初中数学一元一次不等式及其性质1含答案

合集下载

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)

初中数学方程与不等式之一元一次方程专项训练解析含答案(1)一、选择题1.下面是一个被墨水污染过的方程: 11222x x -=-,答案显示此方程的解是x=-1,被墨水遮盖的是一个常数,则这个常数是( ) A .2B .﹣2C .﹣12D .12【答案】A【解析】【分析】 设被墨水覆盖的数是y ,将x=-1代入,解含有y 的方程即可得到答案.【详解】设被墨水覆盖的数是y ,则原方程为:11222x x y -=-, ∵此方程的解是x=-1,∴将x=-1代入得:11222y --=-- , ∴y=2,故选:A.【点睛】此题考查解一元一次方程,一元一次方程的解.2.一家商店将某款衬衫的进价提高40%作为标价,又以八折卖出,结果每件衬衫仍可获利15元,则这款衬衫每件的进价是( )A .120元B .135元C .125元D .140元【答案】C【解析】【分析】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据售价-进价=15元,列出方程解方程即可.【详解】设这款衬衫每件的进价是x 元,则标价为(1+40%)x 元,根据题意得: ()140%0.815x x +?=解得:x=125故选:C【点睛】 本题考查的是一元一次方程的应用-利润问题,把握进价、标价、售价及利润的关系是关键.3.某种商品的进价为每件180元,按标价的九折销售时,利润率为20%,这种商品每件的标价为()元.A.200 B.240 C.245 D.255【答案】B【解析】【分析】设这种商品的标价是x元,根据某种商品每件的进价为180元,按标价的九折销售时,利润率为20%可列方程求解.【详解】设这种商品的标价是x元,90%x﹣180=180×20%x=240这种商品的标价是240元.故选:B.【点睛】本题考查一元一次方程的应用,关键知道利润=售价﹣进价,根据此可列方程求解.4.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得5.某商品打七折后价格为a元,则原价为()A.a元B.107a元C.30%a元D.710a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=107a (元), 故选B .【点睛】 本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.关于x 的方程1514()2323mx x -=-有负整数解,则所有符合条件的整数m 的和为( )A .5B .4C .1D .-1 【答案】D【解析】【分析】先解方程,再利用关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,求整数m 即可. 【详解】 解方程15142323mx x ⎛⎫-=- ⎪⎝⎭去括号得,15122323mx x -=- 移项得,11522233mx x -=-, 合并同类项得11122m x ⎛⎫-=⎪⎝⎭, 系数化为1,2 (1)1x m m =≠-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解, ∴整数m 为0,-1.∴它们的和为:0+(-1)=-1.故选:D .【点睛】本题主要考查了一元一次方程的解,解题的关键是用m 表示出x 的值.7.关于x 的方程32x x a =+的解与3242x x -=的解相同,则a 的值为( ) A .2-B .2C .1-D .1【答案】B【解析】【分析】先求出第一个方程的解,再根据解的定义,把第一个方程的解代入第二个方程,得到关于a 的方程,即可求解.【详解】由32x x a =+,解得:x=a ,∵关于x 的方程32x x a =+的解与3242x x -=的解相同, ∴把x=a 代入3242x x -=得:3242a a -=, ∴a-2=0,解得:a=2.故选B .【点睛】本题主要考查解一元一次方程以及解的定义,掌握移项,去分母以及解的定义,是解题的关键.8.一个书包的标价为a 元,按八折出售仍可获利20%,该书包的进价为( ) A .23a B .34a C .45a D .56a 【答案】A【解析】【分析】设进价为x 元,根据题意可得820%10=-x a x ,解得23x a =,即为所求. 【详解】设进价为x 元 根据题意得:820%10=-x a x ∴41.25=x a ∴23x a = 故选:A【点睛】本题考查了一元一次方程的应用,理解题意,分清已知量和未知量,根据题目中的等量关系列出需要的代数式,进而列出方程,解所列的方程,求出未知数的值,检验所得的解是否符合实际问题的意义.9.一船由甲地开往乙地,顺水航行要4小时,逆水航行比顺水航行多用40分钟,已知船在静水中的速度为16千米/时,求水流速度. 解题时,若设水流速度为x 千米/时,那么下列方程中正确的是( )A .()()24164163x x ⎛⎫+=+- ⎪⎝⎭ B .()24164163x ⎛⎫⨯=+- ⎪⎝⎭C .()()()41640.416x x +=+-D .()24164163x ⎛⎫+=+⨯ ⎪⎝⎭ 【答案】A【解析】【分析】 由已知条件得到顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时,根据时间关系列方程即可.【详解】由题意得到:顺水航行的速度为(16+x )千米/时,逆水航行的速度为(16-x )千米/时, ∴()()24164163x x ⎛⎫+=+- ⎪⎝⎭, 故选:A.【点睛】此题考查一元一次方程的实际应用,正确理解顺水航行和逆水航行的速度是解题的关键.10.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】 本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.11.某车间有22名工人每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套 ,设有x 名工人生产螺钉,其他工人生产螺母,根据题意列出方程( )A .20001200(22)x x =-B .212002000(22)x x ⨯=-C .220001200(22)x x ⨯=-D .12002000(22)x x =- 【答案】B【解析】【分析】首先根据题目中已经设出每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,由1个螺钉需要配2个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程【详解】设每天安排x 个工人生产螺钉,则(22-x )个工人生产螺母,利用一个螺钉配两个螺母. 由题意得:2×1200x=2000(22-x ),故选:B .【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于根据题意列出方程.12.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是A .m ≥2B .m >2C .m <2D .m ≤2【答案】C【解析】试题分析:∵程x ﹣m+2=0的解是负数,∴x=m ﹣2<0,解得:m <2,故选C . 考点:解一元一次不等式;一元一次方程的解.13.足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了A .3场B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14-5-x )场,由题意得:3x+(14-5-x )=19,解得:x=5,即这个队胜了5场.故选C .此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.14.下列是等式133223xx--=的变形,其中根据等式的性质2变形的是()A.133232xx--=+B.3(13)322xx--= C.3(13)64x x--=D.3(13)46x x--=【答案】C【解析】【分析】根据等式的性质2将原方程两边同时乘以2加以变形化简即可.【详解】原方程133223xx--=两边同时乘以2可得:3(13)64x x--=,故选:C.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.15.某公园门票的收费标准如下:有两个家庭分别去该公园游玩,每个家庭都有5名成员,且他们都选择了最省钱的方案购买门票,结果一家比另一家少花40元,则花费较少的一家花了()元.A.300 B.260 C.240 D.220【答案】B【解析】【分析】根据题意,分情况讨论:若花费较少的一家的购票方案为5人团购,则另一家花费340元,据此组合验证是否能凑成整数张成人票和儿童票;若花费较少的一家的购票方案是成人票和儿童票分开购买,则可根据题意设未知数,列方程求解并验证.若花费较少的一家是60×5=300(元),则花费较多的一家为340元,经检验可知,成人和儿童共5张票无法组合成340元.设花费较少的一家花了x 元,则另一家花了40x +元,根据题意得:40=605x +⨯解得:260x =检验可知,该家庭有1个成人,4个儿童,共花费100+40×4=260(元);故选:B .【点睛】本题考查一元一次方程应用,理清题意,找准等量关系,正确列出方程是解题关键.16.下列等式的变形中,正确的有( )①由53x =得53x =;②由a=b 得,-a=-b ;③由a b c c =得a b =;④由m n =得m 1n = A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】本题需先根据等式的性质对每一选项灵活分析,即可得出正确答案.【详解】①若53x =,则35x =故本选项错误 ②若由a=b 得,-a=-b ,则-a=-b 故本选项正确③由a b c c=,说明c ≠0,得a b =故本选项正确 ④若m n =≠0时,则m 1n=故本选项错误 故选:B【点睛】 本题考查了等式的基本性质,在已知等式等号两边同时加减或乘除等式是否仍然成立.17.一件商品以进价120%的价格标价,后又打八折出售,最后这件商品是( ) A .赚了 B .亏了 C .不赚不亏 D .不确定盈亏【答案】B【解析】【分析】设这件商品进价为a 元,根据题意求得标价为120%a 元,打八折后的售价为0.96a ,比较即可解答.【详解】设这件商品进价为a元,则标价为120%a元,打八折后的售价为120%a×80%=0.96a.∵a>0.96a,∴这件商品亏了,亏了0.04a元.故选B.【点睛】本题考查了一元一次方程的应用,熟知售价、进价、利润之间的关系是解决问题的关键.18.已知∠1:∠2:∠3=2:3:6,且∠3比∠1大60°,则∠2=()A.10°B.60°C.45°D.80°【答案】C【解析】【分析】根据∠1:∠2:∠3=2:3:6,则设∠1=2x,∠2=3x,∠3=6x,再根据∠3比∠1大60°,列出方程解出x即可.【详解】解:∵∠1:∠2:∠3=2:3:6,设∠1=2x,∠2=3x,∠3=6x,∵∠3比∠1大60°,∴6x-2x=60,解得:x=15,∴∠2=45°,故选C.【点睛】本题是对一元一次方程的考查,准确根据题意列出方程是解决本题的关键.19.若方程组5133x y ax y a-=+⎧⎨+=-⎩的解x与y的差为3,则a的值为()A.0B.7C.7-D.8【答案】B【解析】【分析】先利用加减消元法解方程组得到37838axay-⎧=⎪⎪⎨+⎪=-⎪⎩,再根据已知条件列出关于参数a的方程,然后解一元一次方程即可得解.【详解】解:∵5133x y a x y a -=+⎧⎨+=-⎩①② ②-①×3得,38a y +=-①+②×5得,378a x -= ∴方程组的解为:37838a x a y -⎧=⎪⎪⎨+⎪=-⎪⎩∵方程组5133x y a x y a -=+⎧⎨+=-⎩的解x 与y 的差为3,即3x y -= ∴373388a a -+⎛⎫--= ⎪⎝⎭∴7a =.故选:B【点睛】本题考查了解含参数的二元一次方程组、列一元一次方程并解一元一次方程,能得到关于参数a 的方程是解决问题的关键.20.下列等式变形正确的是( )A .如果0.58x =,那么x=4B .如果x y =,那么-2-2x y =C .如果a b =,那么a b c c = D .如果x y =,那么x y = 【答案】B【解析】【分析】等式两边同时加上或减去同一个数,等式依然成立;等式两边同时除以一个不为0的数,等式依然成立;两个数的绝对值相等,其本身不一定相等,据此逐一判断即可.【详解】A :如果0.58x =,那么16x =,故选项错误;B :如果x y =,那么22x y -=-,故选项正确;C :如果a b =,当0c ≠时,那么a b c c=,故选项错误; D :如果x y =,那么x y =±,故选项错误;故选:B.【点睛】本题主要考查了等式的性质,熟练掌握相关概念是解题关键.。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。

中考专题复习-一元一次方程(组)含答案

中考专题复习-一元一次方程(组)含答案

中考数学总复习-方程与不等式一次方程(组)【基础知识回顾】一、等式的概念及性质:1、等式:用“=”连接表示关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减)所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以(除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b(c≠o)那么a c =【名师提醒:①用等式性质进行等式变形,必须注意“都",不能漏项②等式两边都除以一个数或式时必须保证它的值】二、方程的有关概念:1、含有未知数的叫做方程2、使方程左右两边相等的的值,叫做方程的组3、叫做解方程4、一个方程两边都是关于未知数的,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是的方程叫做一元一次方程,一元一次方程一般可以化成的形式。

2、解一元一次方程的一般步骤:1。

2。

3。

4。

5。

【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意.】四、二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b 。

c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解2、二元一次方程组的解应写成五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【名师提醒:1、列方程(组)解应用题的关键是: 2、几个常用的等量关系:①路程= × ②工作效率= 】 【重点考点例析】考点一:二元一次方程组的解法对应训练 1.(2016•湘西州)解方程组: 213211x y x y +=⎧⎨-=⎩①②. .x=a y=b 的形式考点二:一(二)元一次方程的应用例2 (2016•齐齐哈尔)假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案()A.5种B.4种C.3种D.2种故选:C.例3 (2016•张家界)为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2。

八年级一元一次不等式(教师讲义带答案).

八年级一元一次不等式(教师讲义带答案).

第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

4、求不等式的解集的过程,叫做解不等式。

5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

3、求不等式组的解集的过程,叫做解不等式组。

4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)

专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。

2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。

(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。

(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。

备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

【中考数学】一元一次不等式易错压轴解答题试题(附答案)

【中考数学】一元一次不等式易错压轴解答题试题(附答案)

【中考数学】一元一次不等式易错压轴解答题试题(附答案)一、一元一次不等式易错压轴解答题1.阅读理解:定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“子方程”.例如:的解为,的解集为,不难发现在的范围内,所以是的“子方程”.问题解决:(1)在方程① ,② ,③ 中,不等式组的“子方程”是________;(填序号)(2)若关于x的方程是不等式组的“子方程”,求k的取值范围;(3)若方程,都是关于x的不等式组的“子方程”,直接写出m的取值范围.2.先阅读理解下面的例题,再按要求解答:例题:解不等式(x+5)(x-5)>0解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得x>5,解不等式组②得x<-5,所以不等式的解集为x>5或x<-5。

(1)求不等式x²-2x-3<0的解集。

(2)求不等式的解集。

3.(1)①如果 a-b<0,那么 a________b;②如果 a-b=0,那么 a________b;③如果 a-b>0,那么 a________b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来.(3)用(1)的方法你能否比较3x2-3x+7与4x2-3x+7的大小?如果能,请写出比较过程.4.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:5.某公园的门票每张20元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该公园除保留原来的售票方法外,还推出了一种“购买个人年票”(个人年票从购买日起,可供持票者使用一年)的售票方法.年票分A,B,C三类,A类年票每张240元,持票进入该园区时,无需再购买门票;B类年票每张120元,持票者进入该园区时,需再购买门票,每次4元;C类年票每张80元,持票者进入该园区时,需再购买门票,每次6元. (1)如果只能选择一种购买年票的方式,并且计划在一年中花费160元在该公园的门票上,通过计算,找出可进入该园区次数最多的方式.(2)一年中进入该公园超过多少次时,A类年票比较合算?6.为了响应“绿水青山就是金山银山”的环保建设,提高企业的治污能力某大型企业准备购买A,B两种型号的污水处理设备共8台,若购买A型设备2台,B型设备3台需34万元;购买A型设备4台,B型设备2台需44万元.(1)求A,B两种型号的污水处理设备的单价各是多少?(2)已知一台A型设备一个月可处理污水220吨,B型设备一个月可处理污水190吨,若该企业每月处理的污水不低于1700吨,请你为该企业设计一种最省钱的购买方案.7.如图,正方形ABCD的边长是2厘米,E为CD的中点.Q为正方形ABCD边上的一个动点,动点Q以每秒1厘米的速度从A出发沿A→B→C→D运动,最终到达点D,若点Q运动时间为x秒(1)当x=时,S△AQE=________平方厘米;当x= 时,S△AQE=________平方厘米(2)在点Q的运动路线上,当点Q与点E相距的路程不超过厘米时,求x的取值范围。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。

2020-2021初中数学方程与不等式之一元一次方程知识点训练含答案(1)

2020-2021初中数学方程与不等式之一元一次方程知识点训练含答案(1)

2020-2021初中数学方程与不等式之一元一次方程知识点训练含答案(1)一、选择题1.某学校,安排50人打扫校园卫生,20人拉垃圾,后因两边的人手不够,又增派30人去支援,结果打扫卫生的人数是拉垃圾人数的3倍,若设支援打扫卫生的同学有x 人,则下列方程正确的是( )A .50+x =3×30B .50+x =3×(20+30-x)C .50+x =3×(20-x)D .50+x =3×20【答案】B【解析】【分析】可设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,根据题意可得题中存在的等量关系:原来打扫卫生的人数+支援打扫卫生的人数=3×(原来拉垃圾的人数+支援拉垃圾的人数),根据此等量关系列出方程即可.【详解】解:设支援打扫卫生的人数有x 人,则支援拉垃圾的人数有(30﹣x )人,依题意有 50+x =3[20+(30﹣x )],故选:B .【点睛】本题考查了一元一次方程的应用,列方程解应用题的关键是找出题目中的相等关系,有的题目所含的等量关系比较隐蔽,要注意仔细审题,耐心寻找.2.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A .赚16元B .赔16元C .不赚不赔D .无法确定 【答案】B【解析】【分析】要知道赔赚,就要算出两件衣服的进价,再用两件衣服的进价和两件衣服的售价作比较,即可得出答案.【详解】解:设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =; 设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元,所以卖这两件衣服总共赔了4024=16-(元).故选B.【点睛】本题考查了一元一次方程的应用,正确理解题意,计算出两件物品的原价是解题的关键.3.小明在某个月的日历中圈出三个数,算得这三个数的和为36,那么这三个数的位置不可能是()A.B.C.D.【答案】C【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+1+x+8=36,x=9.故本选项可能.B、设最小的数是x.x+x+8+x+16=36,x=4,故本选项可能.C、设最小的数是x.x+x+8+x+2=36,x=263,不是整数,故本项不可能.D、设最小的数是x.x+x+1+x+2=36,x=11,故本选项可能.因此不可能的为C.故选:C.【点睛】此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.锻炼了学生理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.4.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为()A.5 B.4 C.3 D.2【答案】B【解析】分析:可设两人相遇的次数为x,根据每次相遇的时间100254⨯+,总共时间为100s,列出方程求解即可.详解:设两人相遇的次数为x ,依题意有 100254⨯+x=100, 解得x=4.5,∵x 为整数,∴x 取4.故选B .点睛:考查了一元一次方程的应用,利用方程解决实际问题的基本思路如下:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.5.如图,有一内部装有水的直圆柱形水桶,桶高20dm ;另有一直圆柱形的实心铁柱,柱高30dm ,直立放置于水桶底面上,水桶内的水面高度为12dm ,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为( )A .4.5dmB .6dmC .8dmD .9dm【答案】D【解析】【分析】 由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),水桶底面积为4a(dm 2),于是得到水桶底面扣除铁柱底面部分的环形区域面积为4a-a=3a(dm 2),,根据原有的水量为3a×12=36a (dm 3),列出方程,即可得到结论.【详解】∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=4:1,设铁柱底面积为a(dm 2),则水桶底面积为4a(dm 2),∴水桶底面扣除铁柱底面部分的环形区域面积为4a−a=3a(dm 2),∴原有的水量为:3a×12=36a (dm 3),设水桶内的水面高度变为xdm ,则4ax=36a ,解得:x=9,∴水桶内的水面高度变为9dm .故选D .【点睛】本题主要考查用一元一次方程解决圆柱体的等积变形问题,掌握圆柱体的体积公式是解题的关键.6.8×200=x+40解得:x=120答:商品进价为120元.故选:B.【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键.7.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100【答案】B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得8.若关于x的方程(m-3)x|m|-2 -m+3=0是一元一次方程,则m的值为()A.m=3 B.m=-3 C.m=3或-3 D.m=2或-2【答案】B【解析】【分析】根据一元一次方程的定义得到|m|-2=1且m-3≠0,解得m的取值范围即可..【详解】解:有题意得:|m|-2=1且m-3≠0,解得m=-3,故答案为B.【点睛】本题考查了一元一次方程的概念和解法.掌握一元一次方程的未知数的指数为1且一次项系数不等于0是解答本题的关键.9.甲、乙两人环湖竞走,环湖一周为400米,乙的速度是80米/分,甲的速度是乙的5 4倍,且甲在乙前100米处,多少分钟后,两人第一次相遇?设经过x分钟两人第一次相遇,所列方程为()A.580100804x x+=⨯B.580300804x x+=⨯C.580100804x x-=⨯D.580300804x x-=⨯【答案】B【解析】【分析】根据题意表示出甲的速度为80×54米/分,然后根据题意可得等量关系:甲x 分钟的路程-乙x 分钟的路程=400-100,根据等量关系列出方程即可.【详解】解:设经过x 分钟两人第一次相遇,由题意得: 80×54x-80x=400-100, 变形得:80x+300=54×80x , 故选:B .【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是正确理解题意,找出题目中等量关系,列出方程.10.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程.11.在《九章算术》方田章“圆田术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种无限与有限的转化的思想,比如在234111112222+++++…中,“…”代表按规律不断求和,设234111112222x +++++⋅⋅⋅=.则有112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地2461111333++++⋅⋅⋅的结果为( )A .43B .98C .65D .2【答案】B【解析】【分析】 设2461111333x ++++⋅⋅⋅=,仿照例题进行求解. 【详解】 设2461111333x ++++⋅⋅⋅=, 则246224611111111113333333⎛⎫++++⋅⋅⋅=+++++⋅⋅⋅ ⎪⎝⎭, 2113x x ∴=+, 解得,98x =, 故选B .【点睛】 本题考查类比推理,一元一次方程的应用,理解题意,正确列出方程是解题的关键.12.下列方程的变形中正确的是( )A .由567x x +=-得675x x -=-B .由2(1)3x --=得223x --=C .由310.7x -=得1030107x -= D .由139322x x +=--得212x =- 【答案】D【解析】【分析】根据解一元一次方程的一般步骤对各选项进行逐一分析即可.【详解】A .由567x x +=-得675x x -=--,故错误;B .由2(1)3x --=得223x -+=,故错误;C .由310.7x -=得103017x -=,故错误; D .正确.故选:D .【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解答此题的关键.13.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元【答案】C【解析】【分析】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得:135-x=25%x;y-135=25%y ;求出成本可得.【详解】设盈利上衣成本x 元,亏本上衣成本y 元,由题意得135-x=25%xy-135=25%y解方程组,得x=108元,y=180元135+135-108-180=-18亏本18元故选:C【点睛】考核知识点:一元一次方程的运用.理解题意,列出方程是关键.14.《算法统宗》是我国明代数学家程大位的一部著作.在这部著作中,许多数学问题都是以诗歌的形式呈现.“以碗知僧”就是其中一首。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式及其性质1一.选择题(共35小题)1.下列式子,其中不等式有()①2>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.A.1个B.2个C.3个D.4个2.下列数学表达式中是不等式的是()A.a=6B.x﹣2y C.3x﹣6>0D.83.下列各式中:①﹣5<7;②3y﹣6>0;③a=6;④2x﹣3y;⑤a≠2;⑥7y﹣6>y+2,不等式有()A.2个B.3个C.4个D.5个4.给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.2个5.①3>0;②4x+y≤1;③x+3=0;④y﹣7;⑤m﹣2.5>3.其中不等式有()A.1个B.2个C.3个D.4个6.如果a>b,那么下列不等式中正确的是()A.2a+3>2b+3B.5a<5b C.D.a﹣2<b﹣2 7.已知a、b、c是实数,且a>b,则以下四个式子中,正确的是()A.ac>bc B.﹣2a>﹣2b C.D.﹣1+a>﹣1+b 8.已知a>b,则下列不等式不成立的是()A.3a>3b B.b+3<a+3C.﹣a>﹣b D.3﹣2a<3﹣2b 9.若x>y,则下列式子错误的是()A.x﹣3>y﹣3B.>C.﹣2x<﹣2y D.3﹣x>3﹣y 10.若a<b,则下列各式中不一定成立的是()A.a﹣1<b﹣1B.3a<3b C.﹣a>﹣b D.ac<bc11.小东去批发市场购买了甲糖果20斤,价格为每斤x元;又购买了乙糖果10斤,价格为每斤y元.后来,他以每斤元全部卖出后,发现自己赔钱了.则下列判断正确的是()A.x=y B.x>yC.x<y D.x、y的大小关系不确定12.若x<y成立,则下列不等式成立的是()A.x﹣2<y﹣2B.4x>4y C.﹣x+2<﹣y+2D.﹣3x<﹣3y 13.若a>b,则下列结论不一定成立的是()A.a﹣1>b﹣1B.C.a2>b2D.﹣2a<﹣2b 14.已知a=b≠0,则()A.=B.=C.a|c+1|>b|c+2|D.a+c>b﹣c 15.以下说法中正确的是()A.若a>b,则ac2>bc2B.若a>|b|,则a2>b2C.若a>b,则D.若a>b,c>d,则a﹣c>b﹣d 16.已知a>b,下列不等式错误的是()A.a+2>b+2B.a﹣1>b﹣1C.D.﹣3a<﹣3b 17.在数轴上表示不等式﹣2≤x<4,正确的是()A.B.C.D.18.满足﹣2<x≤1的数在数轴上表示为()A.B.C.D.19.不等式组的解集在数轴上表示为()A.B.C.D.20.已知不等式组的解集如图所示(原点没标出,数轴单位长度为1),则a 的取值为()A.2B.3C.4D.521.不等式组﹣3<x≤1的解集在数轴上表示正确的是()A.B.C.D.22.函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.23.已知x=3是关于x的不等式3x﹣的一个解,求a的取值范围为()A.a>3B.a<3C.a<4D.a>424.满足﹣1≤x<1的数在数轴上表示为()A.B.C.D.25.已知不等式组的解集是x<﹣3,则m的取值范围是()A.m>﹣3B.m≥﹣3C.m<﹣3D.m≤﹣3 26.不等式4(x﹣2)≥2(3x﹣5)的正整数解有()A.3个B.2个C.1个D.0个27.关于x的一元一次方程x+m﹣2=0的解是负数,则m的取值范围是()A.m>2B.m<2C.m>﹣2D.m<﹣2 28.不等式3x﹣5<3+x的自然数解有()A.1个B.2个C.3个D.4个29.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=230.把不等式2﹣x<1的解集在数轴上表示正确的是()A.B.C.D.31.下列各数,是不等式x+2>5的解的是()A.3.5B.﹣3C.3D.﹣232.若不等式(a+1)x>a+1的解是x<1,那么a满足()A.a<0B.a>﹣1C.a<﹣1D.a<133.下列各式中,是一元一次不等式的是()A.5﹣3<8B.2x﹣1<C.≥8D.+2x≤18 34.方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1B.a>1C.a<2D.a>235.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为()A.m=0B.x<﹣3C.x>﹣3D.m≠2二.填空题(共10小题)36.不等式组的解集为x>2,则a的取值范围是______.37.若关于x的不等式组无解,则a的取值范围______.38.如图,数轴上所表示的x的取值范围为______.39.如图,数轴上所表示的关于x的不等式是______.40.将数轴上x的范围用不等式表示:______.41.关于x的方程2x﹣2m=x+4的解为正数,则m的取值范围是______.42.“x的2倍与3的差是非负数,”用不等式表示为______.43.“y减去1不大于2”用不等式表示为:______.44.如图,在数轴上,点A,B分别表示数1,﹣2x+3.则x的取值范围是______.45.不等式3x﹣1>﹣4的最小整数解是______.三.解答题(共5小题)46.2015年7月7日,国务院办公厅发布《国务院办公厅关于同意山西省承办2019年第二届全国青年运动会的函》,本届运动会初步确定在2019年8月至9月份举办,历时8至10天,预计约有55个代表团参赛,为了让每位运动员在比赛之余能有一个较好的疗养锻炼的环境,二青会筹备委员会,决定从某公司采购甲、乙两种健身器材共800件,已知购买2件甲器材与3件乙器材的价格相同,购买3件甲器材比2件乙器材的价格多1500元.(1)每件甲乙两种器材各多少元?(2)若购买甲、乙两种器材的价格不超过54万元,则最多可购买甲种器材多少件?47.庞老师和冯老师准备整理一批数学试卷.冯老师单独整理需要50分钟完成;若庞老师和冯老师共同整理30分钟后,庞老师需再单独整理30分钟才能完成.(1)求庞老师单独整理需要多少分钟完成;(2)若冯老师因工作需要,他的整理时间不超过30分钟,则庞老师至少整理多少分钟才能完成?48.妈妈在超市购买两种优质水果.先购买了2千克甲水果和3千克乙水果,共花费90元;后又购买了1千克甲水果和2千克乙水果,共花费55元.(每次两种水果的售价都不变)(1)求甲水果和乙水果的售价分别是每千克多少元;(2)如果还需购买两种水果共12千克,要求费用不超过200元,那么甲水果至少购买多少千克?49.(1)解方程组:(2)解不等式2(x+1)﹣1≥3x+2.并把它的解集在数轴上表示出来.50.某文化用品店出售书包和文具盒,书包每个定价50元,文具盒每个定价8元,该店制定了两种优惠方案.方案一:买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时,顾客只能选用其中的一种方案.某学校为给学生发奖品,需购买10个文具盒,书包若干(大于0且不多于10个).设书包个数为x(个),付款金额为y(元).(1)分别写出两种优惠方案中y与x之间的关系式:方案一:y1=______;方案二:y2=______.(2)试分析以上两种方案中哪种更省钱?(3)学校计划用420元购买这两种奖品,最多可以买到多少个书包?一元一次不等式及其性质1参考答案与试题解析一.选择题(共35小题)1.解:不等式有①2>0;②4x+y≤1;⑤m﹣2.5>3.故选:C.2.解:A、a=6属于等式.故本选项错误;B、x﹣2y中不含有不等号,它不是不等式.故本选项错误;C、3x﹣6>0符合不等式的定义.故本选项正确;D、8中不含有不等号,它不是不等式.故本选项错误.故选:C.3.解:数学表达式①﹣5<7;②3y﹣6>0;⑤a≠2;⑥7y﹣6>y+2是不等式,故选:C.4.解:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤,共3个.故选:C.5.解:①是用“>”连接的式子,是不等式;②是用“≤”连接的式子,是不等式;③是等式,不是不等式;④没有不等号,不是不等式;⑤是用“>”连接的式子,是不等式;∴不等式有①②⑤共3个,故选:C.6.解:A、不等式的两边都乘以2,不等式的两边都加上3,不等号的方向不变,故A正确;B、不等式的两边都乘以5,不等号的方向不变,故B错误;C、不等式的两边都除以﹣2,不等号的方向改变,故C错误;D、不等式的两边都减去2,不等号的方向不变,故D错误;故选:A.7.解:A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得﹣2a<﹣2b,原变形错误,故这个选项不符合题意;C、由a>b,得>或<,原变形错误,故这个选项不符合题意;D、由a>b,得﹣1+a>﹣1+b,原变形正确,故这个选项符合题意;故选:D.8.解:A、∵a>b,∴3a>3b,成立;B、∵a>b,∴b+3<a+3,成立;C、∵a>b,∴﹣a<﹣b,故本选项不成立;D、∵a>b,∴﹣2a<﹣2b,∴3﹣2a<3﹣2b,故本选项成立;故选:C.9.解:A、x>y,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,x﹣3>y﹣3,正确,不符合题意;B、不等式两边乘(或除以)同一个数,不等号的方向不改变,故,正确,不符合题意;C、x>y,根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,故﹣2x<﹣2y,正确,不符合题意;D、不等式两边同时乘以﹣1,再加上3,不等号的方向改变,故3﹣x>3﹣y,错误,符合题意;故选:D.10.解:A、在不等式的两边同时减去1,不等式仍成立,即a﹣1<b﹣1,故本选项不符合题意.B、在不等式的两边同时乘以3,不等式仍成立,即3a<3b,故本选项不符合题意.C、在不等式的两边同时乘以﹣1,不等号方向改变,即﹣a>﹣b,故本选项不符合题意.D、当c≤0时,不等式ac<bc不一定成立,故本选项符合题意.故选:D.11.解:根据题意得,他买糖果每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>,解之得,x>y.所以赔钱的原因是x>y.故选:B.12.解:(A)∵x<y,∴x﹣2<y﹣2,故选项A成立;(B)∵x<y,∴4x<4y,故选项B不成立;(C)∵x<y,∴﹣x>﹣y,∴﹣x+2>﹣y+2,故选项C不成立;(D)∵x<y,∴﹣3x>﹣3y,故选项D不成立;故选:A.13.解:若a>b,则a﹣1>b﹣1,,﹣2a<﹣2b,;而a2>b2不一定成立;故选:C.14.解:A、因为a=b≠0,所以,正确;B、当c=0时,无意义,错误;C、因为a=b≠0时,c的值无法确定,|c+1|与|c+2|的大小不能确定,错误;D、因为a=b≠0时,c的值无法确定,所以a+c与a﹣c不能确定大小,错误;故选:A.15.解:A.若a>b,c=0,则ac2=bc2,即A选项不合题意,B.|b|≥0,a>|b|,则a>0,即a2>b2,即B选项符合题意,C.若a>b,a>0,b<0,则,如即C选项不合题意,D.若a>b,c>d,则﹣c<﹣d,则a﹣c和b﹣d大小无法判断,如a=1,b=﹣5,c =﹣7,d=﹣20,此时,a﹣c小于b﹣d,即D选项不合题意,故选:B.16.解:A、两边都加同一个整式,不等号的方向不变,故A不符合题意;B、两边都减同一个整式,不等号的方向不变,故B不符合题意;C、两边都乘以,不等号的方向不变,故C符合题意;D、两边都乘以﹣3,不等号的方向改变,故D不符合题意;故选:C.17.解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.18.解:由于x>﹣2,所以表示﹣2的点应该是空心点,折线的方向应该是向右.由于x≤1,所以表示1的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为:故选:B.19.解:不等式组的解集在数轴上表示为故选:C.20.解:∵的解集为:a+1≤x<8,又∵,∴5≤x<8,∴a+1=5,∴a=4.故选:C.21.解:不等式组﹣3<x≤1的解集在数轴上表示为:,故选:C.22.解:由题意得:x+2≥0,解得:x≥﹣2,在数轴上表示为,故选:D.23.解:由题意可知:9﹣>,∴a<4,故选:C.24.解:由于x≥﹣1,所以表示﹣1的点应该是实心点,折线的方向应该是向右.由于x<1,所以表示1的点应该是空心点,折线的方向应该是向左.所以数轴表示的解集为:故选:B.25.解:∵不等式组的解集是x<﹣3,∴m≥﹣3,故选:B.26.解:去括号,得:4x﹣8≥6x﹣10,移项,得:4x﹣6x≥﹣10+8,合并同类项,得:﹣2x≥﹣2,系数化为1,得:x≤1,则不等式的正整数解为1,故选:C.27.解:∵方程x+m﹣2=0的解是负数,∴x=2﹣m<0,解得:m>2,故选:A.28.解:不等式3x﹣5<3+x的解集为x<4,所以其自然数解是0,1,2,3,共,4个.故选:D.29.解:>x,4﹣x>3x,﹣x﹣3x>﹣4,x<1,∴不等式>x的最大整数解是0.故选:B.30.解:不等式移项合并得:﹣x<﹣1,解得:x>1,表示在数轴上,如图所示故选:A.31.解:不等式解得:x>3,则3.5是不等式的解,故选:A.32.解:∵不等式(a+1)x>a+1的解是x<1,∴a+1<0,解得:a<﹣1,故选:C.33.解:A、不含有未知数,不是一元一次不等式,故本选项不符合题意;B、不是整式,故本选项不符合题意;C、不是整式,故本选项不符合题意;D、是只含有1个未知数,并且未知数的最高次数是1,用不等号连接的整式,是一元一次不等式,故本选项符合题意;故选:D.34.解:,①+②,得3x﹣3y=3+6a,化简,得x﹣y=1+2a,∵x﹣y<5,∴1+2a<5,解得,a<2,故选:C.35.解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3,二.填空题(共10小题)36.解:由不等式组的解集为x>2,可得a≤2.故答案为:a≤237.解:∵关于x的不等式组无解,∴a≥3.故答案为:a≥3.38.解:观察数轴可知:x>﹣1,且x≤3,所以x的取值范围为﹣1<x≤3.故答案为﹣1<x≤3.39.解:一元一次不等式的解集是2左边的部分(包含2),因而解集是x≤2.故答案为:x≤2.40.解:数轴上表示不等式组解集的方法可知,该不等式的解集为:x>2.故答案是:x>2.41.解:2x﹣2m=x+4,∴x=4+2m,∵方程的解是正数,∴4+2m>0,∴m>﹣2.即m的取值范围是m>﹣2.42.解:由题意得:2x﹣3≥0.故答案为:2x﹣3≥0.43.解:由题意可得:y﹣1≤2.故答案为:y﹣1≤2.44.解:由数轴上的点表示的数右边的总比左边的大,得﹣2x+3>1,故答案为x<1.45.解:3x﹣1>﹣4,3x>﹣3,x>﹣1,所以不等式3x﹣1>﹣3的最小整数解是0,故答案为:0.三.解答题(共5小题)46.解(1)设每件甲种器材价格为x元,每件乙种器材价格为y元,依题意得:解得:答:每件甲乙两种器材各900元与600元;(2)设甲种器材购买了m件,则乙种器材购买了(800﹣m)件.依题意得:900m+600(800﹣m)≤540000,解得:m≤200,答:购买甲器材至多200件.47.解:(1)设庞老师单独整理需要x分钟完成,∴冯老师的效率为,庞老师的效率为,∴30()+=1,解得:x=150,经检验,x=150是原方程的解,答:庞老师单独整理需要150分钟完成;(2)设庞老师整理y分钟才能完成,由题意可知:+≥1,解得:y≥60,答:庞老师至少整理60分钟才能完成48.解:(1)设甲水果的售价为每千克x元,乙水果的售价为每千克y元,依题意,得:,解得:.答:甲水果的售价为每千克15元,乙水果的售价为每千克20元.(2)设甲水果购买m千克,则乙水果购买(12﹣m)千克,依题意,得:15m+20(12﹣m)≤200,解得:m≥8.答:甲水果至少购买8千克.49.解:(1),①×5+②得13x=13,解得x=1,把x=1代入①得3﹣y=1,解得y=2,所以方程组的解为;(2)去括号得2x+2﹣1≥3x+2,移项得2x﹣3x≥1,合并得﹣x≥1,系数化为1得x≤﹣1,在数轴上表示为:50.解:(1)由题意可得,方案一:y1=50x+8(10﹣x)=42x+80,方案二:y2=(50x+10×8)×0.9=45x+72,故答案为:42x+80,45x+72;………………………………2分(2)由(1)知y1=42x+80,y2=45x+72,分情况讨论:①当y1>y2时,有42x+80>45x+72,………………………………3分解得,x<,………………………………4分②当y1<y2时,有42x+80<45x+72,………………………………5分解得,x>,………………………………6分由题意可知x是正整数,∴当0<x≤2时,方案二省钱,当3≤x≤10时,方案一省钱;………………………………7分(3)由题意可知,选择方案一时购买的书包更多,可列42x+80≤420,………………………………8分解得,x≤8.1,………………………………10分∴当学校计划用420元购买这两种奖品时,最多可以买到8个书包.………………………………11分。

相关文档
最新文档