初一一元一次方程打折问题
人教版七年级上册《一元一次方程》应用题分类练习(二)
人教版七年级上册《一元一次方程》应用题分类练习(二)一.打折问题1.列一元一次方程解应用题为喜迎中华人民共和国成立70周年,博文中学将举行以“歌唱祖国“为主题的歌咏比赛,七年级需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,两家文具店的标价相同,每袋贴纸价格比每袋小红旗价格少5元,而且4袋贴纸与3袋小红旗价格相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果购买贴纸和小红旗共90袋,给每位演出学生分发国旗图案贴纸2张,小红旗1面.恰好全部分完,请问贴纸和小红旗各多少袋?(3)在(2)条件下,两家文具店的有优惠如下:A.文具店:全场商品物超过800元后,超出800元的部分打八五折;B.文具店,相同商品,“买十件赠一件”.请问在哪家文具店购买比较优惠?并说明理由.2.这个星期周末,七年级准备组织观看电影《我和我的祖国》,由各班班长负责买票,每班人数都多于50人,票价每张20元,一班班长问售票员买团体票是否可以优惠,售票员说:50人以上的团体票有两个优惠方案可选择:方案一:全体人员可打8折;方案2:若打9折,有7人可以免票.(I)2班有61名学生,他该选择哪个方案?(II)一班班长思考一会儿说我们班无论选择哪种方案要付的钱是一样的,问你知道一班有几人吗?3.张老师元旦节期间到武商众圆商场购买一台某品牌笔记本电脑,恰逢商场正推出“迎元旦”促销打折活动,具体优惠情况如表:购物总金额(原价)折扣不超过5000元的部分九折超过5000元且不超过10000元的部分八折超过10000元且不超过20000元的部分七折…………例如:若购买的商品原价为15000元,实际付款金额为:5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.(1)若这种品牌电脑的原价为8000元/台,请求出张老师实际付款金额;(2)已知张老师购买一台该品牌电脑实际付费5700元.①求该品牌电脑的原价是多少元/台?②若售出这台电脑商场仍可获利14%,求这种品牌电脑的进价为多少元/台?4.十一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠活动甲全场按标价的6折销售乙实行“满100元送100元的购物券”的优惠,购物券可以在再购买时冲抵现金(如:顾客购衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券)丙实行“满100元减50元的优惠”(比如:某顾客购物220元,他只需付款120元)根据以上活动信息,解决以下问题:(1)三个商场同时出售一件标价290元的上衣和一条标价270元的裤子,王阿姨想买这一套衣服,她应该选择哪家商场?(2)黄先生发现在甲、乙商场同时出售一件标价380元的上衣和一条标价300多元的裤子,最后付款额也一样,请问这条裤子的标价是多少元?(3)丙商场又推出“先打折”,“再满100减50元”的活动.张先生买了一件标价为630元的上衣,张先生发现竟然比没打折前多付了18.5元钱,问丙商场先打了多少折后再参加活动?5.甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为30元,乙平均每本书的价格为15元,优惠后甲乙两人的书费共283.5元(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场7.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?二.数轴问题6.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?7.在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的2倍,我们就把点C叫做【A,B】的和谐点.例如:图中,点A表示的数为﹣1,点B表示的数为2.表示数1的点C到点A的距离是2,到点B的距离是1.那么点C是【A,B】的和谐点;又如,表示数0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的和谐点,但点D是【B,A】的和谐点.(1)当点A表示的数为﹣4,点B表示的数为8时,①若点C表示的数为4,则点C(填“是”或“不是”)【A,B】的和谐点;②若点D是【B,A】的和谐点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为﹣2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止,问点C运动多少秒时,C,A,B中恰有一个点为其余两点的和谐点?8.如图1,已知数轴上A,B两点表示的数分别为﹣9和7.(1)AB=(2)点P、点Q分别从点A、点B出发同时向右运动,点P的速度为每秒4个单位,点Q 的速度为每秒2个单位,经过多少秒,点P与点Q相遇?(3)如图2,线段AC的长度为3个单位线段BD的长度为6个单位,线段AC以每秒4个单位的速度向右运动,同时线段BD以每秒2个单位的速度向左运动,设运动时间为t 秒.①t为何值时,点B恰好在线段AC的中点M处.②t为何值时,AC的中点M与BD的中点N距离2个单位.9.如图,在数轴上点A表示的数为20,点B表示的数为﹣40,动点P从点A出发以每秒5个单位长度的速度沿负方向运动,动点Q从原点出发以每秒4个单位长度的速度沿负方向运动,动点N从点B出发以每秒8个单位的速度先沿正方向运动,到达原点后立即按原速反方向运动,三点同时出发,出发时间为t (秒).(1)点P、Q在数轴上所表示的数分别为:、;(2)当N、Q两点重合时,求此时点P在数轴上所表示的数;(3)当NQ=PQ时,求t的值10.如图,点A在数轴上表示的数是﹣6,点B表示的数是+10,P,Q两点同时分别以1个单位/秒和2个单位/秒的速度从A,B两点出发,沿数轴做匀速运动,设运动时间为t(秒).(1)线段AB的长度为个单位;(2)如果点P向右运动,点Q向左运动,求:①当t为何值时,P与点Q相遇?②当t为何值时,PQ=AB?(3)如果点P,点Q同时向左运动,是否存在这样的时间t使得P,Q两点到A点距离相等?若存在,求出t的值,若不存在,请说明理由.三.行程问题11.一个长跑训练队进行训练,训练时所有队员都以6km/h的速度前进,突然,1号队员以8km/h的速度独自跑进,跑进7km后掉头,仍以8km/h的速度往回跑,直到与其他队员会合,1号队员从离开队伍开始到与队员重新会合,经过了多长时间?12.两辆汽车从相距84km的两地同时出发相向而行,甲车的速度比乙车的速度快20km/h,半小时后两车相遇,两车的速度各是多少?13.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.14.一架在无风情况下航速为696km/h的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8h.求:(1)风速;(2)这条航线的长度.15.甲、乙两支“徒步队”到野外沿相同路线徒步,徒步的路程为24千米.甲队步行速度为4千米/时,乙队步行速度为6千米/时.甲队出发1小时后,乙队才出发,同时乙队派一名联络员跑步在两队之间来回进行一次联络(不停顿),他跑步的速度为10千米/时.(1)乙队追上甲队需要多长时间?(2)联络员从出发到与甲队联系上后返回乙队时,他跑步的总路程是多少?(3)从甲队出发开始到乙队完成徒步路程时止,何时两队间间隔的路程为1千米?四.工程问题16.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?17.整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,再增加2人和他们一起做8h,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?18.整理一批图书,由一个人做要40小时完成,现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?19.为庆祝建国七十周年,南岗区准备对某道路工程进行改造,若请甲工程队单独做此工程需4个月完成,若请乙工程队单独做此工程需6个月完成,若甲、乙两队合作2个月后,甲工程队到期撤离,则乙工程队再单独需几个月能完成?20.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,已知甲工程队铺设每天需支付工程费2000元,乙工程队铺设每天需支付工程费1500元.(1)甲、乙两队合作施工多少天能完成该管线的铺设?(2)由两队合做该管线铺设工程共需支付工程费多少元?(3)根据实际情况,若该工程要求10天完成,从节约资金的角度应怎样安排施工?参考答案1.解:(1)设每袋贴纸为x元,每条红旗为(x+5)元,根据题意列出方程可得:4x=3(x+5),∴x=15,∴x+5=20,答:每袋国旗图案贴纸和每袋小红旗的价格各是15和20元.(2)设购买贴纸y袋,购买小红旗(90﹣y)袋,根据题意可知:=20(90﹣y),∴y=40,∴90﹣y=50,答:购买贴纸40袋,购买小红旗50袋.(3)由(2)知购买贴纸40袋,购买小红旗50袋,因为贴纸每袋15元,红旗每袋20元,∴全部金额为:40×15+50×20=1600,在A文具店的应付金额为:800+800×0.85=1480,在B文具店的应付金额为:37×15+46×20=1475,答:在B文具店购买比较优惠.2.解:(Ⅰ)∵方案一:61×20×0.8=976(元),方案二:(61﹣7)×0.9×20=972(元),∴选择方案二.(Ⅱ)假设1班有x人,根据题意得出:x×20×0.8=(x﹣7)×0.9×20,解得:x=63,答:1班有63人.3.解:(1)5000×+(8000﹣5000)×=6900(元)答:张老师实际付款6900元.(2)①设该品牌电脑的原价为x元/台.∵实际付费为5700元,超过5000元,少于8500元∴5000<x<10000依题意有:5000×+(x﹣5000)×=57004500+0.8x﹣4000=57000.8x=5200x=6500∴电器原价为6500元答:该品牌电脑的原价是6500元/台.②设该电器的进价为m元/台,则有:m(1+14%)=5700解得:m=5000答:这种品牌电脑的进价为5000元/台.4.解:(1)选甲商城需付费用为(290+270)×0.6=336(元);选乙商城需付费用为290+(270﹣200)=360(元);选丙商城需付费用为290+270﹣5×50=310(元).∵310<336<360,∴选择丙商城最实惠.(2)设这条裤子的标价为x元,根据题意得:(380+x)×0.6=380+x﹣100×3,解得:x=370,答:这条裤子的标价为370元.(3)设丙商场先打了x折后再参加活动,折后减50n(0≤n<6且n为整数),根据题意得:(630×﹣50n)﹣(630﹣6×50)=18.5,整理得63x﹣50n=348.5,当n=0时,63x=348.5,可再优惠3×50=150元,与n=0矛盾,舍去当n=1时,63x=398.5,可再优惠3×50=150元,与n=1矛盾,舍去当n=2时,63x=448.5,可再优惠4×50=200元,与n=2矛盾,舍去当n=3时,63x=498.5,可再优惠4×50=200元,与n=3矛盾,舍去当n=4时,63x=548.5,可再优惠5×50=250元,与n=4矛盾,舍去当n=5时,63x=598.5,满足题意,此时x=9.5答:丙商场先打了9.5折后再参加活动.5.解:(1)甲购书x本,则乙购书为(15﹣x)本,由题意得30x×0.9+15(15﹣x)×0.9=283.5解得x=6则15﹣x=9答:甲购书6本,乙购书9本.(2)购书7.5折的应付款表示为283.5÷0.9×0.75=236.25办卡节省的费用为283.5﹣236.25﹣20=27.25答:办卡购书比不办卡购书共节省27.25元.6.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.7.解:(1)①点C到点A的距离为4﹣(﹣4)=8,点C到点B的距离为8﹣4=4,∵8=2×4,∴点C是【A,B】的和谐点.故答案为:是.②设点D表示的数为x,则点D到点B的距离为|x﹣8|,点D到点A的距离为|x+4|,依题意,得:|x﹣8|=2|x+4|,即x﹣8=2x+8或x﹣8=﹣2x﹣8,解得:x=﹣16或x=0.故答案为:﹣16或0.(2)设运动时间为t秒,则BC=t,AC=6﹣t.当C是【A,B】的和谐点时,6﹣t=2t,解得:t=2;当C是【B,A】的和谐点时,t=2(6﹣t),解得:t=4;当A是【B,C】的和谐点时,6=2(6﹣t),解得:t=3;当B是【A,C】的和谐点时,6=2t,解得:t=3.答:点C运动2秒、3秒、4秒时,C,A,B中恰有一个点为其余两点的和谐点.8.解:(1)∵数轴上A,B两点表示的数分别为﹣9和7,∴AB=|﹣9﹣7|=16.故答案为:16.(2)设经过x秒,点P与点Q相遇,依题意,得:4x﹣2x=16,解得:x=8,答:经过8秒,点P与点Q相遇.(3)当运动时间为t秒时,点A表示的数为4t﹣9,点C表示的数为4t﹣9+3=4t﹣6,点B表示的数为﹣2t+7,点D表示的数为﹣2t+7+6=﹣2t+13,∵点M为线段AC的中点,点N为线段BD的中点,∴点M表示的数为=4t﹣,点N表示的数为=﹣2t+10.①∵点B恰好在线段AC的中点M处,∴﹣2t+7=4t﹣,∴t=.答:当t为时,点B恰好在线段AC的中点M处.②∵AC的中点M与BD的中点N距离2个单位,∴|4t﹣﹣(﹣2t+10)|=2,即6t﹣=2或6t﹣=﹣2,∴t=或t=.答:当t为或时,AC的中点M与BD的中点N距离2个单位.9.解:(1)当运动时间为t秒时,点P表示的数为20﹣5t,点Q表示的数为﹣4t.故答案为:20﹣5t,﹣4t.(2)当0<t≤5时,点N表示的数为8t﹣40;当t>5时,点N表示的数为﹣8(t﹣5)=40﹣8t.∵当N、Q两点重合,∴8t﹣40=﹣4t或40﹣8t=﹣4t,解得:t=或t=10.当t=时,20﹣5t=;当t=10时,20﹣5t=﹣30.∴当N、Q两点重合时,点P在数轴上所表示的数为或﹣30.(3)依题意,得:|﹣40+8t﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|或|﹣8t+40﹣(﹣4t)|=|20﹣5t﹣(﹣4t)|,解得:t1=,t2=(不合题意,舍去)或t1=,t2=12.答:t的值为或或或12.10.解:(1)∵点A在数轴上表示的数是﹣6,点B表示的数是+10,∴AB=|﹣6﹣10|=16.故答案为:16.(2)当运动时间为t秒时,点P表示的数为t﹣6,点Q表示的数为﹣2t+10.①∵点P与点Q相遇,∴t﹣6=﹣2t+10,解得:t=.答:当t的值为(秒)时,P与点Q相遇.②∵PQ=AB,∴|t﹣6﹣(﹣2t+10)|=×16,即16﹣3t=8或3t﹣16=8,解得:t=或t=8.答:当t的值为或8(秒)时,PQ=AB.(3)当运动时间为t秒时,点P表示的数为﹣t﹣6,点Q表示的数为﹣2t+10.∵PA=QA,∴|﹣t﹣6﹣(﹣6)|=|﹣2t+10﹣(﹣6)|,即t=16﹣2t或t=2t﹣16,解得:t=或t=16.答:存在这样的时间t使得P,Q两点到A点距离相等,t的值为或16(秒).11.解:设经过x小时后1号队员与队员重新会合,依题意得:8x+6x=7×2,解得:x=1,答:经过1小时后,1号队员与队友重新会合.12.解:设乙车的速度为xkm/h,甲车的速度为(x+20)km/h,根据题意得:(x+x+20)=84,解得:x=74,∴74+20=94,则甲车速度为94km/h,乙车速度为74km/h.13.解:设公路长x千米,则海路长(x﹣40)千米,﹣(10﹣7)=,解得x=280,280﹣40=240,答:公路长280千米,海路长240千米;解法二:设汽车行驶x小时,则轮船行驶(x+3)小时,40x=24(x+3)+40,解得x=7.公路长40x=280 千米,海路长24(x+3)=240 千米答:公路长280千米,海路长240千米.14.解:(1)设风速为xkm/h,根据题意得:3(696﹣x)=2.8(696+x)解得:x=24,所以风速为24km/h;(2)航线的长度为3×(696﹣24)=2016km,答:这条航线的长度为2016km.15.解:(1)设乙队追上甲队需要x小时,根据题意得:6x=4(x+1),解得:x=2.答:乙队追上甲队需要2小时.(2)设联络员追上甲队需要y小时,10y=4(y+1),∴y=,设联络员从甲队返回乙队需要a小时,6(+a)+10a=×10,∴a=,∴联络员跑步的总路程为10(+)=答:他跑步的总路程是千米.(3)要分三种情况讨论:设t小时两队间间隔的路程为1千米,则①当甲队出发不到1h,乙队还未出发时,甲队与乙队相距1km.由题意得4t=1,解得t=0.25.②当甲队出发1小时后,相遇前与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)=4×1﹣1,解得:t=2.5.③当甲队出发1小时后,相遇后与乙队相距1千米,由题意得:6(t﹣1)﹣4(t﹣1)═4×1+1,解得:t=3.5.答:0.25小时或2.5小时或3.5小时两队间间隔的路程为1千米.16.解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.17.解:设应先安排x人工作,根据题意得:解得:x=2,答:应先安排2人工作.18.解:设具体应先安排x人工作,根据题意得:+=1,即:x+2(x+2)=10,解得:x=2.答:具体应先安排2人工作.19.解:设乙工程队再单独需x个月能完成,由题意,得2×++x=1.解得x=1.答:乙工程队再单独需1个月能完成.20.解:(1)设甲、乙两队合作施工x天能完成该管线的铺设,由题意得+=1,解得:x=8.答:甲、乙两队合作施工8天能完成该管线的铺设.(2)(2000+1500)×8=28000(元)答:两队合做该管线铺设工程共需支付工程费28000元.(3)∵甲单独做完整个工程需要12×2000=24000,乙单独做完整个工程需要24×1500=36000,∴应该让甲尽量多做,剩下的乙来做.所以甲做10天,乙做4天,总费用26000元,故甲乙合干4天,剩下的甲再干6天完成任务.。
七年级数学 第五章 一元一次方程 4 应用一元一次方程打折销售
②利润率=
利 进
价润×100%=
售×价1进00价%进.价
③利润=进价×利润率.
④总利润=单价利润×总数量.
⑤售价=(1+利润率)×进价=标价×折扣.
⑥销12售/11/额202=1 售价×销售量.
3.折扣:商家为了促销,在标价的基础上所打的折扣.商品打几折则售价
即为标价的十分之几或百分之几十.例如,打9折就是售价为标价的十分
12/11/2021
3.某商场计划购进甲、乙两种空气净化机共500台,这两种空气净化机
的进价、售价如下表:
进价(元/台)
售价(元/台)
甲种空气净化机
3 000
3 500
乙种空气净化机
8 500
10 000
解答下列问题:
(1)按售价售出一台甲种空气净化机的利润是
元;
(2)若两种空气净化机都能按售价卖出,问如何进货能使利润恰好为450
10 10
答:用贵宾卡在打8折的基础上还能享受9折优惠. (2)设用贵宾卡在原价的基础上能享受y折优惠.
根据题意,得10
000×
1
=y2
10
800,
解得y=7.2.
答:用贵宾卡在原价的基础上能享受7.2折优惠. 12/11/2021
3.某织布厂有150名工人,每名工人每天能织布30 m,或制衣4件,已知制
12/11/2021
解析 (1)设该商品的成本价为x元,则根据题意可得 (1+8%)x=1 800×0.9, 解得x=1 500. 答:该商品的成本价为1 500元. (2)设降价后一周内的销售数量应该比降价前一周内的销售数量增加m 件,则根据题意,可得 (97 200÷1 800+m)×1 800×0.9=97 200, 解得m=6. 答:降价后一周内的销售数量应该比降价前一周内的销售数量增加6件.
应用一元一次方程——打折销售
本溪市树人教育学校七年级数学(上)5.4应用一元一次方程——打折销售一、思考问题引入概念1.思考问题(1)500元的9折价是______元,x折是_______元.(2)某商品的每件销售利润是72元,进价是120,则售价是____元. (3)某商品利润率13﹪,进价为50元,则利润是 ________元.2.概念:(1)利润 = 售价-进价(2)利润率=利润/进价(3)打x 折的售价= 原价×(x/10)3.例题0:王洁做服装生意。
她进了一批运动衫,每件进价90元,卖出时每件100元。
请问一件运动衫利润是多少元?利润率又是多少?中秋节店庆,全部商品打6折,那么运动衫的价格是多少?4.小练习:(1)进价为50元的商品,以60元的价格出售,其中的利润是__元. (2)某商品每件销售利润是72元,进价是120元,则售价是___元. (3)某商品进价为500元,标价是800元,若打8折出售,则售价是____元,利润是________元,利润率是____.(4)一件商品,进价是200元,提高40﹪标价,则标价是________元,再以8.5折出售,则售价是________元,利润是________元,利润率是________.二、题型讲解例题1:一家商店将服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?[分析]:若设每件衣服的成本价为x元, 那么:那么每件衣服标价为__________元;每件衣服的实际售价为______________元;每件衣服的利润为__________________元。
由此,列出的方_____________________解方程,得x=______因此每件服装的成本____元。
变型题1:一件夹克按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的成本价是多少元?例题2:商店对某种商品作调价,按原价的8折出售,此时商品的利润率是10%,此商品的进价为1800元。
2023七年级数学上册第五章一元一次方程4应用一元一次方程——打折销售教案(新版)北师大版
错题订正:
针对学生在随堂练习中出现的错误,进行及时订正和讲解。
引导学生分析错误原因,避免类似错误再次发生。
(五)拓展延伸(预计用时:3分钟)
知识拓展:
介绍与“打折销售”内容相关的拓展知识,拓宽学生பைடு நூலகம்知识视野。
引导学生关注学科前沿动态,培养学生的创新意识和探索精神。
3. 设计互动环节,让学生参与课堂讨论和游戏,增加学习的趣味性和互动性。
③重点知识点:
1. 打折销售的基本概念:原价、折数、售价。
2. 一元一次方程的表示方法:售价 = 原价 × 折数。
3. 一元一次方程的解法:求解售价、原价、折数等未知数。
4. 实际问题解决方法:从实际问题中建立一元一次方程,求解未知数。
7. 创新意识:通过解决打折销售问题,学生能够培养创新意识,能够从不同角度思考问题,寻找解决问题的多种途径。
8. 情感交流:在课堂上,学生能够积极思考和发表意见,与教师和同学进行有效的情感交流,增进师生之间的情感关系。
板书设计
①艺术性:
1. 使用清晰的字体和颜色,使板书内容一目了然,吸引学生的注意力。
反思改进措施
(一)教学特色创新
1. 引入实际案例:通过引入生活中的实际打折销售案例,让学生更加直观地理解一元一次方程的应用,提高学生的学习兴趣和参与度。
2. 互动式教学:采用小组讨论、角色扮演等互动式教学方法,激发学生的思考和交流,培养学生的合作精神和沟通能力。
3. 利用多媒体资源:运用多媒体资源,如图片、视频等,直观展示打折销售的场景,帮助学生更好地理解和记忆相关知识点。
情感升华:
结合“打折销售”内容,引导学生思考学科与生活的联系,培养学生的社会责任感。
第五章一元一次方程---应用题打折销售问题专题讲解
第五章一元一次方程--专题(二)应用题分类讲解(2)知识点二、打折销售问题一、打折销售问题1、算一算:(1)原价100元的商品打8折后价格为元;(2)原价100元的商品提价40%后的价格为元;(3)进价100元的商品以150元卖出,利润是元,利润率是;(4)原价X元的商品打8折后价格为元;(5)原价X元的商品提价40%后的价格为元;(6)原价100元的商品提价P %后的价格为元;(7)进价A元的商品以B元卖出,利润是元,利润率是。
2、1、一件商品的标价为50元,现以八折销售,售价为____元;如果进价为32元,则他的利润____元,利润率是______。
3、一块手表的成本价是70元,利润率是30%,则这块手表的利润是____元,售价应是____元。
4、一款手机原价1080元,现在打折促销,售价为810元,则商家打______折销售。
5、某商品的进价为1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,则商店最低降____元出售此商品.6、一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,则这种服装每件的成本是元.7、一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为.8、一件商品的成本是200元,提高30%后标价,再打九折销售,这件商品的利润为______元.9、某商店一套服装的进价为200元,若按标价的80%销售可获利72元,该服装的标价为_元.10、、据了解,一些商品销售的服装如果高出进价的20%便可盈利,但商家常以高出进价的50%~100%标价。
假如你准备买一件标价为200元的服装,应在什么范围内还价?11、某种以八折的优惠价买一套服装省了25元,,那么买这套服装实际用了( )(A)31.25元(B)60元(C)125元(D)100元12、某家具的标价为132元,若降价以九折出售,仍可获利10%,则该家具的进价是()元。
人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)
人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( )A.30x+15(160-x)=1100B.5(160-x)+10x=1100C.20x+25(160-x)=1100D.5x+10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A .288元B .332元C .288元或316元D .332元或363元二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价?(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个?10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:⑴超市如何进货,进货款恰好为46000元.⑴为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折,乙超市购物⑴不超过200元,不给予优惠;⑴超过200元而不超过500元,打9折;⑴超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少?(2)当标价总额是多少元时,甲乙超市实付款一样?14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%)(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.18.列方程解应用题某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售?20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克?(2)当天卖完这些番茄和长豆角能盈利多少元?21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支?22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。
人教版七年级上册3.4:一元一次方程应用题分类练习:销售打折与分段计费
一元一次方程应用题分类练习:销售打折与分段计费一:销售打折类1.请用一元一次方程解决下面的问题:一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售,将亏本30元;如果按标价的8折出售,将盈利60元.(1)每件服装的标价是多少元?(2)为保证不亏本,最多能打几折?2.某校举办“创建全国文明城市”知识竞赛,计划购买甲、乙两种奖品共30件.其中甲种奖品每件30元,乙种奖品每件20元.(1)如果购买甲、乙两种奖品共花费800元,那么这两种奖品分别购买了多少件?(2)若购买乙种奖品的件数不超过甲种奖品件数的3倍.如何购买甲、乙两种奖品,使得总花费最少?3.重百超市对出售A、B两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品A B标价(单位:元)120 150 方案一每件商品出售价格按标价降价30% 按标价降价a% 方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价20%后出售(1)某单位购买A商品50件,B商品40件,共花费9600元,试求a的值;(2)在(1)的条件下,若某单位购买A商品x件(x为正整数),购买B商品的件数比A商品件数的2倍还多一件,请问该单位该如何选择才能获得最大优惠?请说明理由.4.某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 30乙型45 60(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?5.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买20盒乒乓球时,去哪家商店购买更合算?为什么?(2)当购买乒乓球多少盒时,两种优惠办法付款一样?(3)什么情况下,去甲店购买更合算?什么情况下,去乙店购买更合算?(请直接写出答案)二:分段计费类6.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.5 15 6 12 10.3 4.7 9 17 16 水费(元) 5 33.4 12 25.6 21.52 9.4 18.4 39.4 36.4 (1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.7.从锦江区社保局获悉,我区范围内已经实现了全员城乡居民新型社会合作医疗保险制度,享受医保的城乡居民可在规定的医院就医并按规定标准报销部分医疗费用,下表是住院费用报销的标准:住院费用x(元)0<x≤5000 5000<x≤20000 x>20000每年报销比例40% 50% 60%(说明:住院费用的报销采取分段计算方式,如:某人一年住院费用共30000元,则5000元按40%报销.15000元按50%报销,余下的10000元按60%报销:实际支付的住院费=住院费用﹣按标准报销的金额)(1)若我区居民张大哥一年住院费用为20000元,则按标准报销的金额为元,张大哥实际支付了元的住院费.(2)若我区居民王大爷一年内本人实际支付的住院费用为21000元,则王大爷当年的住院费用为多少元?8.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?9.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟远途费0.8元千米(超过7千米部分)无起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.10.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?参考答案1.解:(1)设每件服装标价为x元.0.5x+30=0.8x﹣60,0.3x=90,解得:x=300.故每件服装标价为300元;(2)设能打x折.由(1)可知成本为:0.5×300+30≥180,由题意知:300×≥180,解得:x≥6.故最多能打6折.2.解:(1)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,根据题意得30x+20(30﹣x)=800,解得x=20,则30﹣x=10,答:甲种奖品购买了20件,乙种奖品购买了10件;(2)设甲种奖品购买了x件,乙种奖品购买了(30﹣x)件,设购买两种奖品的总费用为w元,根据题意得30﹣x≤3x,解得x≥7.5,w=30x+20(30﹣x)=10x+600,∵10>0,∴w随x的增大而增大,∴x=8时,w有最小值为:w=10×8+600=680.答:当购买甲种奖品8件、乙种奖品22件时,总花费最小,最小费用为680元.3.解:(1)由题意有,50×120×0.7+40×150×(1﹣a%)=9600整理得,42+60(1﹣a%)=96则(1﹣a%)=0.9,所以a=10(2)根据题意得:x+2x+1=100得:x=33当总数不足101时,即,只能选择方案一得最大优惠;当总数达到或超过101,即x>33时,方案一需付款:120×0.7x+150×0.9(2x+1)=84x+270x+135=354x+135方案二需付款:[120x+150(2x+1)]×0.8=336x+120∵(354x+135)﹣(336x+120)=18x+15>0∴选方案二优惠更大综上所述:当总数不足101时,只能选择方案一最大优惠方式;当x>33时,采用方案二更加优惠,此时需付款336x+120(元)4.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1000﹣x)只,由题意,得25x+45(1000﹣x)=37000解得:x=400购进乙型节能灯1000﹣x=1000﹣400=600(只)答:购进甲型节能灯400只,购进乙型节能灯600只进货款恰好为37000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.5.解:(1)购买20盒乒乓球时,选择甲商店合算,理由:当购买20盒时:甲店需付款100×5+(20﹣5)×25=875(元),乙店需付款(100×5+20×25)×0.9=900(元).因为875<900,所以,购买20盒乒乓球时,选择甲商店合算;(2)设购买x盒乒乓球时,两种优惠办法付款一样,100×5+25(x﹣5)=(100×5+25x)×0.9解得,x=30答:当购买30盒乒乓球时,两种优惠办法付款一样;(3)由(2)可知,当购买30盒乒乓球时,两种优惠办法付款一样,故购买乒乓球少于30盒时,选择甲商店合算;购买乒乓球多于30盒时,选择乙商店合算.6.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.27.解:(1)由题意可得,按标准报销的金额为:5000×40%+(20000﹣5000)×50%=2000+15000×50%=2000+7500=9500(元),张大哥实际支付了:20000﹣9500=10500(元),故答案为:9500,10500;(2)设王大爷当年的住院费用为x元,5000×(1﹣40%)+(20000﹣5000)×(1﹣50%)+(x﹣20000)×(1﹣60%)=21000,解得,x=46250答:王大爷当年的住院费用为46250元.8.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.9.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W2=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W2>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W2<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.10.解:(1)15+2.5×(20﹣5)+1.5×(30﹣10)+1×(20﹣10)=92.5(元),故答案为:92.5;(2)15+2.5×(x﹣5)+1.5×(x÷﹣10)=x﹣12.5;(3)设小王的行驶路程为x公里,则小李的行驶路程为(15﹣x)公里,根据题意得,[15+1.5(20﹣10)]+[15+2.5(15﹣x﹣5)+1.5×(20﹣10)+1×(15﹣x﹣10)]=76,解得,x=4,∴15﹣x=11,答:小王的行驶路程为4公里,则小李的行驶路程为11公里.。
一元一次方程应用总结归纳题利润打折问题
精心整理2019年-9月利润打折问题(1)、原价100元的商品打8折后价格为 元;(2)、原价100元的商品提价40%后的价格为 元;(3)、进价100元的商品以150元卖出,利润是 元,利润率是 ;(4)、原价X 元的商品打8折后价格为 元;(5(6(73 4是多少元?513.少?51. A.26元2. 某种商品若按标价的8折出售可获利20%,若按原标价出售,则可获利( ).A .25%B .40%C .50%D .13. 两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( ).A .赢利16.8元B .亏本3元C .赢利3元D .不赢不亏4. 某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.精心整理2019年-9月5. 一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.6.一件商品按成本价提高20%后标价,后来又以标价的9折优惠卖出,结果每件仍获利20元,这件商品的成本是多少元?6.商品的进价是1530元,按商品标价的9折出售利润率是15%,则此商品的标价是多少?7.某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。
则进价为每件多少元?8. 为了节能减排,某电力公司按以下规定收取每月的电费:用电不超过140度,按每度0.43元收费;如果超过140度,那么超过部分按每度0.57月份应交电费多少元?1.价是多少?2.某商品的进价为310元,按标价的83.某商品的进价为200元,原价为3004.某种衣服因换季打折销售,每件衣服如果按标价的51205.25%,另一件亏损25%,卖这两件衣服总7.760元,则此电脑的定价为多少元?8.24元,则原价为多少元?12.10%,若商品标价33元,那么该商品进价为多少元?9.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,问这种商品的定价是多少?10.某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?11.某同学在A 、B 两家超市发现她看中的随身听的单价相同,书包的单价也相同,随身听与书包的单价和是452元,且随身听的单价是书包的单价的4倍少8元。
一元一次方程解打折销售类应用题
(二)打折销售问题1.一家商店将某种服装按成本价提高20%后标价,又以9折销售,售价为270元,这种服装成本价是多少元?2.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,•结果每件仍获利15元,这种服装每件的成本为_________.3.某件商品9折降价销售后每件商品售价为a元,则该商品每件原价为( )4.一种药物涨价25%的价格是50元,那么涨价前的价格x满足的方程是____________。
5.某商场将进价为每件X元的上衣标价为m元,在此基础上再降价10%,顾客需付款270元。
已知进价x元时标价m元的60%,则x的值是()6.某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为______.7.如果某商品进价的降低5%,而售价不变,利润率可提高15个百分点,求此商品的原来的利润率8.某商场出售某种文具,每件可盈利2元,为支援贫困山区的小朋友,按7折收给某山区学校,结果每件盈利0.20元。
问该文具的进价是每件多少元?9.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利率为25%.工厂通过改进工艺,降低了成本,在售价不变的情况下,毛利率增加了15%.则这种打火机每只的成本降低了.(精确到0.01元.毛利率=100-⨯售价成本成本)10.某商品进价1500元,提高40%后标价,若打折销售,使其利润率为20%,则此商品是按几折销售的?11.某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?12.妈妈带小明到文具店买书包和文具盒,经过讨价还价,原价42元的书包打九折,原价18元的文具盒打八折。
他们一共要付元13.某种商品的市场需求量D(千件)与单价p(元/件)服从需求关系: 11733D P+-=.问:(1)当单价为4元时,市场需求量是多少?(2)若单价在4元基础上又涨价1元,则需求量发生了怎样的变化?14.八一体育馆设计一个由相同的正方体搭成的标志物(如图所示),每个正方体的棱长为1米,其暴露在外面的面(不包括最底层的面)用五夹板钉制而成,然后刷漆。
北师大版 七年级数学上册 5.4 应用一元一次方程——打折销售 讲义
5.4应用一元一次方程——打折销售考点:打折销售问题增长率问题知识点一 打折销售问题1、在商品销售问题中常出现的量:进价、售价、标价、利润、利润率等。
2、有关的关系式:①利润率;进价进价售价利润⨯=-= ②%100%100⨯-=⨯=进价进价售价进价利润利润率 ③利润率)(进价利润进价折扣价标价售价+⨯=+=⨯=110④10⨯=标价售价折扣价 注意:几折销售,若设x 折销售,则打折后的价格应该表示为打折前的价格乘x 的十分之一。
练习考查角度:利用一元一次方程解销售问题中的价格问题、折扣问题盈亏问题例题1 某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售。
请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标。
例题2 一件标价为250元的商品,若该商品按8折销售,则该商品的实际售价是?例题3 一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是?例题4 一件服装标价200元,若以6折销售,仍可获利20%,则这件服装进价是多少元?例题5 一商店把某种品牌的羊毛衫按标价的8折出售,仍可获利20%,若该品牌的羊毛衫的进价是每件100元,则标价是每件多少元?例题6 一家商店将某种服装进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价多少元?例题7 某品牌服装折扣店将某件衣服按进价提高50%后标价,再打8折(标价的80%)销售,售价为240元,那这件衣服的进价为多少元?例题8 某件商品的进价是400元,标价为550元,按标价的8折出售,该商品的利润率是多少?例题9 已知A,B两件服装的成本共500元,鑫洋服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?例题10 某商品的进价是200元,标价是300元,打折销售后的利润率为5%,此商品是按几折销售的?例题11 某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打多少折?例题12 某商店将两台进价不同的豆浆机都卖了378元,其中一台盈利40%,另一台亏本20%,在这次买卖中,这家商店是盈利还是亏本?盈利或亏本多少元?思路:两台豆浆机共卖了378×2=756(元),是盈利还是亏本要看这家商店进这两台豆浆机时一共花了多少钱,进价高于售价就亏本,进价低于售价就盈利,所以首先要分别计算出这两台豆浆机的进价。
列一元一次方程解应用题---打折销售、行程问题探析
《打折销售、行程问题》探析一.打折销售问题几个基本的量(1)成本价:有时也称进价,是商家进货时的价格;(2)标价:商家在出售时,标注的价格;(3)售价:消费者购买时真正花的钱数;(4)利润:商品出售后,商家所赚的部分;(5)利润率:商品出售后利润与成本的比值;(6)打折:商家为了促销所采用的一种销售手段,若打x 折,就在标价的基础上乘以0.1x .(7)商品利润=商品售价-商品成本价;(8)商品的销售额=商品销售价×商品销售量;(9)商品的总销售利润=(销售价-成本价)×销售量;(10)商品售价=标价×折数(11)商品的利润率=商品成本价商品利润×100℅.二.题型汇萃:1.某商店把一商品按标价的九折出售(即优惠10%),仍可获利20%,若该商品的标价为每件28元,则该商品的进价为多少?2.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多可打多少折?3.某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折?4.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,则这种服装每件的成本是多少元?5.某种商品的零售价为每件900元,为了适应市场竟争,商店按零售价的九折降价并让利40元销售,仍可获利10%。
则进价为每件多少元?6.东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?7.某商品以20%的利润进行定价,然后按定价9折出售,结果仍可盈利 8元,该商品进价是多少元?8.有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20% 以96元出售,很快就卖掉了.则这次生意的盈亏情况为( )A .赚6元;B .不亏不赚;C .亏4元;D .亏24元9.某个体商贩在一次买卖中同时卖出两件上衣,每件均以135元出售。
北师大版数学七年级上册第五章 一元一次方程 应用一元一次方程——打折销售
5.4 应用一元一次方程 ——打折销售
导入新知 打折销售情景剧
特惠区
素养目标 3. 使学生掌握商品销售中的利润、进价和标价之间的关系. 2. 进一步认识、掌握列方程解应用题的一般步骤.
1. 理解、掌握打折销售中的各种数量关系.
探究新知
知识点 打折问题
1.把下面的“折扣数”化成百分数: “六折”、“七五折”、“八折”. 2.你是怎样理解某种商品打“六折”出售的?
探究新知
归纳总结 1. 用一元一次方程解决实际问题的关键: (1) 仔细审题. (2) 找等量关系. (3) 解方程并验证结果. 2.理解打折、利润、利润率, 提价、降价等概念的含义.
巩固练习
一件夹克按成本价提高50%后标价,后因季节关 系按标价的8折出售,每件以60元卖出,这批夹克每 件的成本价是多少元?
探究新知
素养考点 列一元一次方程解答销售问题
例 某商场将某种商品按原价 的八折出售,此时商品的利 润率是10%.已知这种商品 的进价为1800元,那么这种 商品的原价是多少?
你能列出 不同的方程吗?
分析: 设商品原价为x元
售价 成本 利润 80%x 1800 1800×10%
等量关系: 售价-成本=利润
80%x-1800=1800×10%.
探究新知
某商场将某种商品按原价的八折出售,此时商品的 利润率是10%.已知这种商品的进价为1800元,那么这种 商品的原价是多少?
解:设商品的原价是x元,根据题意,得
等量关系:
解这个方程,得x=2475.
Байду номын сангаас(售价-成本) ×100%=利润率 成本
答:这种商品的原价为2475元.
北师版七上数学5.4应用一元一次方程——打折销售
3.一种商品在进价基础上经过提价50%,再打八折出售,最后 还获利40元,设这种商品的进价为x元,根据题意,可列方程: __(_1_+__5_0_%__)×__8_0_%__x_-__x_=__4_0_.
能力提升
4.某个体户商贩在一次买卖中同时卖出两件上衣,每件都以135元
售出,若按成本计算,其中一件盈利25%,另一件亏本25%,则他
课堂达标
基础过关 1.2023年“五一”期间,某电器按成本价提高30%后标价,再打八 折销售,售价为2888元.设该电器的成本价为x元,根据题意,下列 所列方程正确的是( A ) A.x(1+30%)×80%=2888 B.x×30%×80%=2888 C.2888×30%×80%=x D.x×30%=2888×80%
解:设甲种口罩每包进价x元,则乙种口罩每包进价(x+10)元, 由题意,得30%x=20%(x+10), 解得x=20, 故x+10=20+10=30. 甲、乙两种口罩每包的利润为30%×20=6(元), 则出售口罩的利润额为6×(150+100)=1500(元), 答:这个月该药店出售口罩的利润额是1500元.
知识点3 利息问题 5.(例3)小明将一笔压岁钱存到银行,存期为两年,年利率是 2.25%,到期取款时小明共得到本利和1045元,问两年前小明存入 多少元? 解:设两年前小明存入x元, 由题意,得x+2×2.25%x=1045, 解得x=1000. 答:两年前小明存入1000元. 【小结】注意利息与本利的和区别.
解:(1)设这种节能型冰箱进价是x元, 根据题意,得90%×(1+20%)x=2430, 解得x=2250. 所以这种节能型冰箱进价是2250元. 则每台冰箱盈利为2430-2250=180(元). 答:按照新售价出售,商家每台冰箱还可赚180元.
初一数学《应用一元一次方程——打折销售》知识点总结
初一数学《应用一元一次方程——打折销售》知识点总结知识点总结1.与打折有关的概念(1)进价:也叫成本价.(2)标价:也称原价.(3)售价:也叫成交价.(4)利润:“获利”“盈利”“赚”.(5)利润率:利润占进价的百分比.(6)打折:出售商品时,将标价乘十分之几或百分之几卖出即为打折.打几折,就是以原价的百分之几十或十分之几卖出.如打八折就是以原价的80%卖出.2.利润问题中的关系式(1)售价=标价×折扣;售价=成本+利润售价=成本×(1+利润率)(2)利润=售价-进价=标价×折扣-进价(3)利润=进价×利润率;利润=成本价×利润率;利润率=利润/进价=(售价-进价)/进价1.一件衣服按成本价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批服装每件的成本价是多少元?2.一件衣服按成本价提高40%后标价,后因季节关系按标价的8折出售,结果每件仍获利15元,这批服装每件的成本价是多少元?3.某商品连续两次降价10%后的价格是81元,则该商品原来的价格是多少元?4.某商品打八折比打九折少花20元,那么这本书的原价是多少元?5.小明买了20本练习本,店主给他八折优惠(即以标价的80%出售),结果便宜了32元,则每本练习本的标价是多少元?6.某商品把进价2250元的某商品按标价的九折出售,仍获利20%,则该商品的标价为多少元?7.某商场举行优惠活动,规定一次购物不超过200元的不优惠;超过200元的,全部按八折优惠.顾客买了一件服装,付款180元,这件服装的标价是多少?A.180元B.200元C.225元D.180元或225元8.书店举行购书优惠活动:(1)一次性购书不超过100元,不享受打折优惠;(2)一次性购书超过100元,但不超过200元一律打九折;(3)一次性购书200元以上一律打七折.小明在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小明这两次购书原价的总和是多少元?9.已知A、B两件商品的成本共1000元,老板分别以30%和20%的利润率定价后进行销售,两件商品共获利130元,问A、B两件服装的成本各是多少元.10.某商品若按标价的七五折出售将亏25元,而按标价的九折出售将赚20元,问这种商品的标价是多少,进价是多少?11.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折且让利40元销售,仍可获利10%,则x为()A.700 B.约773 C.约736 D.约85612.某种商品的进价是每件8元,销售价是每件10元,现为了扩大销售量,将每件的销售价打折出售,但要求卖出一件商品所获的利润是降价前所获利润的90%,则折扣应为多少?13.某商品进价为200元,原价为300元,折价销售后的利润率为5%,则此商品是按原价的几折销售的?14.某服装店将品牌时装提价25%后,发现销路不好,要恢复原价,则应降价百分之多少.15.书店里每本定价10元的书,成本是8元,为了促销,书店决定让利10%给读者,问该书应打几折?16..某商场以每件80元的价格购进了衬衫500件,然后以每件120元的价格销售了400件,商场准备将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?17.某商店出售两件衣服,每件100元.其中一件赚10%,而另一件赔10%,那么这家商店是赚了还是赔了,或是不赚也不赔呢?18.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.(1)一天中制衣所获利润P=___(用含x的式子表示);(2)一天中剩余布所获利润Q=___(用含x的式子表示);(3)一天当中安排多少名工人制衣时,所获利润为11800元?19.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副乒乓球拍赠一盒乒乓球,乙店全部按定价的九折优惠.该班需乒乓球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?20.超市促销,一次性购物不超过200元不优惠;超过200元,但不超过500元,按九折优惠;超过500元,超过部分按八折优惠,其中的500元仍按九折优惠.某人两次购物分别用了134元和466元.问:(1)此人两次购物,若物品不打折,值多少钱?(2)此人两次购物共节省多少钱?(3)若将两次购物的钱合起来,一次购买相同的物品,是否更节省?说明理由.五个基本概念:进价、标价、售价、利润、利润率.三个基本公式:利润率=利润/进价×100%利润=售价-进价售价=标价×折扣打折销售的基本等量关系式:①标价=进价(1+利润率);②实际售价=标价×打折数;④销售额=销售价×销售量⑤销售利润=(销售价-成本价)×销售量思维导图习题精析打折销售(利润问题)3.(2016•潮南区模拟)某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【思路点拨】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【答案与解析】解:(1)设这款空调每台的进价为x元,根据题意得:3270×0.8﹣x=9%x,解得:x=2400,答:这款空调每台的进价为2400元;(2)商场销售这款空调机100台的盈利为:100×2400×9%=21600(元),答:商场销售了这款空调机100台,盈利21600元.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要.举一反三:【变式】(2015•滦平县二模)一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A.120元B.100元C.72元D.50元【答案】D.解:设进货价为x元,由题意得:(1+100%)x•60%=60,解得:x=50.4.(2015•怀柔区二模)列方程或方程组解应用题:周末小明和爸爸准备一起去商场购买一些茶壶和一些茶杯,了解情况后发现甲、乙两家商场都在出售两种同样品牌的茶壶和茶杯,定价相同,茶壶每把定价30元,茶杯每把定价5元,且两家都有优惠.甲商场买一送一大酬宾(买一把茶壶送一只茶杯);乙商场全场九折优惠.小明的爸爸需茶壶5把,茶杯若干只(不少于5只).当去两家商场付款一样时,求需要购买茶杯的数量.【思路点拨】由题意可知,在甲店买一把茶壶赠送茶杯一只,故需付5只茶壶的钱和x﹣5只茶杯的钱,已知茶壶和茶杯的钱,可列出付款关于x的式子;在乙店购买全场9折优惠,同理也可列出付款关于x的式子;若两种优惠办法付款一样,则两式子的值相等,计算出x的值即需购买茶杯的数目.【答案与解析】解:设购买茶杯x只,依题意得5x+125=4.5x+135,解得:x=20.所以购买茶杯20只时,两种优惠办法付款一样.【总结升华】本题考查了一元一次方程在经济问题中的运用以及买东西的优惠问题.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.举一反三:【变式】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x元,由题意得:0.8x+20=x-12,解得:x=160.答:李明上次所买书籍的原价是160元.——打折销售问题(一)【例1】某商场把一个双肩背的书包按进价提高60%标价,然后再按8折(标价的80%)出售,这样商场每卖出一个书包就可赢利14元.这种书包的进价是多少元?【分析】相等关系:售价-进价=利润(14元).【解】设这种书包的进价是x元,其标价是(1+60%)x元,依题意,得(1+60%)x•80%﹣x=14,解得:x=50,答:这种书包的进价是50元.【练习1】一家商店将某种服装按成本提高15%后标价,又以标价的9折卖出,结果每件服装仍可获利7元,问:(1)这种服装每件的成本价是多少元?(2)成本提高15%后的标价是多少?【解】(1)设这种服装每件的成本价是x元,依题意,得x•(1+15%)×90%﹣x=7,解得:x=200.答:这种服装每件的成本价是200元.(2)x•(1+15%)=200×1.15=230(元)答:成本提高15%后的标价是230元.【例2】小明去文具店购买2B铅笔,店主说:“如果多买一些,给你打8.5折”.小明测算了一下,如果买100支,比按原价购买可以便宜27元,求每支铅笔的原价是多少?【分析】相关关系:原价﹣现价=差额.【解】设每支铅笔的原价是x元,依题意,得100x﹣100×0.85x=27,解得:x=1.8.答:每支铅笔的原价是1.8元.【练习2】王老师去菜市场为食堂选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊派主说:“多买按八折算,你要多少斤?”王老师报了数量后摊主同意按八折卖给王老师,并说:“之前一人只比你少买了5斤就是按标价的,还比你多花了3元呢!”你知道王老师购买了多少斤豆角吗?【分析】相等关系:之前顾客花费-王老师的花费=3元,再根据总价=单价×数量【解】设王老师买了x斤豆角,则另一个顾客买了(x﹣5)斤豆角,依题意,得3×0.8x+3=3(x﹣5),解得:x=30.答:王老师买了30斤豆角.【例3】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支?【分析】相等关系:铅笔费用+圆珠笔费用=87元,再根据总价=单价×数量.【解】设卖出铅笔x支,则卖出圆珠笔(60﹣x)支,依题意,得1.2×0.8x+2×0.9(60﹣x)=87,解得:x=25,∴60﹣x=60﹣25=35.答:卖出铅笔25支,卖出圆珠笔35支.【练习3】某老板将A品牌服装每套按进价的2.5倍进行销售,恰逢“春节”来临,为了促销,他将售价提高了50元再标价,打出了“大酬宾,五折优惠”的牌子,结果每套服装的利润是进价的三分之一,现售价与原售价相比,价格降了还是升了?说出你的理由.【分析】先求出原售价及提价打折后的售价,再进行比较.【解】设A品牌服装每套进价为x元,依题意,得(2.5x+50)×0.5﹣x=x/3x,解得x=300.原来售价2.5×300=750(元),提价后打五折后价格为:(2.5×300+50)×0.5=400(元),∴400<750,∴价格降了.答:现售价与原售价相比,价格降低了.——打折销售问题(二)【例1】甲乙两人相约元旦一起到某书店购书,恰逢该书店举办全场9.5折的新年优惠活动.甲乙两人在该书店共购书15本,优惠前甲平均每本书的价格为20元,乙平均每本书的价格为25元,优惠后甲乙两人的书费共323元.(1)问甲乙各购书多少本?(2)该书店凭会员卡当日可以享受全场8.5折优惠,办理一张会员卡需交20元工本费.如果甲乙两人付款前立即合办一张会员卡,那么比两人不办会员卡购书共节省多少钱?【分析】(1)设甲购书x本,则乙购书(15﹣x)本,相等关系:甲购书实际费用+乙购书实际费用=323元,再根据总价=单价×购买数量.(2)相等关系:总花费=购买图书的总价×折扣率+会员卡工本费.【解】(1)设甲购书x本,则乙购书(15﹣x)本,依题意,得[20x+25(15﹣x)]×0.95=323,解得:x=7,∴15﹣x=8.答:甲购书7本,乙购书8本.(2)(20×7+25×8)×0.85+20=309(元),323﹣309=14(元).答:办会员卡比不办会员卡购书共节省14元钱.【练习1】某超市为了促销,对A、B两种商品进行打折出售.打折前,购买5件A商品和2件B商品需要88元,购买7件A商品和3件B商品需要124元.促销期间,购买100件A商品和100件B商品仅需1500元.(1)求打折前每件A商品和B商品的价格.(2)若B商品所打折扣为7.5折,求促销期间每件A商品的价格.【分析】(1)设打折前每件A商品的价格为x元,每件B商品的价格为(88-5x)/2元(根据“打折前,购买5件A商品和2件B商品需要88元),再根据:购买7件A商品的费用+购买3件B商品的费用=124元”.(2)设促销期间每件A商品的价格为z元,根据单价×数量=总价.【解】(1)设打折前每件A商品的价格为x元,每件B商品的价格为(88-5x)/2元,依题意,得解得:x=16,则(88-5x)/2=4.答:打折前每件A商品的价格为16元,每件B商品的价格为4元.(2)设促销期间每件A商品的价格为z元,依题意,得100×4×0.75+100z=1500,解得:z=12.答:促销期间每件A商品的价格为12元.【例2】某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:数量范围(千克)不超过50的部分50以上但不超过150的部分150以上的部分价格(元)零售价的95%零售价的85%零售价的75%表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.【分析】(1)分别计算出各自的费用,再进行比较;(2)分100<x≤150 、x>150及当100<x≤150三种情况,分别用含x的式子表示出在甲、乙两家批发x千克苹果所需费用.然后得出存在相等的情况;,再分别计算不等情况。
专题十六 一元一次方程的应用——打折销售问题
4.(阿凡题:1070851)(2016·泰州)某校七年级社会实践小组去商场 调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌 衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销 措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降 价多少元时,销售完这批衬衫正好达到盈利45%的预期目标? 解:设每件降价x元,120×400+100(120-x)=80×500×(1+45%), 解得x=20.答:每件降价20元
2.(阿凡题:1070849)某种商品的零售价为每件900元,为了适应市场 竞争,商店按零售价的九折降价并让利40元销售,仍可获利10%,则 进价为每件多少元? 解:设进价为每件x元,则(1+10%)x=900×90%-40,解得x=700, 答:进价售时标价为1200元, 后来由于该商品积压,商店准备打折出售,但要保持利润率是5%,则 最多打几折出售?
七年级上册(北师版)数学
第五章 一元一次方程
专题十六 一元一次方程的应用——打折销售问题
1.(阿凡题:1070848)某商店有一种运动服,按标价的8折出售仍可 获利20元,已知这套运动服的成本价为100元,问这套运动服的标 价为多少元? 解:设这套运动服的标价为x元,则0.8x-100=20,解得x=150, 答:这套运动服标价为150元
人教版七年级数学上册课件:一元一次方程应用打折销售问题
★利润率:指利润与进价的比,用百分数表示。 注意:利润率总是,相对于进价而言。
标价指的是商家所标出的每件物品 的原价。它与售价不同,它还可以叫 做原价。
人教版七年级数学上册课件:一元一 次方程 应用打 折销售 问题
打折指的是原价乘以十分之几或百分之 几十,则称将标价打了几折。
人教版七年级数学上册课件:一元一 次方程 应用打 折销售 问题
人教版七年级数学上册课件:一元一 次方程 应用打 折销售 问题
讲解
商店对某种商品作调价,按原价的8折出
售,此时商品的利润率是10%,此商品的进
价为1600元。问商品的原价是多少?
按原价的8折出售 ——原价的80%为售价
条 件
按8折出售时的利润率是10%——利润率
是30﹪,则这块手表的
利润是__0_._3__x__元, 售价应是__1_._3__x___元。
人教版七年级数学上册课件:一元一 次方程 应用打 折销售 问题
人教版七年级数学上册课件:一元一 次方程 应用打 折销售 问题
平板电脑利润是72元,成本价是900元,
则售价是_9_7_2_元.利润率是_8_%__ 。
5折大酬宾
1、一件商品的标价为50元,现以八折销售,
售价售为价 元4,0 如果进价进为价25元,则它的 利润利为润 1元5,利润利率润为率______6_0。%
★标价(原价):出售商品时,标签上所标明的价格; ★售价:指商品成交时的实际价格; ★进价(成本价):
指商家批发进货时,所需要的付出的金额;
商品售价= 标价× 折扣数 10
商品售价= 商品进价件:一元一 次方程 应用打 折销售 问题
一元一次方程专项训练2--打折销售问题答案
一元一次方程专项训练2-----打折销售问题答案1.一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少?解:设这种商品的成本价是x元,根据题意,得x⋅(1+20%)⋅90%=270,解得x=250,因此,这种商品的成本价是250元.2.一件夹克衫先按成本提高50%的标价,再以8折出售,结果获利28元,这件夹克衫的成本价是多少元?解:设这件夹克的成本是x元,由题意,得x(1+50%)×80%−x=28,解得:x=140.答:这件夹克的成本是140元.3.商场将一批学生书包按成本提高50%后标价,又以八折(按标价的80%)优惠卖出,每个的售价为72元,这种书包每个成本价是多少元?每个书包的利润是多少元?利润率是多少?解:设这种书包每个成本价是x元,根据题意得(1+50%)x×0.8=72,解得:x=60.每个书包的利润是72−60=12(元),利润率是12÷60=20%.故这种书包的成本价是60元.每个书包的利润是12元,利润率是20%.4.某商店将一种裤子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元.这种裤子的成本是多少元?解:设这种裤子的成本是x元.则x×(1+50%)×80%−x=10,解得:x=50.答:这种裤子的成本是50元.5.一件商品按成本价提高50%后标价,再打八折销售,售价为480元,那么这件商品的成本价是多少? 解:设这件商品的成本价是x元,根据题意可得(1+50%)x×0.8=480,解得x=400,答这件商品的成本价是400元.6.某商店的一批电视机,原价2500元,现以8折销售,如果想使降价前后的月销售额都为10万元,那么月销量应增加多少台?解:设销售量应增加x台,根据题意,得100002500+x=1000002500×80%,解得x=10,因此,销售量应增加10台.7.某商店销售一种衬衫,四月份的营业额为5000元.为了扩大销售,在五月份将每件衬衫按原价的8折销售,销售比在四月份增加了40件,营业额比四月份增加了600元.求四月份每件衬衫的售价.解:设四月份每件衬衫的售价为x元,根据相等关系列方程得:(5000+40x)×0.8=5000+600,解得x=50.答:四月份每件衬衫的售价是50元.8.某商店准备将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元.问:(1)每件服装的标价、成本价各是多少元?(2)为了保证不亏本,最多能打几折?8、解:(1)设每件服装标价为x元,根据题意得:0.5x+20=0.8x−40,解得:x=200.则每件服装标价为200元;成本价是:200×50%+20=120(元);(2)设能打x折,根据题意得:200×x10=120,解得:x=6.答:至多能打6折.9.某商店将一种电视机按进价提高35%后定价,然后打出“九折酬宾,外送50元出租车费”的广告,结果每台电视机获利208元.(1)求每台电视机的进价;(2)另一商家出售同种电视机,按进价提高40%,然后打出“八折酬宾”的广告,如果你想买这种电视机,应选择哪一个商家?9、解:(1)设每台电视机的进价为x元,根据题意,得x(1+35%)×90%−50−x=208,解得x=1200.答:每台电视机的进价为1200元.(2)若选择第二个商家,则购买该电视机实际花费:1200×(1+40%)×80%=1344(元);若选择第一个商家,则购买该电视机花费:1200+208=1408(元),因为1344<1408,所以应选择第二个商家.10.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你帮助设计一下商场的进货方案.10、解:当购进甲、乙两种电视机时:设购进甲种电视机x台,则购进乙种电视机(50−x)台,列方程为1500x+2100(50−x)=90000,解得x=25,所以50−x=25,即购进甲种电视机25台,乙种电视机25台.当购进甲、丙两种电视机时:设购进甲种电视机y台,则购进丙种电视机(50−y)台,列方程为1500y+2500(50−y)=90000,解得y=35,所以50−y=15,即购进甲种电视机35台,丙种电视机15台.当购进乙、丙两种电视机时:设购进乙种电视机z台,则购进丙种电视机(50−z)台,列方程为2100z+2500(50−z)=90000,解得z=87.5,(不合题意,舍去).综上所述,共有两种方案:一是购进甲种电视机25台,乙种电视机25台;二是购进甲种电视机35台,丙种电视机15台.。