八年级数学一元一次不等式及一元一次不等式组及答案
八年级不等式组习题以及答案
一元一次不等式组【基础回顾】1.数轴上与坐标为3的点距离小于7的点的坐标x 满足( ).(A) 0<x-3<7 (B) -7<x-3<7 (C) -7≤x-3≤ 7 (D)x-3<7或x-3>-72.不等式组⎪⎩⎪⎨⎧-≤-->xx x 28432的最小整数解 ( ). (A) –1 (B) 0 (C) 1 (D) 43.若方程组⎩⎨⎧=++=+3414y x k y x 的解满足10<+<y x ,则k 的取值范围是( ).(A) -4<k <1 (B) -4<k <0 (C) 0<k <9 (D) k > -44. 若不等式组⎩⎨⎧>->-022x b a x 的解集是-1<x <1,则(a+b)2006= 5.若不等式组⎩⎨⎧≤->03x a x 有三个整数解,则a 的取 值范围为6.解不等式组 ⎪⎩⎪⎨⎧+≥->+<-x x x x x 312113250104【综合运用】7.设a,b 为正整数,且满足56≤a+b ≤59,91.09.0<<ba ,则b2-a2为( ). (A) 171 (B) 177 (C) 180 (D) 1828.已知a ,b 为常数,若ax+b >0的解集为31<x ,则b x-a <0的解集是( ). (A) x >-3 (B) x <-3 (C) x >3 (D) x <39.如果关于x 的不等式组⎩⎨⎧<-≥-0607n x m x 的整数解仅为1,2,3,那么适合这个不等式组的整数对(m,n)共有( ).(A) 49对 (B ) 42对 (C ) 3 6对 (D )13对10.已知关于x 、y 的方程组⎩⎨⎧=++=-a y x a y x 523的解满足x >y >0,化简=-+a a 311.已知m 是整数且-60<m <-30,关于x,y 的二元一次方程组⎩⎨⎧=---=-my x y x 73532有整数解,求x 2+y 的值.参考答案1. B 2 . B 3. A 4. 1 5.0<a ≤16.-1<x≤2 7. B,由0.9b +b<59,0.91b+b>56,故29<b <32,则b =30,31,可求得a=2 8,故b2-a2=177选(B).8.B 9. B,由得m=1,2,…,7;n=19,20,…24;10.当2<a≤3时,原式=3;当a≥3 时,原式=2a-3.11.30:由,又m,x,y为整数,且15-2m为奇数,所以15-2m为23倍数,而-60<m<-30即75<15-2m <135,故15-2m=175,解得m=-50,y=5,x= 5,故x2+y=30.。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)
第二章一元一次不等式和一元一次不等式组重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A .B .C .D .3、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个4、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >5、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣17、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤28、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .79、不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a =3 C .a >3 D .a ≥310、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 2、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 3、根据“3x 与5的和是负数”可列出不等式 _________.4、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.5、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 2、由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a 辆,这100辆汽车的总销售利润为W 万元.①求W 关于a 的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?3、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,求k的取值范围.-参考答案-一、单选题1、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、D【分析】由图像可知当x≤-1时,1x b kx+≤-,然后在数轴上表示出即可.【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1x b kx+≤-,∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.3、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.4、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x >﹣3且x ≤2∴在数轴上表示的解集是﹣3<x ≤2,故选A .【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.10、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k ∴->解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 2、4a ≥【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【详解】解:53120x a x -≥-⎧⎨-<⎩①② 由①得:2x ≤ 由②得:2a x > 不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.5、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.三、解答题1、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、(1)甲、乙两种型号汽车每辆的进价分别为7万元、3万元(2)①W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②甲型汽车25辆,乙型汽车75辆,最大利润是135万元【分析】(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,根据题意,可以得到相应的二元一次方程组,然后即可得到甲、乙两种型号汽车每辆的进价;(2)①根据总利润=甲型汽车的利润+乙型汽车的利润可以得到利润与购买甲种型号汽车数量的函数关系;②根据乙型号汽车的数量不少于甲型号汽车数量的3倍,可以得到购买甲种型号汽车数量的取值范围,然后根据一次函数的性质,即可得到最大利润和此时的购买方案.(1)(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,30202701410128a b a b +=⎧⎨+=⎩, 解得:73a b =⎧⎨=⎩, 即甲、乙两种型号汽车每辆的进价分别为7万元、3万元;(2)(2)①由题意得:购进乙型号的汽车(100﹣a )辆,W =(8.8﹣7)a +(4.2﹣3)×(100﹣a )=0.6a +120,乙型号汽车的数量不少于甲型号汽车数量的3倍,∴100﹣a ≥3a ,且a ≥0,解得,0≤a ≤25,∴W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②W=0.6a+120,∵0.6>0,∴W随着a的增大而增大,∵0≤a≤25,∴当a=25时,W取得最大值,此时W=0.6×25+120=135(万元),100﹣25=75(辆),答:获利最大的购买方案是购进甲型汽车25辆,乙型汽车75辆,最大利润是135万元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.3、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、3 12k<<【分析】根据题意易得23010kk-<⎧⎨->⎩,然后求解即可.【详解】解:∵关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,∴23010kk-<⎧⎨->⎩,解得:312k<<.【点睛】本题主要考查一次函数的图象与系数的关系,熟练掌握一次函数的图象与系数的关系是解题的关键.。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.用适当的符号表示a是非负数:_________.【答案】a≥0.【解析】由于非负数即大于等于0,所以a≥0.故答案是:a≥0.【考点】.由实际问题抽象出一元一次不等式2.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解3. 2013年4月20日,四川雅安发生7.0级地震,给雅安人民的生命财产带来巨大损失.某市民政部门将租用甲、乙两种货车共16辆,把粮食266吨、副食品169吨全部运到灾区.已知一辆甲种货车同时可装粮食18吨、副食品10吨;一辆乙种货车同时可装粮食16吨、副食11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元;乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的费用最少?最少费用是多少元?【答案】(1)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【解析】(1)设租用甲种货车x辆,表示出租用乙种货车为(16﹣x)辆,然后根据装运的粮食和副食品数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(2)分别求出三种方案的燃油费用,比较即可得解.试题解析:(1)设租用甲种货车x辆,租用乙种货车为(16﹣x)辆,根据题意得,,由①得,x≥5,由②得,x≤7,∴,5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(2)当x=5时,16﹣5=11,5×1500+11×1200=20700元;当x=6时,16﹣6=10,6×1500+10×1200=21000元;当x=7时,16﹣7=9,7×1500+9×1200=21300元;答:选择(1)中的方案一租车,才能使所付的费用最少,最少费用是20700元.【考点】1.一次函数的应用2.一元一次不等式组的应用.4.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.5.若(x+2)(x-3)>0,则x的取值范围是________.【答案】x>3,或x<-2.【解析】根据同号得正,异号得负列出不等式组即可求解.试题解析:由题意得:或解得:x>3,或x<-2.考点: 解一元一次不等式组.6.随着教育改革的不断深入,素质教育的全面推进,某市中学生利用假期参加社会实践活动的越来越多.王伟同学在本市丁牌公司实习时,计划发展部给了他一份实习作业:在下述条件下规划出下月的产量.假如公司生产部有工人200名,每个工人每2小时可生产一件丁牌产品,每个工人的月劳动时间不超过192小时,本月将剩余原料60吨,下个月准备购进300吨,每件丁牌产品需原料20千克.经市场调查,预计下个月市场对丁牌产品需求量为16000件,公司准备充分保证市场需求.请你和王伟同学一起规划出下个月产量范围.【答案】16000≤x≤18000.【解析】下个月的产量为x件,根据“劳动时间”和“预计下月市场对J牌产品需求量为16000件”可列不等式组求解.试题解析:设下个月的产量为x件,根据题意得,解得:16000≤x≤18000答:下个月的产量不少于16000件,不多于18000件.考点: 一元一次不等式组的应用.7.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,那么x的取值范围在数轴上可表示为()【答案】C【解析】根据第四象限内横坐标为正,纵坐标为负可得,解得再根据在数轴上表示不等式的解集时,小于向左,大于向右,含等号实心,不含等号空心,可得x的取值范围在数轴上可表示为C选项.【考点】解不等式组8.若>a对任意实数x恒成立,则a的取值范围是。
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
人教版八年级数学一元一次不等式组试题及答案
一元一次不等式组知识点1 解一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A )A .⎩⎪⎨⎪⎧x>2x<-3B .⎩⎪⎨⎪⎧x +1>0y -2<0C .⎩⎪⎨⎪⎧3x -2>0(x -2)(x +3)>0 D .⎩⎪⎨⎪⎧3x -2>0x +1>1x2.下列四个数中,为不等式组⎩⎪⎨⎪⎧3x -6<0,3+x>3的解的是(C )A .-1B .0C .1D .23.(福州中考)不等式组⎩⎪⎨⎪⎧x ≥-1,x<2的解集在数轴上表示正确的是(A )4.(福州中考)不等式组⎩⎪⎨⎪⎧x +1>0,x -3>0的解集是(B )A .x >-1B .x >3C .-1<x <3D .x <35.(湘西中考)不等式组⎩⎪⎨⎪⎧2x -1≤3,x +3>4的解集是(B )A .x >1B .1<x ≤2C .x ≤2D .无解6.(雅安校级月考)不等式组⎩⎪⎨⎪⎧x -3>2,x<3的解集是(D )A .x <3B .3<x <5C .x >5D .无解7.(周口一模)不等式组⎩⎪⎨⎪⎧x -1≤1,5-2x ≥-1的解集在数轴上表示为(A )8.(自贡中考)不等式组⎩⎪⎨⎪⎧-2x +3≥0,x -1>0的解集是1<x ≤32.9.代数式1-k 的值大于-1而又不大于3,则k 的取值范围是-2≤k<2.10.若y 同时满足y +1>0与y -2<0,则y 的取值范围是-1<y <2.11.(天津中考)解不等式组:⎩⎪⎨⎪⎧x +2≤6,①3x -2≥2x.②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得x ≤4; (Ⅱ)解不等式②,得x ≥2;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为2≤x ≤4. 12.解不等式组:(1)(济南中考)⎩⎪⎨⎪⎧x -3<1,①4x -4≥x +2;②解:解不等式①,得x <4.解不等式②,得x ≥2. ∴不等式组的解集为2≤x <4.(2)(郴州中考)⎩⎪⎨⎪⎧x -1>0,①3(x -1)<2x ;②解:解不等式①,得x >1. 解不等式②,得x <3. ∴不等式组的解集是1<x <3.(3)(云南中考)⎩⎪⎨⎪⎧2(x +3)>10,①2x +1>x ;②解:解不等式①,得x >2. 解不等式②,得x >-1. ∴不等式组的解集为x >2.(4)(无锡中考)⎩⎪⎨⎪⎧2(x -1)≥x +1,①x -2>13(2x -1).② 解:解不等式①,得x ≥3. 解不等式②,得x>5. ∴不等式组的解集为x>5.知识点2 不等式组的运用13.(威海中考)已知点P(3-m ,m -1)在第二象限,则m 的取值范围在数轴上表示正确的是(A )14.若不等式组⎩⎪⎨⎪⎧x>3,x>m的解集是x>3,则m 的取值范围是m ≤3.15.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是(A )16.(株洲中考)一元一次不等式组⎩⎪⎨⎪⎧2x +1>0,x -5≤0的解集中,整数解的个数是(C )A .4B .5C .6D .717.若不等式组⎩⎪⎨⎪⎧2x +a -1>0,2x -a -1<0的解集为0<x <1,则a 的值为(A )A .1B .2C .3D .418.如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m的解集是x <2,那么m 的取值范围是(D )A .m =2B .m >2C .m <2D .m ≥219.(潍坊中考)若不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x>x -2无解,则实数a 的取值范围是(D )A .a ≥-1B .a <-1C .a ≤1D .a ≤-120.(绵阳中考)在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为(C )21.(烟台中考)不等式组⎩⎪⎨⎪⎧x -1≥0,4-2x<0的最小整数解是3.22.(龙东中考)不等式组2≤3x -7<8的解集为3≤x <5.23.(鄂州中考)若不等式组⎩⎪⎨⎪⎧2x -b ≥0,x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为x >32.24.(遂宁中考)解下列不等式组,并把解集在数轴上表示出来.(1)⎩⎪⎨⎪⎧3(x +2)>x +8,①x 4≥x -13;②解:解不等式①,得x >1. 解不等式②,得x ≤4.∴这个不等式的解集是1<x ≤4. 其解集在数轴上表示为:(2)⎩⎪⎨⎪⎧2x +3>3x ,①x +33-x -16≥12.②解:解不等式①,得x<3. 解不等式②,得x ≥-4.∴这个不等式组的解集是-4≤x<3. 其解集在数轴上表示为:25.(毕节中考)解不等式组⎩⎪⎨⎪⎧2x +5≤3(x +2),①2x -1+3x2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.解:解不等式①,得x ≥-1. 解不等式②,得x <3.∴原不等式组的解集是-1≤x <3. 其解集在数轴上表示如下:∴不等式组的非负整数解有:0,1,2.26.(南通中考)若关于x 的不等式组⎩⎪⎨⎪⎧x 2+x +13>0,①3x +5a +4>4(x +1)+3a ②恰有三个整数解,求实数a 的取值范围.解:解不等式①,得x >-25.解不等式②,得x <2a.∵不等式组恰有三个整数解,∴2<2a ≤3. ∴1<a ≤32.27.(安徽中考)解不等式:x 3>1-x -36.解:去分母,得2x >6-(x -3). 去括号,得2x >6-x +3.移项,合并同类项,得3x >9. 系数化为1,得x >3.28.(大庆中考)解关于x 的不等式:ax -x -2>0.解:由ax -x -2>0,得(a -1)x >2. 当a -1=0,则ax -x -2>0无解.当a -1>0,则x>2a -1.当a -1<0,则x<2a -1.29.解不等式2(x +1)<3x ,并把解集在数轴上表示出来.解:去括号,得2x +2<3x.移项,合并同类项,得-x <-2. 系数化为1,得x >2. 其解集在数轴上表示为:30.(南京中考)解不等式2(x +1)-1≥3x +2,并把它的解集在数轴上表示出来.解:去括号,得2x +2-1≥3x +2. 移项,得2x -3x ≥2-2+1. 合并同类项,得-x ≥1. 系数化为1,得x ≤-1.∴这个不等式的解集为x ≤-1,在数轴上表示如下:31.求不等式2x -7<5-2x 正整数解.解:移项,得2x +2x <5+7. 合并同类项,得4x<12. 系数化为1,得x <3.∴不等式的正整数解为1,2.32.已知不等式x +8>4x +m(m 是常数)的解集是x <3,求m.解:移项,得x -4x >m -8. 合并同类项,得-3x >m -8.系数化为1,得x <-13(m -8).∵不等式的解集为x <3,∴-13(m -8)=3.解得m =-1.33.(济南中考)解不等式组:⎩⎨⎧2x -1>3,①2+2x ≥1+x.②解:解不等式①,得x>2. 解不等式②,得x ≥-1. ∴不等式组的解集为x>2.34.(泰州中考)解不等式组:⎩⎪⎨⎪⎧x -1>2x ,①12x +3<-1.②解:解不等式①,得x <-1.解不等式②,得x <-8.∴不等式组的解集为x <-8.35.解不等式组⎩⎪⎨⎪⎧2(x +2)≤x +3,①x 3<x +14,②并它的解集表示在数轴上.解:解不等式①,得x ≤-1.解不等式②,得x <3.∴不等式组的解集是x ≤-1.不等式组的解集在数轴上表示为:36.解不等式组⎩⎪⎨⎪⎧5x -2>3(x +1),①12x -2≤7-52x ,②并在数轴上表示出该不等式组的解集. 解:解不等式①,得x >52.解不等式②,得x ≤3.∴不等式组的解集是52<x ≤3.其解集在数轴上表示为:37.求不等式组⎩⎪⎨⎪⎧x -3≤2,①1+12x>2x ②的正整数解. 解:解不等式①,得x ≤5.解不等式②,得x <23.∴不等式组的解集为x <23.∴这个不等式组不存在正整数解.38.(十堰中考)x 取哪些整数值时,不等式5x +2>3(x -1)与12x ≤2-32x 都成立?解:根据题意解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x ≤2-32x.② 解不等式①,得x>-52.解不等式②,得x ≤1.∴-52<x ≤1.故满足条件的整数有-2,-1,0,1.39.(呼和浩特中考)若关于x ,y 的二元一次方程组⎩⎨⎧2x +y =-3m +2,x +2y =4的解满足x +y>-32,求出满足条件的m 的所有正整数值. 解:⎩⎨⎧2x +y =-3m +2,①x +2y =4.②①+②,得3(x +y)=-3m +6, ∴x +y =-m +2.∵x +y>-32,∴-m +2>-32.∴m<72.∵m 为正整数, ∴m =1,2或3.40.已知:2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.解:由2a -3x +1=0,3b -2x -16=0,可得a =3x -12,b =2x +163.∵a ≤4<b ,∴⎩⎪⎨⎪⎧3x -12≤4,①2x +163>4.②解不等式①,得x ≤3. 解不等式②,得x >-2.∴x 的取值范围是-2<x ≤3.。
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习
第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2
一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( )A .B .C .D .2.如图,已知一次函数y =kx +b 的图象经过点A (﹣1,2)和点B (﹣2,0),一次函数y =mx 的图象经过点A ,则关于x 的不等式组0<kx +b <mx 的解集为( )A .﹣2<x <﹣1B .﹣1<x <0C .x <﹣1D .x >﹣1 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y < B .x y > C .x y ≤ D .x y ≥ 4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 7.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 10.已知a <b ,下列变形正确的是( ) A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.下列不等式变形中,一定正确的是( ) A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 二、填空题13.不等式21302x --的非负整数解共有__个. 14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.17.如图,数轴上所表示关于x 的不等式组的解集是__________.18.若不等式12x x -<的解都能使关于x 的一次不等式()11a x a -<+成立,则a 的取值范围是________. 19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.现对x ,y 定义一种新的运算T ,规定:(,)++=+ax by c T x y x y (其中a ,b ,c 为常数,且0abc ≠).例如:10(1,0)10⨯+⨯+==++a b c T a c . 已知(3,1)2,(2,3) 2.8,(1,1)3-===T T T .(1)求a ,b ,c 的值;(2)求关于m 的不等式组(4,54)3,(2,32)1T m m T m m -<⎧⎨->⎩的整数解. 22.解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.再求它的所有的非负整数.23.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题:(1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩26.已知一次函数y x b =+的图像经过点(1,3)A -.(1)求该函数的表达式;(2)x 取何值时,0y >?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】解出不等式,在进行判断即可;【详解】251x -+≥,24x -≥-,2x ≤,解集表示为:;故答案选C .【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.A解析:A【分析】利用函数图象,写出在x 轴上方且函数y=kx+b 的函数值小于函数y=mx 的函数值对应的自变量的范围即可.【详解】解:当x >﹣2时,y =kx +b >0;当x <﹣1时,kx +b <mx ,所以不等式组0<kx +b <mx 的解集为﹣2<x <﹣1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.8.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.9.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.二、填空题13.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.【分析】先将m看做常数解方程组求出再代入可得关于m的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题解析:72 m<【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.17.【分析】数轴的某一段上面表示解集的线的条数与不等式的个数一样那么这段就是不等式组的解集实心圆点包括该点空心圆圈不包括该点>向右<向左两个不等式的公共部分就是不等式组的解集【详解】解:由图示可看出从- 解析:12x -<≤【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是空心圆,表示x>-1;从2出发向左画出的折线且表示2的点是实心圆,表示x≤2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:12x -<≤.故答案为:12x -<≤.【点睛】本题考查在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】求出不等式的解求出不等式的解集得出关于a 的不等式求出a 即可【详解】解:解不等式可得∵不等式的解都能使不等式成立∴∴解得故答案为:【点睛】本题考查解一元一次不等式不等式的性质等知识点能根据已知 解析:113a ≤< 【分析】 求出不等式12x x -<的解,求出不等式()11a x a -<+的解集,得出关于a 的不等式,求出a 即可.【详解】 解:解不等式12x x -<可得2x >-, ∵不等式12x x -<的解都能使不等式()11a x a -<+成立, ∴10a -<,11a x a +>-, ∴121a a +≤--, 解得113a ≤<, 故答案为:113a ≤<. 【点睛】本题考查解一元一次不等式,不等式的性质等知识点,能根据已知得到关于a 的不等式是解此题的关键..19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)231a b c =⎧⎪=⎨⎪=⎩;(2)关于m 的不等式组(4,54)3(2,32)3T m m T m m -<⎧⎨->⎩的整数解有1,2,3. 【分析】(1)由题意易得323123 2.82311311a b c a b c a b c ⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,然后求解即可; (2)由题意,得243(54)135223(32)113m m m m ⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,则有大于14且小于72的整数有1,2,3,然后问题可求解.【详解】解:(1)由题意,得3231232.82311311a b ca b ca b c⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,整理,得34 23146a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得231abc=⎧⎪=⎨⎪=⎩;(2)由题意,得243(54)135223(32)113m mm m⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,解得17 42 <<m,∵大于14且小于72的整数有1,2,3,∴关于m的不等式组()()4,5432,323T m mT m m⎧-<⎪⎨->⎪⎩的整数解有1,2,3.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.22.0,1,2【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来,写出符合条件的x 的非负整数解即可.【详解】解:3(1)51?124?2x xxx-<+⎧⎪⎨-≥-⎪⎩①②,由①得,x>-2,由②得,73x≤,故此不等式组的解集为:723x-<≤,在数轴上表示为:,它的所有的非负整数解为:0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)33xy=⎧⎨=⎩;(2)B;(3)三种,方案见解析【分析】(1)求方程3x-y=6的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支; 或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组专项训练试题(含答案及详细解析)
第二章一元一次不等式和一元一次不等式组专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果a <b ,c <0,那么下列不等式成立的是( )A .a +c <bB .a ﹣c >b ﹣cC .ac +1<bc +1D .a (c ﹣2)<b (c ﹣2)2、不等式270x -<的最大整数解为( )A .2B .3C .4D .53、一次函数y =(m -2)x +m 2-3的图象与y 轴交于点M (0,6),且y 的值随着x 的值的增大而减小,则m 的值为( )A .6-B .C .3D .3-4、已知关于x 的不等式组3x x a≤⎧⎨>⎩有解,则a 的取值不可能是( ) A .0 B .1 C .2 D .35、若m <n ,则下列各式正确的是( )A .﹣2m <﹣2nB .33m n >C .1﹣m >1﹣nD .m 2<n 26、对有理数a ,b 定义运算:a ✬b =ma +nb ,其中m ,n 是常数,如果3✬4=2,5✬8>2,那么n 的取值范围是( )A .n >1-B .n <1-C .n >2D .n <27、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、如果a >b ,下列各式中正确的是( )A .﹣2021a >﹣2021bB .2021a <2021bC .a ﹣2021>b ﹣2021D .2021﹣a >2021﹣b9、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .2810、若a >b ,则下列不等式一定成立的是( )A .﹣2a <﹣2bB .am <bmC .a ﹣3<b ﹣3D .3a +1<3b +1 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、任何一个以x 为未知数的一元一次不等式都可以变形为_____(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数_____的值大于0或小于0时,求_____的取值范围.2、从2-,1-,0,13,1,2这六个数字中,随机抽取一个数记为a ,则使得关于x 的不等式组102321x a x ⎧->⎪⎨⎪-+≤⎩只有三个整数解的概率是 __. 3、已知a >b ,且c ≠0,用“>”或“<”填空.(1)2a ________a +b(2)2ac _______2b c(3)c -a _______c -b(4)-a |c |_______-b |c |4、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为3:1:1第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨50%,洁柔超值装的价格是其促销价的53,而妮飘进口装的价格在其第一天的基础上增加了14,第二天洁柔体验装与妮飘进口装的销量之比为4:3,洁柔超值装的销量比第一天的销量减少了20%.超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_______元.5、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 三、解答题(5小题,每小题10分,共计50分)1、若(m -2)23m x --2≥7是关于x 的一元一次不等式,求m 的值. 2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩ (2)解不等式组()20 2131x x x +>⎧⎨+≥-⎩ 3、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、某学校计划购买若干台电脑,现在从两家商场了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?-参考答案-一、单选题1、A【分析】根据不等式的性质,逐项判断即可求解.【详解】解:A、由a<b,c<0得到:a+c<b+0,即a+c<b,故本选项符合题意.B、当a=1,b=2,c=﹣3时,不等式a﹣c>b﹣c不成立,故本选项不符合题意.C、由a<b,c<0得到:ac+1>bc+1,故本选项不符合题意.D、由于c﹣2<﹣2,所以a(c﹣2)>b(c﹣2),故本选项不符合题意.故选:A【点睛】本题主要考查了不等式的性质,熟练掌握不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.3、D【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.4、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a 的取值范围,然后根据a 的取值范围解答即可.【详解】解:∵关于x 的不等式组3x x a ≤⎧⎨>⎩有解, ∴a <3,∴a 的取值可能是0、1或2,不可能是3.故选D .【点睛】本题考查了由不等式组的解集情况求参数,不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.5、C【分析】根据不等式的基本性质逐项判断即可.【详解】解:A :∵m <n ,∴﹣2m >﹣2n ,∴不符合题意;B :∵m <n , ∴33m n <, ∴不符合题意;C :∵m <n ,∴﹣m >﹣n ,∴1﹣m >1﹣n ,∴符合题意;D : m <n ,当10m n =-=,时,m 2>n 2, ∴不符合题意;故选:C .【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.6、A【分析】先根据新运算的定义和3✬4=2将m 用n 表示出来,再代入5✬8>2可得一个关于n 的一元一次不等式,解不等式即可得.【详解】解:由题意得:342m n +=, 解得243n m -=, 由5✬8>2得:582m n +>, 将243n m -=代入582m n +>得:5(24)823n n -+>, 解得1n >-,故选:A .【点睛】本题考查了一元一次不等式的应用,理解新运算的定义是解题关键.7、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【分析】根据不等式的性质即可求出答案.【详解】解:A 、∵a >b ,∴−2021a <−2021b ,故A 错误;B、∵a>b,∴2021a>2021b,故B错误;C、∵a>b,∴a﹣2021>b﹣2021,故C正确;D、∵a>b,∴2021﹣a<2021﹣b,故D错误;故选:D.【点睛】本题考查不等式,解题的关键是熟练运用不等式的性质,本题属于基础题型.9、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.【详解】解:32222210y yy a--⎧+>⎪⎪⎨-⎪≤⎪⎩①②,解不等式①得:2y>-,解不等式②得:y a≤∴不等式组的解集为:1yy a>-⎧⎨≤⎩,∵由不等式组至少有3个整数解,∴2a≥,即整数a=2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10、A【分析】由题意直接依据不等式的基本性质对各个选项进行分析判断即可.【详解】解:A .∵a >b ,∴﹣2a <﹣2b ,故本选项符合题意;B .a >b ,当m >0时,am >bm ,故本选项不符合题意;C .∵a >b ,∴a ﹣3>b ﹣3,故本选项不符合题意;D .∵a >b ,∴33a b >, ∴1133ab +>+,故本选项不符合题意;故选:A .【点睛】本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、ax +b >0或ax +b <0 y =ax +b 自变量【分析】根据一次函数图象与一元一次不等式的关系解答.【详解】解:任何一个以x 为未知数的一元一次不等式都可以变形为ax +b >0或ax +b <0 (a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y =ax +b 的值大于0或小于0时,求自变量的取值范围. 故答案为:ax +b >0或ax +b <0;y =ax +b ;自变量.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y =kx +b (k ≠0)的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y =kx +b (k ≠0)在x 轴上(或下)方部分所有的点的横坐标所构成的集合.2、13【分析】解关于x 的不等式组,由不等式组整数解的个数求出a 的范围,再从6个数中找到同时满足以上两个条件的情况,从而利用概率公式求解可得.【详解】解:解不等式组12321x ax⎧->⎪⎨⎪-+≤⎩,得:12a<x≤2,∵不等式组只有3个整数解,∴不等式组的整数解为2、1、0,则-1≤12a<0,即-2≤a<0∴在所列的六个数字中,同时满足以上两个条件的只有-2,-1,∴只有三个整数解的概率是21 = 63故答案为:13.【点睛】题主要考查的是解一元一次不等式组的解集和概率的知识,解题的关键是熟练掌握解一元一次不等式组的能力及概率公式的应用.3、>><<【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b>,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >, ∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.4、14960【分析】设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,第二天,洁柔体验装的原价为: (150%)x +,销售量为1a 包,洁柔超值装的原价为: 53y ,销售量为1b 包,妮飘进口装的原价为: 1(1)4z +,销售量为 1c 包,根据第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得()()175767x y c c +-=,进而可得 1755913x y c c +=⎧⎨-=⎩,x y 为整数,即可求得x y +,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 5135482828c <<,由 121753c c ,都是整数,则 5135482828c <<能被 3和5整除的数即能被15整除,即可求得c ,则这两天妮飘进口装的总销售额为11(1)4zc z c ++,即 ()()965x y c +-,代入数值求解即可. 【详解】解:设洁柔体验装的促销价为x 元,销售量为a 包,洁柔超值装的促销价为y 元,销售量为b 包,妮飘进口装的促销价为z 元,销售量为c 包,()44060::3:1:1z x y z a b c ⎧=+⎪<≤⎨⎪=⎩1015x y ∴<+≤,33a b c ==, 则35a b c c c c c ++=++=第二天,洁柔体验装的原价为:(150%)x +,销售量为1a 包,洁柔超值装的原价为:53y ,销售量为1b 包,妮飘进口装的原价为:1(1)4z +,销售量为1c 包, 11:=4:3a c ,即1143a c = ()1120%b b =-4=5b 4=5c 则11111144743535a b c c c c c c ++=++=+ 第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦()()3(344)75ax by cz c x y z c x y x y c x y ++=++=+++=+()111150%14x a z c ⎛⎫+++ ⎪⎝⎭ 1151.54()4xa x y c =+⨯+1111.555xa xc yc =++111345523x c xc yc =⨯++ 1175xc yc =+()175x y c =+∴()111150%17674ax by cz x a z c ⎡⎤⎛⎫++-+++= ⎪⎢⎥⎝⎭⎣⎦即1(75)(75)c x y c x y +-+767=即()()175767x y c c +-=7671359=⨯1755913x y c c +=⎧∴⎨-=⎩或 1751359x y c c +=⎧⎨-=⎩ 1015x y <+≤505575x y ∴<+≤7550x y ∴+>1755913x y c c +=⎧∴⎨-=⎩ 5975x y -∴=,x y 为整数,解得29x y =⎧⎨=⎩或 72x y =⎧⎨=⎩洁柔体验装的原价为:(150%)x + 1.5x =是整数,则7x ≠,洁柔超值装的原价为:53y 是整数则2y ≠ ∴ 29x y =⎧⎨=⎩4()44z x y ∴=+=第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,∴()()11196120a b c a b c ≤++-++≤113c c -=1c c ∴>()()111a b c a b c ++-++=117421753553c c c c c ⎛⎫-+=-⎪⎝⎭ ∴217633591(13)5315153c c c ⎛⎫--=-+ ⎪⎝⎭2891153c =+ 即289196120153c <+< 解得5135482828c <<121753c c ,都是整数,则5135482828c <<能被3和5整除的数即能被15整除 ∴45c =11(1)4zc z c ++=()()11554444zc zc x y c x y c +=+++ ()()145x y c c =++()()4513x y c c =++-⎡⎤⎣⎦()()965x y c =+-44=⨯()94565⨯-14960=故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键. 5、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.三、解答题1、m =-2【分析】由题意可知:m2-3=1,m-2≠0,即可解答.【详解】解∵不等式(m-2) 23mx- -2≥7是关于x的一元一次不等式,∴m2-3=1,m-2≠0,解得m=-2当m=-2时,不等式是关于x的一元一次不等式【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.2、(1)43xy=⎧⎨=⎩;(2)﹣2﹤x≤3.【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523 517x yx y+=⎧⎨-=⎩①②①+②×5得:27x=23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、a>0【分析】先解方程得出x=44a+,根据方程的解大于1得出关于a的不等式,解之即可.【详解】解:解不等式6x+a−4=2x+2a,得x=44a+,根据题意,得:44a+>1,解得a>0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、x≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、当购买少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买多于5台电脑时,学校选择甲商场购买更优惠.【分析】设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,根据题意可得甲乙两种购买方式得函数解析式,分三种情况讨论:当12y y >时;当12y y =时;当12y y <时;分别进行计算得出自变量的取值范围即可得出在什么情况下选择哪种方案更优惠.【详解】解:设学校购买x 台电脑,在甲商场购买花费为1y ,在乙商场购买花费为2y ,则根据题意可得:()()1600016000125%45001500y x x =+⨯⨯=+--(x 为正整数);()2·6000120%4800y x x =⨯=-(x 为正整数);当12y y >时,学校选择乙商场购买更优惠,即450015004800x x +>,解得5x <,即15x <<;当12y y =时,学校选择甲、乙两商场购买一样优惠,即450015004800x x +=,解得5x =;当12y y <时,学校选择甲商场购买更优惠,即450015004800x x +<,解得5x >.∴当购买数量少于5台电脑时,学校选择乙商场购买更优惠;当购买5台电脑时,学校选择甲、乙两商场购买一样优惠;当购买数量多于5台电脑时,学校选择甲商场购买更优惠.【点睛】题目主要考查一次函数应用中的方案选择,理解题意,列出相应函数解析式,求解不等式是解题关键.。
北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B(附答案)
北师大版2020八年级数学下册第二章一元一次不等式和一元一次不等式组期中复习题B (附答案)1.某同学在解不等式组的过程中,画的数轴除不完整外,没有其它问题.他解的不等式组可能是( )A .B .C .D . 2.下列数学表达式中是不等式的是( )A .5x =4B .2x +5yC .6<2xD .0 3.若a b >,则下列各式正确的是( )A .a b 0-<B .3a 3b -<-C .a b >D .a b 33< 4.不等式2x -6≤0的解集在数轴上表示正确的是( )A .B .C .D .5.某品牌智能手机的标价比成本价高%a ,根据市场需求,该手机需降价%x ,若不亏本,则x 应满( )A .100a x a ≤+B .100a x a ≤-C .100100a x a ≤+D .100100a x a ≤- 6.不等式4-2x >0的最大正整数解是( ).A .4B .3C .2D .17.如下图,一次函数y 1=x 十b 与一次函数y 2=kx +4的图象交于点P(1,3)则关于x 的不等式x +b >kx +4的解集是( )A .x <3B .x >3C .x >1D .x <18.若一次函数(0)y kx b k =+≠的图象如图所示,则关于x 的不等式04kx b <+<的解集是( )A .3x <B .23x -<<C .13x <<D .03x <<9.下列不等式是一元一次不等式的是( )A .x>3B .x+1x <0C .x+y>0D .x 2+x+9≥010.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x 为正整数,则x 可以取的所有值是__.11.已知关于x 的不等式350x a +≥的负整数解共有5个,则整数a 的值是_____. 12.如图所示是某个不等式组的解集在数轴上的表示,它是下列四个不等式组①23x x ≥⎧⎨>-⎩;②23x x ≤⎧⎨<-⎩;③23x x ≥⎧⎨<-⎩;④23x x ≤⎧⎨>-⎩中的_____(只填写序号)13.不等式组13x x <⎧⎨<-⎩的解集为_____.14.已知50x n -≤的正整数解为1,2,3,4,则n 的取值范围是_________.15.若已知方程组y kx b y x a =-⎧⎨=-+⎩的解是13x y =-⎧⎨=⎩,则直线y=-kx+b 与直线y=x-a 的交点坐标是________。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
青岛版数学八下 第8章 一元一次不等式(含答案)
青岛版八年级下册第8章一元一次不等式1.若a≤b,则(1)≤,(2) 2c-a≥2c-b,上述两个结论中()A. 只有(1)正确B. 只有(2)正确C. (1)(2)都正确D. (1)(2)都不正确2.三个连续自然数的和小于15,这样的自然数组共有()A. 6组B. 5组C. 4组D. 3组3.点A(m-4,1-2m)在第三象限,则m的取值范围是()A. m>B. m<4C. <m<4D. m>44.一元一次不等式组的解集为x>a,且a≠b,则a与b的关系是()A. a>bB. a<bC. a>b>0D. a<b<05.下列命题中正确的是()A. 若m≠n,则|m|≠|n|B. 若a+b=0,ab>0C. 若ab<0,且a<b,则|a|<|b|D. 互为倒数的两数之积为正6.无论x取什么数,下列不等式总成立的是()A. x+5>0B. x+5<0C. -(x+5)2<0D. (x-5)2≥07.若=-1,则x的取值范围是()A. x>1B. x≤1C. x≥1D. x<18.解集在数轴上表示为如图所示的不等式组是()A. B. C. D.9.关于x的不等式2x-a≤-1的解集如图所示,则a的取值是()A. 0B. -3C. -2D. -110.已知关于x的不等式(1-a)x>2的解集为x<,则a的取值范围是()A. a>0B. a>1C. a<0D. a<111.如果不等式组无解,则a的取值范围是()A. a>1B. a≥1C. a<1D. a≤112.已知关于x的不等式组的解集为3≤x<5,则的值为()A. -2B. -C. -4D. -13.如果不等式组有一个整数解,那么m的取值范围是______ .14.当x<a<0时,x2与ax的大小关系是x2______ ax.15.如果a(x-1)>x+1-2a的解集是x<-1,则a的取值范围是______ .16.不等式-1>的解集为______ .17.若点P(1-m,m)在第二象限,则(m-1)x>1-m的解集为______ .18.已知不等式组的解集是-1<x<1,则(a+1)(b+1)的值是的______.19.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打______折.20.已知关于x的不等式组的整数解共有6个,则a的取值范围是______ .21.已知0≤x≤4,那么|x-2|-|3-x|的最大值为______ .22.一堆玩具分给若干个小朋友,若每人分3件,则剩余3件;若前面每人分5件,则最后一人得到的玩具不足3件.则小朋友的人数为______ 人.23.解下列不等式(组),并把解集表示在数轴上.(1)≥;(2).24.解不等式组-2≤<4,并写出该不等式组的整数解.25.已知不等式(x-m)>3-m的解集为x>1,求m的值.26.“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.27.义洁中学计划从荣威公司购买A、B两种型号的小黑板,经洽谈,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需要多少元?(2)根据义洁中学实际情况,需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的.请你通过计算,求出义洁中学从荣威公司购买A、B两种型号的小黑板有哪几种方案?答案和解析1.【答案】C【解析】【解答】解:(1)∵a≤b,>0,∴≤,故(1)正确;(2)∵a≤b,∴-a≥-b,2c-a≥2c-b,故(2)正确.故选C.【分析】(1)可根据不等式的基本性质2解答;(2)可根据不等式的基本性质1和3解答.本题考查的是不等式的基本性质,解答此题的关键是熟知以下知识:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【答案】C【解析】解:设这三个连续自然数为:x-1,x,x+1,则0<x-1+x+x+1<15,即0<3x<15,∴0<x<5,因此x=1,2,3,4.共有4组.故选:C.本题可设三个连续自然数分别为x-1,x,x+1,然后将三者相加令其的和大于0而小于15,解出x的取值,再在x的取值中找出自然数的个数即可知道有几组.本题考查了一元一次不等式的运用,解此类题目时常常是设中间的数为x,然后根据题意列出不等式,解出x的取值.3.【答案】C【解析】解:∵点A(m-4,1-2m)在第三象限,∴,解得<m<4.故选:C.点在第三象限的条件是:横坐标是负数,纵坐标是负数.坐标平面被两条坐标轴分成了四个象限,每个象限内的点的坐标符号各有特点.该知识点是中考的常考点,常与不等式、方程结合起来求一些字母的取值范围,比如本题中求m的取值范围.4.【答案】A【解析】解:∵的解集为x>a,且a≠b,∴a>b.故选:A.根据不等式组解集的“同大取较大”的原则,a≥b,由已知得a>b.本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.5.【答案】D【解析】解:A、可举例子-1≠1,则|-1|=|1|,故本选项错误;B、可举例子a=-1,b=1,ab<0,故本选项错误;C、可举例子a=-5,b=1,|-5|>|1|,故本选项错误;D、互为倒数的两数之积为1,所以互为倒数的两数之积为正,故本选项正确.故选D.A、可举反例-1≠1,则|-1|=|1|,B、a=-1,b=1,ab<0,C、a=-5,b=1,ab<0,且a<b,则|a|>|b|D、互为倒数的两数之积为1,所以为正.本题考查了有理数的绝对值,倒数,乘积等知识,可用反例来说明问题.6.【答案】D【解析】解:A、x>-5时成立;B、x<-5时成立;C、根据非负数的性质,-(x+5)2≤0;D、根据非负数的性质,(x-5)2为非负数,所以(x-5)2≥0成立.故选:D.通过解不等式可得A、B中x的取值范围;根据非负数的性质,可对C、D进行判断.解答此题不仅要会解不等式,还要知道非负数的性质.7.【答案】D【解析】分析本题考查了解一元一次不等式,关键是根据题意,判断出x-1<0,此题属于基础题.根据=-1,可得x-1<0,解不等式即可.解答解:由题意得,x-1<0,解得:x<1.故选D.8.【答案】D【解析】解:根据数轴得到不等式的解集是:-3<x≤2.A、不等式组的解集是x≥2,故A选项错误;B、不等式组的解集是x<-3,故B选项错误;C、不等式组无解,故C选项错误.D、不等式组的解集是-3<x≤2,故D选项正确.故选:D.由数轴可以看出不等式的解集在-3到2之间,且不能取到-3,能取到2,即-3<x≤2.在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.9.【答案】D【解析】解:不等式2x-a≤-1,解得x≤,由数轴可知,x≤-1,所以=-1,解得a=-1.故选:D.首先根据不等式的性质,解出x≤,由数轴可知,x≤-1,所以,=-1,解出即可.本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.10.【答案】B【解析】解:∵不等式(1-a)x>2的解集为x<,又∵不等号方向改变了,∴1-a<0,∴a>1;故选:B.化系数为1时,不等号方向改变了,利用不等式基本性质可知1-a<0,所以可解得a的取值范围.解不等式要依据不等式的基本性质:在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.【答案】C【解析】解:整理不等式组得,∵不等式组无解,∴a<1,故选C.整理不等式组得,由题意得a<1,选择答案即可.通过不等式组无解,确定a的取值范围,这是此题的突破口.12.【答案】A【解析】解:不等式组由①得,x≥a+b,由②得,x<,∴,解得,∴=-2.故选:A.先解不等式组,解集为a+b≤x<,再由不等式组的解集为3≤x<5,转化成关于a,b的方程组来解即可.本题是一道综合性的题目.考查了不等式组和二元一次方程组的解法,是中考的热点,要灵活运用.13.【答案】6≤m<7【解析】解:的解集是m<x<8,∵不等式组有一个整数解,∴6≤m<7,故答案为:6≤m<7.求出不等式组的解集m<x<8,根据已知得出6≤m<7即可得到答案.本题主要考查对解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集和已知得出6≤m<7是解此题的关键.14.【答案】>【解析】解:∵x<a<0两边同时乘以负数x得到:x2>ax.故答案为:>.原不等式两边都乘负数x即可.解决本题的关键是,能够理解从已知的式子是如何变化到所要求的式子的,理解不等号的方向何时不变,何时变化.15.【答案】a<1【解析】解:去括号得,ax-a>x+1-2a,移项得,ax-x>1-2a+a,合并得,(a-1)x>1-a,∵a(x-1)>x+1-2a的解集是x<-1,∴a-1<0,即a<1,故答案为:a<1.先将不等式整理成ax>b的形式,再根据解集,求出a的取值范围.本题考查了不等式解集的求法,注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.【答案】x<【解析】【分析】利用不等式的基本性质,先去分母,再去括号,然后移项、合并同类项、化系数为1即可求出不等式的解集.解不等式依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.【解答】解:去分母得3x+15-6>6x+4,移项合并同类项得3x<5,化系数为1得x<.所以不等式-1>的解集为x<.17.【答案】x>-1【解析】解:∵点P(1-m,m)在第二象限,∴1-m<0,即m-1>0;∴不等式(m-1)x>1-m,∴(m-1)x>-(m-1),不等式两边同时除以m-1,得:x>-1.第二象限的点的横坐标小于0,纵坐标大于0,即1-m<0,则m-1>0;解这个不等式组就是不等式左右两边同时除以m-1,因为m-1>0,不等号的方向不变.解不等式,系数化为1的过程中,一定要先判断两边所除的式子的符号.18.【答案】-2【解析】解:,由①得,x<,由②得,x>2b+3,所以,不等式组的解集是2b+3<x<,∵不等式组的解集是-1<x<1,∴2b+3=-1,=1,解得a=1,b=-2,所以,(a+1)(b+1)=(1+1)(-2+1)=-2.故答案为:-2.先求出两个不等式的解集,再求其公共解,然后根据不等式组的解集列出求出a、b的值,再代入代数式进行计算即可得解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19.【答案】7【解析】解:设至多打x折则1200×-800≥800×5%,解得x≥7,即最多可打7折.故答案为:7.利润率不低于5%,即利润要大于或等于800×5%元,设打x折,则售价是1200x元.根据利润率不低于5%就可以列出不等式,求出x的范围.本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.20.【答案】-5≤a<-4【解析】解:由不等式组可得:a<x<1.5.因为有6个整数解,可以知道x可取-4,-3,-2,-1,0,1,因此-5≤a<-4.故答案为:-5≤a<-4.先解出不等式组的解,然后确定x的取值范围,根据整数解的个数可知a的取值.本题考查不等式组中不等式的未知字母的取值,利用数轴能直观的得到,易于理解.21.【答案】1【解析】解:根据绝对值的几何意义,令t=|x-2|-|3-x|=|x-2|-|x-3|,其几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得,当x≥3时,t=1,取得最大值,故答案为1.令t=|x-2|-|3-x|=|x-2|-|x-3|,根据绝对值的几何意义可得,t的几何意义为x表示的点到点2与点3的距离之差,根据数轴分析可得答案.本题考查绝对值的几何意义,|a-b|即两实数a、b表示两个点间的距离.22.【答案】3【解析】【分析】本题考查理解题意能力,关键是找到最后一人得到的玩具不足3件这个不等量关系,列不等式组求解.设小朋友的人数为x人,则玩具数为(3x+3),根据若前面每人分5件,则最后一人得到的玩具不足3件.可列一元一次不等式组求解.【解答】解:设小朋友的人数为x人.,解得:2.5<x<4,故x=3.故答案为3.23.【答案】解:(1)去分母得:6+3x≥4x-2,移项合并得:x≤8;(2),由①得:x≤1;由②得:x>-2,则不等式组的解集为-2<x≤1,【解析】(1)不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.24.【答案】解:解不等式≥-2得,x≤5,解不等式<4得,x>-4,则该不等式组的解集为:-4<x≤5,故该不等式组的整数解为:-3,-2,-1,0,1,2,3,4,5.【解析】分别求解两个不等式,然后求其交集,最后找出不等式组的整数解.本题考查了解一元一次不等式和不等式组的整数解,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.25.【答案】解:去分母得,x-m>3(3-m),去括号得,x-m>9-3m,移项,合并同类项得,x>9-2m,∵此不等式的解集为x>1,∴9-2m=1,解得m=4.【解析】本题考查了解一元一次不等式,关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.先根据一元一次不等式的解法求解不等式,然后根据不等式的解集为x>1,得出9-2m=1,求出m的值.26.【答案】解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6-z)>165,解之得:z<,∵z≥0且为整数,∴z=0,1,2;∴6-z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.【解析】(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.27.【答案】解:(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,5x+4(x-20)=820,x=100,x-20=80,购买A型100元,B型80元;(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,,∴20<m≤22,而m为整数,所以m为21或22.当m=21时,60-m=39;当m=22时,60-m=38.所以有两种购买方案:方案一购买A21块,B 39块、方案二购买A 22块,B38块.【解析】(1)设购买一块A型小黑板需要x元,一块B型为(x-20)元,根据,购买一块A型小黑板比买一块B型小黑板多用20元.且购买5块A型小黑板和4块B型小黑板共需820元可列方程求解.(2)设购买A型小黑板m块,则购买B型小黑板(60-m)块,根据需从荣威公司购买A、B两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,可列不等式组求解.本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量应大于购买A、B种型号小黑板总数量的,列出不等式组求解.。
(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试题(包含答案解析)3
一、选择题1.已知正比例函数()0y kx k =≠的图象如图所示,则在下列选项中k 的值可能是( )A .5B .4C .3D .22.估算192+的结果在() A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间 3.在平面直角坐标系中,若点()3,1B m m -+在第二象限,则m 的取值范围为( ) A .13m -<< B .3m > C .1m <- D .1m >-4.若不等式组11233x x x m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m < 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.若a >b ,则下列式子正确的是( )A .a +1<b +1B .a ﹣1<b ﹣1C .﹣2a >﹣2bD .﹣2a <﹣2b 7.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .29.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( )A .4个B .5个C .6个D .无数个10.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .3x <B .3x >C .x a b >-D .x a b <- 11.若关于x 的不等式组0721x m x -⎧⎨-≤⎩<的整数解有且仅有3个,则实数m 的取值范围是( ) A .56m ≤<. B .56m <<C .56m ≤≤D .56m <≤ 12.已知点()1,23P a a +-在第四象限,则a 的取值范围是( )A .1a <-B .312a -<< C .312a -<< D .32a > 二、填空题13.如果三角形两条边分别为3和5,则周长L 的取值范围是________14.不等式组3121213x x +>-⎧⎪⎨-≥⎪⎩的最大整数解为______. 15.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 16.过点()5,2-的一条直线与x 轴、y 轴分别相交于点A ,B ,且与直线312y x =-+平行,则在线段AB 上,横、纵坐标都是整数的点坐标是______. 17.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.18.如图,函数2y x =和y ax b =+的图象相交于点(),3A m ,则关于x 的不等式2x ax b >+的解集为________.19.已知关于x的不等式2x﹣a>﹣3的解集是x>1,则a的值为_____.20.不等式-3x-1≥-10的正整数解为______________三、解答题21.解不等式组:232 2112323x xxx>-⎧⎪-⎨≥-⎪⎩,并将解集在数轴上表示出来.22.某社区计划对面积为3600m2的区域进行绿化,经投标,由甲,乙两个工程队来完成,已知甲队5天能完成绿化的面积等于乙队10天完成绿化的面积,甲队3天能完成绿化的面积比乙队5天能完成绿化面积多60m2.(1)求甲、乙两工程队每天能完成绿化的面积;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为0.5万元,要使这次绿化的总费用不超过32万元,则至少应安排乙工程队绿化多少天?23.今年,“地摊经济”成为了社会关注的热门话题.小明从市场得知如下信息:甲商品乙商品进价(元/件)355售价(元/件)458x件,甲、乙商品全部销售完后获得利润为y元.(1)求出y与x之间的函数关系式;(2)小明用不超过2000元资金一次性购进甲,乙两种商品,求x的取值范围;(3)在(2)的条件下,若要求甲,乙商品全部销售完后获得的利润不少于632.5元,请说明小明有哪些可行的进货方案,并计算哪种进货方案的利润最大.24.已知线段12AB=,点C,E,F在线段AB上,E是线段AC的中点.(1)如图1,当F是线段BC的中点时,求线段EF的长;(2)如图2.当F是线段AB的中点时,EF a=,①求线段AC的长(结果可用含a的代数式表示);②若a为正整数,请写出所有满足条件的a的值.25.为了美化校园,某学校决定利用现有的332盆甲种花卉和310盆乙种花卉,搭配A,B 两种园艺造型共50个,摆放在校园道路两侧.已知一个A种园艺造型需甲种花卉7盆,乙种花卉5盆;一个B 种园艺造型需甲种花卉6盆,乙种花卉8盆.(1)问搭配A ,B 两种园艺造型共有几种方案?(2)若一个A 种园艺造型的成本是200元,一个B 种园艺造型的成本是300元,哪种方案成本最低?请写出此方案.26.(1)解不等式:2112x ->,并把它的解表示在数轴上. (2)解不等式组:31,232 4.x x -⎧≤⎪⎨⎪+≥⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据图象,找到当x=2与x=3时,对应的函数值与图像关系,列出不等式求出k 的取值范围,再结合选项解答.【详解】解:根据图象,得2k <6,3k >5,解得k <3,k >53, 所以53<k <3. 只有2符合.故选:D .【点睛】利用数形结合法,根据图象列出不等式求k 的取值范围是解题的关键.2.C解析:C【分析】先确定45<<,再根据不等式的性质得到627<即可得到答案.【详解】∵16<19<25,∴45<<,∴627<<.故选:C .【点睛】此题考查算术平方根的取值范围,不等式的性质,正确掌握算术平方根的取值范围的计算方法是解题的关键.3.A解析:A【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,可得m-3<0,m+1>0,求不等式组的解即可.【详解】解:∵点()3,1B m m -+在第二象限,∴可得到3010m m -<⎧⎨+>⎩, 解得m 的取值范围为13m -<<.故答案为:13m -<<.【点睛】此题主要考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B解析:B【分析】不等式组整理后,利用有解的条件确定出m 的范围即可.【详解】不等式组整理得:33x x m <⎧⎨>⎩, 由不等式组有解,得到3m <3,解得:m <1.故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.D解析:D【分析】根据不等式的性质逐一判断,判断出式子正确的是哪个即可.【详解】解:∵a >b ,∴a +1>b +1,∴选项A 不符合题意;∵a >b ,∴a ﹣1>b ﹣1,∴选项B 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项C 不符合题意;∵a >b ,∴﹣2a <﹣2b ,∴选项D 符合题意.故选:D .【点睛】本题考查了不等式的性质,要熟练掌握,特别要注意在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.7.D解析:D【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可.【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x ⨯≥ 解得:103x ≥故选:D【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米. 8.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.10.B解析:B【分析】利用函数图象,写出直线y 1在直线y 2下方所对应的自变量的范围即可.【详解】结合图象,当x >3时,y 1<y 2,即kx+b <x+a ,所以不等式kx-x <a-b 的解集为x >3.故选:B .【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合,运用数形结合的思想解决此类问题.11.D解析:D【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式0x m -<,得:x m <,解不等式721x -≤,得:3x ≥,则不等式组的解集为3x m ≤<,∵不等式组的整数解有且仅有3个,∴不等式组的整数解为3、4、5,则56m <≤.故答案为:D .【点睛】本题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.12.B解析:B【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列不等式组求解即可.【详解】∵点P (1a +,23a -)在第四象限,∴10230a a +>⎧⎨-<⎩,∴a 的取值范围是312a -<<. 故选:B .【点睛】 本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键.二、填空题13.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围再根据不等式的性质求出答案【详解】设第三边长为x ∵有两条边分别为3和5∴5-3<x<5+3解得2<x<8∴2+3+5<x+3+5<8+3解析:10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∵有两条边分别为3和5,∴5-3<x<5+3,解得2<x<8,∴2+3+5<x+3+5<8+3+5,∵周长L=x+3+5,∴10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.14.3【分析】分别求出不等式的解集得到不等式组的解集得到整数解【详解】解不等式得解不等式得∴不等式组的解集是故不等式组的整数解为0123故答案为:3【点睛】此题考查解不等式组求不等式组的整数解正确解不等解析:3【分析】分别求出不等式的解集,得到不等式组的解集,得到整数解.【详解】解不等式312x +>-得1x >-, 解不等式1213-≥x 得3x ≤, ∴不等式组的解集是13x -<≤,故不等式组的整数解为0,1,2,3,故答案为:3.【点睛】此题考查解不等式组,求不等式组的整数解,正确解不等式是解题的关键.15.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.16.(14)(31)【分析】依据与直线平行设出直线AB 的解析式;代入点(5-2)即可求得b 然后求出与x 轴的交点横坐标列举符合条件的x 的取值依次代入即可【详解】解:∵过点(5-2)的一条直线与直线平行设直解析:(1,4),(3,1).【分析】 依据与直线312y x =-+平行设出直线AB 的解析式32y x b =-+;代入点(5,-2)即可求得b ,然后求出与x 轴的交点横坐标,列举符合条件的x 的取值,依次代入即可.【详解】 解:∵过点(5,-2)的一条直线与直线312y x =-+平行,设直线AB 为32y x b =-+; 把(5,-2)代入32y x b =-+;得-2=152b -+ 解得:b=112∴直线AB 的解析式为31122y x =-+ 令y=0,得:311022x =-+ 解得:x=113∴0<x<113的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、52、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).【点睛】本题考查了待定系数法求解析式以及直线上点的情况,列举出符合条件的x的值是本题的关键.17.x≥1【分析】将点P的坐标代入直线y=x+2解出m的值即得出点P的坐标数形结合将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上解析:x≥1【分析】将点P的坐标代入直线y=x+2,解出m的值,即得出点P的坐标,数形结合,将不等式x+2≥ax+c的解集转化为直线y=x+2与直线y=ax+c的交点以及直线y=x+2图像在直线y=ax+c图像上方部分x的范围即可.【详解】把P(m,3)代入y=x+2得:m+2=3,解得:m=1,∴P(1,3),∵x≥1时,x+2≥ax+c,∴关于x的不等式x+2≥ax+c的不等式的解为x≥1.故答案为:x≥1.【点睛】本题主要考查一次函数与不等式的关系,将不等式的解集转化为一次函数的图像问题是解题关键.18.【分析】先将点A的坐标代入正比例函数中求得m的值再结合图象得出不等式的解集即可【详解】∵函数y=2x经过点A(m3)∴2m=3解得:m=由图象得当时的图象位于图象上方∴关于x的不等式2x>ax+b的解析:32 x【分析】先将点A的坐标代入正比例函数中求得m的值,再结合图象得出不等式的解集即可.【详解】∵函数y=2x经过点A(m,3),∴2m=3,解得:m=32,由图象得,当32x>时,2y x=的图象位于y ax b=+图象上方,∴关于x的不等式2x>ax+b的解集为32x>.故答案为:32 x>.【点睛】本题考查了一次函数与一次不等式的关系,属于简单题,熟悉一次函数的图象和性质是解题关键.19.【分析】先解关于x的不等式然后根据解集确定a的值即可【详解】解:由2x﹣a>﹣3得x>∵不等式2x﹣a>﹣3的解集是x>1∴=1解得:a=5故答案为5【点睛】本题考查了根据一元一次不等式的解集确定参解析:5a=【分析】先解关于x的不等式,然后根据解集确定a的值即可.【详解】解:由2x﹣a>﹣3,得x>32a-,∵不等式2x﹣a>﹣3的解集是x>1,∴32a-=1,解得:a=5.故答案为5.【点睛】本题考查了根据一元一次不等式的解集确定参数,掌握一元一次不等式的解法是解答本题的关键.20.123【分析】先求出不等式的解集再求出不等式的正整数解即可【详解】解:-3x-1≥-10-3x≥-10+1-3x≥-9x≤3∴不等式-3x-1≥-10的正整数解为123故答案为123【点睛】本题考查解析:1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x-1≥-10,-3x≥-10+1,-3x≥-9,x≤3,∴不等式-3x-1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.三、解答题21.-2≤x<2,数轴表示见解析【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可.【详解】解:232 2112323x xxx>-⎧⎪⎨-≥-⎪⎩①②,由①得x<2,由②得x≥-2,所以原不等式组的解集为-2≤x<2,数轴表示:【点睛】本题考查了解一元一次方程组,以及在数轴上表示不等式的解集,熟练掌握不等式组的解法是解本题的关键.22.(1)甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2;(2)至少应安排乙工程队绿化40天.【分析】(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,根据甲队3天能完成绿化的面积比乙队5天能完成绿化面积多50m2,即可得出关于x的一元一次方程,解之即可得出结论;(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,根据总费用=每日绿化的费用×绿化时间结合这次绿化的总费用不超过32万元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设乙工程队每天能完成绿化的面积为xm2,则甲工程队每天能完成绿化的面积为2xm2,依题意,得:3×2x﹣5x=60,解得:x=60,∴2x=120.答:甲工程队每天能完成绿化的面积为120m2,乙工程队每天能完成绿化的面积为60m2.(2)设安排乙工程队绿化m天,则安排甲工程队绿化360060120m-天,依题意,得:1.2×360060120m-+0.5m≤32,解得:m≥40.答:至少应安排乙工程队绿化40天.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)y=7x+300;(2)0≤x≤50;(3)甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;当甲商品进50件,乙商品进50件时,利润有最大值.【分析】(1)分别求出甲、乙商品的利润,根据y=甲商品利润+乙商品利润即可得解析式;(2)由用不超过2000元资金一次性购进甲,乙两种商品,列出不等式组,即可求解;(3)由获得的利润不少于632.5元,列出不等式可求x的范围,根据一次函数的性质即可得答案.【详解】(1)∵购进甲、乙商品共100件进行销售,小明购进甲商品x件,∴甲商品利润为(45-35)x=10x,乙商品利润为(100-x)(8-5)=300-3x,∵甲、乙商品全部销售完后获得利润为y元,∴y=10x+(300-3x)=7x+300.(2)∵用不超过2000元资金一次性购进甲,乙两种商品,∴35x+5(100﹣x)≤2000,∴x≤50,又∵x≥0,∴0≤x≤50;(3)∵甲,乙商品全部销售完后获得的利润不少于632.5元,∴7x+300≥632.5,∴x≥47.5,由(2)可得0≤x≤50,∴47.5≤x≤50,∵x为整数,∴x=48,49,50,∴进货方案有:甲商品进48件,乙商品进52件;甲商品进49件,乙商品进51件;甲商品进50件,乙商品进50件;∵y =7x+300,7>0,∴y 随x 的增大而增大,∴当x =50时,y 有最大利润.∴当甲商品进50件,乙商品进50件,利润有最大值.【点睛】本题考查一元一次不等式的应用及一次函数的应用,理解题意,正确列出不等式并熟练掌握一次函数的性质是解题关键.24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)共有3种方案;(2)当A 种园艺造型32个,B 种园艺造型18个,成本最低【分析】(1)根据题意列出一元一次不等式组,直接解不等式组,然后取整数解即可得出答案;(2)根据题意列出总成本关于x 的一次函数,利用一次函数的性质求解可得.【详解】(1)解:设A 种园艺造型x 个,B 种园艺造型(50)x -个()()76503325850310x x x x ⎧+-≤⎪⎨+-≤⎪⎩∴3032x ≤≤x 为正整数:x 取30,31,32,∴可设计3种搭配方案:第一种:A 种园艺造型30个,B 种园艺造型20个;第二种:A 种园艺造型31个,B 种园艺造型19个;第三种:A 种园艺造型32个,B 种园艺造型18个.(2)解:设总成本为y 元()20030050y x x =+-10015000y x =-+∴0k <,y 随x 的增大而减小∴当32x =时,y 取最小值∴当A 种园艺造型32个,B 种园艺造型18个,成本最低【点睛】本题主要考查了一元一次不等式组和一次函数的实际应用,解题关键是弄清题意,合适的等量关系,列出不等式组,属于中档题.26.(1)32x >,图见见解析;(2)1≥x 【分析】(1)去分母,移项、合并同类项,系数化1,得出不等式的解集,在数轴上用空心圆表示;(2)分别求出两个不等式的解集,取其公共部分从而得出不等式组的解集.【详解】 解:(1)2112x ->, 去分母得:212x ->移项得:221x >+合并同类项得:23x >系数化1得:32x >,这个不等式解集在数轴上的表示如图所示:(2)312324x x -⎧≤⎪⎨⎪+≥⎩①②,解不等式①得:1≥x解不等式②得:23x ≥∴不等式组的解集为:1≥x【点睛】 本题考查了不等式和不等式组的解法,以及数轴上表示不等式的解集,解题关键是熟练掌握解不等式的步骤,以及解不等式组时最后的结果是去其公共部分.。
初二数学一元一次不等式试题答案及解析
初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。
【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式2m﹣1≤6的正整数解是_________.【答案】1,2,3.【解析】先求出不等式的解集,再在不等式的解集范围内确定它的正整数解即可.试题解析:由2m﹣1≤6解得:m≤,故不等式2m﹣1≤6的正整数解是1,2,3.【考点】解一元一次不等式.3.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.4.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.5.不等式的解集在数轴上表示正确的是()【答案】D.【解析】不等式x≥1的解集在数轴上表示正确的是.故选D.考点: 在数轴上表示不等式的解集.6.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.7.某校男子100m跑的记录是12s,在今年的校田径运动会上,肖华的100m跑成绩是ts,打破了该校男子100m跑的记录。
北师大版八年级下册数学《资源与评价》答案
1.1 不等关系1.B ; 2.A ; 3.D ; 4.C ; 5.C ;6.D ;7.(1)>,(2)>;8.3y +4x <0;9.x<ll .7,x ≥11.7;10.a <1<1a ;11.8;12.12a 2+12b 2>ab (a ≠b) . 13.(1)2a<a+3,(2)1502y -≥,(3)3x +l < 2x -5.14.(1)设这个数为x ,则x 2≥0;(2)设某天的气温为x ℃, 则≤25. 15.2a<a +b <3b . 16.a >b .17.设参加春游的同学x 人,则8x<250,9x >250(或8x< 250<9x ). 18.50+(20-3)x >270.19.设该同学至少应答对x 道题,依题意有6x -(16-x)×2≥60.20.(1)>(2)=(3)>(4)>(5)>; 22a b +≥2ab (当a =b 时取等号).聚沙成塔:甲同学说的意思是:如果每5人一组玩一个篮球,那么玩球的人数少于50人,有些同学就没有球玩.乙同学说的意思是:如果每6人一组玩一个篮球,那么就会有一个组玩篮球的人数不足6人.丙同学说的意思是:如果每6人一组玩一个篮球,除了一个球以外,剩下的每6人玩一个球,还有几个(不足6人)玩另外一个篮球.1.2 不等式的基本性质1.C ; 2.D ; 3.B ; 4.A ; 5.C ; 6.A ; 7.C ; 8.D ; 9.(1)<(2)>(3)>(4)>(5)>(6)<;10.(1)<(2)>(3)>(4)<;11.a <0; 12.(4); 13.0,1,2,3,4,5; 14.<a b ; 15.<2 <0; 16.>32. 17.(1)x >5;(2)172x >-;(3)得x <-3.(4)x <-8. 18.解:根据不等式基本性质3,两边都乘以-12,得3a >4a .根据不等式基本性质1,两边都减去3a ,得0>a ,即a<0 ,即a 为负数. 19.(1)a >0;(2)a >l 或a <0;(3)a<0. 聚沙成塔解:∵B 1=45×111111111=45×(10+11111)=12.5+111125.1<13A 1=⨯341111111=⨯34(10+1111)=13.33+11133.1>13∴A 1>B1>0 ∴A <B点拨:利用倒数比较大小是一种重要方法.1.3 不等式的解集1.A ;2.B ;3.C ;4.D ;5.B ;6.A ;7.B ;8.C ;9.答案不唯一,如x -1≤0,2x ≤2等. 10.=52,≤52.11.x =2. 12.x =1,2,3 13.-6. 14.(1)x >3;(2)x <6;(3)x >5;(4)x >10. 15.x =1,2 16.n >75% 40%≤n ≤49% n <20% 温饱.17.图略.18.答案不惟一:(1)x <4; (2) -3<x ≤1. 19.不少于1.5克. 20.x 可取一切实数.21.非负整数为0,1,2,3. 22. x >512. 23. k 大于36时b 为负数. 24. a=-3 聚沙成塔解:设白球有x 个,红球有y 个,由题意,得⎩⎨⎧=+60322y x xy x由第一个不等式得:3x <3y <6x ,由第二个不等式得,3y=60-2x ,则有3x <60-2x <6x ∴7.5<x <12,∴x 可取8,9,10,11.又∵2x=60-3y=3(20-y ) ∴2x 应是3的倍数 ∴x 只能取9,y =39260⨯-= 14 答:白球有9个,红球有14个.1.4一元一次不等式(1)1.B ;2.C ;3.D ;4.B ;5.B ;6.D ;7.A ;8.A ;9.x =0,-1,-2,-3,-4 ;10.x <-3;11.R >3;12.-6;13.2;14.2≤a <3; 15.x ≥119. 16.第④步错误,应该改成无论x 取何值,该不等式总是成立的,所以x 取一切数. 17.(1)得x ≥1;(2)x >5;(3)x ≤1;(4)x < 3;18.(1)解不等式231023x x ++-≥,得74x ≥- 所以当74x ≥-时,23123x x ++-的值是非负数.(2)解不等式231123x x ++-≤,得14x ≤- 所以当14x ≤-时,代数式23123x x ++-的值不大于119.p >-6. 20.-11.聚沙成塔解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x ,因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .1.4一元一次不等式(2)1.B ; 2.B ; 3.C ; 4.C ; 5.D ; 6.12; 7.13; 8.152. 9.以后6天内平均每天至少要挖土80立方米. 10.以后每个月至少要生产100台. 11.不少于16千米.12.每天至少安排3个小组.13.招聘A 工种工人为50人时,可使每月所付的工资最少,此时每月工资为130000元. 14.甲厂每天处理垃圾至少需要6小时. 15.(1)y=9.2-0.9x ;;(2)饼干和牛奶的标价分别为2元、8元. 聚沙成塔 解:(1)由题意,可将一、二、三等奖的奖品定为相册、笔记本、钢笔即可.此时所需费用为5×6+10×5+25×4=180(元); (2)设三等奖的奖品单价为x 元,则二等奖奖品单价应为4x 元,一等奖奖品单价为20x 元,由题意应由5×20x +10×4x +25×x ≤1000,解得x ≤6.06(元).故x 可取6元、5元、4元.故4x 依次应为24元,20元,16元,20x 依次应为120元、100元、80元.再看表格中所提供各类奖品单价可知,120元、24元、6元以及80元、16元、4元这两种情况适合题意,故有两种购买方案,方案一:奖品单价依次为120元、24元、6元,所需费用为990元;方案二:奖品单价依次为80元、16元、4元,所需费用为660元.从而可知花费最多的一种方案需990元.1.5一元一次不等式与一次函数(1)1.A ;2.D ;3.C ;4.C ;5.B ;6.A ;7.D ;8.B ;9.m <4且m ≠1;10.20;11.x >-45,x <-45;12.x <-5;13.x >-2;14.x <3;15.(-3,0);16.(2,3). 17.(1) 12x <-;(2)x ≤0.18. (1)P (1,0);(2)当x <1时y 1>y 2,当x >1时y 1<y 2. 聚沙成塔在直角坐标系画出直线x =3,x +y =0,x -y +5=0, 因原点(0,0)不在直线x -y +5=0上,故将原点(0,0)代入x -y +5可知,原点所在平面区域表示x -y+5≥0部分, 因原点在直线x+y=0上,故取点(0,1)代入x+y 判定可知点(0,1)所在平面区域表示x+y≥0的部分,见图阴影部分.1.5 一元一次不等式与一次函数(2)1.B ;2.B ;3.A ;4.13;5.(1)y 1=600+500x y 2=2000+200x ; (2)x >432,到第5个月甲的存款额超过乙的存款额. 6.设商场投入资金x 元,如果本月初出售,到下月初可获利y 1元, 则y 1=10%x +(1+10%)x·10%=0.1x +0.11x =0.21x ;如果下月初出售,可获利y 2元,则y 2=25%x -8000=0.25x -8000 当y 1=y 2即0.21x =0.25x -8000时,x =200000 当y 1>y 2即0.21x >0.25x -8000时,x <200000 当y 1<y 2即0.21x <0.25x -8000时,x >200000∴ 若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多,若投入资金多于20万元,下月初出售获利较多.7.(1)分两种情况:y=x(0≤x ≤8),y=2x -8(x >8); (2)14. 8.(1)乙在甲前面12米;(2)s 甲=8t ,s 乙=12+213t ; (3)由图像可看出,在时间t >8秒时,甲走在乙前面,在0到8秒之间,甲走在乙的后面,在8秒时他们相遇.9.解:如果购买电脑不超过11台,很明显乙公司有优惠,而甲公司没优惠,因此选择乙公司.如果购买电脑多于10台.则:设学校需购置电脑x 台,则到甲公司购买需付[10×5800+5800(x -10)×70%]元,到乙公司购买需付5800×85% x 元.根据题意得: 1)若甲公司优惠:则 10×5800+5800(x -10)×70%<5800×85% x 解得: x >202)若乙公司优惠:则 10×5800+5800(x -10)×70%>5800×85% x 解得: x <203)若两公司一样优惠:则 10×5800+5800(x -10)×70%=5800×85% x 解得: x =20答:购置电脑少于20台时选乙公司较优惠,购置电脑正好20台时两公司随便选哪家,购置电脑多于20台时选甲公司较优惠. 10.(1)他继续在A 窗口排队所花的时间为42844a a -⨯-=(分) (2)由题意,得42625246a a -⨯-⨯+⨯>,解得 a >20. 11. 解:(1)设轿车要购买x 辆,那么面包车要购买(10-x )辆,由题意得:7x +4(10-x )≤55 解得:x ≤5又∵x ≥3,则 x =3,4,5 ∴购机方案有三种:方案一:轿车3辆,面包车7辆;方案二:轿车4辆,面包车6辆;方案三:轿车5辆,面包车5辆; (2)方案一的日租金为:3×200+7×110=1370(元) 方案二的日租金为:4×200+6×110=1460(元) 方案三的日租金为:5×200+5×110=1550(元) 为保证日租金不低于1500元,应选择方案三. 12.(1)y 1=50+0.4x ,y 2=0.6x ;(2)当y 1=y 2,即50+0.4x =0.6x 时,x =250(分钟),即当通话时间为250分钟时,两种通讯方式的费用相同; (3)由y 1<y 2即50+0.4x <0.6x ,知x >250,即通话时间超过250分钟时用“全球通”的通讯方式便宜.13.解:(1)该商场分别购进A 、B 两种商品200件、120件. (2)B 种商品最低售价为每件1080元. 聚沙成塔 解:(1)500n ;(2)每亩年利润=(1400×4+160×20)-(500+75×4+525×4+15×20+85×20) =3900(元) (3)n 亩水田总收益=3900n 需要贷款数=(500+75×4+525×4+15×20+85×20)n -25000=4900n -25000 贷款利息=8%×(4900n -25000)=392n -2000根据题意得:35000)2000392(3900≥--n n 解得:n ≥9.41 ∴ n =10需要贷款数:4900n -25000=24000(元)答:李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元.1.6 一元一次不等式组(1)1.C ;2.D ;3.C ;4.C ;5.A ;6.D ;7.D ;8.-1<y <2;9.-1≤x <3;10.-14≤x ≤4;11.M ≥2;12.2≤x <5;13.a ≤2;14.-6;15.A ≤1; 16.(1)31023x <<;(2)无解;(3)-2≤x <13;(4)x >-3.17.解集为345x <≤-,整数解为2,1,0,-1.18.不等式组的解集是27310x ≤<-,所以整数x 为0.19.不等式组的解集为6913x ≤, 所以不等式组的非负整数解为:0,l ,2,3,4,5.聚沙成塔 -4<m <0.5.1.6.一元一次不等式组(2)1.解:设甲地到乙地的路程大约是xkm ,据题意,得 16<10+1.2(x -5)≤17.2, 解之,得10<x ≤11,即从甲地到乙地路程大于10km ,小于或等于11km .2.解:设甲种玩具为x 件,则甲种玩具为(50-x )件.根据题意得:⎩⎨⎧≤-+≤-+6440)50(1201404600)50(10080x x x x 解得:20≤x ≤22答:甲种玩具不少于20个,不超过22个. 3.(1)y =3.2-0.2x(2)共有三种方案,A 、B 两种车厢的节数分别为24节、16节或25节、15节或26节、14节. 4.(1)共有三种购买方案,A 、B 两种型号的设备分别为0台、10台或1台、9台或2台、8台;(2)A 、B 两种型号的设备分别1台、9台;(3)10年节约资金42.8万元. 5.解:设明年可生产产品x 件,根据题意得:⎪⎩⎪⎨⎧+≤≤≤⨯≤600006000412000100002400800120x x x 解得:10000≤x ≤12000 答:明年产品至多能生产12000件.6.解:设宾馆底层有客房x 间,则二楼有客房(x+5)间.根据题意得:⎪⎪⎩⎪⎪⎨⎧>+<+><48)5(448)5(3485484x x x x 解得:9.6<x <11,所以 x = 10 答:该宾馆底层有客房10间. 7.解:(1)32(20)y x x =+-40x =+ (2)由题意可得203(20)264486(20)708x x x x +-⎧⎨+-⎩≥ ①≤ ②解①得x ≥12 解②得x ≤14∴不等式的解为12≤x ≤14 ∵x 是正整数∴x 的取值为12,13,14即有3种修建方案:①A 型12个,B 型8个;②A 型13个,B 型7个;③A 型14个,B 型6个. (3)∵y =x +40中,y 随x 的增加而增加,要使费用最少,则x =12 ∴最少费用为y =x +40=52(万元) 村民每户集资700元与政府补助共计:700×264+340000=524800>520000 ∴每户集资700元能满足所需要费用最少的修建方案. 8.解:(1)设一盒“福娃”x 元,一枚徽章y 元,根据题意得23153195x y x y +=⎧⎨+=⎩ 解得15015x y =⎧⎨=⎩ 答:一盒“福娃”150元,一枚徽章15元. (2)设二等奖m 名,则三等奖(10—m )名,216515015(10)1000216515015(10)1100m m m m ⨯++-⎧⎨⨯++-⎩≥≤ 解得1041242727m ≤≤. ∵m 是整数,∴m =4,∴10-m =6. 答:二等奖4名,三等奖6名.单元综合评价1. 3a -2b ≤5; 2.0,1,2,3; 3. <; 4. x >21; 5. m <2; 6.28人或29人;7.4x ; 8. 51-+≤a a x ; 9.x >2; 10. 1. 11. D ; 12. B ;13. B ;14. C ;15. D ;16. C ;17. B ;18. A . 19.解:图略 (1)x >-4 (2)-6≤x ≤-2. 20.(1)x ≤4;(2)x <3;(3)1<x ≤2; (4)2<x ≤4. 21. 解:9a 2 + 5a + 3-(9a 2-a -1)=6a +4当6a +4>0即a >-32时,9a 2 + 5a + 3>9a 2-a -1 当6a +4=0即a =-32时,9a 2 + 5a + 3=9a 2-a -1当6a +4<0即a <-32时,9a 2 + 5a + 3<9a 2-a -1.22.解:根据三角形三边关系定理,得 ⎩⎨⎧->-+<-38213821a a解得 25-<<-a .23.解:设导火线至少需xcm ,根据题意,得40215>⋅x4.80>x 81≈x答:导火线至少需要81厘米长.24.解:假设存在符合条件的整数m . 由 321mx x +->+ 解得 25->m x由 mm x m x 931+>+整理得 m m m x ->92, 当0>m 时,29mx ->.根据题意,得 2925mm -=- 解得 m=7 把m=7代入两已知不等式,都解得解集为1>x因此存在整数m ,使关于x 的不等式与321mx x +->+是同解不等式,且解集为1>x .25.解:(1)y 1=250x+200,y 2=222x+1600.(2)分三种情况:①若y 1>y 2,250x+200>222x+1600,解得x >50;②若y 1=y 2,解得x=50; ③若y 1<y 2,解得x <50.因此,当所运海产品不少于30吨且不足50吨时,应选择汽车货运公司承担运输业务;当所运海产品刚好50吨时,可选择任意一家货运公司;当所运海产品多于50吨时,应选择铁路货运公司承担业务.第二章 分解因式2.1分解因式1.整式,积;2.整式乘法;3.因式分解;4.C ;5.A ;6.D ;7.D ;8.B ;9.2,1-=-=n m ;10.0; 11.C; 12.能;2.2提公因式法1.ab 2;2.3+x ;3.)43)(2(++a a ;4.(1)x+1;(2)b-c;5.22432y xy x +-;6.D;7.A;8.(1)3xy(x-2); (2))5(522x y y x -; (3))1382(22+--m m m ; (4))72)(3(--a a ; (5))223)((y x m y x +--; (6))25()(62a b b a --;(7) )413(522y xy y x -+; (8)2(x+y)(3x-2y); (9)))((c b a a x ---; (10))(2n m q +;9.C;10.10;21;11.)1(2n n a a a ++;12.)1(2+=+n n n n ;13.6-;14.6;2.3运用公式法(1)1.B;2.B;3.C;4.(1)))((x y x y -+;(2))3)(3(41y x y x -+; 5.(1)800;(2)3.98; 6.(1)(2x+5y)(2x-5y); (2)y(x+1)(x-1); (3)(2x+y-z)(2x-y+z); (4)(5a-3b)(3a-5b);(5)-3xy(y+3x)(y-3x); (6)4a 2(x+2y)(x-2y); (7)(a+4)(a-4); (8))3)(3)(9(22y x y x y x -++; (9)(7p+5q)(p+7q); (10)-(27a+b)(a+27b); 7.x m+1(x+1)(x-1); 8.A; 9.2008; 10.40162009; 2.3运用公式法(2)1.±8;2.1;3.2)121(-x ; 4.(1)5x+1;(2)b-1;(3)4;2;(4)±12mn;2m ±3n;5.D;6.C;7.D;8.D;9.C;10.C;11.A;12.(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9)22)3(n mn +; (10)-2ax n-1(1-3x)2; 13.x=2;y=-3; 14.(1)240000;(2)2500;15.7;16.31-;17.A;18.B;19.B;20.1;单元综合评价1.C; 2.B; 3.B; 4.C; 5.C; 6.A; 7.C; 8.D; 9.A; 10.A;11.-11或13;12.57;13.-6;14.3;15.5;16. -3xy(3x 2y+2xy-1); 17.(a-b)2(a+b); 18.2)21(--x a ; 19.(x+y)2(x-y)2; 20.45000; 21.14; 22.2)1(1)1(+=+++n n n n第三章 分式3.1分式(1)1.②和④,①和③;2.43;3.23+-m m ,-2;4.31,-5;5.为任意实数,1;6.32-,3±;7.⑴t s ,⑵)(a mb a m --,⑶b a bn am ++,⑷pnm -;8.B ;9.C ;10.C ;11.⑴3±≠x ,⑵a x 4±≠;12.⑴x=2,⑵x=1;13.a=6;14.2<x ;15.-3,-1,0,2,3,5;四.109=+b a . 1分式(2):1.⑴ab a +2,⑵x ,⑶4n ,⑷x-y ;2.1≠x 且0≠x ;3.①y x32,②x x --112,③xx x -+-2122,④1312-++x x x ;4.①y x y x 560610+-,②15203012+-x y x ,③yx y x 20253940+-,④b a b a 1512810+-;5.B ;6.71-;7.①-6xyz ,②m m 2-,③42+-m ,④22+-a a ;8.5;9.53;10.-3,11;11.5642++x x ;四.1.M=N ;2.1. 3.2分式的乘除法1.⑴bc a 2,⑵22xy ;2.2-≠x 且3-≠x 且4-≠x ;3.b a x 265;4.515;5.D ;6.D ;7.C ;8.⑴y x 2-,⑵55ba -,⑶2-x x ,⑷11-+-m m ;9.⑴-1,⑵34-,⑶41.四.1. 3.3分式的加减法(1)1.⑴ab c -7,⑵1,⑶3-a ,⑷a b c b c 129810+-;2.D ;3.15bc 2;4.22+x x ;5.2235--x x ;6.yx xy+;7.⑴a1-,⑵8-,⑶33-+x x ,⑷a a 2-;8.52;9.2x ;10.-2;11.B ;12.⑴2,⑵21+-x ;13.83;四.1.3.3分式的加减法(2)1.B;2.B;3.C;4.27;5.1;6.⑴11-x ,⑵2)2(4--x x x ,⑶y ,⑷3-x ;7.31或21;8.81;9.A=1,B=1;10.12;11.-3;四.解:由13ab a b =+,得3a b ab +=,即113a b+=……① 同理可得114b c +=……②,115a c +=……③,①+②+③得22212a b c ++=,∴1116a b c ++=,∴6bc ac ab abc++=,∴abc ab bc ca ++=163.4分式方程(1)1.整式方程,检验;2.12-x ;3.D ;4.0;5.x=20;6.-1;7.5;8.x=2;9.3;10.C ;11.D ;12.3;13.4;14.-1;15.A ;16.⑴原方程无解,⑵x=2,⑶x=3,⑷3-=x ;四.221+-n n .3.4分式方程(2)1.B ;2.C ;3.3;4.22;5.D ;6.⑴x200,⑵5x ,(200-5x),⑶55200+-x x ,⑷1552005200++-+=x xx ;⑸20;7.3±;8.⑴x=4,⑵x=7;9.1>m 且9≠m ;10.解:设公共汽车的速度为x 千米/时,则小汽车速度为3x 千米/时,根据题意得xx x 38031380=+-解得x=20,经检验x=20是所列方程的解,所以3x=60,答:公共汽车的速度为20千米/时,小汽车的速度为60千米/时;11.解:设去年居民用水价格为x 元,则今年价格为1.25x 元,根据题意得,6181.2536=-xx ,解得x=1.8,经检验x=1.8是所列方程的解,所以1.25x=2.25.答:今年居民用水价格为2.25元.四.解:设需要竖式纸盒5x 个,则需要横式3x 个,根据题意得,)3354x x ⨯+⨯(∶)325(x x ⨯+=29x ∶11x=29∶11.答:长方形和正方形纸板的张数比应是29∶11.单元综合评价1.D ;2.B ;3.D ;4.C ;5.B ;6.B ;7.C ;8.)1()1(2-+x x x ;9.21≠x 且43-≠x ;10.2;11.53;12.-3;13.av v a +25;14.x=2;15.1<m 且3-≠m ;16.1210222++-x x x ;17.x -22;18.21;19.56-=x ;20.5-=x ;21.解:设改进前每天加工x 个,则改进后每天加工2.5个,根据题意得155.210001000+=xx ,解得x=40,经检验x=40是所列方程的解,所以2.5x=100.答:改进后每天加工100个零件.22.解:设甲原来的速度为x 千米/时,则乙原来的速度为(x-2)千米/时,根据题意得240844-40-=-+x x x ,解得x=12,经检验x=12是所列方程的解,所以x-2=10.答:甲原来的速度为12千米/时,乙原来的速度为10千米/时.第四章 相似图形4. 1线段的比⑴1.2:5,57;2.58;3.269;4.5; 5.1:50000;6.45;7.1:2:2;8.D ;9.B ;10.C ;11.B ;12.D ;13.⑴√⑵×;14.BC=10cm .4.1线段的比⑵1.3;2.32;3.53;4.C ;5.B ;6.B ;7.D ;8.B ;9.PQ=24;10.⑴3;⑵54-;11.⑴38;⑵76-;(3)-5;12.a :b:c=4:8:7;13.分两种情况讨论:⑴a +b+c≠0时,值为2;⑵a +b+c=0时,值为-1.4.2黄金分割 1.AP 2=BP·AB 或PB 2=AP·AB ;2.0.618;3.7.6,4.8;4.C ;5.C ;6.B ;7.C ;8证得AM 2=AN·MN 即可;9.⑴AM=5-1;DM=3-5;⑵略;⑶点M 是线段AD 的黄金分割点;10.通过计算可得215-=AB AE ,所以矩形ABFE 是黄金矩形. 4.3形状相同的图形1.相同⑶⑸;不同(1)(2)(4)(6).2.(a )与⑷,(b)与⑹,(c)与⑸是形状相同的;3.略;4.⑴AB=13,BC=26,AC=5,⑵A /B /=213,B /C /=226,A /C /=10,⑶成比例,⑷相同.4.4相似多边形1.×2.√3.×4.√5.√6.①④⑤;7.B ;8.B ;9.C ;10.C ;11.A ;12.27;13.66;14.一定;15.不一定;16.2;17.都不相似,不符合相似定义;18.各角的度数依次为650,650,1150;1150.B 'C '=A 'D '=415cm ;19.BC·CF=1;20.相似;21.2;22.b 2=2a 2. 4.5相似三角形1.全等;2.4:3;3.24cm ;4.80,40;5.直角三角形,96cm 2;6.3.2;7.D ;8.B ;9.D ;10.C ;11.C ;12.A ;13.B ;14.A /B /=18cm ,B /C /=27cm ,A /C /=36cm ;15.⑴相似,1:2.⑵分别为43a 2和163a 2. ⑶面积之比等于边长之比的平方.4.6探索三角形相似的条件⑴1.2;2.6;3.2;4.4;△CDF ,1:2,180;5.4:3;6.2.4;7.572;8.B ;9.B ;10.C ;11.C ;12D ;13.BF=10cm ;14.⑴略.⑵BM=3. 15.由已知可得:AE AF BE FG =, AEAF DE FC =,BE=DE ,所以,FG=FC . 16.由已知可得: AG AF CG BF =,AG AF GD EF =,所以GD EF CG BF =.17. 由已知得:BF DF CF GF =,BFDF EF CF =,可得EF CF CF GF =,即: CF 2=GF·EF . 18.由已知得: PB PD PA PQ =,PB PD PR PA =,可得: 22PBPD PR PQ =. 19.不变化,由已知得: BC CP AB PE =,BCBP CD PF =,得:1=+CD PF AB PE ,即PE+PF=3. 20.提示:过点C 作CG//AB 交DF 于G .21.23. 22.⑴由已知得:21===CD OE FC OF GC EG ,所以32=CE GC ,即31=BC GC .问题得证.⑵连结DG 交AC 于M ,过M 作MH ⊥BC 交BC 于H ,点H 即为所求.23.⑴证△AEC ≌△AEF 即可.⑵EG=4.24.⑴过点E 作EG//BC 交AE 于G .可得: nn m EC BE +=.⑵由⑴与已知得:2=+n n m 解得:m=n ,即AF=BF .所以:CF ⊥AB .⑶不能,由⑴及已知可得:若E 为中点,则m=0与已知矛盾.4.6探索三角形相似的条件⑵1.三;2.22,26;3.6;4;15-55;5.310;6.2.4;7.A ;8.C ;9.B ;10.A ;11.B ;12.A ;13.⑴略.⑵相似,由⑴得∠AFE=∠BAC=600,∠AEF 公共.⑶由△BDF ∽△ABD 得: AD BD BD DF =,即BD 2=AD·DF .14.⑴∠BAC=∠D 或∠CAD=∠ACB .⑵由△ABC ∽△ACD 得BCAC AC AD =,解得:AD= 4,所以中位线的长= 6.5. 15.证: △ADF ∽△BDE 即可.16.AC = 43.17.提示:连结AC 交BD 于O .18.连结PM ,PN .证: △BPM ∽△CPN 即可.19.证△BOD ∽△EOC 即可.20.⑴连结AF .证; △ACF ∽△BAF 可得AF 2=FB·FC ,即FD 2=FB·FC .⑵由⑴相似可得: CF AF AC AB =,AF BF AC AB =,即CFBF AC AB =22. 21.⑴略.⑵作AF//CD 交BC 与F .可求得AB=4.⑶存在.设BP=x ,由⑴可得xx -⨯=74834,解得x 1=1, x 2= 6.所以BP 的长为1cm 或6cm .22.⑴由∠AFC=∠BCE=∠BCF+450,∠A=∠B=450可证得相似.⑵由⑴得AF·BE=AC·BC=2S .23. ⑴略. ⑵△ABP ∽△DPQ , DQ PD AP AB =,xy x -+=522,得y =-21x 2+25x -2.(1<x <4). 24. ⑴略. ⑵不相似.增加的条件为: ∠C=300或∠ABC=600.4.6探索三角形相似的条件⑶1.√;2.√;3.相似;4.90;5.相似;6.相似;7.D ;8.C ;9.C ;10.略;11.略;12.易得BCEF OC OF AC DF OA OD AB DE ====. 13.证: 22===AG AF CG AC AC CF 得△ACF ∽△ACG ,所以∠1=∠CAF ,即∠1+∠2+∠3=900. 14.A .15. ⑴略. ⑵AQ 平分∠DAP 或△ADQ ∽△AQP 等.4.6探索三角形相似的条件⑷1.相似;2.4.1;3.310;4.4;5.ABD ,CBA ,直角;6.D ;7.A ;8.C ;9.B ;10.C ;11.DE//BC ;12.证△AEF ∽△ACD ,得∠AFE=∠D ;13.易得△ABD ∽△CBE , ∠ACB=∠DEB .14.证△ABD ∽△ACE 得∠ADB=∠AEC 即可.15.略.16. ⑴CD 2=AC·BD .⑵∠APB=1200. 17.分两种情况讨论: ⑴CM=55,⑵CM=552. 18. ⑴证明△ACD ∽△ABE , ⑵AD AC DE BC =或AE AB DE BC =.由⑴得: AD AE AC AB =,△ABC ∽△AED 问题即可得证.19.650或1150.20.易得2==CEDF CF AD ,△CEF ∽△DAF ,得2=EF AF 与∠AFE=900.即可得到.21. ⑴证明△CDE ∽△ADE ,⑵由⑴得BC AD CE DM 212=,即BC AD CE DM =,又∠ADM=∠C .⑶由⑵得∠DBF=∠DAM ,所以AM ⊥BE . 22.易得:AC=6,AB=10.分两种情况讨论: 设时间为t 秒.⑴当AC CQ BC PC =时, 6828t t =-,解得t=512.⑵同理得8628t t =-,解得t=1132. 23. ⑴相似,提示可延长FE ,CD 交于点G . ⑵分两种情况:①∠BCF=∠AFE 时,产生矛盾,不成立.②当∠BCF=∠EFC 时,存在,此时k=23.由条件可得∠BCF=∠ECF=∠DCE=300,以下略.4.6探索三角形相似的条件⑸1.B ;2.C ;3.B ;4.C ;5.C ;6.C ;7.C ;8.A ;9.C ;10.B ;11.2等(答案不 唯一);12.DE//BC(答案不唯一);13. △ABF ∽△ACE , △BDE ∽△CDF 等;14.②③;15. ∠B=∠D(答案不 唯一);16.略;17.略(只要符合条件即可);18. ⑴七. ⑵△ABE ∽△DCA ∽△DAE ;19.利用相似可求得答案: x = 2cm .20. ⑴相似,证略.⑵BD=6.21.BF 是FG ,EF 的比例中项.证△BFG ∽△EFB 即可.22.证△ACF ∽△AEB .23. 2.24. ⑴AQ=AP ,6-t=2t 解得t=2.⑵S=12×6-21×12t -21×6(12-2t)=36.所以四边形的面积与点P ,Q 的位置无关.⑶分两种情况:①t=3.②t=56. 4.7测量旗杆的高度1.20;2.5;3.14;4.C ;5.C ;6.AB=25346米;7.MH=6m ;8. ⑴DE=310m ;⑵3.7m/s ;9.由相似可得: ⎪⎪⎩⎪⎪⎨⎧+==1284.37.18.17.1BC AB BC AB 解得AB=10.所以这棵松树的高为10m . 10.略.4.8相似多边形的性质1.2:3;2.2:5,37.5;3.1:4,1:16;4.1:4;5.75;6.1:16;7.22;8.60;9.C ;10.C ;11.C ;12.D ;13.B ;14.B ;15.C ;16.B ;17.4.8cm ;18.25;19.16;20.⑴提示:延长AD ,BF 交于G .AE:EC=3:2.⑵4.21.⑴S 1:S=1:4.⑵141+-=x y (0<x <4).22.提示:延长BA ,CD 交于点F .面积=16217.23. ⑴可能,此时BD=72108180-.⑵不可能,当S FCE ∆的面积最大时,两面积之比=925<4. 24.⑴S AEF ∆=x x 512522+-.⑵存在.AE=266-.25.略.26. ⑴640元.⑵选种茉莉花.⑶略.27. ⑴利用勾股定理问题即可解决.⑵答:无关.利用△MCG ∽△MDE 的周长比等于相似比可求得△MCG 的面积=4a .28. ⑴CP=22.⑵CP=724.⑶分两种情况①PQ=3760,②PQ=49120. 29.提示:作△ABC 的高AG . ⑴略.⑵DE=38. 30. ⑴x =310s .⑵2:9.⑶AP=940或20. 31.⑴DE=AD ,AE=BE=CE . ⑵有: △ADE ∽△ACE 或△BCD ∽△ABC . ⑶2:1.4.9图形的放大与缩小1.点O ,3:2;2.68,40;3. △A 'B 'C ',7:4, △OA 'B ',7:4;4.一定;5.不一定;6.略;7.(-1,2)或(1, -2),(-2,1)或(1, -2);8.2:1;9.D ;10.C ;11.B ;12.D ;13.C ;14.D ;15.略;16.略;17.略;18.略;19. ⑴略; ⑵面积为445. 单元综合评价⑴1.C ;2.C ;3.C ;4.A ;5.D ;6.B ;7.B ;8.C ;9.95;10.80;11.5;12.8;13.7.5;14.5;15.8:27;16.a 22;17.1:3; 18.相似.证明略.19.10:2.20.25:64.21.边长为6.22.y x :=3:2.23.略.24. △ABF ∽△ACE ,AB AF AC AE =得△AEF ∽△ACB . 25.菱形的边长为320cm . 26.证明略.27. ⑴边长为48mm .⑵分两种情况讨论:①PN=2PQ 时,长是7480mm ,宽是7240mm .②PQ=2PN 时,长是60mm .宽是30mm .单元综合评价⑵1.64cm ;2.4:9;3.30;4.三;5.72;6. △AEC ;7.1:4;8.②③④;9.8:5;10.7;11.C ;12.B ;13.B ;14.C ;15.C ;16.D ;17.D ;18.C ;19.B ;20.A ;21.略;22.EC= 4.5cm ;23.21. 6cm 2;24.略;25.边长是48mm .26. ⑴AC AO BC OE =,DC DF BC OF =,DCDF AC AO =,所以:OE= OF . ⑵易得OE=712,EF=2OE=724.27. ⑴PM=43厘米. ⑵相似比为2:3.⑶由已知可得:t=aa +66≤3,解得a ≤6,所以3<a ≤6. ⑷存在.由条件可得:⎪⎪⎩⎪⎪⎨⎧-=-+=t t a at a a t 3)(66 解得: a 1=23,a 2=-23(不合题意,舍去). 28. ⑴600,450.⑵900-21α.⑶900-21α,900+21α.证明略. 第五章 数据的收集与处理5.1 每周干家务活的时间1、(1)普查 (2)抽样调查 (3)抽样调查 (4)抽样调查2、(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10 (2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.3、D4、B5、(1)适合抽样调查 (2)适合普查 (3)适合抽样调查 (4)适合普查6、(1)缺乏代表性 (2)缺乏代表性 (3)有代表性7、8001512000=÷条 8、估计该城市一年(以365天计)中空气质量达到良以上的天数为219天. 四、聚沙成塔(略)5.2 数据的收集1、抽样调查2、A3、C4、7万名学生的数学成绩、每名考生的数学成绩、1500名考生的数学成绩5、D6、(1)丘陵,平原,盆地,高原,山地;山地的面积最大(2)59%(3)丘陵和平原(4)各种地形的面积占总面积的百分比,100%(5)略(6)不能(7)96万平方千米,249.6万平方千米.7、原因可能是:样本的容量太小,或选区的样本不具有代表性、广泛性、随机性.8、(1)否(2)抽样调查(3)200(4)不一定,抽查的样本不具有代表性和广泛性. 9、(1)平均质量为2.42千克. (2)900只可以出售.四、聚沙成塔能装电话或订阅《文学文摘》杂志的人在经济上相对富裕,而占人口比例多数、收入不高的选民却选择了罗斯福,因此抽样调查既要关注样本的大小,又要关注样本的代表性.5.3 频数与频率1、C2、0.323、0.54、0.185、D6、(1)48人(2)12人,0.257、0.258、(1)0.26 24 3 0.06(2)略9、(1)8,12,0.2,0.24 (2)略 (3)900名学生竞赛成绩, 每名学生竞赛成绩, 50名学生竞赛成绩,50 (4)80.5~90.5 (5)216人四、聚沙成塔(1)89分(2)甲的综合得分=92(1-a )+87a 乙的综合得分=89(1-a )+88a 当0.5 ≤a <0.75, 甲的综合得分高;当0.75 <a ≤0.8, 乙的综合得分高.5.4 数据的波动1、B2、A3、24、C5、B6、B7、D8、9 s ²9、2 10、4牛顿 11、(1)90分、70分、甲组(2)172、256、甲组成绩比较整齐. 12、甲x =8,乙x =8,x 丙=7.6,2甲s =4.4,2乙s =2.8,2s 丙=5.44;(2)乙 13、(1)8,7,8,2,60% (2)略 四、聚沙成塔(1)701.6 699.3 (2)65.84 284.21 (3)甲稳定 (4)甲,乙单元综合评价1、 某校八年级学生的视力情况,每名八年级学生的视力情况,85八年级学生的视力情况.2、 (2), (1)、(3)3、3.2 、964、不可信,样本不具有代表性5、50,20、0.46、3,5,12克7、(1)50,(2)60%(3)15 8、3,2.25,1.5 9、A 10、B 11、D 12、B 13、C 14、B 15、B 16、B 17、C 18、B 19、(1)102、113,106 (2)3180(3)y=53x 20\(1)21人 (2)0.96 (3)答题合理即可 21、(1)7、7、7.5、3(2)①甲的成绩较为稳定②乙的成绩较好③乙要比甲成绩好④尽管甲的成绩较为稳定,单从折线图的走势看,从第四次射击后,乙每次成绩都比甲高,并成上升趋势,乙的潜力比较大.第六章 证明(一)6.1 你能肯定吗?1、 观察可能得出的结论是(1)中的实线是弯曲的;(2)a 更长一些;(3)AB 与CD 不平行.而我们用科学的方法验证可发现:(1)中的实线是直的;(2)a 与b 一样长;(3)AB 与CD 平行. 2、一样长.计算略. 3、(1)不正确;(2)不正确;(3)不正确. 4.A 5.B6.能 7、原式=n 4,,所以一定为4的倍数.8、(1)正确的结论有①②③;(2)略 9.将此长方体从右到左数记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,由Ⅱ,Ⅳ可知,白颜色的面与红、黄两种颜色的面必相邻,又由Ⅰ知,白颜色的面应是蓝色的对面,恰为Ⅰ中的下底面,由Ⅲ知红与紫必相邻,再与Ⅰ相比较知,黄色的对面必为紫色了,从而红色的对面必为绿色了,通过上面的推理可以知道Ⅰ的下底面为白颜色,有4朵花,Ⅱ的下底面为绿色,有6朵花,Ⅲ的下底面为黄色,有2朵花,Ⅳ的下底面的紫色有5朵花,故这个长方体的下底面有(4+6+2+5)朵花,即共17朵花.聚沙成塔.m 4.107371000201.030≈÷⨯,比五层楼和电视塔都高.6.2 定义与命题1.(1)题设:两个角是对顶角;结论:这两个角相等(2)题设: 22b a =;结论:b a =(3)题设:如果两个角是同角或等角的补角;结论:这两个角相等(4)题设:同旁内角互补;结论:两直线平行(5)题设:经过两点作直线;结论:有且只有一条直线.2.C3.C4.C5.B6.D7.(1)如果在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行.(2)如果一个三角形有两条边相等,那么这两条边所对的角相等.(3)如果两个数的绝对值相等,那么这两个数相等.(4)如果一个数是有理数,那么在数轴上就有一个点与之相对应.(5)如果一个三角形是直角三角形,那么这个三角形的两个锐角互余.8.略9.D 10.D 11.B 12.C 13.D 14略 15.(1)假命题(2)真命题(3)假命题16. 两条平行直线被第三条直线所截,同旁内角的平分线互相垂直.17.解;例如已知,,C B AC AB ∠=∠=求证:AD AE =是真命题.(只要答案合理即可)18.先把羊带过河,再把狼带过河,然后把羊带回去,把青草带过河,最后再回去把羊带过河.6.3 为什么它们平行1.C2. C3.B4.C5.B6. D7.A8.B9.(1)AD ∥BC (2) AD ∥BC (3)AB ∥CD 10.平行11.平行 12.平行,同位角相等,两直线平行. 13——16答案略 17.因为∠A=∠1,∠2+∠ACE+∠1=180º,又AC ⊥CE ,故∠ACE=90º,∴∠1+∠2=90º,∴∠A+∠2=90º,∴∠ABC=90º,同理∠EDC=90º,∴AB ∥DE. 18.提示:∠B+∠A=90º,∠AEF=∠B ,∴∠AEF+∠A=90º19.提示:∠A=90º,∠B=60º,∠C=30º ,∠A :∠B :∠C=3:2:16.4 如果两条直线平行1.C 2.C 3.C 4.B 5.A 6. 110º 7. 123º 8. 180º 9.南偏东70º 10. 证明:(1)∵AD ∥BC ,∴∠1=∠B ,∠2=∠C.又∠B=∠C ,∴∠1=∠2,即AD 平分∠EAC ;(2)由∠B+∠C+∠BAC=180º,且∠1+∠2+∠BAC=180º知,∠1+∠2=∠B+∠C ,又AD 平分∠EAC ,∴∠1=∠2,而∠B=∠C ,故∠1=∠B ,或∠2=∠C ,从而AD ∥BC.11. 148º12.提示:过点C 做CP ∥AB 13. 121º49ˊ 14. (1)证明:过C 作CD ∥AB ,∵AB ∥EF ,∴CD ∥AB ∥EF ,∴∠B=∠BCD ,∠F=∠FCD , 故∠B+∠F=∠BCF.(2)过C 作CD ∥AB ,∴∠B+∠BCD=180º,又AB ∥EF ,AB ∥CD ,∴CD ∥EF ∥AB ,∴∠F+∠FCD=180º,故∠B+∠F+∠BCF=360º.6.5 三角形内角和定理的证明1.B2.D3.C4.D5.B6. 90º7. 50º, 100º8. 40º9. 63º 10. 100º 11. 50º12.略13.略 14.连CE ,记∠AEC=∠1,∠ACE=∠2,∴∠D+∠2+∠1+∠DEA=180º,∠B+∠1+∠2+∠BCA=180º,∠F+∠1+∠2+21∠DEA+21∠BCD=180º 由 ∠D+∠2+∠1+∠DEA+∠B+∠1+∠2+∠BCA=360º. ∴21(∠D+∠B )+∠1+∠2+21∠BCA+21∠DEA=180º ∴∠1+∠2+21∠BCA+21∠DEA=180º-21(∠D+∠B ), 即∠F+180º-21(∠D+∠B )=180º,∴∠F=21(∠B+∠D ); ( 2)设∠B=2α,则∠D=4α,∴∠F= 21(∠B+∠D )=3α, 又∠B :∠D :∠F=2:4:x ,∴x=3.2.略. 15.略6.6 关注三角形的外角1.C 2.C 3.C 4.B 5C 6. 35° 7. 37.5° 8. 260° 9. 55°或70° 10. 120°或115°或125°11.AF ⊥DE 12.∠D=70° ∠D=90°12A +∠ 13. 证法一:延长CD 交AB 于点E ; 证法二:过点B 做BF ⊥AD ,交AD 的延长线于点F.14.证法1: 360BDC BDA CDA∠=-∠-∠又180BDA B BAD ∠=-∠-∠ 180CDA C CAD ∠=-∠-∠360(180)BDC B BAD ∴∠=--∠-∠-(180)C CAD BAD CAD B C -∠-∠=∠+∠+∠+∠即BDC BAC B C ∠=∠+∠+∠;证法2略. 15.略16.延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A .证明略.提示:单元综合评价一、1.A 2.C 3.D 4.B 5.B 6.B 7.B 8.C 9.B 10.B二、11.略12.80° 13.60° 14.115° 15.88° 16.45°>∠B>30°17.360 ° 18.118° 19.3 20.68°三、21.10022.证明: ∵∠ADE=∠B ,∴ED ∥BC . ∴∠1=∠3.∵∠1=∠2,∴∠3=∠2.∴CD ∥FG .∵FG ⊥AB ,∴CD ⊥AB .23. ∵L 1∥L 2, ∴∠ECB+∠CBF=180°. ∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°, ∴∠ACB+∠CBA=90°. 又∠ABF=25°, ∴∠ECA=180°-90°-25°=65°.24.解:分两种情况(1)当ABC ∆为锐角三角形时,70B ∠=(2) 当ABC ∆为钝角三角形时,20B ∠=25.略 33.FD EC ⊥90EFD FEC ∴∠=-∠而FEC B BAE ∴∠=∠+∠又AE 平分BAC ∠11(180)22BAE BAC B C ∴∠=∠=-∠-∠=190()2B C -∠+∠ 则19090()2EFD B B C ⎡⎤∠=-∠+-∠+∠⎢⎥⎣⎦=1()2C B ∠-∠ (2)成立。
北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导
连接中考
(2020•湘潭)如图,直线y=kx+b(k<0)经过点p(1,1),当
kx+b≥x时,则x的取值范围为( A )
A.x≤1
B.x≥1
C.x<1
D.x>1
课堂检测
基础巩固题
1.在一次函数y=-2x+8中,若y>0,则 ( B )
A.x>4
B.x<4
C.x>0
D.x<0
2. 如图,直线y=ax+b(a≠0)过点A,B,则不等式ax+b>0的解 集是 ( C )
探究新知
由上述讨论易知: “关于一次函数的值的问题” 可变换成 “关于一元一次
不等式的问题” ; 反过来,“关于一元一次不等式的问题”可变换成 “
关于一次函数的值的问题”.
因此,我们既可以运用函数图象解不等式 ,也可以运用 解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用.
不等式与函数 、方程是紧密联系着的一个整体 .
课堂检测
基础巩固题
5.如图,直线l1:y1=2x+1与直线l2:y2=mx+4相交于点P(1,b). (1)求b和m的值.
(2)结合图象,直接写出当y1>y2时x的取值范围. 解:(1)对于直线y1=2x+1,当x=1时,y1=3, ∴P(1,3),b=3, 把P(1,3)代入y2=mx+4中,得3=m+4, 解得m=-1. (2)观察图象可知:当y1>y2时x的取值范围是x>1.
探究新知
所以当顾客每个月的通话时长等于100分钟时,选择甲 乙两种业务一样合算;如果通话时长大于100 分钟,选择甲 种业务比较合算;如果通话时长小于100 分钟,选择乙种业 务比较合算.
第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)
2021年北师大版八年级数学作业题第2章《一元一次不等式与一元一次不等式组》知识复习一.选择题1.不等式x>5的解集在数轴上表示正确的是()A.B.C.D.2.已知a>b,c≠0,则下列关系一定成立的是()A.c+a>c+b B.C.c﹣a>c﹣b D.ac<bc3.在平面直角坐标系中,若点A(x+3,﹣4)在第四象限,则x的取值范围是()A.﹣3<x<6B.x<﹣3C.x>6D.3<x<64.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣15.不等式组的最小整数解为()A.2B.1C.﹣1D.﹣26.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<27.现用甲、乙两种运输汽车共10辆,将46吨抗旱物资一次性运往某地区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A.7辆B.6辆C.5辆D.4辆8.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125二.填空题9.用不等式表示“x的5倍与2的差为负数”.10.若x<y,试比较大小2x﹣62y﹣6(用“>”、“<”、“=”填空).11.关于x的不等式x﹣1>的解集是.12.不等式4(x﹣1)<3x﹣2的正整数解为.13.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.14.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为.15.陈老师购了一批笔记本,用于奖励期中考试成绩优异和进步快的同学,同学们想知道笔记本的本数,陈老师让他们猜.陈茜说:“至少13本.”江涵说:“至多11本.”江月说:“至多8本.”陈老师说:“你们三个人都说错了”.则这批笔记本有本.16.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d ≥cx﹣b的解集是x≥4;④4(a﹣c)=d﹣b.其中正确的是.三.解答题17.解下列不等式或不等式组,并把解集在数轴上表示出来:(1)≥1﹣.(2).18.解不等式组,请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.19.求不等式组的非负整数解.20.关于x,y的二元一次方程组的解满足不等式x+2y>5,求a的取值范围.21.若关于x,y的二元一次方程组.(1)当y=k时,求k的值;(2)若方程组的解x与y满足条件0≤x+y≤2,求整数k的值.22.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,其单价分别为24元,18元,学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张.23.已知关于x,y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;(3)在(2)的条件下化简|m﹣2|+|3﹣m|.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出在①的条件下网店哪种方案获利最多?是多少?参考答案一.选择题1.解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.2.解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,>,故本选项错误;C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.3.解:∵点A(x+3,﹣4)在第四象限,∴,解得﹣3<x<6.故选:A.4.解:如图,∵不等式组有解,∴m>﹣1,故选:B.5.解:,解不等式①,得x>﹣解不等式②,得x≤4,所以不等式组的解集是﹣<x≤4,所以不等式组的最小整数解是﹣2,故选:D.6.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.7.解:设甲种运输车安排x辆,乙种运输车安排(10﹣x)辆,根据题意得5x+4(10﹣x),解得:x≥6,∴甲种运输车至少安排6辆车,故选:B.8.解:由题意可得,10x﹣5(20﹣x)>125,故选:D.二.填空题9.解:x的5倍与2的差小于0,即:5x﹣2<0.故答案为:5x﹣2<0.10.解:∵x<y,∴2x<2y,∴2x﹣6<2y﹣6.故答案为:<.11.解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.12.解:不等式4(x﹣1)<3x﹣2的解集为x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为1.13.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.14.解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.15.解:设这批笔记本有x本,依题意得:,解得:11<x<13.又∵x为正整数,∴x=12.故答案为:12.16.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故答案为②③④.三.解答题17.解:(1)去分母,得:2(x+8)≥4﹣x,去括号,得:2x+16≥4﹣x,移项,得:2x+x≥4﹣16,合并同类项,得:3x≥﹣12,系数化为1,得:x≥﹣4,将不等式组的解集表示在数轴上如下:(2)解不等式2x﹣1<x+1,得:x<2,解不等式x+8<4x﹣1,得:x>3,所以不等式组无解,将不等式组的解集表示在数轴上如下:18.解:,(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为x>3,故答案为x≥﹣1,x>3,x>3.19.解:解不等式2x﹣6≤0,得:x≤3,解不等式(x﹣4)+3>0,得:x>﹣2,则不等式组的解集为﹣2<x≤3,所以不等式组的非负整数解为0、1、2、3.20.解:,②﹣①得:x+2y=4a﹣3,∵x+2y>5,∴4a﹣3>5,解得a>2.故a的取值范围为a>2.21.解:(1),①×2﹣②,得:3x=6k,解得x=2k,将x=2k代入①,得:4k+y=3k﹣1,解得y=﹣k﹣1,∵y=k,∴﹣k﹣1=k,解得k=﹣;(2)①+②,得:3x+3y=3k﹣3,∴x+y=k﹣1,∵0≤x+y≤2,∴0≤k﹣1≤2,解得1≤k≤3,所以整数k的值为1、2、3.22.解:设购买甲种票x张,则购买乙种票(36﹣x)张,依题意得:24x+18(36﹣x)≤750,解得:x≤17.答:甲种票最多买17张.23.解:(1),由①+②,得2x=4m﹣8,解得x=2m﹣4,由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,所以原方程组的解是;(2)∵x为非正数,y为负数,∴x≤0,y<0,即,解得﹣2<m≤2;(3)∵﹣2<m≤2,∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.24.解:(1)设该网店甲种羽毛球每筒的售价是x元,乙种种羽毛球每筒的售价是y元,依题意得:,解得:.答:该网店甲种羽毛球每筒的售价是60元,乙种种羽毛球每筒的售价是45元.(2)①设购进甲种羽毛球m筒,则购进乙种羽毛球(200﹣m)筒,依题意得:,解得:75<m≤78.又∵m为正整数,∴m可以为76,77,78,∴该网店有3种进货方案,方案1:购进76筒甲种羽毛球,124筒乙种羽毛球;方案2:购进77筒甲种羽毛球,123筒乙种羽毛球;方案3:购进78筒甲种羽毛球,122筒乙种羽毛球.②选择进货方案1可获得的利润为(60﹣50)×76+(45﹣40)×124=1380(元);选择进货方案2可获得的利润为(60﹣50)×77+(45﹣40)×123=1385(元);选择进货方案3可获得的利润为(60﹣50)×78+(45﹣40)×122=1390(元).∵1380<1385<1390,∴在①的条件下网店选择方案3获利最多,最多利润是1390元.。
新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (6)
(共25题)一、选择题(共10题)1. 若不等式组 {x >1,x <a 无解,则 a 的取值范围是 ( )A . a >1B . a ≥1C . a <1D . a ≤12. 下列各数轴上表示的 x 的取值范围可以是不等式组 {x +2>a,(2a −1)x −6<0的解集的是 ( )A .B .C .D .3. 不等式 −x +2≤0 的解集为 ( )A . x ≤−2B . x ≥−2C . x ≤2D . x ≥24. 若关于 x 的不等式 (a +2019)x >a +2019 的解为 x <1,则 a 的取值范围是 ( ) A . a >−2019B . a <−2019C . a >2019D . a <20195. 若关于 x 的不等式组 {2x −1>4x +7,x >a 无解,则实数 a 的取值范围是 ( )A .a <−4B .a =−4C .a >−4D .a ≥−46. 不等式组 {2x +1>3,3x −5≤1的解集在数轴上表示正确的是 ( )A .B .C .D .7. 为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户 1 只;若每户发放母羊 5 只,则多出 17 只母羊,若每户发放母羊 7 只,则有一户可分得母羊但不足 3 只,这批种羊共 ( )A . 55 只B . 72 只C . 83 只D . 89 只8. 下面给出了 5 个式子:① 3>0;② 4x +3y >0;③ x =3;④ x −1;⑤ x +2≤3;其中不等式有 ( ) A . 2 个 B . 3 个 C . 4 个 D . 5 个9. 已知关于 x 的不等式组 {x −a ≥0,3−2x ≥−1 的整数解共有 3 个,则 a 的取值范围是 ( )A . −1≤a ≤0B . −1<a ≤0C . 0≤a ≤1D . 0<a ≤110. 若关于 x 的不等式组 {2−x2>2x−43,−3x >−2x −a的解集是 x <2,则 a 的取值范围是 ( )A . a ≥2B . a <−2C . a >2D . a ≤2二、填空题(共7题) 11. 叫做解不等式.12. 已知 x −y =3.①若 y <1,则 x 的取值范围是 ; ②若 x +y =m ,且 {x >2,y <1,则 m 的取值范围是 .13. 不等式 x >√2x +1 的解集是 .14. 不等式组 {x >4,x >m 的解集是 x >4,那么 m 的取值范围是 .15. 不等式组 {x−32+3>x +1,1−3(x −1)≤8−x所有整数解的和是 .16. “九月已经霜,蟹肥菊桂香”,古往今来,每至农历九月,蟹都是人们翘首以待的珍馐.某大闸蟹养殖户十月捕捞了第一批成熟的大闸蟹,并以每只相同的价格(价格为整数)批发给某经销商.十一月该养殖户捕捞了第二批成熟的大闸蟹,这次决定与某电商合作,将这批大闸蟹根据品质及重量分为 A (小蟹)、 B (中蟹)、 C (大蟹)三类,每类按照不同的单价(价格都为整数)网上销售,若 2 只 A 类蟹、 1 只 B 类蟹和 3 只 C 类蟹的价格之和正好是第一批蟹 8 只的价格,而 6 只 A 类蟹、 3 只 B 类蟹和 2 只 C 类蟹的价格之和正好是第一批蟹 12 只的价格,且 A 类蟹与 B 类蟹每只的单价之比为 3:4,根据市场有关部门的要求 A ,B ,C 三类蟹的单价之和不低于 40 元、不高于 60 元,则第一批大闸蟹每只价格为 元.17. 已知不等式 {2x −a <1,x −2b >3 的解集为 −1<x <1,求 (a +1)(b −1) 的值为 .三、解答题(共8题)18. 对于三个数 a ,b ,c ,用 M {a,b,c } 表示这三个数的平均数;用 min {a,b,c } 表示这三个数中最小的数.例如 M {1,2,3}=13×(1+2+3)=2,min {1,2,3}=1,min {2,2,2}=2⋯.解答下列问题:(1) 填空:M{√3,√12,√18}= ,min{2√2,π,√7}= . (2) 如果 M {−2,x −1,2x }=min {−2,x −1,2x },求 x 的值.(3) 在同一直角坐标系中作出函数 y =12x −3,y =−12x −1,y =−2x +4 的图象(不需列表描点),通过观察图象,填空:min {12x −3,−12x −1,−2x +4} 的最大值为 .19. 解不等式:1−x+26<2x−33,并把它的解集在数轴上表示出来.20. 解答下列各题:(1) 解方程组 {5x +6y =7,2x +3y =4.(2) 解不等式组 {x −4<3(x −2),1+2x 3+1>x.21. 解答下列问题.(1) 解方程组:{5x −2y =4,2x −y =1;(2) 解不等式组:{3x −2≥1,x +9>3(x +1).22. 某出租汽车公司计划购买A 型和B 型两种节能汽车,若购买A 型汽车 4 辆,B 型汽车 7 辆,共需 310 万元;若购买A 型汽车 10 辆,B 型汽车 15 辆,共需 700 万元. (1) A 型和B 型汽车每辆的价格分别是多少万元?(2) 该公司计划购买A 型和B 型两种汽车共 10 辆,费用不超过 285 万元,且A 型汽车的数量少于B 型汽车的数量,请你给出费用最省的方案,并求出该方案所需费用.23. 解不等式组 {3x −5>2(x −3),x+43≥x,并写出该不等式组的所有非负整数解.24. 为迎接“军运会”,某商店准备采购 500 件纪念品,现有甲、乙两种纪念品可供选择.其中甲种纪念品的进价为 80 元/件,售价为 112 元/件;乙种纪念品的进价为 64 元/件,售价为 80 元/件.设购进甲种纪念品 x (x 为整数)件,所购纪念品全部售完时利润为 y 元. (1) 求 y 关于 x 的函数关系式.(2) 若乙种纪念品的数量不少于甲种纪念品数量的 3 倍,且利润 y 不低于 9600 元,请通过计算说明商店有几种采购方案.(3) 若甲种纪念品每件售价降低 3a 元,乙种纪念品毎件售价上涨 2a 元,在(2)的条件下,最大利润为 11500 元,求 a 的值.25. 如图,数轴上两点 A ,B 对应的数分别是 −1,1,点 P 是线段 AB 上一动点,给出如下定义:如果在数轴上存在动点 Q ,满足 ∣PQ∣∣=2,那么我们把这样的点 Q 表示的数称为连动数,特别地,当点 Q 表示的数是整数时我们称为连动整数.(1) −3,0,2.5 是连动数的是 ;(2) 关于 x 的方程 2x −m =x +1 的解满足是连动数,求 m 的取值范围 ;(3) 当不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时,求 a 的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】 ∵ 不等式组 {x >1,x <a 无解,∴a 的取值范围是 a ≤1, 故选:D .【知识点】含参一元一次不等式组2. 【答案】B【解析】由 x +2>a ,得 x >a −2, A 选项,由数轴知 x >−3,则 a −2=−3, ∴a =−1,∴−3x −6<0,解得 x >−2,与数轴不符合; B 选项,由数轴知 x >0,则 a −2=0, ∴a =2,∴3x −6<0,解得 x <2,与数轴相符合; C 选项,由数轴知 x >2,则 a −2=2, ∴a =4,∴7x −6<0,解得 x <67,与数轴不符合;D 选项,由数轴知 x >−2,则 a −2=−2, ∴a =0,∴−x −6<0,解得 x >−6,与数轴不符合. 【知识点】含参一元一次不等式组3. 【答案】D【知识点】常规一元一次不等式的解法4. 【答案】B【解析】 ∵ 不等式 (a +2019)x >a +2019 的解为 x <1, ∴a +2019<0, 则 a <−2019. 【知识点】不等式的性质5. 【答案】D【解析】提示:解 2x −1>4x +7 ,得 x <−4 . 【知识点】常规一元一次不等式组的解法6. 【答案】D【知识点】常规一元一次不等式组的解法7. 【答案】C【解析】设该村有 x 户,则这批种羊中母羊有 (5x +17) 只,根据题意可得 {5x +17−7(x −1)>0,5x +17−7(x −1)<3, 解得 10.5<x <12, 因为 x 为正整数, 所以 x =11,所以这批种羊共有 11+5×11+17=83(只). 【知识点】一元一次不等式组的应用8. 【答案】B【知识点】不等式的概念9. 【答案】B【知识点】含参一元一次不等式组、不等式组的整数解10. 【答案】A【知识点】含参一元一次不等式组二、填空题(共7题)11. 【答案】求不等式的解集的过程【知识点】不等式的解集12. 【答案】 x <4 ; 1<m <5【知识点】二元一次方程、常规一元一次不等式组的解法13. 【答案】 x <−√2−1【知识点】常规一元一次不等式的解法、分母有理化14. 【答案】 m ≤4【解析】不等式组 {x >4,x >m的解集是 x >4,得 m ≤4. 【知识点】含参一元一次不等式组15. 【答案】 −3【知识点】常规一元一次不等式组的解法16. 【答案】14【解析】A类蟹与B类蟹每只单价之比为3:4,设A类蟹价格为3x,B类蟹价格为4x.∵批发时每只价格相同,依题意可得,∴2A+B+3C8=6A+3B+2C12,24A+12B+36C=48A+24B+16C,∵A=3x,B=4x,∴C=6x,∵A,B,C三类单价之和不低于40元,不高于60元,∴40≤A+B+C≤60,即:40≤13x≤60,∵A(3x),B(4x),C(6x)单价均为整数,∴4013≤x≤6013,x取整为x=4.∴A=3x=12,B=4x=16,C=6x=24.第一批大闸蟹每只价格为:2A+B+3C8=2×12+16+24×38=14元.故第一批大闸蟹每只价格为14元.【知识点】一元一次不等式组的应用17. 【答案】−6【解析】{2x−a<1, ⋯⋯①x−2b>3. ⋯⋯②由①得2x<1+a,x<1+a2,由②得,x>3+2b,综上,不等式组的解为3+2b<x<1+a2,又∵已知解集:−1<x<1,∴{3+2b=−1,1+a2=1,解得{a=1,b=−2,∴(a+1)(b−1)=(1+1)(−2−1)=−6.【知识点】含参一元一次不等式组三、解答题(共8题)18. 【答案】(1) √3+√2;√7(2)∵M {−2,x −1,2x }=13×(−2+x −1+2x )=13×(3x −3)=x −1,∵M {−2,x −1,2x }=min {−2,x −1,2x }=x −1, ∴ 可知 {x −1≤−2,x −1≤2x, 解之得 {x ≤−1,x ≥−1,∴ 可知 x =−1.(3) 在同一直角坐标系中,作出 y =12x −3,y =−12x −1,y =−2x +4 的图象如图所示: −2 【解析】(1) ∵M {1,2,3}=13(1+2+3)=2∴M{√3,√12,√18}=13×(√3+√12+√18)=13×(√3+2√3+3√2)=√3+√2,又 ∵min {1,2,3}=1,min {2,2,2}=2⋯, ∴ 可知 min 表示其中最小数字, ∵π>3,故 π2>9, ∴ 可知 π>√9, ∵9>8>7,∴√9>√8>√7,即 √9>2√2>√7, ∴ 可知 π>2√7>√7, ∴min{2√2,π,√7}=√7. 故答案为:√3+√2;√7.(3) 联立 {y =−12x −1,y =12x −3,解得 {x =2,y =−2, ∴y =−12x −1 与 y =12x −3 交点坐标为 (2,−2),联立 {y =−12x −1,y =−2x +4, 解得 {x =103,y =−83,∴y =−12x −1 与 y =−2x +4 交点坐标为 (103,−83), 由函数图象可知:当 x ≤2 时,min {12x −3,−12x −1,−2x +4}=12x −3≤−2, ∴min {12x −3,−12x −1,−2x +4} 最大值为 −2,当 2<x <103时,min {12x −3,−12x −1,−2x +4}=−12x −1,则 −53<−12x <−1,−83<−12x −1<−2,∴min {−12x −3,−12x −1,−2x +4} 最大值小于 −2, 当 x ≥103时,min {12x −3,−12x −1,−2x +4}=−2x +4, ∴−2x ≤−203,−2x +4≤−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −83,∵−2>−83,∴min {12x −3,−12x −1,−2x +4} 最大值为 −2.故答案为:−2.【知识点】常规一元一次不等式组的解法、平方根的估算、一次函数与二元一次方程(组)的关系19. 【答案】 x >2.【知识点】常规一元一次不等式的解法20. 【答案】(1) {5x +6y =7, ⋯⋯①2x +3y =4. ⋯⋯②① − ② ×2 得:x =−1.把 x =−1 代入①得:y =2.则方程组的解为{x =−1,y =2.(2) {x −4<3(x −2), ⋯⋯①1+2x 3+1>x. ⋯⋯②解不等式①得x >1.解不等式②得x <4.∴ 不等式组的解集为1<x <4.【知识点】加减消元、常规一元一次不等式组的解法21. 【答案】(1) {5x −2y =4, ⋯⋯①2x −y =1. ⋯⋯②① − ② ×2,得:x =2.将 x =2 代入②,得:4−y =1.解得y =3.∴ 方程组的解为{x =2,y =3.(2) 解不等式 3x −2≥1,得:x ≥1.解不等式 x +9>3(x +1),得:x <3.则不等式组的解集为1≤x <3.【知识点】加减消元、常规一元一次不等式组的解法22. 【答案】(1) 设A 型汽车每辆价格为 x 万元,B 型汽车每辆的价格为 y 万元,由题意,得{4x +7y =310,10x +15y =700,解得{x =25,y =30.故A 型汽车每辆的价格为 25 万元,B 型汽车每辆的价格为 30 万元.(2) 设购买A 型汽车 m 辆,则购买B 型汽车 (10−m ) 辆,由题意,得{m <10−m,25m +30(10−m )≤285.解得3≤m <5.因为 m 是整数,所以 m =3或4.当 m =3 时,该方案所需费用为 25×3+30×7=285(万元); 当 m =4 时,该方案所需费用为 25×4+30×6=280(万元).故费用最省的方案是购买 4 辆A 型汽车,6 辆B 型汽车,该方案所需费用为 280 万元. 【知识点】一元一次不等式组的应用、综合应用23. 【答案】原不等式组为{3x −5>2(x −3), ⋯⋯①x+43≥x. ⋯⋯②解不等式 ①,得x >−1.解不等式 ②,得x ≤2.∴ 原不等式组的解集为 −1<x ≤2. ∴ 原不等式组的所有非负整数解为 0,1,2.【知识点】常规一元一次不等式组的解法24. 【答案】(1) 由题意得:y =(112−80)x +(80−64)(500−x ), 化简得:y =16x +8000.(2) 由题意得:{16x +8000≥9600,500−x ≥3x.解得:100≤x ≤125.因为 x 为整数,所以x =100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125.所以共有 26 种采购方案. (3) 设利润为 w , w=(112−3a −80)x +(80+2a −64)(500−x )=(16−5a )x +8000+1000a.当 16−5a >0,即 a <165时,w 随 x 增大而增大,所以 x =125 时,利润最大,w 最大=(16−5a )×125+8000+1000a =11500, 解得 a =195.11 综上可知,a =195.【知识点】一元一次不等式组的应用、利润问题、解析式法25. 【答案】(1) −3,2.5(2) −4≤m ≤−2 或 0≤m ≤2(3) {x+12>−1, ⋯⋯①1+2(x −a )≤3, ⋯⋯② 由 ① 得,x >−3;由 ② 得,x ≤a +1,∵ 不等式组 {x+12>−1,1+2(x −a )≤3的解集中恰好有 4 个解是连动整数时, ∴ 四个连动整数解为 −2,−1,1,2, ∴2≤a +1<3,∴1≤a <2∴a 的取值范围是 1≤a <2.【解析】(2) 解关于 x 的方程 2x −m =x +1 得,x =m +1.∵ 关于 x 的方程 2x −m =x +1 的解满足是连动数,∴{−1−m −1≤2,1−m −1≥2或 {m +1−1≤2,m +1+1≥2, 解得 −4≤m ≤−2 或 0≤m ≤2.【知识点】常规一元一次不等式组的解法、含参一元一次方程的解法、数轴的概念、含参一元一次不等式组、不等式组的整数解。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式及一元一次不等式组
一. 填空题(每题3分)
1. 若
582
112 --m x 是关于x 的一元一次不等式,则m =_________. 2. 不等式0126 x -的解集是____________.
3. 当x _______时,代数式4
23x +的值是正数. 4. 当2 a 时,不等式52+x ax 的解集时________. 5. 已知13222 k x
k +-是关于x 的一元一次不等式,那么k =_______,不等式的解集是_______.
6. 若不等式组⎩⎨⎧--3
212 b x a x 的解集为11 x -,则()()11-+b a 的值为_________.
7. 小于88的两位正整数,它的个位数字比十位数字大4,这样的两位数有_______个.
8. 小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买________枝钢笔.
二. 选择题(每题3分)
9.下列不等式,是一元一次不等式的是 ( )
A.24)1(2++-y y y
B.0122
--x x C.
6
13121 + D.2++x y x 10.4与某数的7倍的和不大于6与该数的5倍的差,若设某数为x ,则x 的最大整数解是( ) A.1 B.2 C.-1 D0
11.若代数式72+a 的值不大于3,则a 的取值范围是( )
A.4≤a
B.2-≤a
C.4≥a
D.2-≥a
12.某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )折
A.6
B.7
C.8
D.9
13.若不等式组⎩
⎨⎧a x x 3的解集是a x ,则a 的取值范围是( ) A.3 a B 3=a . C.3 a D.3≥a
14.不等式()()0352 x x -+的解集是( ) A.253- x x 且 B.253 x x 或- C.325 x - D.2
53 x - 15.若不等式组⎩⎨⎧b x a x 无解,则不等式组⎩⎨⎧--b
x a x 22 的解集是( )
A.a x b --22
B.22--a x b
C.b x a --22
D.无解
16.如果,2323,11--=++=+x x x x 那么x 的取值范围是( ) A.321-≤≤-x B.1-≥x C.32-≤x D.13
2-≤≤-x 三. 解答题
17.解下列不等式组(每题5分) 1)⎪⎩⎪⎨⎧+---+43233231x x x x x 2)().3212352⎪⎩
⎪⎨⎧-+≤+x x x x
18.当m 在什么范围内取值时,关于x 的方程()()x m x m --=-+4122有:
(1) 正数解;(6分)
(2) 不大于2的解.(6分)
19.如果关于x 的不等式06 +--x k 正整数解为1,2,3,正整数k 应取怎样的值?(10分)
20.某自行车保管站在某个星期日接受保管的自行车共有3500辆.其中变速车保管费是每辆一次0.5元,一般车保管费是0.3元.
(1) 若设一般车停放的辆数为x ,总保管费的收入为y 元,试写出y 与x 的关系式;(5分)
(2)
若估计前来停放的3500辆自行车中,变速车的辆数不少于25%,但不大于40%,试求该保管站这个星期日保管费收入总数的范围. (5分)
21.某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人.问该宾馆底层有客房多少间?(10分)
答案:
一. 填空题
1. m =1
2.21 x
3.21- x
4.25-a x
5.2,2
1--= x k 6.2 7.5 8.13
二. 选择题
9.A 10.D 11.B 12.B 13.D 14.A 15.C 16.A
三. 解答题
17.1)41 x 2)31 x ≤-
18.1)43
m 2)4
1-≥m 19.21≤k 20.1)x y 2.01750-=
2)13301225≤≤y
21.设该宾馆有x 间宿舍;126.9 x 则x 取10或11.。