初中七年级数学一元一次不等式
人教版七年级数学下册9.2.1一元一次不等式优秀教学案例

在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。
一元一次二元一次不等式数学七年级

一元一次二元一次不等式数学七年级
摘要:
一、一元一次二元一次不等式的概念
1.一元一次不等式的定义
2.二元一次不等式的定义
二、一元一次二元一次不等式的解法
1.一元一次不等式的解法
2.二元一次不等式的解法
三、一元一次二元一次不等式的应用
1.实际生活中的应用
2.考试中的常见题型
正文:
一、一元一次二元一次不等式的概念
在我们国家的数学教育中,一元一次和二元一次不等式是初中阶段的基础知识。
一元一次不等式是指只有一个未知数,并且这个未知数的最高次数为一的不等式。
例如:2x + 3 > 7。
而二元一次不等式是指含有两个未知数,并且每个未知数的最高次数为一的不等式。
例如:x + y > 5。
二、一元一次二元一次不等式的解法
对于一元一次不等式,我们通常采用的基本步骤是:去分母,移项,合并同类项,系数化为1,得出解集。
而对于二元一次不等式,由于涉及到两个未知数,需要通过联立两个一元一次不等式来求解。
这个过程需要利用到代数的
基本知识,如加减法、乘除法等。
三、一元一次二元一次不等式的应用
一元一次和二元一次不等式在实际生活和考试中都有着广泛的应用。
例如,我们在购物时,需要考虑价格和数量的关系,这就是一个一元一次不等式的问题。
而在解决一些复杂的实际问题时,可能需要用到二元一次不等式,如在规划出行路线时,需要考虑时间和速度的关系。
在考试中,一元一次和二元一次不等式的题目通常以选择题和填空题的形式出现,考察学生对于不等式基本概念的理解和解决实际问题的能力。
人教版初中数学一元一次不等式教案范文优秀7篇

人教版初中数学一元一次不等式教案范文优秀7篇一元一次不等式教案篇一一、教学目标:(一)知识与能力目标:(课件第2张)1.体会解不等式的步骤,体会比较、转化的作用。
2.学生理解、巩固一元一次不等式的解法。
3.用数轴表示解集,加深对数形结合思想的进一步理解和掌握。
4.在解决实际问题中能够体会将文字语言转化成数学语言,学会用数学语言表示实际的数量关系。
(二)过程与方法目标:1.介绍一元一次不等式的概念。
2.通过对一元一次方程的解法的复习和对不等式性质的利用,导入对解不等式的讨论。
3.学生体会通过综合利用不等式的概念和基本性质解不等式的方法。
4.学生将文字表达转化为数学语言,从而解决实际问题。
5.练习巩固,将本节和上节内容联系起来。
(三)情感、态度与价值目标:(课件第3张)1.在教学过程中,学生体会数学中的比较和转化思想。
2.通过类比一元一次方程的解法,从而更好的掌握一元一次不等式的解法,树立辩证统一思想。
3.通过学生的讨论,学生进一步体会集体的作用,培养其集体合作的精神。
4.通过本节的学习,学生体会不等式解集的奇异的数学美。
二、教学重、难点:1.掌握一元一次不等式的`解法。
2.掌握解一元一次不等式的阶梯步骤,并能准确求出解集。
3.能将文字叙述转化为数学语言,从而完成对应用问题的解决。
三、教学突破:教材中没有给出解法的一般步骤,所以在教学中要注意让学生经历将所给的不等式转化为简单不等式的过程,并通过学生的讨论交流使学生经历知识的形成和巩固过程。
在解不等式的过程中,与上节课联系起来,重视将解集表示在数轴上,从而指导学生体会用数形结合的方法解决问题。
在研究中,鼓励学生用多种方法求解,从而锻炼他们活跃的思维。
四、教具:计算机辅助教学。
五、教学流程:(一)、复习:教学环节教师活动学生活动设计意图一元一次不等式教案篇二师:下面我们先看一下购物金额对选择哪家超市有何影响?请同学们根据老师给出的学习目标和问题,自学课文一三1页至一三2页例1上边的内容,要求独立或者小组合作,完成书上的问题(1)、(2),时间是10分钟。
初中七年级下册数学92 一元一次不等式(第2课时)课件q

价的90%收费
我店累计购买50元商品后,
再购买的商品按原价的
95%收费
甲
乙
如果你要分别购买40元、80 元、140元、 160元商品,应该去哪家商店更优惠?
9.2 一元一次不等式/
3.初步认识一元一次不等式的应用价值,发展 分析问题、解决问题的能力. 2.培养将实际问题向数学模型转化的能力.
1.掌握用一元一次不等式解决实际问题的步骤 .
9.2 一元一次不等式/
3.有3人携带会议材料乘坐电梯,这3人的体重共210kg,每
捆材料重20kg,电梯最大负荷1 050kg,则该电梯在此3人乘
坐的情况下最多能搭载 42
捆材料.
9.2 一元一次不等式/
4.我班几个同学合影留念,每人交0.70元.已知一张彩色底片 0.68元,扩印一张相片0.50元,每人分一张,在将收来的钱 尽量用掉的前提下,这张相片上的同学最少有几人?
9.2 一元一次不等式/
某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分, 小华得分要超过120分,他至少要答对的题的个数为( C )
A.13
B.14
C.15
D.16
9.2 一元一次不等式/
基础巩固题
1.某商品原价500元,出售时标价为900元,要保持利润不低
于26%,则最低可打 ( B )
人教版 数学 七年级 下册
9.2 一元一次不等式 (第2课时)
9.2 一元一次不等式/
我店累计购买110000元商品
后,再购买的商品按原
价的90%收费
我店累计购买550元商品后,
再购买的商品按原价的
95%收费
甲
乙
甲商店购物款达多少元后可以优惠?
人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
初一数学不等式难题初一数学一元一次不等式应用题

初一数学一元一次不等式应用题列方程组解应用题常用的问题:①行程问题:行程=速度×时间②工程问题:工作量=工作效率×工作时间③浓度问题:溶质的溶量=溶液的质量×浓度浓度溶液的质量④存款问题:本息和=本金+利息利息=本金×利率×期数⑤调配问题⑥方案设计及最佳方案选择问题等⑦利润问题:利润=售价-进价【典型例题】(一)题中含一个未知量,结果求一个未知量例1:某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?分析:此题中只有一个未知量既某数,可设此未知量根据题意列不等式。
解:设这个数为x 2x+5<=3x-4解得:x>=9 所以此数小于9。
例2:一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。
)解:2(70+x)>350 70x<7560 解得:105<x<108所以x范围是105到108,可做国际比赛的足球场(二)题中含多个未知量,求一个或多个未知量例3:一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?分析:此题有两个未知量,既做对的题和不做做错的题,可设其中一个量,用这个量表示另一个量;解:设作对x到题,则做错或不做(25-x)到题所以可列不等式为: 4x-2(25-x)>=60 解得:x>=55/3所以x至少为19例4:有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?分析;三个自然数都是未知量,但它们之间有联系,可设其中一个,用它们之间联系表示另两个;解:设最小的一个为x,则另两个为(x+1),(x+2) x+(x+1)+(x+2)<15x<4 x可为0,1,2,3所以这样的自然数有4组,它们分别是012,123,234,3451、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,若全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满,问宾馆一楼有多少房间?解:设宾馆一楼有X个房间,则二楼房间为X+5间旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,所以48/5<X<48/4 9.6<X<12全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满所以48/4<X+5<48/3 12<X+5<16 7<X<11 所以X=10宾馆一楼有10个房间2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
初中数学 人教版七年级下册 9.2一元一次不等式 课件

⑤
两边同除以a
不等式的基本性质2,3
写不等式的解时,要把表示未知数的字母写在不等号的左边。
练习反馈
4.解下列不等式,并在数轴上表示解集.
(1) -5x ≤10 ;
x ≥ -2
(2)4x-3 < 10x+7 .
x
>
-
5 3
(3) 3x -1 > 2(2-5x) ;
5
x > 13
(4) x 32≥2x23
合并同类项,得 系数化为1,得
2x 1 x 1
2
移项,得 合并同类项,得 系数化为1,得
3x 4x 2 6, x 8,
x 8.
归纳总结 归纳解不等式的一般步骤,并指出每个步骤的根据,完成下表.
步骤
根据
①
去分母
不等式的基本性质2,3
②
去括号
去括号法则
③
移项
不等式的基本性质1
④
合并同类项
合并同类项法则
-5x >-10
x=2
系数化为1
x<2
总结归纳
解一元一次不等式与解一元一次方程的依据和步骤有什么异同点?
相同之处:
议
基本步骤相同:去分母,去括号,移项,合并同类项,
一 议
系数它化们为的1依这.据些不步相骤同中. ,要特别注意的是:
解一元一不次等方式程两的边依都乘(或除以)同一个 据是等式负的数性,质必,须解改变不等号的方向.这是 一元一次与不解等一式元的一依次方程不同的地方.
✓ (2)5x+3<5(x-y) ✓
✕ (4)x(x–1)< x2 -2x ✓
✕ (6) x2-3x-5<6
七下数学课件: 解一元一次不等式(课件)

再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-
x<-2
6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;
>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或
<
)
)
学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】
解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,
∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 一元一次不等式
一、选择题
1.下列式子(1)2x -7≥-3, (2)1x - x>0, (3)7< 9, (4)x 2
+3x>1, (5)a 2 -2(a+1)≤1, (6)m -n>3中是
一元一次不等式的有 ( )
A 1个
B 2个
C 3个
D 4个
2.已知a >b,c 为任意实数,则下列不等式中总是成立的是( ) A. a+c <b+c B. a -c >b -c C. ac <bc D. ac >bc
3.下列说法中,错误..
的是( ) A. 不等式2<x 的正整数解中有一个 B. 2-是不等式012<-x 的一个解 C. 不等式93>-x 的解集是3->x D. 不等式10<x 的整数解有无数个 4.若关于x 的一元一次不等式组0122x a x x ->⎧⎨->-⎩
无解,则a 的取值范围是( )
A .a≥1
B .a>1
C .a≤-1
D .a<-1
5.不等式组x 10
42>0x ≥⎧⎨⎩
--的解集在数轴上表示为( ).
6.若不等式0
x b x a -<⎧⎨
+>⎩的解集为2<x<3,则a,b 的值分别为( )
A .-2,3
B .2,-3
C .3,-2
D .-3,2
7.关于x 的不等式组 只有4个整数解,则a 的取值范围是 ( )
A. 5≤a ≤6
B. 5≤a <6
C. 5<a ≤6
D. 5<a <6 8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有( ) A.29人 B.30人 C.31人 D.32人 二、填空题
9. 解集在数轴上表示为如图所示的不等式组是 .
10.不等式x -1≤10的解集是
11.不等式2x+9≥3(x+2)的正整数解是_________________.
12.若不等式(m-2)x>2的解集是x<
2
2
-m , 则m 的取值范围是_______. 13.若关于x 、y 的二元一次方程组⎩⎨
⎧-=+-=+2
21
32y x k y x 的解满足y x +﹥1,则k 的取值范围是 .
14.若不等式组{
3
x x m >>的解集是x>3,则m 的取值范围是______.
三、解答题
15.解不等式,并把它的解集在数轴上表示出来.
(1)2(x-1)-3<1 (2)()1273212-≤-+
+x
x x
16.解不等式组
(1)
(2) ()⎪⎩⎪
⎨⎧-≥-->+32623
41533x x x x
10
A .
1
2
B . 1
2
C . 1
2
D .
x< a -2
x+1>0
2
( 第12题)
17.求不等式组⎪⎪⎩⎪⎪⎨⎧≤-≥-212
1112
1
x x 的整数解.
18.3个连续正偶数的和小于21,这样的正偶数共有多少组?
19.已知2-a 和3-a 的值符号相反,求a 的取值范围?
20.(1)解不等式:5(x –2)+8<6(x –1)+7
(2)若(1)中的不等式的最小整数解是方程2x –ax=3的解,求a 的值.
21.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买瓶甲饮料.
22.某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少道题?
(2)小亮获得二等奖(70分~90分),请你算算小亮答对了几道题?
23.某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A 、B 两类:A 类年票每张100元,持票者每次进入公园无需再购买门票;B 类年票每张50元,持票者进入公园时需再购买每次2元的门票。
某游客一年中进入该公园至少要超过多少次时,购买A 类年票最合算?
24.某工厂计划生产A 、B 两种产品共10件,其生产成本和利润如下表.
(1)若工厂计划获利14万元,问A 、B 两种产品应分别生产多少件?
(2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.。