错误,影响解题结果。
3.部分学生可能对于一元一次不等式组的实际应用场景缺乏认识,导致解题时缺乏针对性。
因此,在教学过程中,教师需要关注学生的这些困难,通过生动的实例、形象的比喻和具体的操作,帮助学生克服困难,提高解题能力。同时,注重培养学生的数学思维,激发他们的学习兴趣,使其在掌握知识的同时,形成良好的学习习惯和价值观。
难点:指导学生通过观察、分析、归纳等过程,发现不等式组的规律,提高解题技巧。
(二)教学设想
1.采用情境教学法,将实际生活中的问题引入课堂,激发学生的学习兴趣,使其在解决实际问题中感受到数学的魅力。
2.采用启发式教学法,引导学生通过自主探究、合作交流等途径,掌握一元一次不等式组的解法,培养学生的独立思考能力和团队合作精神。
4.完成课后作业册中的一元一次不等式组专项练习,进一步巩固所学知识。
5.家长监督并协助孩子完成作业,关注孩子的学习进度,培养孩子独立解决问题的能力。
作业要求:
1.认真审题,规范解答,保持卷面整洁。
2.注意解题过程中的符号、计算准确,避免出现低级错误。
人教版初中数学一元一次不等式教案范文优秀7篇
人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
人教版七年级数学下册 一元一次不等式教案
《一元一次不等式》教案教学目标一、知识与能力1、进一步巩固求一元一次不等式的解集.2、能利用一元一次不等式解决一些简单的实际问题.二、过程与方法通过学生独立思考,培养学生用数学知识解决实际问题的能力.三、情感态度与价值观通过学生自主探索,培养学生学数学的好奇心与求知欲,使他们能积极参与数学学习活动,锻炼克服困难的意志,增强自信心.重点、难点重点:1.求一元一次不等式的解集.2.用数学知识去解决简单的实际问题.难点:运用几何语言进行证明和论述;将实际问题转化为数学问题,也就是转化为不等关系式来解决教学过程新课导入[师]上节课,我们学习了什么叫一元一次不等式,以及如何解一些简单的一元一次不等式,下面大家先回忆一下.[生]不等式的两边都是整式,只含有一个未知数,且未知数的最高次数是一次,这样的不等式叫一元一次不等式.解一元一次不等式的一般步骤和解一元一次方程的一般步骤相似,大致有:(1)去分母;(2)去括号;(3)移项、合并同类项;(4)系数化成1.[师]很好.在解不等式的过程中,有需要注意的问题吗?[生]有.在去分母和系数化成1这两步中,如果两边同时乘以或除以同一个负数,要注意改变不等号的方向.师生互动下面我们做一个练习检查一下,看大家的动手能力如何.1.解不等式:51(x +15)≥21-31(x -7) [生]解:去分母,得6(x +15)≥15-10(x -7),去括号,得6x +90≥15-10x +70,移项、合并同类项,得16x ≥-15,两边同除以16,得x ≥-1615. [师]做得很好.请看第2题.Ⅱ.新课讲授[例1]解下列不等式,并把它们的解集分别在数轴上表示出来:(1)2x -3x <1;(2)5x ≥3+22-x . [师]经过刚才的改错,我们现在不进行讲解,而是要大家自觉完成,再互相改正,注意一定不要犯刚才的错误哟.[生]解:(1)去分母,得3x -2x <6,合并同类项,得x <6,不等式的解集在数轴上表示如下:图1-15(2)去分母,得2x ≥30+5(x -2),去括号,得2x ≥30+5x -10,移项、合并同类项,得3x ≤-20,两边都除以3,得x ≤-320. 不等式的解集在数轴上表示如下:图1-16[师]这类题型我们掌握得已很好了,下面我们来学习有关不等式的应用题.2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天? 解决问题:1、2002年北京空气质量良好的天数是多少?2、用x 表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?3、2008年共有多少天?与x 有关的哪个式子的值应超过70%?这个式子表示什么?4、怎样解不等式%7036655.0365>⨯+x 在学生讨论后,教师做解题过程示范. 5、比较解这个不等式与解方程%7036655.0365=⨯+x 的步骤,两者有什么不同吗?在学生充分讨论的基础上,师生共同归纳得出:解一元一次不等式与解一元一次方程类似,只是不等式两边同乘以(或除以)一个数时,要注意不等号的方向.解一元一次方程,要根据等式的性质,将方程逐步化为x-a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x>a或x<a)的形式.提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?问题1:这个问题比较复杂.你该从何入手考虑它呢?问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?分组活动.先独立思考,再组内交流,然后各组汇报讨论结果.最后教师总结分析:1、如果累计购物不超过50元,则在两家商场购物花费是一样的;2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小.3、如果累计购物超过100元,又有三种情况:(1)什么情况下,在甲商场购物花费小?(2)什么情况下,在乙商场购物花费小?(3)什么情况下,在两家商场购物花费相同?课堂总结根据前面我们做的练习和例题,我们来总结一下解不等式的一般步骤,理论依据及注意事项,和解一元一次不等式应用题的一般步骤.1.解一元一次不等式的一般步骤:(1)去分母根据等式性质2或3注意:①勿漏乘不含分母的项;②分子是两项或两项以上的代数式时要加括号;③若两边同时乘以一个负数,须注意不等号的方向要改变.(1)去括号根据去括号法则和分配律注意:①勿漏乘括号内每一项;②括号前面是“-”号,括号内各项要变号.(2)移项根据移项法则(不等式性质1)注意:移项要变号.(4)合并同类项根据合并同类项法则.(5)系数化成1根据不等式基本性质2或性质3.注意:两边同时除以未知数的系数时,要分清不等号的方向是否改变..2.解一元一次不等式应用题的步骤:(1)审题,找不等关系;(2)设未知数;(3)列不等关系;(4)解不等式;(5)根据实际情况,写出全部答案.。
七年级数学下册 9.2 一元一次不等式教案 (新版)新人教版
课题:9.2一元一次不等式教学目标:1.了解一元一次不等式的概念,掌握一元一次不等式的解法;2.在依据不等式的性质探究一元一次不等式解法过程中,加深对化归思想的体会;3.能从实际问题中抽象出数学问题,根据数量关系建立一元一次不等式进行求解,体会数学建模的思想.重点:一元一次不等式的解法.难点:分析实际问题中的不等关系列出一元一次不等式.教学流程:一、知识回顾1.不等式的性质是什么?答案:性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.如果a>b,那么a±c>b±c性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.如果a>b,c>0,那么ac>bc(或a bc c >)性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.如果a>b,c<0,那么ac<bc(或a bc c <)2.什么是一元一次方程?答案:含有一个未知数,并且未知数的次数是1的方程,叫做一元一次方程. 追问:下列一元一次方程:x-7=26,3x=2x+1,23x=50,-4x=3.它们有哪些共同特征?答案:①未知数个数:1个;②未知数次数:1次二、探究1问题1:观察下面的不等式:x-7>26,3x<2x+1,23x>50,-4x>3.它们有哪些共同特征?答案:①未知数个数:1个;②未知数次数:1次追问:你能给这类不等式起个名字吗?答案:一元一次不等式归纳:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式. 练习1:下列不等式中,哪些是一元一次不等式?①3+5>7;②x-y≤2;③-2x<5;④123; x->⑤x2+3<2;⑥3m-2<n+7;⑦2x-3>1;⑧3-2a≥5.答案:不是;不是;是;不是;不是;不是;是;是三、探究2问题2:回想解不等式:x-7>26的过程:解:根据不等式的性质1,不等式两边加7,不等号的方向不变,x-7+7>26+>26+7x>33观察:从x-7>26到x>26+7;这一步类似于解一元一次方程中的哪一步!答案:移项想一想:解一元一次方程的依据和一般步骤是什么?答案:解一元一次方程的依据是等式的性质一般步骤是去分母,去括号,移项,合并同类项,系数化为1.追问:对你解一元一次不等式有什么启发吗?答案:可以依据不等式的性质解一元一次不等式解一元一次不等式的步骤是去分母,去括号,移项,合并同类项,系数化为1.例1:解下列不等式,并在数轴上表示解集:(1)2(1+x)<3;(2)221 23x x+-≥解:(1)去括号,得2+2x<3 移项,得2x<3-2合并同类项,得2x<1系数化为1,得12 x<这个不等式的解集在数轴上表示为:2320(2)去分母,得3(2+x )≥2(2x -1)去括号,得6+3x ≥4x -2移项,得3x -4x ≥-2-6合并同类项,得-x ≥-8系数化为1,得x ≤8这个不等式的解集在数轴上表示为:注意:当不等式的两边都乘(或除以)同一个负数时,不等号的方向改变!归纳:说一说:解一元一次方程与一元一次不等式的相同与不同之处?相同之处基本步相同:去分母,去括号,移项,合并同类项,系数化为1.基本思想相同:都是运用化归思想,将一元一次方程或一元一次不等式变形为最简形式. 不同之处解法依据不同:解一元一次不等式的依据是不等式的性质,解一元一次方程的依据是等式的性质.最简形式不同:一元一次不等式的最简形式是x <a 或x >a ,一元一次方程的最简形式是x =a .练习2:解一元一次不等式110352x x -+≤,并把它的解集在数轴上表示出来. 解:去分母,得2×x ≤3×10+5×(x -10)去括号,得2x ≤30+5x -50移项,得2x -5x ≤30-50合并同类项,得-3x ≤-20系数化为1,得x ≥203这个不等式的解集在数轴上表示为:四、应用提高41.去年某市空气质量良好(二级以上)的天数与全年天数(365)之比达到60﹪,如果明年(365天)这样的比值要超过70﹪,那么明年空气质量良好的天数要比去年至少增加多少?问题1:题中未知量是谁?答案:明年比去年空气质量良好的天数增加的天数.问题2:题中包含哪些不等关系是什么? 答案:70%明年空气质量良好的天数>明年天数解:设明年比去年空气质量良好的天数增加了x 天.由题可列不等式:36560%70%365x +⨯>, 去分母,得219255.5x +>,移项,合并同类项,得36.5x >.由x 应为正整数,得x ≥37答:明年要比去年空气质量良好的天数至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%.2.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购买100元后,超出100元的部分按90%收费;在乙商场累计购买超过50元后,超过50元的部分按95%收费.顾客到哪家商场购物花费少?分析:甲商场优惠方案的起点为购物款达___100___元后;乙商场优惠方案的起点为购物款达___50__元后.分三种情况讨论:(1)累计购物不超过50元;(2)累计购物超过50元而不超过100元;(3)累计购物超过100元问题1:如果购物款为x 元,你能分别表示出在两家商场花费的钱数吗?答案:有三种情况!①若到甲商场购物花费少,则50+0.95(x -50)>100+0.9(x -100).解得x>150.这就是说,累计购物超过150元时,到甲商场购物花费少.②若到乙商场购物花费少,则50+0.95(x-50)<100+0.9(x-100).解得x<150.这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③若50+0.95(x-50)=100+0.9(x-100).解得x=150.这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.问题3:你能综合上面分析给出一个合理化的消费方案吗?答案:累计购物不超过50元和刚好是150元时,在甲、乙两家商场购物花费一样;累计购物超过50元而不到150元时,到乙商场购物花费少;累计购物超过150元时,到甲商场购物花费少.归纳:利用不等式解决实际问题的基本思路:五、体验收获今天我们学习了哪些知识?1.怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同之处?2.利用不等式来解决实际问题的步骤是什么?3.一元一次不等式的实际问题中最关键是哪一步?六、达标测评1.解下列不等式,并在数轴上表示解集:(1)5x+2>3(x-1)13 (2)1722x x-≤-解:(1)去括号得5x+2>3x-3移项得5x-3x>-3-25合并同类项得2x>-5系数化为1得x>-2.5这个不等式的解集在数轴上表示为:(2)去分母得x-2≤14-3x移项得x+3x≤14+2合并同类项得4x≤16系数化为1得x≤4这个不等式的解集在数轴上表示为:2.某工程队计划在10天内修路6km.施工前2天修完1.2km后,计划发生变化,准备提前2天完成修路任务,以后几天内平均每天至少要修路多少?解:设以后几天内平均每天至少要修路x千米.则6x≥6-1.2解得x≥0.8答:以后几天平均每天至少要修路0.8千米.3.某公司要招甲、乙两种工作人员30人,甲种工作人员月薪600元,乙种工作人员月薪1000元.现要求每月总工资不能超过2.2万元,问至多可招乙种工作人员多少名?解:设至多可招乙种工作人员x名,则甲种工作人员为(30-x)名,根据题意得:600(30-x)+1000x≤22000解得x≤10答:至多可招乙种工作人员10名.七、布置作业教材126页习题9.2第1(1)(4)(6)、7题.6。
一元一次不等式教案(精选9篇)
一元一次不等式教案(精选9篇)篇1:一元一次不等式教案实际询问题与一元一次不等式教案教学目标1、会从实际询问题中抽象出数学模型,会用一元一次不等式解决实际询问题;2、通过观看、实践、争辩等活动,经受从实际中抽象出数学模型的过程,积存利用一元一次不等式解决实际询问题的阅历,渗透分类争辩思想,感知方程与不等式的内在联系;3、在乐观参与数学学习活动的过程中,初步熟识一元一次不等式的应用价值,形成实事求是的态度和独立思考的适应。
教学难点弄清列不等式解决实际询问题的思想方法,用去括号法解一元一次不等式。
学询问重点查找实际询问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出询问题某学校方案购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,同时多买都有确信的优待.甲商场的优待条件是:第一台按原报价收款,其余每台优待25%;乙商场的优待条件是:每台优待20%.假如你是校长,你该如何考虑,如何选择?(多媒体呈现商场购物情景)通过买电脑那个同学特不生疏的生活实例,引起同学深厚的学习爱好,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内沟通,发表自个儿的观点.最终小组汇报,派代表论述理由.2、在同学充分发表意见的基础上,师生共同归纳出以下三种选购方案:(1)啥状况下,到甲商场购买更优待?(2)啥状况下,到乙商场购买更优待?(3)啥状况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,假如到甲商场购买更优待.询问题1:如何列不等式?询问题2:如何解那个不等式?在同学充分争辩的基础上,老师归纳并板书如下:解:设购买x 台电脑,假如到甲商场购买更优待,则6000+6000(1-25%)(x-1)<6000(1-20%)x去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优待.4、让同学自个儿完成方案(2)与方案(3),并汇报完成状况.老师最终作适当点评.鼓舞同学大胆猜想,对争论的询问题发表见解,进行探究、合作与沟通,涌现出多样化的解题思路.老师准时予以引导、归纳和总结,让同学感知不等式的建模。
七年级数学下册 9.2.1 一元一次不等式教案 (新版)新人教版
(二)解一元一次不等式
问题1.看教材P122中间的文字,学习不 等式中的“移项”
问题2.解一元一次不等式的步骤与解一元一次方程的步 骤 有什么相同和不同?
学生自学课本,小组内交流,同桌间相互提问等
小组交流:解一元一次不等式的一般与解一元一次方程有何相同点和不同点.
重点
难点
重点:掌握解一元一次不等式的步骤。
难点:将不等式逐渐化简的过程。
教学
过程
教师活动
学生活动
复备标注
时间
情境
导入
1、知识要点归纳:
①.一元一次方程的概念。
②.解一元一次方程 ,写出步骤。
2、用不等式的性质解不等式:
⑴3x<2x+1⑵-4x>3
5分
探求
新知
(一)一元一次不等式的概念
看教材P122思考
我的困惑是: .
2.特别强调:应用不等式性质 3时不等号的方向要改变
3分
推荐
作业
必做题目:教材P124练习第1题;P126 习题9.2第1. 2. 3题
选做题目:练习册P107第一课时
教学
后记
一元一次不等式
感
知
目
标
教
学
目
标
知识与能力:掌握一元一次不等式的概念,并会解一元一次不等式.
过程与方法:通过类比一元一次方程的解法,体会一元一次不等的步骤与解一元一次方程的过程间的密切联系.
情感态度与价值观:通过对一元一次不等式概念与解法的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识。
(4)x2-2≠0 (5) (6)
人教版数学七年级下册9.2一元一次不等式教学设计
3.总结一元一次不等式与一元一次方程的联系与区别,用文字和示例进行阐述,不少于200字。
4.预习下一节课的内容,提前了解一元一次不等式的应用范围和实际意义。
作业要求:
1.作业应独立完成,切勿抄袭,确保作业的真实性。
精选典型例题,通过师生共同分析、讨论,总结出一元一次不等式的解法步骤。同时,强调解题过程中的注意事项,如变号、移项等。
4.练习巩固,拓展提升
设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。同时,针对学生的个体差异,适当进行拓展提升,提高学生的思维品质。
5.实践应用,解决问题
设计具有现实背景的问题,引导学生运用一元一次不等式进行分析和解决。通过实践应用,让学生感受数学的价值,提高学生的应用意识。
(二)讲授新知
1.教学内容:讲解一元一次不等式的性质及解法。
教学过程:
(1)讲解一元一次不等式的性质,如不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;同时乘以(或除以)同一个负数,不等号的方向改变。
(2)结合实例,演示一元一次不等式的解法步骤。
(3)强调解题过程中的注意事项,如变号、移项等。
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的代数运算,能解一元一次方程。但在不等式的认识上,大部分学生还较为陌生,对一元一次不等式的性质和解法还不够熟悉。此外,学生在解决实际问题时,往往不能很好地运用不等式进行分析和解决。因此,在教学过程中,应关注以下几点:
1.针对学生对不等式知识的掌握程度,设计合适的引入环节,帮助学生顺利过渡到一元一次不等式的学习。
2.培养学生严谨、细致的学习态度,养成独立思考、勇于探索的良好习惯。
新人教版七年级数学下册实际问题与一元一次不等式教案优秀教案
新人教版七年级数学下册实际问题与一元一次不等式教案优秀教案一、教学目标1.知识与技能目标:掌握一元一次不等式的概念、性质和解法,能够运用一元一次不等式解决实际问题。
2.过程与方法目标:培养学生的逻辑思维能力、分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生独立思考、合作交流的精神。
二、教学重点与难点1.教学重点:一元一次不等式的概念、性质和解法。
2.教学难点:运用一元一次不等式解决实际问题。
三、教学过程1.导入新课通过提问方式引导学生回顾已学过的一元一次方程的知识,如:什么是一元一次方程?一元一次方程的解法是什么?然后引出一元一次不等式的概念。
2.教学新课(1)一元一次不等式的概念(2)一元一次不等式的性质讲解一元一次不等式的性质,如:两边同时乘以或除以同一个正数,不等号方向不变;两边同时乘以或除以同一个负数,不等号方向改变。
通过例题让学生掌握这些性质。
(3)一元一次不等式的解法讲解一元一次不等式的解法,如:移项、合并同类项、系数化为1等。
通过例题让学生掌握解一元一次不等式的方法。
(4)实际问题与一元一次不等式讲解如何运用一元一次不等式解决实际问题,如:行程问题、年龄问题等。
通过例题让学生学会建立一元一次不等式模型,解决实际问题。
3.练习巩固布置一些练习题,让学生独立完成,巩固所学知识。
练习题要涵盖一元一次不等式的概念、性质、解法和实际问题应用等方面。
4.小组讨论(1)如何判断一个不等式是否为一元一次不等式?(2)一元一次不等式的解法有哪些?(3)如何运用一元一次不等式解决实际问题?四、课后作业1.完成课后练习题。
2.收集生活中的实际问题,尝试用一元一次不等式解决。
五、教学反思本节课通过讲解一元一次不等式的概念、性质、解法和实际问题应用,让学生掌握了相关知识。
在教学过程中,要注意引导学生主动参与,培养学生的逻辑思维能力、分析问题和解决问题的能力。
同时,要关注学生的学习反馈,及时调整教学方法和策略,提高教学效果。
人教版数学七年级下册9.2《一元一次不等式》教学设计
人教版数学七年级下册9.2《一元一次不等式》教学设计一. 教材分析人教版数学七年级下册9.2《一元一次不等式》是学生在掌握了不等式的基本概念和性质之后,进一步学习一元一次不等式的解法和应用。
本节内容通过引入实际问题,让学生了解一元一次不等式的产生背景,进一步通过探究、交流、合作,掌握一元一次不等式的解法和应用,培养学生的数学思维能力和解决实际问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了不等式的基本概念和性质,具有一定的数学基础。
但学生在解决实际问题时,可能还不太会运用不等式进行解答,因此,在教学过程中,需要教师引导学生将实际问题转化为数学问题,运用一元一次不等式进行解答。
三. 教学目标1.了解一元一次不等式的产生背景和应用。
2.掌握一元一次不等式的解法。
3.能够运用一元一次不等式解决实际问题。
4.培养学生的数学思维能力和解决实际问题的能力。
四. 教学重难点1.重难点:一元一次不等式的解法和应用。
2.难点:将实际问题转化为数学问题,运用一元一次不等式进行解答。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
3.引导发现法:教师引导学生发现问题、解决问题,培养学生的数学思维能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示一元一次不等式的定义、性质、解法及应用。
2.教学素材:准备一些实际问题,用于引导学生运用一元一次不等式进行解答。
3.的黑板:提前准备好黑板,方便教师在课堂上进行板书。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
示例:小明买了一本书,原价是100元,现在打8折,问小明实际支付了多少钱?2.呈现(10分钟)教师通过PPT呈现一元一次不等式的定义、性质、解法及应用,引导学生了解一元一次不等式的基本知识。
3.操练(10分钟)教师学生进行小组讨论,让学生通过合作学习,共同解决问题。
七年级数学下册《9.2 一元一次不等式》教案 (新版)新人教版
9.2 一元一次不等式一、教学目标1. 了解一元一次不等式的概念,掌握一元一次不等式的解法。
2. 类比一元一次方程的解法,将一元一次不等式逐步化简为x>a 或x<a 的形式二、教学重难点重点:一元一次不等式的解法难点: 解一元一次不等式的步骤三、教学过程(一)自主学习1.含有 ___未知数,未知数的次数是 ___的不等式,叫做一元一次不等式。
2.运用不等式的性质把下列不等式化为x>a 或x<a 的形式。
(1)x-7>26 (2)3x<2x+1 (3)32x>50 (4)-4x>3 (二)课堂点拨例1 解不等式3(1-x )<2(x +9),并把它的解集在数轴上表示出来. 解:去括号,得 ____________________移项,得 -3x -2x <18-3合并,得 -5x < 15系数化成1,得 x >-3这个不等式的解集在数轴上表示如下:(三)当堂训练(1)13412+<-x x (2)()()x x x 213352--≤+(3) 542321--≥-x x(四)归纳小结解法步骤有:移项、去括号、合并同类项、去分母、将系数化为1。
(五)布置作业 P124 2四、教学反馈(下课后填完,并交给科代表) 你对本节课的学习感受如何?请在合适的空格里打√,并说说你的困惑。
五、教学反思: -3 0一、教学目标1.会解一元一次不等式.2.会用不等式来表示实际问题中的不等关系.二、教学重难点一元一次不等式的解法,解一元一次不等式的步骤三、教学过程(一)自主学习例甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.顾客怎样选择商店购物能获得更大优惠?这个问题较复杂,从何处入手考虑它呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元而不超过100元,则在哪家商店购物花费小?为什么?(3)如果累计购物超过100元,那么在甲店购物花费小吗?(二)课堂点拨1.某校校长暑假将带领该校市级优秀学生乘旅行社的车去A市参加科技夏令营,甲旅行社说:“如果校长买全票一张,则其余学生可享受半价优惠”.乙旅行社说:“包括校长在内全部按全票的6折优惠”,若全票价为240元.(1)设学生数为x,甲旅行社收费为y甲,乙旅行社收费为y乙.分别计算两家旅行社的收费(建立表达式);(2)当学生数是多少时,两家旅行社的收费一样?(3) 就学生数x讨论哪家旅行社更优惠.2.某商店出售茶壶和茶杯,茶壶每只20元,茶杯每只5元,该商店有两种优惠办案:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款.现有一顾客需购买4只茶壶,茶杯若干只(不少于4只).请问:顾客买同样多的茶杯时,用哪一种优惠办法购买省钱?(三)当堂训练1.有一批货物,如月初售出,可获利1000元,并可将本利之和再去投资,到月末获1.5%的利息;如月末售出这批货,可获利1200元,但要付50元保管费.问这批货在月初还是月末售出好.2.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划用水超出部分每吨收费0.8元.如果单位自建水泵房抽水,每月需交500元管理费,另外每月一吨水再交0.28元,已知每抽一吨水需成本0.07元.问该单位是用自来水公司的水合算,还是自建水泵房抽水合算.(四)归纳小结(五)布置作业 P125 1-3题四、教学反馈(下课后填完,并交给科代表)五、教学反思:。
人教版七年级数学下册 :9.2一元一次不等式教案
9.2一元一次不等式第1课时一元一次不等式的解法学习目标1.理解一元一次不等式的概念;(重点)2.掌握一元一次不等式的解法.(重点、难点)教学过程一、情境导入1.不等式有几条性质?分别是什么?2.什么叫一元一次方程?2.解一元一次方程的一般步骤是什么?要注意什么?二、合作探究探究点一:一元一次不等式的概念问题1观察下面的不等式,它们有哪些共同特征?x-7>26 -4x>3归纳一元一次不等式的概念:①含有一个未知数;②未知数的最高次数为1;③不等式的两边都是关于未知数的整式的不等式叫做一元一次不等式。
问题2 一元一次不等式的识别下列不等式中,是一元一次不等式的是()A.5x-2>0 B.-3<2+1 xC.6x-3y≤-2 D.y2+1>2解析:选项A是一元一次不等式,选项B中含未知数的项不是整式,选项C中含有两个未知数,选项D中未知数的次数是2,故选项B,C,D都不是一元一次不等式.故选A.已知-13x2a-1+5>0是关于x的一元一次不等式,则a的值是________.解析:由-13x2a-1+5>0是关于x的一元一次不等式得2a-1=1,则a=1.故答案为1.探究点二:解一元一次不等式解下列不等式,并把解集在数轴上表示出来:(1)2x -3<x +13; (2)2x -13-9x +26≤1.解析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,然后在数轴上表示出来即可.解:(1)去分母,得3(2x -3)<x +1,去括号,得6x -9<x +1,移项,合并同类项,得5x <10,系数化为1,得x <2.不等式的解集在数轴上表示如下:(2)去分母,得2(2x -1)-(9x +2)≤6,去括号,得4x -2-9x -2≤6,移项,得4x -9x ≤6+2+2,合并同类项,得-5x ≤10,系数化为1,得x ≥-2.不等式的解集在数轴上表示如下:总结: 一元一次不等式的解法与一元一次方程的解法类似,其根据是不等式的基本性质,其步骤是:去分母、去括号、移项、合并同类项、将未知数的系数化为 1三.巩固提升1解下列不等式,并在数轴上表示解集< ≥2.已知不等式x +8>4x +m (m 是常数)的解集是x <3,求m 的值.解析:先解不等式x +8>4x +m ,再列方程求解.解:因为x +8>4x +m ,所以x -4x >m -8,所以-3x >m -8,所以x <-13(m -8).因为其解集为x <3,所以-13(m -8)=3,解得m =-1.方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集51541x x +>-2(5)3(5)x x +<-71-x 352+x 61+x 1452+-x的唯一性列方程求字母的值.解题过程体现了方程思想.四.归纳小结本节课你的收获是什么?1、不等式两边都是整式,含有一个未知数,未知数__次数是1_的不等式,叫做一元一次不等式.2.一元一次不等式的解法步骤:去分母,去括号,移项,合并同类项,系数化为1.五.板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:去分母去括号移项合并同类项系数化为1六.作业课后反思本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.在学习中要注意让学生自己发现错误,并能分析出错原因,以便在以后的学习中避免出错。
七年级数学下册9.2一元一次不等式教案(新版)新人教版
9.2 一元一次不等式一、教学目标【知识与技能】1.了解一元一次不等式的概念。
2.会解一元一次不等式,并能将其解集在数轴上表示出来。
【过程与方法】经历解一元一次方程和解一元一次不等式两种过程的比较,体会类比思想,发展学生的思维水平。
【情感态度与价值观】通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。
二、教学分析【教材分析】本节课是在学习了不等式性质的基础上来学习一元一次不等式,在初中阶段,不等式位于一次方程(组)之后,它是进一步探究显示世界数量关系的重要内容,前一节利用不等式的性质解简单的不等式,为系统学习一元一次不等式做好了铺垫。
【学生分析】学生已经对方程有了一定的认识,会用方程表示问题情境中的等量关系,会解一元一次方程,即对于方程的认识已经具备一定的积累,充分发挥心理学中正向迁移的积极作用,借助已有的对方程的认识,可以为进一步学习不等式提供一条合理的学习之路。
三、教学重难点【重点】一元一次不等式的概念【难点】一元一次不等式的解法四、教学过程【知识回顾】大家已经学习过一元一次方程的定义,你们还记得吗?只含有一个未知数,未知数的次数是一次,这样的方程叫做一元一次方程.【探究新知】大家可以根据一元一次方程的定义类推出一元一次不等式的定义吗?只含有一个未知数,未知数的次数是一次,这样的不等式叫做一元一次不等式.1、练一练下列不等式是一元一次不等式吗?(1)x-7>26;(2)3x<2y+1;(3)-4x²>3;(4)2X3>50;(5)1X>1.2、完善概念(1)不等式的两边都是整式;(2)只含有一个未知数;(3)未知数的次数是1.3、学习新知你会解下面的方程吗?2+X 2 =2X-13解一元一次方程的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)系数化为14、讲解新知例解不等式,并在数轴上表示解集.(1) 2(1+x)<3;(2)(1)2(1+x)<3解:去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .这个不等式的解集在数轴上的表示:(2)解:去分母,得 .去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .这个不等式的解集在数轴上的表示:注意:当不等式的两边都乘或除以同一个时,不等号的方向 .归纳:解一元一次方程,要根据等式的性质,将方程逐步化为的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为 (或 )的形式.5、解一元一次不等式的过程和解一元一次方程的过程有什么关系?联系:两种解法的步骤相似.区别:(1)一元一次不等式两边都(或除以)同一个负数时,不等号的方向改变;而方程两边乘(或除以)同一个负数时,等号不变.(2)一元一次不等式有无限多个解,而一元一次方程只有一个解.【当堂训练】解不等式,并在数轴上表示解集(1)-3x+12≤0;(2)【课堂小结】1、一元一次不等式概念只含有一个未知数,未知数的次数是一次,这样的不等式叫做一元一次不等式.2、解一元一次不等式的步骤:(1)去分母(同乘负数时,不等号方向改变)(2)去括号(3)移项(4)合并同类项(5)系数化为 1(同乘或除以负数时,不等号方向改变)【课后作业】解下列不等式,并将解集在数轴上表示出来(1) 1∕2(x—1)<1∕3—2x(2)(x—5)≥0【板书设计】1、一元一次不等式的概念2、一元一次不等式的解法。
人教版七年级下册9.2一元一次不等式课程设计
人教版七年级下册9.2一元一次不等式课程设计一、教学目标1.了解一元一次不等式的概念及其解法;2.掌握一元一次不等式的图像表示方法;3.运用一元一次不等式解决实际问题;4.培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1.一元一次不等式的概念;2.一元一次不等式的解法;3.一元一次不等式的图像表示方法;4.一元一次不等式解决实际问题。
三、教学重难点1. 教学重点1.理解一元一次不等式的概念;2.掌握一元一次不等式的解法;3.运用一元一次不等式解决实际问题。
2. 教学难点1.一元一次不等式的图像表示方法;2.如何将实际问题转化为一元一次不等式。
四、教学方法1.探究式教学法;2.情境教学法;3.合作学习法;4.归纳演绎法。
五、教学步骤1. 导入(5分钟)1.回顾一元一次方程的解法。
2.引入一元一次不等式的概念。
2. 概念讲解(10分钟)1.讲解一元一次不等式的概念并举例说明。
2.讲解一元一次不等式的解法。
3. 解题实践(30分钟)1.给学生提供一些简单的练习题让他们进行解题实践。
2.对于有些学生解题能力有限,可以通过合作学习的方式让他们互相帮助解决问题。
4. 图像表示方法(10分钟)1.讲解一元一次不等式的图像表示方法。
2.举例说明图像表示方法的应用。
5. 实际问题解答(20分钟)1.讲解如何将实际问题转化为一元一次不等式。
2.给学生提供一些实际问题让他们尝试解答。
6. 总结(5分钟)1.总结一元一次不等式的概念及其解法。
2.强调一元一次不等式在实际问题中的应用。
六、板书设计概念解法图像表示方法实际问题解答一元一次不等式相加相减法、代入法直线或半平面表示将实际问题转化为一元一次不等式七、课后作业1.完成课堂练习题;2.搜集一元一次不等式在实际生活中的应用并加以分析;3.思考如何解决复杂的一元一次不等式。
八、教学反思此次课程设计采用了探究式教学法、情境教学法、合作学习法、归纳演绎法等多种教学方法,能够有效地调动学生的主动性和积极性。
人教版七年级下册9.2一元一次不等式教学设计
人教版七年级下册9.2一元一次不等式教学设计一、教学目标•理解一元一次不等式的基本概念和性质。
•掌握一元一次不等式的解法。
•应用一元一次不等式解决实际问题。
二、教学重点难点•重点:掌握一元一次不等式的解法。
•难点:应用一元一次不等式解决实际问题。
三、教学内容本节课主要内容包括以下三点:1.一元一次不等式的定义与性质;2.一元一次不等式的解法及其应用;3.实际问题的解题方法。
四、教学过程1. 课前导入通过引入“小明要买彩票”的例子,引导学生思考不等式的概念和意义。
2. 知识点讲解1.一元一次不等式的定义与性质在引导学生回顾等式的基础上,介绍不等式的概念,即不等式是一个数学关系式,它比较了两个数的大小关系,使用不等号表示。
接着,讲解一元一次不等式的定义,即一次的不等式,其中变量的最高次数为1。
再讲解一元一次不等式的性质,如同号相乘得正、异号相乘得负等,通过例题让学生深入理解。
2.一元一次不等式的解法及其应用介绍一元一次不等式的解法,包括加减法解法和代值法解法。
并以例题解释和演示两种解法,并引导学生通过练习掌握解题方法。
在掌握解法的基础上,进一步讲解一元一次不等式在实际问题中的应用。
例如:计算某款手机售价优惠后可接受的价格范围,或者计算某篮球队员每场比赛得分的最大值和最小值等。
3. 拓展练习针对不同层次的学生,设置不同类型的拓展题目,既考查基础知识,又能在拓展中体现创新思维和解决问题的能力。
4. 作业布置针对课上内容,布置相应的练习题目,让学生进行复习巩固。
五、教学方式和方法本课程采用多种教学方法,如讲解、演示、练习、互动交流等,让学生在参与中掌握知识和技能。
六、教学评估教师在课堂上进行学生的评估,包括课堂讨论、小组合作、个人表现等多个维度的考虑。
并通过作业的阅读、批改和反馈,再次检验学生的掌握程度。
七、教学参考及资源•《人教版初中数学7年级下册》教材;•PowerPoint或板书,让学生更加直观地理解知识;•练习题集,提供足够的练习机会,加强学生对不等式的掌握。
人教版七年级数学下册:9.2一元一次不等式教案
一、教学内容
人教版七年级数学下册第9章第2节:一元一次不等式。本节课将围绕以下内容展开:
1.了解不等式的概念,掌握一元一次不等式的定义。
2.学习一元一次不等式的解法,包括移项、合并同类项等基本操作。
3.掌握不等式两边同时乘以或除以同一个正数、负数的规则。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启Байду номын сангаас他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次不等式的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次不等式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
对于实际问题,如“小明比小华高7厘米,小华的身高是x厘米,小明比小华高”,教师需要指导学生如何将“小明比小华高”这个条件转化为不等式x + 7 > x,并解释这里的不等关系。
在不等式组的处理中,如解集{x | 2 < x < 5},需要明确指出这是两个不等式2 < x和x < 5的交集,并且强调解集是开区间,不包括2和5。教师需通过具体示例和图示来帮助学生理解这一概念。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
人教版七年级下册 9.2 一元一次不等式教案
9.2 一元一次不等式第1课时 解一元一次不等式教学目的知识与技能1.体会一元一次不等式的形成过程.2.会解简单的一元一次不等式,并能在数轴上表示出解集.教学重点在一元一次不等式建立模型的根底上,理解什么是一元一次不等式.教学的过程中,要让学生通过回忆、观察、考虑,归纳出一元一次不等式的概念,并与以前学过的一元一次方程等概念加以比拟,进一步加深对这些概念的理解.教学难点体会不等式的作用,训练解不等式的技能.教学过程一、情景导入前面我们已经学习了不等式及其相关概念,下面请同学们完成下面的题目.1.写出以下各不等式的解集.(1)x +3>6; (2)x +5≥9;(3)x +7<15; (4)x -1≤9.2.化简:(1)3x ≤4________(不等式的性质________);(2)x -7≥-3________(不等式的性质________).二、新课教授师:观察以下不等式:x -7>26,3x <2x -1,23x>50,-4x>3.它们有哪些共同特征? 生:它们都只含有一个未知数,并且未知数的次数是1.师:答复得很好.类似于一元一次方程,含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.通过前面的学习,同学们知道不等式x -7>26的解集是多少吗? 生:x>33.师:是怎么解的呢?生:这个解集是通过“不等式两边都加7,不等号的方向不变〞得到的.这相当于由x -7>26得x>26+7,这就是说,解不等式时也可以“移项〞,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.师:一般地,利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.【例】 解以下不等式,并在数轴上表示解集:(1)2(1+x)<3; (2)2+x 2≥2x -13. 解:(1)去括号,得2+2x <3.移项,得2x <3-2.合并同类项,得2x <1.系数化为1,得x <12. 这个不等式的解集在数轴上的表示如下图.(2)去分母,得3(2+x)≥2(2x -1).去括号,得6+3x ≥4x -2.移项,得3x -4x ≥-2-6.合并同类项,得-x ≥-8.系数化为1,得x ≤8.这个不等式的解集在数轴上的表示如下图.三、稳固练习解以下不等式,并在数轴上表示它们的解集.1.2(1-x)<x -2.2.11-3x ≥2(x -2).3.x -4≥3(x +2).【答案】 数轴略 1.x >432.x ≤33.x ≤-5. 四、课堂小结在本节课的教学过程中,让学生通过与一元一次方程的解法进展类比,主动探求一元一次不等式的解法.结合等式与不等式根本性质的差异,找出方程与不等式解法中的不同之处,对于不等式的解有无数多个,学生不易理解,教学中给学生足够的时间进展交流和讨论,帮助学生理解,用数轴表示不等式的解集是数形结合的详细表达.教学反思本节课的教学重点是探求一元一次不等式的解法,并能准确地在数轴上表示不等式的解集.在技能形成初期,我让学生按照一般步骤,按照标准的格式做一些标准练习,养成良好的解题习惯,使他们认识到在数轴上表示不等式的解集时,要标准空心圈与实心点的使用,理解它们在表示不等式解集时的差异.第2课时 一元一次不等式的应用教学目的知识与技能1.会从实际问题中抽象出数学模型.2.会用一元一次不等式解决实际问题.教学重点寻找实际问题中的不等关系,建立数学模型.教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.教学过程一、情景导入我们知道,在消费和生活中存在大量的等量关 系,与此同时,我们也看到在消费和生活中存在着大 量的不等关系,解决这些问题,用不等式比拟方便. 某学校方案购置假设干台电脑,现从两家商店理解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.假如你是校长,你会怎么考虑? 如何选择?二、新课教授1.分组活动.先让学生独立考虑,理解题意.再在 组内交流,发表自己的观点.最后小组汇报,派代表论 述理由.2.在学生充分发表意见的根底上,师生共同归纳 出以下三种采购方案:(1)什么情况下,到甲商场购置更优惠?(2)什么情况下,到乙商场购置更优惠?(3)什么情况下,两个商场收费一样?3.我们先来考虑方案(1):设购置x 台电脑时,到甲商场购置更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的根底上,老师归纳并板书如 下:解:设购置x 台电脑时,到甲商场购置更优惠, 那么6000+6000(1-25%) (x -1)<6000(1-20%)x ,去括号,得6000+4500x -4500<4800x ,移项、合并同类项,得-300x<-1500,不等式两边同除以-300,得x>5.∴购置5台以上的电脑时,甲商场更优惠.4.让学生自己完成方案(2)与方案(3),并汇报完 成的情况,老师最后做适当点评.三、例题讲解【例1】 去年某市空气质量良好(二级以上)的天数与全年天数(365)之比到达60%,假如明年(365天)这样的比值要超过70%,那么明年空气质量良好的天数要比去年至少增加多少?分析:“明年这样的比值要超过70%〞指出了这个问题中蕴含的不等关系,转化为不等式,即明年空气质量良好的天数明年天数>70%. 解:设明年比去年空气质量良好的天数增加了x ,去年有365×60%天空气质量良好,明年有(x +365×60%)天空气质量良好,并且x +365×60%365>70%. 去分母,得x +219>255.5.移项、合并同类项,得x >36.5.由x 应为正整数,得x ≥37.∴明年要比去年空气质量良好的天数至少增加37,才能使这一年空气质量良好的天数超过全年天数的70%.【例2】甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的局部按90%收费;在乙商场累计购物超过50元后,超出50元的局部按95%收费.顾客到哪家商场购物花费少?分析:在甲商场购物超过100元后享受优惠,在乙商场购物超过50元后享受优惠.因此,我们需要分三种情况讨论:(1)累计购物不超过50元;(2)累计购物超过50元而不超过100元;(3)累计购物超过100元.解:(1)当累计购物不超过50元时,在甲、乙两商场购物都不享受优惠,且两商场以同样价格出售同样的商品,因此到两商场购物花费一样.(2)当累计购物超过50元而不超过100元时,享受乙商场的购物优惠,不享受甲商场的购物优惠,因此到乙商场购物花费少.(3)当累计购物超过100元时,设累计购物x(x>100)元.①假设到甲商场购物花费少,那么50+0.95(x-50)>100+0.9(x-100).解得x>150.这就是说,累计购物超过150元时,到甲商场购物花费少.②假设到乙商场购物花费少,那么50+0.95(x-50)<100+0.9(x-100).解得x<150.这就是说,累计购物超过100元而不到150元时,到乙商场购物花费少.③假设50+0.95(x-50)=100+0.9(x-100).解得x=150.这就是说,累计购物为150元时,到甲、乙两商场购物花费一样.四、课堂小结用一元一次不等式解决实际问题与用一元一次方程解决实际问题一样,要将实际问题通过列一元一次不等式转化为数学问题,然后通过解决数学问题来解决实际问题.教学反思本节课通过丰富的实际情境,让学生体会到现实生活中存在着大量的不等关系,并理解到在解决某些问题时,用不等式较方便.教学中,利用例题让学生掌握了从实际问题中抽象出数学模型的方法,从而让学生认识到一元一次不等式在实际生活中的应用价值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学难点
解一元一次不等式
教学方法
启发式
教学用具
多媒体
课时安排
1
教 学 内 容
设计与反思
板书设计:
9.2.1一元一次不等式
一、复习
二、一元一次不等式
三、一元一次不等式的解法
教 学 内 容
设计与反思
一、式的性质
二、探索新知
3(☆)、已知不等式5(y-2)+8<6(y-1)+7的最小整数解为方程2y-ay=4的解,求a
四、归纳总结
1、通过本节课的学习,你有哪些收获?
2、通过本节课的学习,你还有哪些疑惑?
五、布置作业
六、教学效果
一元一次不等式
备课日期
课 型
新授课
教
学
目
标
知识与技能
1、一元一次不等式的概念
2、会解一元一次不等式并能将其解集在数轴上表示出来
过程与方法
1、经历解一元一次方程和解一元一次不等式两种过程的比较,体
会类比思想,发展学生的思维过程。
情感态度
与价值观
通过一元一次不等式的学习,培养学生认真坚持等良好学习习惯
教学重点
(1)6x-5<2x-7 (2)8x-122(3+4x)
(3)1-x
例2如果 的值不小于 ,那么 的取值范围是多少?
练习当x取什么值时,代数式2x- 的值不超过1?
【能力提升】1、求不等式2(x-2)<6-3x的正整数解。
2(☆)、如果不等式4y-n<0的正整数解是1,2,3.那么n的取值范围是:______________
1、复习:什么是一元一次方程?
等号两边都是整式,且都只含有_1__个未知数,未知数的次数都是___1__,这样的方程叫做一元一次方程.
2、问题1:下列不等式有什么共同的特征?
(1)x>4 (2)3y>30 (3)1.5a+12≤0.5a+1
上述不等式有什么共同特点?
问题1:什么是一元一次不等式?
不等号两边都是整式,且都只含有_1__个未知数,未知数的次数都是___1__,这样的方程叫做一元一次不等式.
3、解方程(1) (2)
学生动手解上述一元一次方程,回顾解一元一次方程的步骤以及注意事项。
问题:上节课我们以及学会了解简单的一元一次不等式,那么你是否会解类似的一元一次不等式呢?
例1 解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3
(2)≥
【即时小结】注意:当不等式的两边都乘或除以同一个负数时,不等号的方向改变.归纳:解一元一次方程,要根据等式的性质,将方程逐步化为 的形式;而解一元一次不等式,则要根据不等式的性质,将不等
式逐步化为x<a或( x>a)的形式.
三、强化训练,熟练技能
1、解不等式12-6x≥—2(2-x),并把它的解集在数轴上表示出来。
解:去括号,得12-6x≥______
移项,得≥________
合并同类项,得≥_________
系数化为1,得x2
这个不等式的解集在数轴上表示为:
2、解下列不等式,并把解集在数轴上表示出来