人教初中数学八下二次根式的加减综合测试题_1
(附答案解析)人教版八年级数学下册16.3二次根式的加减(1))精选同步练习
16.3 二次根式的加减(1)同步练习姓名:__________班级:__________学号:__________本节应掌握和应用的知识点1.同类二次根式(1)同类二次根式的定义几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(2)同类二次根式的合并合并同类二次根式类似于合并同类项,就是将同类二次根式的“系数”合并 ,根指数与被开方数保持不变.2.二次根式的加减(1)二次根式的加减实质是合并同类二次根式,非同类二次根式不能合并.(2)二次根式加减法的一般步骤: ①先把各根式化成最简二次根式; ②找出其中的同类二次根式; ③合并同类二次根式.3. 比较二次根式大小时,可将根号外的非负数(或式子) 移到根号内.基础知识和能力拓展训练一、选择题1.下列各组二次根式中,是同类二次根式的是( )A. 6和32B. a和2aC. 12和13D. 3和92.下列二次根式中,不能与2合并的是()A. 12B. 8C. 12D. 183.已知二次根式24a 与2是同类二次根式,则a的值可以是()A. 5B. 3C. 7D. 84.下列运算正确的是()A. (﹣a2)3=a6B. (a+b)2=a2+b2C. 8﹣2=2D. 55﹣5=4 5.已知等腰三角形的两边长为23和52,则此等腰三角形的周长为()A. 43+52B. 23+102C. 43+102D. 43+52或23+102 6.计算|2﹣5|+|4﹣5|的值是()A. ﹣2B. 2C. 25﹣6D. 6﹣257.计算:32﹣8的结果是()A. 30B. 2C. 22D. 2.88.实数的值在( )A. 0和1之间B. 1和2之间C. 2和3之间 D . 3和4之间9.设a=6-2,b=3-1,c=231,则a,b,c之间的大小关系是( )A. c>b>aB. a>c>bC. b>a>cD. a>b>c10.设的小数部分为,则的值是()A. B. 是一个无理数C. D. 无法确定二、填空题11.若最简二次根式与是同类二次根式,则a =______,b =___________.12.若最简二次根式1x +与22x -能合并为一个二次根式,则x =_______。
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案
word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
八年级下册数学同步练习题库:二次根式的加减(简答题:较易)
二次根式的加减(简答题:较易)1、⑴计算×﹣(2)2;⑵已知x=2﹣,求 x2﹣4x+1的值.2、先化简,再求值:, 其中3、计算:(1) (﹣)-2﹣+(1﹣)0﹣|﹣2|(2)4、计算:5、计算:(1)(2)先化简,后计算:,其中.6、先化简,再求值:,其中,.7、(1)解方程9x2﹣49=0;(2)计算:.8、计算:(1)(2)9、化简:.10、11、12、13、14、15、16、计算:17、计算:(1)(2)(3)(4)18、解方程、计算(1)(2)(限用配方法)(3) (x-2)-5(x-2)-6=0 (4)计算、19、计算:(1)(2)(3)(4)20、计算:( +1)(﹣1)﹣+.21、计算:(1)+(2)(+)×(﹣)22、计算:|﹣3|+(﹣2)2﹣(+1)0.23、计算:24、计算题:(1)1+(-2)-(-5)(2)(3)(4)25、计算:.26、(1)化简:;(2)在实数范围内分解因式:27、计算:28、计算:29、(1)计算: (2)÷-×+.30、计算:(1);(2)÷-+.31、计算:(1)+|3-|-(-)2+3;(2).32、计算下列各题(1)(2)(3)(4)33、计算:(1);(2);34、当a=_________时,最简二次根式与是同类二次根式.35、谋小区有一块长为m,宽为m的空地,现要对该空地植上草萍进行绿化,解答下面的问题: (其中, , 结果保留整数)(1) 求该空地的周长。
(2) 若种植草坪的造价为12元/ ㎡,求绿化该空地所需的总费用。
36、已知:a —=1+,求(a+)2的值.37、计算下列各题(1)(2)(—3)2+(—3)×(+3)(3)(4)38、已知和互为相反数,求x+4y的平方根。
39、化简①﹣②+﹣(精确到0.01)③+×(保留三位有效数字)④(+)(﹣)40、化简(1)(﹣2)×﹣6(2)(+)(﹣)+2.41、化简求值:已知,.42、计算或化简(1)()-2-(π-3.14)0+2-1+||(2).43、(1)分解因式;(2)分解因式;(3)计算;(4)计算.44、先化简,再求值:,其中45、;46、化简:.47、(6分)已知m=-2,求代数式m2+4m-9的值.48、计算(8分)(1)(2)49、解不等式:.50、计算:÷51、计算(16分)(1)(2m2n)3·(-3m3)2÷(-4m2n2)(2)(3)(4)52、(10分)(1)(5分)计算(2)(5分)解方程53、化简:54、(9分)计算:55、计算(1) (2)56、先化简,再求值:,其中a=2﹣.57、化简或计算:(1)(x2-2xy+y2) ÷ (2)58、先化简,再求值:﹣,其中a=+1,b=﹣1.59、先化简,再求值:,其中,.60、化简:参考答案1、(1)-3;(2)02、(1)a+b;(2)3、(1)3(2)11﹣34、135、(1);(2).6、7、(1)x=±;(2).8、(1);(2)9、原式=.10、411、912、013、14、15、16、17、(1) ;(2) ;(3) (4)18、(1)0,;(2) -4,2 ;(3)1,8;(4)-4+19、(1)(2)(3)(4)20、10﹣321、(1)(2)122、623、24、(1)4 (2)-26(3)-1 (4)125、原式=26、(1);(2)27、28、29、(1)12;(2) 4+.30、(1)12;(2)4+31、(1)2-1;(2)6.32、(1);(2)10-6;(3);(4)2.33、(1);(2)334、535、(1) 54;(2) 2112.36、15+237、(1)7+2;(2)16-6;(3)4;(4)4—338、39、①0.1;②5;③16.2;④﹣1.40、(1)﹣6;(2)4﹣1.41、化简结果:a–1,值:1-.42、(1)2+;(2).43、(1);(2)3(m+2)(m-2);(3);(4) 2.44、.45、原式.46、3.47、-1048、(1)4-;(2)49、x≤.50、51、1. -18m10n 2. 3x2+4x+6 3. 3b2+2ab 4. 152、(1)(2)53、.54、.55、(1)原式==(2)原式=a+156、-1.57、58、a+b,259、.60、.【解析】1、试题分析:(1)本体考查的是二次根式的化简;(2)本题考查的是利用整体代入的方法求代数式的值.试题解析:(1)原式= -8=5-8=-3(2)x-2=-,(x-2)2=(-)2 x2-4x+4=3 x2-4x="-1" x2-4x+1="0"2、试题分析:先根据分式混合运算的法则把原式进行化简,再把a,b的值代入进行计算即可.试题解析:原式==a+b,当a=+1,b=-1时,原式=+1+-1=2.考点:分式的化简求值.3、试题分析:(1)根据乘方的意义,零次幂的意义,绝对值的法则计算即可;(2)根据二次根式的混合运算法则计算即可.试题解析:解:(1)原式= = =3;(2)原式==.4、试题分析:先把二次根式进行化简,然后再合并二次根式,约分后再进行加法运算即可试题解析:原式=5、试题分析:(1)针对二次根式化简,绝对值,零指数幂,负整数指数幂4个考点分别进行计算,然后根据实数的运算法则求得计算结果(2)先通分,约分化简,然后代,进行二次根式化简.(1)原式.(2)原式=.当时,原式=.考点:1.二次根式化简;2.绝对值;3.零指数幂;4.负整数指数幂;5.分式的化简求值.6、分析:先把括号内通分,再把除法转化为乘法,并把分子、分母分解因式约分,然后把,代入计算.详解:原式===,当,时,原式=点睛:本题考查了分式的化简求值,二次根式的运算,平方差公式,解答本题的关键是熟练掌握分式的混合运算和二次根式的运算.7、试题分析:(1)只有二次项和常数项,所以可以用直接开平方法解方程;(2)9的算术平方根是3,-8的立方根是-2,-2的平方是4,4的算术平方根是2,再根据运算顺序计算. 试题解析:(1)9x2﹣49=0,移项得,9x2=49,系数化为1得,x2=,开平方得,,.(2)原式=3-2-2=-18、试题分析:化成最简二次根式,再依据二次根式的运算法则运算即可.试题解析:原式原式9、试题分析:先进行二次根式的化简,然后进行二次根式的除法运算.试题解析:原式=(6﹣+4)÷2 =3﹣+2 =.10、试题分析:根据二次根式的除法法则和零次幂,进行运算即可.试题解析:原式11、试题分析:运用完全平方公式.试题解析:原式12、试题分析:运用平方差公式公式.试题解析:原式13、试题分析:化简为最简二次根式,运用二次根式的加减运算法则运算即可.试题解析:原式点睛:二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并.14、利用二次根式的性质即可得结果.解:原式=.15、先把被开方数通分,然后利用二次根式的性质即可得结果.解:原式=.16、试题分析:先将变形成,再相加.试题解析:=.17、试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后再进行加减法计算得出答案;(2)、根据二次根式的乘除法计算法则进行计算得出答案;(3)、根据二次根式的化简法则将各二次根式进行化简,然后进行加减法计算;(4)、将括号里面的二次根式进行化简计算,然后根据二次根式的除法计算法则进行计算得出答案.试题解析:(1)== =(2)===(3) ==(4) = ===18、试题分析:(1)利用因式分解法解即可.(2)根据配方法的步骤解即可.(3)利用因式分解法就2 即可.(4)先化简二次根式,再合并同类二次根式即可.试题解析:(1)∵3x2-5x=0,∴x(3x-5)=0,∴x1=0,x2=.(2)∵x2+2x-3=5,∴x2+2x+1=9,∴(x+1)2=9,∴x+1=±3,∴x1=2,x2=-4.(3)∵(x-2)2-5(x-2)-6=0,∴(x-2-6)(x-2+1)=0,∴x1=8,x2=1.(4)2--(+)=.19、(1)利用多项式乘多项式展开,然后合并即可;(2)先根据二次根式的乘法法则运算,然后化简后进行有理数的减法运算;(3)先把二次根式化为最简二次根式,然后合并即可;(4)先根据二次根式的除法法则运算,然后化简后合并即可.解:(1)原式=;(2)原式=;(3)原式=;(4)原式=.20、先利用平方差公式和负整数指数幂的意义计算,然后化简后合并即可.解:原式=3﹣1﹣3+8=10﹣3.21、(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.解:(1)原式=2+=;(2)原式=3﹣2=1.22、试题分析:分别进行绝对值、平方及零指数幂的运算,然后合并即可得出答案.试题解析:原式=3+4﹣1=623、原式 .24、(1)1+(-2)-(-5)=1+(-2)+(+5)=4(2)==-6-20=-26(3)=-16+3×6+(-3)==-1(4)==6-5=125、解:原式==26、试题分析:(1)先化简,然后根据混合运算的法则,先算括号里面的,然后算乘法,最后算减法.(2)实数包括有理数和无理数,先运用提公因式法和平方差公式得出2(x2+2)(x2-2),后一个括号还能运用平方差公式进行分解.试题解析:原式 =(+)×2×−=×-=-=(2)原式 == =27、先化简括号内的根式进行合并,然后把除法转化为乘法运算即可.解:原式===“点睛”此题考查了二次根式的运算,熟练掌握运算法则是解本题的关键.28、试题分析:本题考查的是二次根式的计算,合并同类二次根式即可.试题解析:原式=29、试题分析:本题利用二次根式的加减乘除混合运算.试题解析:(1)原式=(2)原式= 4—+2= 4+30、试题分析:本题利用二次根式的加减乘除混合运算.试题解析:(1)原式=(2)原式= 4—+2= 4+31、试题分析:(1)无理数的混合运算,先化简,再合并同类二次根式.(2)直接计算.解:(1)原式=-3+3--(3-2)2+3=--1+3=2-1.(2)原式=4-(-2)-1+=6.点睛:辨析(1),(x可以推广为一个式子). (2) (x.32、试题分析:(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算;(3)根据二次根式的乘除法则运算;(4)根据二次根式的乘除法则运算.试题解析:(1)原式=;(2)原式=;(3)原式=;(4)原式=33、试题分析:(1)原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,最后一项利用平方根定义计算即可得到结果;(2)原式第一项分母有理化,第二项利用完全平方公式化简,合并即可得到结果. 试题解析:(1)(2)34、由最简二次根式与是同类二次根式可得a-3=12-2a,解得a=5.35、试题分析:(1)、首先根据二次根式的化简法则进行化简,然后根据矩形的周长计算公式进行计算,得出答案;(2)、根据矩形的面积计算法则求出面积,然后乘以每平方米的造价得出答案.试题解析:(1)该空地周长为 c=54()(2)该空地面积为 s==176种草坪造价为 M=17612=2112(元)36、试题分析:根据代入进行计算,从而得出答案.试题解析:∵a —=1+∴(a —)2=(1+)2a2—2+=1+2+10∴a+=13+2∴a2+2+=15+2∴(a+)2=15+237、试题分析:(1)、首先根据二次根式的化简法则将各二次根式进行化简,然后进行二次根式的加法计算;(2)、根据完全平方公式和平方差公式将括号去掉,然后进行合并计算;(3)、首先根据二次根式的化简方法和零次幂的计算将各式进行计算,从而进行化简得出答案;(4)、根据二次根式的乘除法计算法则以及化简法则将各式进行化简,从而得出答案.试题解析:(1)原式=4+3—2+4=7+2(2)原式=5-6+9+11—9=16-6(3)原式=(+1)+3—1=4(4)原式=4——2= 4—338、根据题意得出关于x、y的二元一次方程组,解方程组得出x、y的值,代入可求.由题意得:+=0,所以,解得∴x+4y的平方根===39、试题分析:①原式利用算术平方根定义计算即可得到结果;②原式各项化简后,合并即可得到结果;③原式化简后,取其近似值即可得到结果;④原式利用平方差公式计算即可得到结果.解:①原式=1.2﹣1.1=0.1;②原式=2+4﹣=5;③原式=+9=≈16.2;④原式=2﹣3=﹣1.考点:实数的运算.40、试题分析:(1)先利用二次根式的乘法法则运算,然后合并即可;(2)利用平方差公式计算.解:(1)原式=﹣2﹣3=3﹣6﹣3=﹣6;(2)原式=2﹣3+4=4﹣1.考点:二次根式的混合运算.41、试题分析:先化简,把能分解因式的式子分解因式,便于约分,然后代值计算即可.试题解析:由题意可得:0<a<1,先化简,把能分解因式的式子分解因式,然后约分,原式====a-1;把a=2-代入:a-1=2--1=1-.故化简结果:a–1,值为:1-.考点:二次根式的化简求值.42、试题分析:(1)原式第一、三项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)原式约分后利用同分母分式的减法法则计算即可得到结果.试题解析:(1)原式=3-1++-=2+;(2)原式===.考点:1.实数的运算;2.分式的加减法;3.零指数幂;4.负整数指数幂.43、试题分析:(1)先提出公因式,再运用完全平方公式分解即可;(2)先提出公因式,再运用平方差公式分解即可;(3)根据平方根和立方根的定义进行计算即可;(4)先计算绝对值,再合并同类二次根式.试题解析:(1)原式==;(2)原式=3()=3(m+2)(m-2);(3)原式=4-2×2+1-=;(4)原式== 2.考点:①提公因式法与公式法的综合运用;②实数的运算;③二次根式的计算.44、试题分析:把扩号内先通分计算,然后把分式的分子分母,分别分解因式,,除法转化为乘法后,然后约分把方式化为最简形式.试题解析:考点:分式化简求值.45、试题分析:先化简后再合并即可.试题解析:解:原式.考点:二次根式的运算.46、试题分析:先把各根式化为最简二次根式,再合并同类二次根式即可.试题解析:原式=2+3﹣2=3.考点:二次根式的加减法.47、试题分析:先将m=-2变形为,然后把代数式m2+4m-9配方,再代入计算即可.试题解析:因为m=-2,所以,所以.考点:1.二次根式的计算;2.完全平方公式.48、试题分析:(1)首先将各二次根式进行化简,然后进行加减法计算;(2)首先根据积的乘方法则进行去括号,然后根据同底数幂的除法法则进行计算.试题解析:(1)原式==4-(2)原式=÷==.考点:二次根式计算、同底数幂的计算.49、试题分析:按照去括号、移项、合并同类项、系数化1的顺序依次计算即可,注意最后结果化为最简.试题解析:解:去括号,得:,移项,合并同类项得:,系数化为1,得:x≤.考点:1、解一元一次不等式;2、二次根式的应用.50、原式=÷=÷=51、试题分析:(1)先算乘方,然后按照单项式的乘除法法则计算;(2)先根据多项式的乘法法则去括号,然后合并同类项即可;(3)先用平方差公式和完全平方公式去括号,然后合并同类项;(4)先去掉绝对值号,然后合并同类二次根式.试题解析:(1)(2m2n)3·(-3m3)2÷(-4m2n2)(2)(3)(4).考点:1.整式的运算;2.绝对值;3.二次根式的计算.52、试题分析:(1)根据二次根式的性质和分母有理化的性质化简即可求解;(2)先移项,在利用因式分解法解方程即可求解.试题解析:(1)(2)考点:二次根式的化简,因式分解法解一元二次方程53、试题分析:先把各根式化为最简二次根式,再合并同类项即可.试题解析:原式==.考点:二次根式的加减法.54、试题分析:先根据二次根式的乘除法法则得到原式=,然后利用二次根式的性质化简后合并即可.试题解析:=.考点:二次根式的混合运算.55、试题分析:(1)先将括号中的每个二次根式进行化简,然后合并同类二次根式,最后再进行除法即可;(2)先将括号中的进行通分,然后再进行除法运算即可试题解析:(1)原式==原式===a+1考点:1、二次根式的运算;2、分式的运算56、试题分析:因式分解后约分,然后通分相加,再代入求值.试题解析:原式===当a=2﹣时,原式=.考点:分式的化简求值.57、试题分析:(1)对括号中的进行因式分解然后再进行运算即可(2)先对每一个括号中的二次根式进行化简,然后再进行计算即可试题解析:(1)原式=(x-y)2·=原式==考点:1、因式分解;2、分式乘除法;3、实数的运算58、试题分析:先利用同分母分式的减法法则计算,然后约分得到最简结果,最后将a与b的值代入计算即可求出值.试题解析:原式==a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.考点:分式化简求值59、试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简;然后代a,b的值求值.试题解析:,当,时,原式=.考点:分式的化简求值.60、试题分析:注意去绝对值符号..考点:绝对值.。
人教版八年级数学下册二次根式的加减混合运算(含答案)(2022年最新)
【答案】132° .
【解析】
试题解析:∵∠ACB=∠ECD=90°,
∴∠BCD=∠ACE,
在△BDC和△AEC中,
,
∴△BDC≌△AEC(SAS),
∴∠DBC=∠EAC,
∵∠EBD=∠DBC+∠EBC=42°,
11.如图,OA平分∠BAC,∠AOD=∠AOE,则图中的全等三角形共有__对.
【答案】3
【解析】
∴∠DAO=∠EAO.
在△DAO和△EAO中, ,
∴△DAO≌△EAO(ASA).
∴OD=OE,∠ADO=∠AEO,
∴∠BDO=∠CEO.
在△BDO和△CEO中, ,
∴△BDO≌△CEO(ASA),
∴OB=OC.
3.如图,在△ABE和△ACF中,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF.下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中,正确的是_________.(填序号)
【答案】①②③
【解析】
【分析】
∠E=∠F=90°,∠B=∠C,AE=AF可得△ABE≌△ACF,三角形全等的性质BE=CF;∠BAE=∠CAF可得①∠1=∠2;由ASA可得△ACN≌△ABM.④CD=DN不成立.
5.[2019江苏南京建邺区校级二模]计算 的结果是_____.
6.计算:(1)
(2)
题型2乘法公式在二次根式的混合运算中的应用
7.[2019四川绵阳涪城区月考]计算: ()
A. B. C.2 D.-2
8.[2019重庆南岸区模拟]按如图所示的运算程序,若输人数字“9”,则输出的结果是()
人教版八年级下《第16章二次根式》单元测试题((有答案))-(数学)
人教版八年级下册数学《第16章二次根式》单元测试题一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥33.化简的结果是()A.B.C.D.4.下列二次根式,最简二次根式是()A.B.C.D.5.下列式子一定成立的是()A.﹣2B.+2C.D.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式7.下列各式中,与是同类二次根式的是()A.B.C.D.8.计算的值等于()A.B.4C.5D.2+29.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=210.现将某一长方形纸片的长增加3cm,宽增加6cm,就成为一个面积为128cm2的正方形纸片,则原长方形纸片的面积为()A.18cm2B.20cm2C.36cm2D.48cm2二.填空题(共8小题)11.若a、b为实数,且b=+4,则a+b=.12.若有意义,则a的取值范围为13.已知,化简的结果是.14.计算:3﹣(﹣1)﹣1+1=.15.化简(﹣1)2017(+1)2018的结果为.16.如果最简二次根式和是同类二次根式,则a=,b=.17.二次根式:①,②,③,④中,能与合并的是(填序号).18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为.三.解答题(共7小题)19.计算:﹣3+2.20.计算:4×2÷.21.已知:a=+1,求代数式a2﹣2a﹣1的值.22.已知实数a,b,c在数轴上的位置如图,且|a|=|b|,化简|a|+|b|+|c|﹣﹣223.已知=b+1(1)求a的值;(2)求a2﹣b2的平方根.24.求+的值解:;设x=+,两边平方得:x2=()2+()2+2,即x2=3++3﹣+4,x2=10∴x=±.∵+>0,∴+=请利用上述方法,求+的值.25.化简求值:已知:x=,y=,求(x+3)(y+3)的值.人教版八年级下册数学《第16章二次根式》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列各式中,是二次根式的是()A.x+y B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A、x+y不是二次根式,错误;B、是二次根式,正确;C、不是二次根式,错误;D、不是二次根式,错误;故选:B.【点评】本题考查了二次根式的定义:形如(a≥0)叫二次根式.2.若无意义,则x的取值范围是()A.x>0B.x≤3C.x>3D.x≥3【分析】根据二次根式的被开方数为非负数,可得出关于x的一元一次不等式,解出即可得出答案.【解答】解:∵无意义,∴3﹣x<0,解得:x>3.故选:C.【点评】此题考查了二次根式有意义的条件,关键是掌握二次根式有意义则被开方数为非负数.3.化简的结果是()A.B.C.D.【分析】本题应先判断与1的大小,再对原式进行开方.【解答】解:∵>1,∴﹣1>0,∴==﹣1.故选:B.【点评】本题考查的是二次根式的化简,解此类题目时要先讨论根号内的数的正负性,再开方.4.下列二次根式,最简二次根式是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.下列式子一定成立的是()A.﹣2B.+2C.D.【分析】根据二次根式的性质,二次根式的乘除法法则计算,判断即可.【解答】解:=|a2﹣2|,A不一定成立;=a2+2,B一定成立;当a≥﹣1时,=•,C不一定成立;当a≥0,b>0时,=,D不一定成立;故选:B.【点评】本题考查的是二次根式的化简,二次根式的乘除法,掌握二次根式的乘除法法则是解题的关键.6.若a=+、b=﹣,则a和b互为()A.倒数B.相反数C.负倒数D.有理化因式【分析】根据二次根式的运算法则即可求出答案.【解答】解:由于a+b≠0,ab≠±1,∴a与b不是互为相反数,倒数、负倒数,故选:D.【点评】本题考查二次根式,解题的关键是正确理解倒数、相反数、负倒数的概念,本题属于基础题型.7.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.【点评】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.8.计算的值等于()A.B.4C.5D.2+2【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=2+3=5故选:C.【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.9.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.现将某一长方形纸片的长增加3cm ,宽增加6cm ,就成为一个面积为128cm 2的正方形纸片,则原长方形纸片的面积为( ) A .18cm 2B .20cm 2C .36cm 2D .48cm 2【分析】利用算术平方根求出正方形的边长,进而求出原矩形的边长,即可得出答案.【解答】解:∵一个面积为128cm 2的正方形纸片,边长为:8cm ,∴原矩形的长为:8﹣3=5(cm ),宽为:8﹣6=2(cm ),∴则原长方形纸片的面积为:5×2=20(cm 2).故选:B .【点评】此题主要考查了二次根式的应用,根据题意得出原矩形的边长是解题关键. 二.填空题(共8小题)11.若a 、b 为实数,且b =+4,则a +b = 5或3 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案. 【解答】解:由被开方数是非负数,得,解得a =1,或a =﹣1,b =4, 当a =1时,a +b =1+4=5, 当a =﹣1时,a +b =﹣1+4=3, 故答案为:5或3.【点评】本题考查了二次根式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.12.若有意义,则a 的取值范围为 a ≤4且a ≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零. 【解答】解:依题意得:4﹣a ≥0且a +2≠0, 解得a ≤4且a ≠﹣2. 故答案是:a ≤4且a ≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.13.已知,化简的结果是2.【分析】由于,则=x﹣2,|x﹣4|=4﹣x,先化简,再代值计算.【解答】解:已知,则=x﹣2+4﹣x=2.【点评】根据x的取值,确定x﹣2和x﹣4的符号是解此题的关键.14.计算:3﹣(﹣1)﹣1+1=2.【分析】根据分母有理化解答即可.【解答】解:原式==,故答案为:2【点评】此题考查分母有理化,关键是根据分母有理化计算.15.化简(﹣1)2017(+1)2018的结果为+1.【分析】利用积的乘方得到原式=[(﹣1)(+1)]2017•(+1),然后利用平方差公式计算.【解答】解:原式=[(﹣1)(+1)]2017•(+1)=(2﹣1)2017•(+1)=+1.故答案为+1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.如果最简二次根式和是同类二次根式,则a=0,b=1.【分析】根据同类二次根式的定义:被开方数相同的二次根式,列方程,即可解答.【解答】解:依题意得:,解得.故答案是:0;1.【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17.二次根式:①,②,③,④中,能与合并的是①④(填序号).【分析】与是同类二次根式即可合并.【解答】解:=2,=3,=,=3,∴、能与合并,故答案为:①④.【点评】本题考查二次根式,解题的关键是正确理解同类二次根式与最简二次根式的定义,本题属于基础题型.18.如图,长方形内有两个相邻的正方形,面积分别为3和9,那么阴影部分的面积为3﹣3.【分析】设两个正方形的边长是x、y(x<y),得出方程x2=4,y2=9,求出x=2,y=3,代入阴影部分的面积是(y﹣x)x求出即可.【解答】解:设两个正方形的边长是x、y(x<y),则x2=3,y2=9,x=,y=3,则阴影部分的面积是(y﹣x)x=(3﹣)×=3﹣3,故答案为:3﹣3.【点评】本题考查了算术平方根性质的应用,主要考查学生的计算能力.三.解答题(共7小题)19.计算:﹣3+2.【分析】直接化简二次根式,进而合并得出答案.【解答】解:原式=4﹣3×3+2×2=﹣.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.20.计算:4×2÷.【分析】直接利用二次根式的乘除运算法则计算得出答案.【解答】解:原式=8÷=8×3 =24.【点评】此题主要考查了二次根式的乘除运算,正确掌握运算法则是解题关键. 21.已知:a =+1,求代数式a 2﹣2a ﹣1的值.【分析】利用完全平方公式得到原式=(a ﹣1)2﹣2,再有已知条件得到a ﹣1=,然后利用整体代入的方法计算. 【解答】解:原式=(a ﹣1)2﹣2,因为a =+1,所以a ﹣1=,所以原式=()2﹣2=5﹣2=3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.22.已知实数a ,b ,c 在数轴上的位置如图,且|a |=|b |,化简|a |+|b |+|c |﹣﹣2【分析】根据数轴上点的位置判断出实数a ,b ,c 的符号,然后利用二次根式与绝对值的性质求解即可求得答案.【解答】解:由题意得:c <a <0<b , 又∵|a |=|b |, ∴c ﹣a <0,∴|a |+|b |+|c |﹣﹣2=﹣a +b ﹣c ﹣a +c +2c =﹣2a +b +2c .【点评】此题考查了实数与数轴,二次根式以及绝对值的性质,合并同类项,熟练掌握各自的意义是解本题的关键.23.已知=b +1(1)求a 的值;(2)求a 2﹣b 2的平方根.【分析】(1)根据二次根式的被开方数是非负数解答; (2)结合(1)求得a 、b 的值,然后开平方根即可.【解答】解:(1)∵,有意义,∴,解得:a =5;(2)由(1)知:b +1=0, 解得:b =﹣1,则a 2﹣b 2=52﹣(﹣1)2=24,则平方根是:.【点评】考查了二次根式有意义的条件,平方根.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.24.求+的值解:;设x =+,两边平方得:x 2=()2+()2+2,即x 2=3++3﹣+4,x 2=10∴x =±.∵+>0,∴+=请利用上述方法,求+的值.【分析】根据题意给出的解法即可求出答案.【解答】解:设x =+,两边平方得:x 2=()2+()2+2,即x 2=4++4﹣+6,x 2=14∴x =±.∵+>0,∴x =【点评】本题考查二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.25.化简求值:已知:x =,y =,求(x +3)(y +3)的值.【分析】将x 和y 的值分母有理化,再代入到原式xy +3x +3y +9=xy +3(x +y )+9计算可得.【解答】解:当x ===,y ===时,原式=xy +3x +3y +9 =xy +3(x +y )+9..=×+3×(+)+9=+3×+9=+3+9=+3. 【点评】此题考查了二次根式的化简求值与分母有理化,正确选择两个二次根式,使它们的积符合平方差公式及二次根式的混合运算顺序与运算法则是解答问题的关键.。
新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)
第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。
初中数学同步训练必刷题(人教版八年级下册 第十六章 二次根式 全章测试卷)(学生版)
初中数学同步训练必刷题(人教版八年级下册第十六章二次根式全章测试卷)一、单选题(每题3分,共30分)1.(2022八下·中山期末)式子√x+3在实数范围内有意义,则x的取值范围是()A.x≠-3B.x≥−3C.x≥3D.x≥02.(2022八下·番禺期末)下列计算正确的是()A.√22=2B.√(−2)2=﹣2C.√−83=2D.√(−2)2=±2 3.(2022八下·防城港期末)下列各式中,是最简二次根式的为().A.√52B.√2C.√27D.√134.(2022八下·拱墅期末)−√2×√5=()A.√10B.−√10C.√7D.−√75.(2022八下·朝阳期末)若√63n是整数,则正整数n的最小值是()A.3B.7C.9D.636.(2022八下·潢川期中)下列关于2√6的表述错误的是()A.2√6是最简二次根式B.2√6是无理数C.2√6就是2×√6D.2√6大于57.(2022八下·临海期末)下列计算正确的是()A.√2+√3=√5B.2√2−√2=1C.√6×√2=2√3D.√(−2)2=−2 8.(2022八下·滨海期末)化简后,与√2的被开方数相同的二次根式是()A.√10B.√12C.√12D.√169.(2022八下·藁城期末)下列四个算式中,正确的是() A.√(−1)2=−1B.√5−√2=√3 C.√(−4)×(−9)=√−4×√−9D.√12÷√3=210.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等二、填空题(每题3分,共30分)11.(2022八下·镇海区期末)代数式2√1−x有意义,则x的取值范围是. 12.(2022八下·诸暨期末)当x=-2时,二次根式√2−7x的值是13.(2021八下·澄海期末)计算√3×√15√5的结果是.14.(2021八下·建华期末)若0≤a≤3 ,则√a2+√a2−6a+9=.15.(2021八下·新罗期末)长方形的宽是√3,面积为2√6,则长方形的长为16.(2022八下·诸暨期末)已知x,y均为实数,y=√x−2+√2−x+5,则x+y的值为17.(2022八下·灌云期末)如果最简二次根式√x+3与最简二次根式√1+2x是同类二次根式,则x=.18.(2021八下·营口期末)计算:√12+|√3−2|=.19.(2021八下·平泉期末)已知:√12+3√13=a√3+√3=b√3,则b a=.20.(2021八下·曲靖期末)如图是一个简单的数值运算程序,当输入x的值为√6时,则输出的值为.三、解答题(共6题,共60分)21.(2022八下·涿州期末)计算(1)2√7−√7(2)(√5+√6)(√6−√5)(3)(√12−√13)×√3(4)√8+√18√222.如图A,B,C三点表示的数分别为a,b,c.利用图形化简:|a−b|−√(c−b)2+√(a−c)2.23.(2019八下·岱岳期末)在一个边长为(2 √3+3 √5)cm的正方形的内部挖去一个长为(2 √3+ √10)cm,宽为(√6﹣√5)cm的矩形,求剩余部分图形的面积.24.(2020八下·潢川期中)(1)当x=54时,求√x+1的值;(2)①x为何值时二次根式√12−x的值是10?②当x=▲时二次根式√12−x有最小值.25.挖掘问题中所隐含的条件,解答下列问题:(1)如果√(x−2)2=2-x,那么()A.x<2B.x≤2C.x>2D.x≥2(2)已知√(x−3)2−(√2−x)2=2x,求x的值.(3)已知a,b是实数,且b>√a−2-2 √2−a+1,请化简:√1−2b+b2−√a2.26.(2020八下·北京期中)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2√2=(1+√2)2,善于思考的小明利用完全平方公式进行了以下探索:3+2√2=12+2×1×√2+(√2)2=(1+√2)2.请你仿照小明的方法解决下列问题:(1)7−4√3=(a−b√3)2,则a=,b=;的算术平方根,求4x2+4x−2020的值;(2)已知x是2−√32(3)当1≤x≤2时,化简√x+2√x−1√x−2√x−1=.答案解析部分1.【答案】B【知识点】二次根式有意义的条件【解析】【解答】解:依题意有x+3≥0,即x≥−3时,二次根式有意义.故答案为:B.【分析】根据题意先求出x+3≥0,再求解即可。
人教版--八下-第一章二次根式测试--含答案
形的形状是(
)
A.底与边不相等的等腰三角形
B.等边三角形
C.钝角三角形
D.直角三角形
11. 已知三角形的三边长分别为 a、b、c,求其面积问题,中外数学家曾经进行过深 入研究,古希腊的几何学家海伦(Heron,约公元 50 年)给出求其面积的海伦公式 S =
p(p
−
a)(p
−
b)(p
−
c),其中
p
=
x−1
A.x ≥− 1且 x ≠ 1
2
B.x ≠ 1
C.x ≥− 1
2
D.x >− 1且 x ≠ 1
2
4. 下列二次根式中,最简二次根式是( )
A. x − 1
B. 18
C. 1
16
5. 下列等式正确的是(
)
A.( 3)2 = 3
C. 33 = 3
6. 下列计算,正确的是( ) A. 8 = 4 B. ( − 4) × ( − 4) = 4 C. 12 ÷ 3 = 4 D. 4 − 2 = 2
解:∵ (a − 6)2 ≥ 0, b − 8 ≥ 0,|c − 10| ≥ 0, ∴ a − 6 = 0,b − 8 = 0,c − 10 = 0, 解得:a = 6,b = 8,c = 10, ∵ 62 + 82 = 36 + 64 = 100 = 102, ∴ 是直角三角形. 故选 D. 11. 【答案】 B 【考点】 二次根式的应用 【解析】 根据题目中的秦九韶公式,可以求得一个三角形的三边长分别为 2,3,4 的面积,从 而可以解答本题. 【解答】
17. 观察下列各式:2 × 2 = 2 + 2;3 × 3 = 3 + 3;4 × 4 = 4 + 4 ;…
最新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(含答案解析)(1)
一、选择题1.下列各式变形中,正确的是( )A .236x x x ⋅=B xC .2211x x x x x ⎛⎫-⋅=- ⎪⎝⎭D .2211234x x x ⎛⎫-+=- ⎪+⎝⎭2.a 的值不可以是( )A .12B .8C .18D .283.8b =+ ).A .3±B .3C .5D .5±4.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .15. )A .8 B .4 C .4D6.(a ﹣4)2=0 )A B . C D .7.n 为( ).A .2B .3C .4D .58.当2a < )A .B .-C .D .-9.下列各式不是最简二次根式的是( )A B C .4 D10.n 可以取的数为( ). A .4B .6C .8D .1211.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. ).A .1x ≤B .1x <C .1≥xD .1x ≠二、填空题13=______. 14.________________. 15ab ,那么2(2)b a +-的值是________. 16.已知m =m a =_____________.17.==ab =________.18.若112a -=1114a a ⎛⎫ ⎪⎝⎭-+的值为_________. 19.已知3y =,则()x x y +的值为_________. 20.若1y =,则x y -=_________.三、解答题 21.计算:2016(2019)|52π-⎛⎫--- ⎪⎝⎭. 22.计算:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭23.(1)解不等式组3(2)42513x x x x --≥-⎧⎪-⎨<-⎪⎩,并写出该不等式组的整数解; (2)计算: 24.计算:. 25.我们规定用(a ,b)表示一对数对.给出如下定义:记m =,n = a > 0,b > 0),将(m ,n )与(n ,m )称为数对(a ,b )的一对“对称数对”. 例如:(4,1)的一对“对称数对”为(12,1)和(1,12); (1)数对(9,3)的一对“对称数对”是 ;(2)若数对(3,y )的一对“对称数对”相同,则y 的值为 ;(3)若数对(x ,2)的一个“对称数对”1),则x 的值为 ;(4)若数对(a ,b )的一个“对称数对”ab 的值.26.计算:1.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】依据同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,即可得出结论.【详解】解:A .x 2•x 3=x 5,故本选项不合题意;x =,故本选项不合题意;C.2311x x x x ⎛⎫-⋅=- ⎪⎝⎭,故本选项不合题意; D.2211234x x x ⎛⎫-+=- ⎪+⎝⎭,故本选项符合题意; 故选:D .【点睛】本题考查了同底数幂的乘法法则、二次根式的性质、完全平方公式以及分式的运算法则,解题的关键是熟练掌握运算法则.2.D解析:D【分析】是否为同类二次根式即可.【详解】是同类二次根式,当a=122=是同类二次根式,故该项不符合题意;当a=8=是同类二次根式,故该项不符合题意;当a=18=是同类二次根式,故该项不符合题意;当a=28=不是同类二次根式,故该项符合题意;故选:D.【点睛】此题考查最简二次根式的定义,同类二次根式的定义,化简二次根式,正确化简二次根式是解题的关键.3.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.4.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意;C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b)(a-b)=a2-b2.5.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===,故选:B.【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.6.A解析:A【分析】先根据算术平方根的非负性、偶次方的非负性求出a、b的值,再代入化简二次根式即可得.【详解】由算术平方根的非负性、偶次方的非负性得:4030ab-=⎧⎨-=⎩,解得43ab=⎧⎨=⎩,3===,故选:A.【点睛】本题考查了算术平方根的非负性、偶次方的非负性、化简二次根式,熟练掌握算术平方根和偶次方的非负性是解题关键.7.B解析:B【分析】27n一定是一个完全平方数,把27分解因数即可确定.【详解】27n一定是一个完全平方数,把27分解因数即可确定.∵22733=⨯,∴n的最小值是3.故选B.【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非==.解题关键是分解成一个完全平方数和一个代数式的积的形式.8.B【分析】根据二次根式的性质即可化简.【详解】a<解:∵2-<∴a20∴-故选:B.【点睛】此题主要考查二次根式的化简,解题的关键是熟练掌握二次根式的性质.9.D解析:D【分析】满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式,据此判断即可.【详解】A是最简二次根式,故本选项错误;B是最简二次根式,故本选项错误;C.是最简二次根式,故本选项错误;4D=,不是最简二次根式.故选:D.【点睛】本题考查了最简二次根式的定义,掌握最简二次根式条件,是解题的关键.10.C解析:C【分析】是同类二次根式.【详解】解:A2=不是同类二次根式;B不是同类二次根式;C=是同类二次根式,正确;D=不是同类二次根式;故选:C.本题考查了同类二次根式的定义.要化简为最简二次根式后再判断.11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.A解析:A【分析】根据被开方数大于等于0列式计算即可得解.【详解】10x -≥,解得,1x ≤.故选:A .【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.二、填空题13.【分析】根据二次根式的性质进行化简【详解】解:故答案为:【点睛】本题考查了二次根式的性质与化简解题的关键是掌握二次根式的性质和分母有理化【分析】 根据二次根式的性质进行化简.【详解】3=.故答案为:3. 【点睛】 本题考查了二次根式的性质与化简.解题的关键是掌握二次根式的性质和分母有理化. 14.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键【分析】利用二次根式的乘法运算法则进行计算即可.【详解】=【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键.15.【分析】直接利用的取值范围得出ab 的值进而求出答案【详解】解:故答案为:【点睛】本题主要考查了估算无理数的大小正确得出ab 的值是解题关键解析:11-【分析】a 、b 的值,进而求出答案.【详解】 解:3134<<,3a ∴=,3b ∴=-,()))22223231311b a ∴+-=+-=-=-故答案为:11-【点睛】本题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键.16.1【分析】根据二次根式有意义的条件列出不等式求出am 根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a ﹣2020≥0解得a =2020则m =0∴am =20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a 、m ,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a ≥0,a ﹣2020≥0,解得,a =2020,则m =0,∴a m =20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.17.20【分析】运用二次根式化简的法则先化简再得出的值即可【详解】解:∵∴∴故答案为:20【点睛】本题考查了二次根式的化简求值解题的关键是掌握二次根式运算法则解析:20【分析】运用二次根式化简的法则先化简,再得出a b ,的值即可.【详解】解:∵==,∴a 5=,b 4=,∴ab 20=,故答案为:20.【点睛】本题考查了二次根式的化简求值,解题的关键是掌握二次根式运算法则.18.【分析】先将变形为再把代入求值即可【详解】解:的值为故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式及其变形是解答此题的关键解析:2【分析】先将1114a a ⎛⎫ ⎪⎝⎭-+变形为2112a ⎛⎫- ⎪⎝⎭,再把112a -= 【详解】解:112a -= 1114a a ⎛⎫ ⎪⎝⎭∴-+ 2114a a =-+2112a ⎛=⎫ ⎪⎝⎭- 2= 2=,1114a a ⎛⎫ ⎪⎝⎭∴-+的值为2. 故答案为:2.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式及其变形是解答此题的关键. 19.25【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】由题意得:所以x=2当x=2时y=3所以故答案为:25【点睛】本题考查了二次根式有意义解析:25【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以22()(23)525x x y +=+==.故答案为:25.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键. 20.1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0则x=2易得y=1然后把x 与y 的值代入计算即可【详解】由题意得∴∴故答案为:1【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件解析:1【分析】根据二次根式有意义的条件得到2-x≥0且x-2≥0,则x=2,易得y=1,然后把x 与y 的值代入计算即可.【详解】由题意得2020x x -≥⎧⎨-≤⎩, ∴2x =,0011y =++=,∴1x y -=.故答案为:1.【点睛】本题考查了二次根式有意义的条件:二次根式有意义的条件为被开方数为非负数.三、解答题21.2.【分析】实数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:2016(2019)|52π-⎛⎫--- ⎪⎝⎭=61|54+---154=+-2=-【点睛】本题考查实数的混合运算、二次根式的性质和负整数指数幂的运算等知识,掌握运算顺序和计算法则正确计算是解题关键.22.(1;(2)【分析】(1)先化简二次根式,再合并同类二次根式;(2)用单项式乘多项式的法则进行二次根式的混合运算.【详解】解:(1(2)32⎛⎫+ ⎪ ⎪⎝⎭=32=3+【点睛】本题考查二次根式的化简、二次根式的混合运算等知识,是基础考点,难度较易,掌握相关知识是解题关键.23.(1)-2<x≤1;整数解为-1,0,1;(2)【分析】(1)分别求出各不等式的解集,再求出其公共解集,据此即可写出不等式组的整数解.(2)先化简二次根式,再合并即可.【详解】解:(1)()3x24x?2x5x1?3⎧--≥-⎪⎨-<-⎪⎩①②由①去括号得,-3x+6≥4-x,移项、合并同类项得,-2x≥-2,化系数为1得,x≤1.由②去分母得,2x-5<3x-3,移项、合并同类项得,-x<2,化系数为1得,x>-2.故原不等式组的解集为:-2<x≤1.∴不等式组的整数解为-1,0,1.(2)=55-=【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了二次根式的加减运算,掌握二次根式的化简是关键.24.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.25.(1)1(3与1)3, ;(2)13 ;(3)1 ;(4)16ab =或6ab = 【分析】(1)根据“对称数对”的定义代入计算即可;(2)先将数对(3,y)的一对“对称数对”表示出来,根据“数对(3,y)的一对“对称数对”相同”,可得y 的值;(3)先将数对(x ,2)的一对“对称数对”表示出来,根据“数对(x ,2)的一个“对称数对”是1)”,即可得出x 的值;(4)先将数对(a ,b)的一对“对称数对”表示出来,根据“数对(a ,b)的一个“对称数对”是分两种情况进行讨论,分别得出a ,b 的值,然后得出ab 的值.【详解】解:(1)由题意得13=,∴数对(9,3)的一对“对称数对”是1(3与1)3,;(2)由题意得,∴数对(3,y )的一对“对称数对”为⎝与⎭, ∵数对(3,y )的一对“对称数对”相同,∴= ∴13y =;(3)∵数对(x ,2)的一对“对称数对”是与而数对(x ,2)的一个“对称数对”,1), ∴1=, ∴x=1;(4)∵数对(a ,b)的一对“对称数对”是与,而数对(a ,b)的一个“对称数对”是,∴==1,183a b == ∴11863ab =⨯=;==1,318a b ==, ∴113186ab =⨯=, 综上所述,16ab =或6ab =. 【点睛】 本题考查了实数的运算,“对称数对”的定义.理解题意是解题的关键.26.【分析】化简平方根、去绝对值符号,再合并即可.【详解】解:原式21=+=.【点睛】本题主要考查实数的运算,熟练掌握运算法则和运算顺序是解题的关键.。
2020人教版八年级数学下册第16章二次根式单元综合评价试卷含解析
2020人教版八年级数学下册第16章二次根式单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题,满分36分,每小题3分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.2.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<63.(3分)下列二次根式中与是同类二次根式的是()A.B.C.D.4.(3分)下列式子是最简二次根式的是()A.B.C.D.5.(3分)下列计算结果正确的是()A.B.C.D.6.(3分)若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣17.(3分)若a>0,则的值为()A.1B.﹣1C.±1D.﹣a8.(3分)计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.39.(3分)计算:等于()A.B.C.D.10.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.11.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)12.(3分)已知n是正整数,是整数,n的最小值为()A.21B.22C.23D.24二.填空题(共6小题,满分18分,每小题3分)13.(3分)如果二次根式有意义,则x.14.(3分)计算:+=.15.(3分)化简:(a>0)=.16.(3分)将化成最简二次根式为17.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是.18.(3分)若x,y都是实数,且,则x+3y的立方根为.三.解答题(共7小题,满分46分)19.(5分)计算:2﹣(﹣).20.(6分)将下列式子化成最简二次根式(1);(2);(3).21.(6分)计算:﹣÷+(2﹣)(2+).22.(7分)实数a、b在数轴上的位置如图所示,且|a|>|b|,化简23.(7分)已知n=﹣6,求的值.24.(7分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).25.(8分)观察下列各式子,并回答下面的问题:第一个:第二个:第三个:第四个:…(1)试写出第n个式子(用含n的表达式表示),这个式子一定是二次根式吗?为什么?(2)你估计第16个式子的值应在哪两个连续整数之间?试说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、,是二次根式,故此选项错误;B、,是二次根式,故此选项错误;C、,是二次根式,故此选项错误;D、,不是二次根式,故此选项正确;故选:D.2.(3分)要使二次根式有意义,则x应满足()A.x≥6B.x>6C.x≤6D.x<6【分析】本题主要考查自变量的取值范围,根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x﹣6≥0,解得x≥6.故选:A.3.(3分)下列二次根式中与是同类二次根式的是()A.B.C.D.【分析】根据同类二次根式的定义进行选择即可.【解答】解:A、=2,与是同类二次根式,故正确;B、=,与不是同类二次根式,故错误;C、=,与不是同类二次根式,故错误;D、=3,与不是同类二次根式,故错误;故选:A.4.(3分)下列式子是最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【解答】解:A、=2,则不是最简二次根式,故此选项错误;B、是最简二次根式,故此选项正确;C、=3,则不是最简二次根式,故此选项错误;D、=,则不是最简二次根式,故此选项错误;故选:B.5.(3分)下列计算结果正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B进行判断;根据二次根式的性质对C、D进行判断.【解答】解:A、原式=2,所以A选项错误;B、原式==2,所以B选项正确;C、原式=12,所以C选项错误;D、原式=2,所以D选项错误.故选:B.6.(3分)若最简二次根式是同类二次根式,则x的值为()A.B.C.x=1D.x=﹣1【分析】根据同类二次根式的被开方数相同,即可求出结果.【解答】解:由题意得:1+x=4﹣2x,解得:x=1.故选:C.7.(3分)若a>0,则的值为()A.1B.﹣1C.±1D.﹣a【分析】根据二次根式的性质,对化简,然后代入代数式计算求值.【解答】解:∵a>0,∴=a.==﹣1.故选:B.8.(3分)计算(2﹣3)(2+3)的结果是()A.B.C.﹣3D.3【分析】利用平方差公式计算.【解答】解:原式=12﹣9=3.故选:D.9.(3分)计算:等于()A.B.C.D.【分析】根据二次根式的乘除法法则计算.【解答】解:==.故选:A.10.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A.B.C.D.【分析】根据式子有意义和二次根式的概念,得到2x﹣6≥0,解不等式求出解集,根据数轴上表示不等式解集的要求选出正确选项即可.【解答】解:由题意得,2x﹣6≥0,解得,x≥3,故选:A.11.(3分)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)【分析】根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边,可知根号和绝对值里数的取值.【解答】解:∵三角形两边之和大于第三边,两边之差小于第三边,∴a﹣b﹣c<0,a+b﹣c>0∴+|a+b﹣c|=b+c﹣a+a+b﹣c=2b.故选:B.12.(3分)已知n是正整数,是整数,n的最小值为()A.21B.22C.23D.24【分析】如果一个根式是整数,则被开方数是完全平方数,首先把化简,然后求n的最小值.【解答】解:∵189=32×21,∴=3,∴要使是整数,n的最小正整数为21.故选:A.二.填空题(共6小题,满分18分,每小题3分)13.(3分)如果二次根式有意义,则x≥2.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:∵二次根式有意义,∴x﹣2≥0,解得,x≥2,故答案为:≥2.14.(3分)计算:+=5.【分析】首先化简,然后再合并同类二次根式即可.【解答】解:原式=4+=5,故答案为:5.15.(3分)化简:(a>0)=3a.【分析】根据二次根式的性质化简.【解答】解:∵a>0,∴=3a,故答案为:3a.16.(3分)将化成最简二次根式为【分析】利用最简二次根式定义判断即可.【解答】解:=,故答案为:.17.(3分)已知实数a在数轴上的位置如图所示,则化简|a﹣1|﹣的结果是1﹣2a.【分析】根据绝对值和二次根式的性质即可求解.【解答】解:根据数轴上的数所在位置,可知a﹣1<0,a>0.所以原式=1﹣a﹣a=1﹣2a.故答案为1﹣2a.18.(3分)若x,y都是实数,且,则x+3y的立方根为3.【分析】根据被开方数大于等于0列式求出x的值,然后求出y的值,代入代数式求解,再根据立方根的定义解答.【解答】解:根据题意得,x﹣3≥0且3﹣x≥0,解得x≥3且x≤3,所以,x=3,y=8,x+3y=3+3×8=27,∵33=27,∴x+3y的立方根为3.故答案为:3.三.解答题(共7小题,满分46分)19.(5分)计算:2﹣(﹣).【分析】先把二次根式化为最简二次根式,然后合并即可.【解答】解:原式=2﹣3+=﹣.20.(6分)将下列式子化成最简二次根式(1);(2);(3).【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:(1)==;(2)==;(3)===.21.(6分)计算:﹣÷+(2﹣)(2+).【分析】先根据二次根式的除法法则和平方差公式运算,然后合并即可.【解答】解:原式=﹣+4﹣5=﹣﹣1=﹣1.22.(7分)实数a、b在数轴上的位置如图所示,且|a|>|b|,化简【分析】由图可知:b>0,a<0,再由绝对值和二次根式的性质可得=﹣a+(a+b)=b.【解答】解:由图可知:b>0,a<0,∴=﹣a+(a+b)=b.23.(7分)已知n=﹣6,求的值.【分析】直接利用二次根式的性质得出m,n的值,进而化简得出答案.【解答】解:∵与有意义,∴m=2019,则n=﹣6,故==45.24.(7分)一个长方体的塑料容器中装满水,该塑料容器的底面是长为4cm,宽为3cm 的长方形,现将塑料容器内的一部分水倒入一个底面半径2cm的圆柱形玻璃容器中,玻璃容器水面高度上升了3cm,求长方形塑料容器中的水下降的高度.(注意:π取3).【分析】根据倒出的水的体积不变列式计算即可.【解答】解:设长方形塑料容器中水下降的高度为h,根据题意得:4×3h=3×(2)2×3,解得:h=2,所以长方形塑料容器中的水下降2cm.25.(8分)观察下列各式子,并回答下面的问题:第一个:第二个:第三个:第四个:…(1)试写出第n个式子(用含n的表达式表示),这个式子一定是二次根式吗?为什么?(2)你估计第16个式子的值应在哪两个连续整数之间?试说明理由.【分析】(1)根据形如(a≥0)是二次根式,可得答案;(2)利用二次根式的性质化简得出<<进而得出答案.【解答】解:(1)∵第一个:第二个:第三个:第四个:…∴第n个式子(用含n的表达式表示)为:,∵n≥1,∴n2﹣n=n(n﹣1)≥0,∴这个式子一定是二次根式;(2)第16个式子的值为:===,∵<<,∴15<<16,∴第16个式子的值应在15,16之间.。
人教版八年级下册数学第十六章 二次根式测试题含答案
人教版八年级下册数学第十六章测试卷一、选择题(每小题3分,共30分)1.下列计算正确的是( )A .532=+B .2553=-C .3226=⨯D .326=÷2.如果a 为任意实数, 下列各式中一定有意义的是( )AB CD 3.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .31 4.下列二次根式,不能与12合并的是( )A .48B .18C .311D .-755.下列计算正确的是( )A =B 1==C .(21-+=D=6.已知ab <0,则b a 2化简后为( )A .b aB . b a -C .b a -D .b a --7.在△ABC 中,BC =,BC 上的高为cm ,则△ABC 的面积为( )A . 2B .cm 2C . 2D .28.( )ABCD9.|3﹣y |=0( )A .9B .C .D .﹣910.实数a 在数轴上的位置如图所示,则错误!未找到引用源。
化简后为( )A . 7B . -7C . 错误!未找到引用源。
D .无法确定第10题图二、填空题(每小题3分,共30分)11.当6-=x 时,二次根式73x -的值为12.小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?________ (填对或错)13.若代数式2-x x有意义,则x 的取值范围是_____________ 14.已知y =44x x -+-+3,则(y ﹣x )2017= .15.当a = 时,最简二次根式2a -与102a -是同类二次根式;16.把1m m--根号外的因式移到根号内,则得 . 17.如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数是3和-1,则点C 所对应的实数是 .第17题图18.已知a 、b 、c 是△ABC ()2940a b --=,则第三边c 的取值范围是____________.19.已知a ,b 18a b +=a +b = .20. 2 2 6 22 10 ⋅⋅⋅、、、、 (第n 个数). 三、解答题(共60分)21.(6分)化简(1(2)60061243--22.(6分)(1)(2)先化简,在求值:22()a b ab b a a a--÷-,其中1a =,1b =.23.(6分)求值: (1)已知a =21,b =41,求b a b --ba b +的值.(2)已知x =251-,求x 2-x +5的值.24.(6分)x 为偶数,求(1+x .25.(8分)一个三角形的三边长分别为,54.(1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.26.(8分)在一块边长为m 的正方形土地中,修建了一个边长为m 的正方形养鱼池,问:剩余部分的面积是多少?27.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax +b =0,其中a 、b 为有理数,x 为无理数,那么a =0且b =0.运用上述知识,解决下列问题:(1)如果032)2(=++-b a ,其中a 、b 为有理数,那么a = ,b = ; (2)如果5)21()22(=--+b a ,其中a 、b 为有理数,求2a b +的值.28.(10分)小明在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如(231+=+,善于思考的小明进行了如下探索:设(2a m +=+,(其中a 、b 、m 、n 均为正整数)则有2222a m n +=+222,2a m n b mn ∴=+=这样,小明找到了把部分a +. 请你仿照小明的方法探索并解决问题:(1)当a 、b 、m 、n 均为正整数时,若(2a m +=+,用含m 、n 的式子分别表示a 、b 得,a = ,b =(2)若(2a m +=+且a 、b 、m 、n 均为正整数,求a 的值.参考答案1.C2.C3.B【解析】最简二次根式是指不能继续化简的二次根式,A 、原式=3;B 为最简二次根式;C 、原式=25;D 、原式=334.B【解析】本题首先将所有的二次根式的化简,如果化简后被开方数相同,则能够进行合并.3212=;3448=;2318= 5.A .【解析】A ==B ==;故该选项错误;C 、(2451+=-=-,故该选项错误;D 212==;故该选项错误.故选A . 6.B【解析】根据题意可得:a <0,b >0,则原式=a .7.C【解析】由三角形面积公式得11422ABC S BC h ==⨯==△(cm 2). 8.B【解析】二次根式的乘除法运算属于同级运算,按照从左到右的运算顺序运算即可. 9.C【解析】根据非负数的性质列出算式,分别求出x 、y 的值,根据二次根式的性质计算即可. 解:由题意得,x ﹣12=0,3﹣y =0,解得,x =12,y =3, 则﹣=2﹣=,故选:C . 10.A 【解析】二次根式的性质为:⎩⎨⎧≤-≥=)0()0(2a a a a a a ,根据数轴可得:a -4 0,a -11 0,则原式=114-+-a a =a -4+11-a =7.11.5. 【解析】当6x =-时,()73736255x -=--==.12.错【解析】二次根式是指含有的式子.13.x ≥0且x ≠2【解析】二次根式的被开方数为非负数,分式的分母不为零.根据性质可得:x ≥0且x -2≠0,解得:x ≥0且x ≠2. 14.﹣1【解析】直接利用二次根式有意义的条件得出x ,y 的值,进而代入求出答案. 解:∵y =++3,∴x =4,y =3,则(y ﹣x )2017=(3﹣4)2017=﹣1. 故答案为:﹣1. 15.4.【解析】根据同类二次根式的定义可得,a -2=10-2a ,解得a =4. 故答案为:4. 16.m -【解析】根据题意可得:m <0,所以211()()m m m m--=--=- 17.23+1.【解析】解:设点C 所对应的实数是x .则有x (-1),解得x =1. 18.5<c <13【解析】根据题意可得:a -9=0,b -4=0,解得:a =9,b =4,则a -b <c <a +b ,即5<c <13. 19.10.==,x 、y 都是正整数,是同类二次根式, ∴28a b ==⎧⎨⎩或82b a ==⎧⎨⎩, ∴a +b =10.20【解析】的倍数,的1倍,依此类推,第n21.(1)-1;(2 【解析】(1)利用平方差公式计算;(2)先将各式化简成最简二次根式,然后合并同类二次根式即可. 解:(1)原式=223-2)()( =2-3 =-1 (2)60061243--= 61066166-- =6)10616(-- =6625-22.(12【解析】(1)先根据绝对值、负整数指数幂、二次根式等知识点分别进行计算,最后进行加减运算即可.(2)先化简分式,再把a 、b 的值代入化简的式子即可求值. 解:(1)原式=34-+1.(2)原式=222a b a ab b a a--+÷=2()a b aa ab -⨯- =1a b-把1a =,1b =代入上式得:12=.23.(1)2;(2)7+【解析】(1)首先根据二次根式的计算法则将所求的二次根式进行化简,然后将a 和b 的值代入化简后的式子进行计算;(2)首先根据二次根式的化简法则将x 进行化简,然后将x 的值代入所求的代数式进行计算. 解:(1)原式=))(()()(b a b a b a b b a b +---+=b a b ab b ab -+-+=b a b -2.当a =21,b =41时, 原式=4121412-⨯=2. (2)∵x =-251-=4525-+=25+.∴=x 2-x +5=(5+2)2-(5+2)+5=5+45+4-5-2+5=7+45. 24.6a ≥0,b >0时才能成立. 因此得到9-x ≥0且x -6>0,即6<x ≤9,又因为x 为偶数,所以x =8.解:由题意得9060x x -≥⎧⎨->⎩,即96x x ≤⎧⎨>⎩ ∴6<x ≤9 ∵x 为偶数 ∴x =8∴原式=(1+x=(1+x=(1+x∴当x =86.25.(1(2)当x =20或当x 等)【解析】把三角形的三边长相加,即为三角形的周长.再运用运用二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并解:(1)周长=+54;(2)当x =2025=(或当x =455=等)262.【解析】解:22-====m 2).答:剩余部分的面积是m 2.27.(1)a=2,b=-3;(2)5 3 -.【解析】(1),b是有理数,则a﹣2,+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.解:(1)2,﹣3;(2)整理,得(a+b)2+(2a﹣b﹣5)=0.∵a、b为有理数,∴250a ba b+=⎧⎨--=⎩,解得:5353ab⎧=⎪⎪⎨⎪=-⎪⎩,∴523a b+=-.第11 页共11 页。
八年级下册数学同步练习题库:二次根式的加减(计算题:一般)
二次根式的加减(计算题:一般)1、计算(1)(2)(3)(4)(5)(6)2、计算(1) (2)(3)3、(1)× (2)4、(1)(-)(2)| | + || +5、计算:.6、先化简,再求值:(),其中x=﹣2.7、观察下面计算:①②;③④.求:(1)直接写出(n为正整数)的值;(2)利用上面所揭示的规律计算:.8、已知x= (+),y= (-),求下列各式的值:(1)x2-xy+y2;(2)+.9、(1)(2)(3)(4)÷10、化简:(1) (2)11、计算:.12、计算:(1)(2).13、14、先化简,再求值:,其中,.15、16、计算: +(﹣1)+()0.17、计算:.18、化简:(4﹣6)÷﹣(+)(﹣)19、计算﹣(﹣2)0﹣|﹣|+2﹣1.20、已知x=3+2,y=3﹣2,求下列各式的值:(1)x2y+xy2;(2).21、计算:.22、计算:.23、计算:(1);(2);(3).24、先化简,后计算:,其中,.25、(1)计算:(2)先化简,再求值:,其中.26、阅读下面计算过程:试求:(1)=__________;(2)(为正整数)=_______________;(3)的值.27、计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.28、计算:()﹣2﹣()0+2sin30°+|﹣3|.29、计算:()﹣1+16÷(﹣2)3+(2016﹣)0﹣tan60°.30、计算:31、计算:32、计算题(1)(2)(3)2022+202×196+982(4)33、计算(1)(2)34、计算(1)+(﹣1)2016﹣(2)(a4)3•(a2)3÷(a4)2(3)(2x2y﹣x3y2﹣xy3)÷(﹣xy)(4)9(x+2)(x﹣2)﹣(3x﹣1)2(5)[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x.35、计算:.36、计算:37、计算:38、计算:()﹣1﹣(﹣1)0+|﹣3|﹣2sin60°.39、(2016•海南模拟)计算:(1)9×+﹣;(2).40、计算:(1﹣)0+(﹣1)2016﹣tan30°+()﹣2.41、计算:(﹣3)2+()0﹣+2﹣1+•tan30°.42、计算:|﹣|﹣2cos45°+(2016﹣π)0﹣.43、计算:.44、计算: +(﹣)﹣1+(2016﹣π)0+|﹣2|45、计算:|﹣2|+(π﹣1)0×(﹣1)2012+()﹣3.46、计算:47、计算:﹣2sin30°+(﹣)﹣1﹣3tan60°+(1﹣)0+.48、计算:.49、计算(1)(2)50、计算:﹣12+(﹣2)3×﹣×|﹣|+2÷()2.51、(1)计算:(2)化简:.52、求下列各式的值:(1) (2)-+53、计算:54、计算(1)(2)(-3a3)2·a3+(-a)2·a7-(5a3)3(3)(3x+2)2-(3x-2)2+(3x+2)(3x-2)55、计算:56、阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得= = = ;②参照(四)式得= = = ;(2)化简:.57、计算①+3—5②58、(1)计算:+-;(2)化简:59、60、61、计算:(π﹣3)0+|﹣2|﹣÷+(﹣1)﹣1.62、计算:3+(﹣2)3﹣(π﹣3)0.63、(1)计算:()﹣1﹣﹣()0+|﹣1|(2)先化简,再求值:(x+2)(x﹣2)﹣(x﹣1)2,其中x=﹣.64、(1)计算:;(2)化简:2a(2a﹣3b)﹣(2a﹣3b)2.65、计算(1)(2)66、计算:(1);(2)。
(完整版)八年级下册二次根式的计算专题
(完整版)八年级下册二次根式的计算专题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN八年级下册二次根式的计算专题一.解答题(共30小题)1.(2016?太仓市模拟)计算:(﹣1)3+﹣||.2.(2016?丹东模拟)计算:.3.(2016?海南校级一模)(1)计算:(﹣1)3﹣(2﹣5)+×;(2)化简:?.4.(2016?崇明县二模)计算:.5.(2016春?罗定市期中)计算:()﹣||6.(2016春?津南区校级期中)+3﹣5.7.(2016春?萧山区期中)计算:(1);(2).8.(2016春?台安县期中)(+)﹣2﹣.9.(2016春?封开县期中)计算:.10.(2016春?中山市期中)计算:.11.(2016春?江门校级期中)计算:5+2.12.(2016春?浦东新区期中)计算:2﹣+.13.(2016春?临沭县期中)(1)(+)(﹣)﹣(+3)2.(2)÷(﹣)﹣×+.14.(2016春?新昌县校级期中)计算(1)2﹣+2;(2)(+)2﹣(+)(﹣).15.(2016春?蓟县期中)计算:(1)(2)16.(2016春?定州市期中)计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)17.(2016春?固始县期中)(1)计算:4+﹣+4;(2)计算:÷2×.18.(2016春?蚌埠期中)计算:(1)(2).19.(2016春?泰兴市期中)计算:(1)+|﹣3|﹣()2;(2)(﹣2)﹣.20.(2016春?浦东新区期中)计算:(﹣)2﹣(+)2.21.(2016春?东湖区期中)计算:(1)()﹣(3﹣)(2)﹣3+.22.(2016春?邹城市校级期中)计算(1)(2)(+1)2(2﹣3)23.(2016春?安陆市期中)计算:(1);(2)()2.24.(2016春?微山县期中)计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.25.(2016春?天津校级期中)计算:(1)()()﹣()2(2)﹣.26.(2016春?杭州期中)计算(1)+﹣(2)(3+)(3﹣)+(1+)2.27.(2016春?召陵区期中)计算:(1)﹣(﹣)(2)(a2﹣)28.(2016春?张家港市期中)计算与化简:(1)﹣+(2)÷3×(3)÷﹣×+(4)÷(x+2)?.29.(2016春?闸北区期中)计算:(1)3﹣+(2)(2+3)2(2﹣3)2(3)×6÷÷(4)()﹣1+()2×÷(5)2﹣3+2×+(1)﹣(2).30.(2016春?庆云县期中)计算(1)+|﹣1|﹣π0+()﹣1(2)(1﹣)(+1)+(﹣1)2(3)÷×(4)+2﹣(﹣)八年级下册二次根式的计算专题参考答案与试题解析一.解答题(共30小题)1.(2016?太仓市模拟)计算:(﹣1)3+﹣||.【分析】首先去绝对值以及化简二次根式,进而求出答案.【解答】解:原式=﹣1+2﹣(﹣1)=.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.2.(2016?丹东模拟)计算:.【分析】根据平方差公式、二次根式的化简、负整数指数幂的法则计算.【解答】解:原式=3﹣1﹣4+2=0.【点评】本题考查了二次根式的混合运算、负整数指数幂,解题的关键是掌握有关法则,以及公式的使用.3.(2016?海南校级一模)(1)计算:(﹣1)3﹣(2﹣5)+×;(2)化简:?.【分析】(1)先进行乘方运算和二次根式的乘法运算,然后进行加减运算;(2)先把分子分母因式分解,然后约分即可.【解答】解:(1)原式=﹣1+3+=﹣1+3+4=6;(2)原式=?=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了分式的乘除法.4.(2016?崇明县二模)计算:.【分析】分别依据分数指数幂、完全平方公式、负整数指数幂、分母有理化化简各式,再合并同类二次根式即可.【解答】解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.【点评】本题主要考查二次根式的混合运算,掌握分式的混合运算顺序是解题的根本,准确运算分数指数幂、负整数指数幂、完全平方公式及分母有理化等是解题的关键.5.(2016春?罗定市期中)计算:()﹣||【分析】直接利用二次根式乘法运算法则化简进而利用绝对值的性质化简,再合并求出答案.【解答】解:原式=3﹣﹣(2﹣)=3﹣﹣2+,=1.【点评】此题主要考查了二次根式的乘法以及绝对值的性质,正确掌握运算法则是解题关键.6.(2016春?津南区校级期中)+3﹣5.【分析】根据二次根式的加减运算法则求解,即可求得答案.【解答】解:+3﹣5==﹣.【点评】此题考查了二次根式的加减运算.此题比较简单,注意法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.7.(2016春?萧山区期中)计算:(1);(2).【分析】(1)先将二次根式化成最简二次根式,再合并同类二次根式即可;(2)先乘方、化简二次根式,再合并同类二次根式.【解答】解:(1)原式=4=;(2)原式=6﹣2=6.【点评】二次根式的加减实际就是合并同类二次根式,一般需要先化为最简二次根式,再合并.8.(2016春?台安县期中)(+)﹣2﹣.【分析】先把二次根式为最简二次根式,再计算即可.【解答】解:原式=2+﹣﹣=.【点评】本题考查了二次根式的加减运算,把二次根式化为最简二次根式是解题的关键.9.(2016春?封开县期中)计算:.【分析】首先化简二次根式进而合并同类二次根式求出答案.【解答】解:原式=2+3﹣3+=3.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.10.(2016春?中山市期中)计算:.【分析】首先化简二次根式进而合并同类二次根式求出答案.【解答】解:原式=4+﹣2+2=3+2.【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.11.(2016春?江门校级期中)计算:5+2.【分析】直接合并同类二次根式,进而得出答案.【解答】解:5+2=7.【点评】此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.12.(2016春?浦东新区期中)计算:2﹣+.【分析】直接利用分数加减运算法则合并求出答案.【解答】解:原式=2﹣+=.【点评】此题主要考查了二次根式加减运算,正确进行通分运算是解题关键.13.(2016春?临沭县期中)(1)(+)(﹣)﹣(+3)2.(2)÷(﹣)﹣×+.【分析】(1)根据平方差和完全平方公式计算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=7﹣5﹣(3++18)=2﹣21﹣6=﹣19﹣6;(2)原式=﹣﹣+2=4﹣+2=4+.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.(2016春?新昌县校级期中)计算(1)2﹣+2;(2)(+)2﹣(+)(﹣).【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.【解答】解:(1)原式=4﹣+=;(2)原式=2+2+3﹣(2﹣3)=2+2+3+1=6+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.15.(2016春?蓟县期中)计算:(1)(2)【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.16.(2016春?定州市期中)计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.17.(2016春?固始县期中)(1)计算:4+﹣+4;(2)计算:÷2×.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=1××=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(2016春?蚌埠期中)计算:(1)(2).【分析】(1)先对式子进行化简,再合并同类项即可解答本题;(2)根据平方差公式对式子进行化简,然后再合并同类项即可解答本题.【解答】解:(1)==5;(2)==5﹣4﹣3+2=0.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.19.(2016春?泰兴市期中)计算:(1)+|﹣3|﹣()2;(2)(﹣2)﹣.【分析】(1)先根据二次根式的性质化简,再利用绝对值的意义去绝对值,然后合并即可;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【解答】解:(1)原式=4+3﹣﹣3=3;(2)原式=﹣2﹣5=5﹣10﹣5=﹣10.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016春?浦东新区期中)计算:(﹣)2﹣(+)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3﹣2+2﹣3﹣2﹣2=﹣4.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.21.(2016春?东湖区期中)计算:(1)()﹣(3﹣)(2)﹣3+.【分析】(1)先化简二次根式、同时去括号,再合并同类二次根式可得;(2)先计算二次根式的乘法,再化简即可.【解答】解:(1)原式=2+2﹣3+=2+3﹣3;(2)原式=﹣3+=4﹣3+.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.22.(2016春?邹城市校级期中)计算(1)(2)(+1)2(2﹣3)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方公式计算,然后利用平方差公式计算.【解答】解:(1)原式=4﹣2+6=4+4;(2)原式=(2﹣3)(2﹣3)=(2)2﹣32=8﹣9=﹣1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.23.(2016春?安陆市期中)计算:(1);(2)()2.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=2+3=4;(2)原式=×﹣2××+=﹣+=5﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.(2016春?微山县期中)计算:(1)2﹣6+3(2)(﹣)(+)+(2﹣3)2.【分析】(1)首先化简二次根式进而合并求出答案;(2)直接利用乘法公式进而化简求出答案.【解答】解:(1)2﹣6+3=4﹣6×+3×4=2+12=14;(2)(﹣)(+)+(2﹣3)2=6﹣5+12+18﹣12=31﹣12.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.25.(2016春?天津校级期中)计算:(1)()()﹣()2(2)﹣.【分析】(1)直接利用乘法公式化简二次根式,进而合并求出答案;(2)首先化简二次根式,进而合并同类二次根式求出答案.【解答】解:(1)()()﹣()2=3﹣5﹣(10+2﹣4)=﹣2﹣12+4=﹣14+4;(2)﹣=9﹣1﹣+1+﹣1=8.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.26.(2016春?杭州期中)计算(1)+﹣(2)(3+)(3﹣)+(1+)2.【分析】(1)先把二次根式化为最简二次根式,合并同类二次根式即可;(2)根据平方差公式和完全平方公式把原式展开,合并同类二次根式即可.【解答】解:(1)原式=2+4=5;(2)原式=32﹣()2+1+2+2=9﹣2+3+2=10+2.【点评】本题考查的是二次根式的混合运算,正确把二次根式化简、掌握平方差公式和完全平方公式是解题的关键.27.(2016春?召陵区期中)计算:(1)﹣(﹣)(2)(a2﹣)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘法法则运算,然后化简后合并即可.【解答】解:(1)原式=5﹣+4=;(2)原式=a2﹣=9a3﹣=a3.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.28.(2016春?张家港市期中)计算与化简:(1)﹣+(2)÷3×(3)÷﹣×+(4)÷(x+2)?.【分析】(1)先对原式化简,再合并同类项即可解答本题;(2)根据二次根式乘除法的计算方法进行计算即可;(3)先对原式化简,再合并同类项即可解答本题;(4)根据分式的乘除法的计算方法进行计算即可解答本题.【解答】解:(1)﹣+==;(2)÷3×==;(3)÷﹣×+===;(4)÷(x+2)?==.【点评】本题考查二次根式的混合运算、分式的混合运算,解题的关键是明确它们各自的计算方法.29.(2016春?闸北区期中)计算:(1)3﹣+(2)(2+3)2(2﹣3)2(3)×6÷÷(4)()﹣1+()2×÷(5)2﹣3+2×+(1)﹣(2).【分析】(1)直接合并同类二次根式即可;(2)利用平方差公式计算;(3)根据二次根式的乘除法则运算;(4)根据负整数指数的意义和二次根式的除法法则运算;(5)先把分数指数的形式化为二次根式的形式,然后化简后合并即可.【解答】解:(1)原式=;(2)原式=[(2+3)(2﹣3)]2=(12﹣18)2=36;(3)原式=×6×××=×7=;(4)原式=﹣1+2=﹣1+2=3﹣1;(5)原式=2﹣3+×+﹣=﹣+4﹣=﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.30.(2016春?庆云县期中)计算(1)+|﹣1|﹣π0+()﹣1(2)(1﹣)(+1)+(﹣1)2(3)÷×(4)+2﹣(﹣)【分析】(1)先根据二次根式的性质,绝对值,零指数幂,负整数指数幂分别求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类二次根式即可;(3)先根据二次根式的乘除法则进行计算,最后化成最简即可;(4)先去括号,再合并同类二次根式即可.【解答】解:(1)原式=2+﹣1﹣1+2=3;(2)原式=1﹣5+5﹣2+1=2﹣2;(3)原式===;(4)原式=2+2﹣3+=3﹣.【点评】本题考查了二次根式的性质,绝对值,零指数幂,负整数指数幂,二次根式的混合运算的应用,能灵活运用法则进行计算是解此题的关键.。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
人教版八年级下册专题16.4 二次根式(压轴题综合测试卷)(人教版)(解析版)
专题16.4二次根式(满分100)学校:姓名:班级:考号:一.选择题(本大题共10小题,每小题3分,满分30分)1. (2021秋•麦积区期末)下列各式中,一定是二次根式的是( )A.B.C. Va 2 - 1D. Va 2 + 2【思路点拨】 根据形如VH («>o )的式子叫做二次根式判断即可.【解题过程】解:A 、当。
+1V0时,不是二次根式,故此选项不符合题意;B 、当。
-ivo 时,不是二次根式,故此选项不符合题意;。
、当。
=0时' a 2 - \ = - KO, 7a 2 - 1不是二次根式,故此选项不符合题意;D. -.^2>0, .,.672+2>O,是二次根式,故此选项符合题意;故选:D.2. (2021秋•龙泉驿区期末)下列计算正确的是()A. V3 + V3 = V6B. 2^2 - V2 = V2C. 〃 + 鱼=2D. V6 x V3 = V9【思路点拨】利用二次根式的加减法的法则,二次根式的乘法与除法的法则对各项进行运算即可. 【解题过程】解:A 、V3 + V3 = 2A /3,故A 不符合题意;B 、2V2-V2 = V2,故B 符合题意; C> V4 -r V2 = V2,故C 不符合题意;D 、V6X V3 = 3A /2,故。
不符合题意;故选:B.3. (2021秋•徐汇区期末)下列二次根式中,是最简二次根式的是()A.B. 7WC. Vx 2 - 2% + 1D. y/13ab【思路点拨】根据最简二次根式的定义判断即可. 【解题过程】解:A. 铝,故A 不符合题意;yj p-lp —1历=2回,故B 不符合题意;C.V%2 - 2% 4- 1 =|x - 1|,故 C 不符合题意;是最简二次根式,故。
符合题意;故选:D.4. (2021秋•鼓楼区校级期末)下列二次根式中,化简后可以合并的是()A.y 和后B. da2b 和前C.率万和VL +炉D.后和巡【思路点拨】先把每一个二次根式化成最简二次根式,然后再看被开方数是否相同即可判断. 【解题过程】解:A.正和后不能合并,故4不符合题意;B.a7b =|c/|Vb, ,“a2b 与仍能合并,故B 符合题意;与后不能合并,故C 不符合题意;D. VV25 =5,・・・库与遥不能合并, 故。
人教版 八年级数学下册二次根式、勾股定理 综合测试卷 (含答案解析)
(2)当﹣4<x<1时,化简 ﹣2 .
21.一个25米长的梯子AB,斜靠在一竖直的墙AO上,这时的AO距离为24米,如果梯子的顶端A沿墙下滑4米,那么梯子底端B也外移4米,对吗?为什么?
22.综合题
(1)试比较 与 的大小;
(2)你能比较 与 的大小吗?其中k为正整数.
A. B. C. D.
2.若式子 在实数范围内有意义,则x的取值范围是( )
A. x>1 B. x<1 C. x≥1 D. x≤1
3.下列变形中,正确的是( )
A.(2 )2=2×3=6 B.
C. D.
4.下列组合哪个不是勾股数()
A.30,40,50 B.7,24,25 C.5,12,13 D.1,2,3
【解析】【分析】(1)先根据二次根式有意义的条件可得x的值,进一步得到y的值,代入 得到它的平方根;
(2)由于﹣4<x<1,根据完全平方公式和二次根式的性质得到 ﹣2 =|x+4|﹣2|x﹣1|,再去绝对值化简即可.
21.【答案】解:不对.
理由:如图,依题意可知
AB=25(米),AO=24(米),∠O=90°,
22.【答案】(1)解: ,
,
故 <
(2)解: ,
,
故 <
【考点】二次根式的性质与化简,二次根式的乘除法
【解析】【分析】(1)比较两个二次根式的大小,用分母有理化的法则先将其化为最简二次根式,再比较大小即可;(2)方法同(1).
23.【答案】解:如图,AB=28 ,∠P=45°,∠PAC=90°,∠ABQ=45°,∴∠ACP=45°,
5.下列二次根式中,与 是同类二次根式的是()
二次根式的加减【十大题型】(举一反三)(人教版)(原卷版)八年级下册
专题16.3二次根式的加减【十大题型】【人教版】【题型1判断同类二次根式】 (1)【题型2根据同类二次根式的概念求字母的取值】 (2)【题型3运用乘法公式和运算律简化二次根式的混合运算】 (2)【题型4比较二次根式的大小】 (3)【题型5已知字母的取值化简求值】 (3)【题型6已知条件式化简求值】 (4)【题型7与二次根式有关的整体代入求值问题】 (4)【题型8二次根式混合运算的实际应用】 (4)【题型9二次根式的新定义类问题】 (5)【题型10二次根式的阅读理解类问题】 (6)【知识点1同类二次根式】把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.【题型1判断同类二次根式】【例1】(2023·上海·八年级假期作业)判断下列各组的二次根式是否为同类二次根式?(1)24,48,(2)4,33o<0),−2B3(<0).【变式1-1】(2023春·四川宜宾·)A.216B.125C.48D.32【变式1-2】(2023春·上海·八年级期末)下列各式中,属于同类二次根式的是()A.B与B2B.2与2C.3与D.与3【变式1-3】(2023春·河南洛阳·八年级统考阶段练习)下列各式经过化简后与--273不是同类二次根式的是()A.273B 27C.9D【题型2根据同类二次根式的概念求字母的取值】【例2】(2023·上海·八年级假期作业)若5+8与7是同类二次根式,求的最小正整数?【变式2-1】分别求出满足下列条件的字母a的取值:(1)若最简二次根式3与﹣8是同类二次根式;(2)若二次根式3与﹣8是同类二次根式.【变式2-2】(2023春·重庆綦江·八年级校考期中)最简二次根式2+1与r47+可以合并成一个二次根式,则−=.【变式2-3】(2023春·河南信阳·八年级统考期末)先阅读解题过程,再回答后面的问题.如果、是正整数,且162+和KK1+7在二次根式的加减法中可以合并成一项,求、的值.解:∵162+和KK1+7可以合并,∴−−1=2162+=+7,即−=331+16=7,解得=5547=8647.∵、是正整数,∴此题无解.问:(1)以上解法是否正确?如果不正确,错在哪里?(2)给出正确的解答过程.【知识点2二次根式的加减法则】二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.【题型3运用乘法公式和运算律简化二次根式的混合运算】【例3】(2023春·黑龙江牡丹江·八年级统考期末)计算(1)412−+48÷23(2)26+3×26−3−(33−2)2+【变式3-1】(2023春·广东江门·八年级统考期末)计算:27+6+36−3−42−36÷22【变式3-2】(2023春·北京·八年级校考阶段练习)计算:(1)48÷3+12−24(2)(7+43)(7−43)−(35−1)2【变式3-3】(2023春·湖北黄冈·八年级校联考阶段练习)计算:(1)3×−÷2(2)212−+348;(3)2+32−5+25−2;(4)2−32022×2+32023−2−−−20.【题型4比较二次根式的大小】【例4】(2023春·八年级课时练习)比较大小错误的是()A.5<7B.35+2<82﹣1C6D.|1-3|>3-1【变式4-1】(2023春·江苏·八年级专题练习)将55从小到大排列.【变式4-2】(2023春·河南新乡·八年级校考阶段练习)阅读下列化简过程:=2−1,==3−2,==4−3,…从中找出化简的方法与规律,然后解答下列问题:…2021+1;(2)设===,,的大小关系.【变式4-3】(2023春·【题型5已知字母的取值化简求值】【例5】(2023春·云南昭通·八年级统考期末)若x=3+22,y=3-22,求−【变式5-1】(2023春·四川自贡·八年级统考期末)已知=2+1,求代数式3−222+2−1−2的值.【变式5-2】(2023春·山东临沂·八年级校考期末)已知=2+1,求2K1−⋅B,再求当==.【变式5-3】(2023春·上海·【题型6已知条件式化简求值】【例6】(2023春·贵州毕节·八年级校考期末)若,为实数,且=1−4+4−1+12.【变式6-1】(2023春·四川乐山·八年级统考期末)已知a、b满足4−+1+−12−9=0,求代数式⋅−÷−−的值.【变式6-2】(2023春•肥城市期中)已知为奇数,求(+【变式6-3】(2023·八年级单元测试)若=222+4++1的值.【题型7与二次根式有关的整体代入求值问题】【例7】(2023春·广东广州·八年级华南师大附中校考阶段练习)若=5+1,=5−1,求下列代数式的值.(1)2+B(2)2−2【变式7-1】(2023春·陕西安康·八年级统考期末)已知=3−7,=3+7,求−的值.【变式7-2】(2023春·八年级单元测试)已知a=2+1,求a3-a2-3a+2016的值.【变式7-3】(2023春·广东珠海·八年级统考期末)已知+1=7,求下列各式的值;(1)2+12;(2)2−12.【题型8二次根式混合运算的实际应用】【例8】(2023春·北京海淀·八年级期末)快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:型号长宽小号20cm18cm中号25cm20cm大号30cm25cm已知甲、乙两件礼品底面都是正方形,底面积分别为80cm2,180cm2,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由.【变式8-1】(2023春·广东汕头·八年级校联考期末)甲容器中装有浓度为a的果汁40kg,乙容器中装有浓度为b的果汁90kg,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为.【变式8-2】(2023春·山东滨州·八年级统考期中)(1)用“=”、“>”、“<”填空:4+324×3,1+165+525×5.(2)由(1)中各式猜想+与2B(≥0,≥0)的大小关系,并说明理由.(3)请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为2002的花圃,所用的篱笆至少是多少米?【变式8-3】(2023春·江苏·八年级专题练习)甲容器中装有浓度为a的果汁40kg,乙容器中装有浓度为b 的果汁90kg,两个容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m的值为.【题型9二次根式的新定义类问题】【例9】(2023春·贵州黔西·八年级校考阶段练习)我们规定用,表示数对,给出如下定义:记==(0,>0,与,称为数对,的一对“对称数对”.例如:4,1的一对“对称数对”1与1(1)数对25,4的一对“对称数对”是______和______;(2)若数对3,的一对“对称数对”的两个数对相同,求的值;(3)若数对,2的一对“对称数对”的其中一个数对是2,1,求的值.【变式9-1】(2023春·全国·八年级专题练习)定义:若两个二次根式a,b满足⋅=,且c是有理数,则称a与b是关于c的共轭二次根式.(1)若a与2是关于4的共轭二次根式,求a的值;(2)若2+3与4+3是关于2的共轭二次根式,求m的值.【变式9-2】(2023春·重庆涪陵·八年级统考期末)对于任意实数m,n,若定义新运算⊗=−≥,+<,给出三个说法:①18⊗2=22;②11⊗2+12⊗3+13⊗4+⋅⋅⋅+199⊗100=100⊗1;③⊗⋅⊗=−.以上说法中正确的个数是()A.0个B.1个C.2个D.3个【变式9-3】(2023春·北京·八年级校考阶段练习)材料一:平方运算和开方运算是互逆运算.如a2±2ab+b2=(a±b)2,那么2±2B+2=|±U.如何将双重二次根式5±26化简?我们可以把5±26转化为(3)2±26+(2)2=(3±2)2完全平方的形式,因此双重二次根式5±26=(3±2)2=3±2得以化简.材料二:在直角坐标系xOy中,对于点P(x,y)和Q(x,y')给出如下定义:若'={o>0)−o<0),则称点Q为点P的“横负纵变点”.例如:点(3,2)的“横负纵变点”为(3,2),点(﹣2,5)的“横负纵变点”为(﹣2,﹣5).请选择合适的材料解决下面的问题:(1)点(2,−3)的“横负纵变点”为______,点(−33,−2)的“横负纵变点”为______;(2)化简:7+210;(3)已知a为常数(1≤a≤2),点M(−2,m)且=(+2−1+−2−1),点'是点M的“横负纵变点”,求点''的坐标.【题型10二次根式的阅读理解类问题】【例10】(2023春·江苏·八年级期末)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=1+22.善于思考的小明进行了以下探索:设+2=+22(其中a、b、m、n均为整数),则有+2=2+22+2B2.∴=2+22,=2B.这样小明就找到了一种把类似+2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若+3=+32,用含m、n的式子分别表示a、b,得:=,=;(2)利用所探索的结论,请找一组正整数a、b、m、n填空:=+32;(3)若−65=−52且a、m、n均为正整数,求a的值.==3−23−2=【变式10-1】(2023春·江西赣州·八年级统考期中)3−2,像上述解题过程中,3+2与3−2相乘的积不含二次根式,我们可以将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化.解答下面的问题:(1)=___________;若n=___________.(2)×2022+1;(3)×2024+1.【变式10-2】(2023春·八年级单元测试)阅读下述材料:我们在学习二次根式时,熟悉的分母有理化以及应用.其实,有一个类似的方法叫做“分子有理化”,与分母有理化类似,分母和分子都乘以分子的有理化因式,从而消掉分子中的根式,比如:7−6==分子有理化可以用来比较某些二次根式的大小,也可以用来处理一些二次根式的最值问题.例如:比较7−6和6−5的大小.可以先将它们分子有理化如下:7−6=7+66−5=6+5因为7+6>6+5,所以7−6<6−5.再例如:求=+2−−2的最大值.做法如下:解:由+2≥0,−2≥0可知≥2,而=+2−−2=当=2时,分母+2+−2有最小值2,所以y的最大值是2.解决下述问题:(1)比较32−4和23−10的大小;(2)求=1−+1+−的最大值和最小值.【变式10-3】(2023春·广东惠州·八年级阶段练习)阅读材料:①我们知道:式子+1的几何意义是数轴上表示有理数x的点与表示有理数−1的点之间的距离,且+1=(+1)2;②把根式±2进行化简,若能找到两个数m、n,是2+2=且B=,则把x±2变成2+2±2B=±2开方,从而使得±2化简.如:3+22=1+22+2=12+2×1×2+22=1+22=1+=1+2;(1)化简:5+26.(2)5+26+7+212+9+45(3)直接写出代数式2+2+5+2−22+130的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.3 二次根式的加减
学习要求
掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.
课堂学习检测
一、填空题
1.下列二次根式15,12,18,82,454,125,27,
32化简后,与2的被开方数
相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.
2.计算:(1)=+3
1
312________; (2)=-x x 43__________.
二、选择题
3.化简后,与2的被开方数相同的二次根式是( ).
A .10
B .12
C .2
1 D .
6
1 4.下列说法正确的是( ).
A .被开方数相同的二次根式可以合并
B .8与80可以合并
C .只有根指数为2的根式才能合并
D .2与50不能合并
5.下列计算,正确的是( ). A .3232=+
B .5225=-
C .a a a 26225=+
D .xy x y 32=+ 三、计算题
6..48512739-+ 7..61224-+
8.⋅++32
1
8121 9.⋅---)5.043
1
3()814
12(
10..1878523x x x +-
11.
⋅-+x
x x x 1246932
综合、运用、诊断
一、填空题
12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a
的值是______.
13.
383
2
ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题
14.在下列二次根式中,与a 是同类二次根式的是( ).
A .a 2
B .23a
C .3a
D .4a
三、计算题 15..)15(2
8
22180-+-
- 16.
).272(4
3
)32(21--+
17.⋅+-+b
b a b a a
1241
18..21233ab b
b a a
b
a b
a
b a
-
+
-
四、解答题
19.化简求值:y y x
y x
x 3241+-+,其中4=x ,91=y .
20.当3
21-=x 时,求代数式x 2
-4x +2的值.
拓广、探究、思考
21.探究下面的问题:
(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.
①3
2
2322=+
( ) ②8
3
3833=+
( )
③
15
441544=+
( ) ④24
5
52455=+
( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出
n 的取值范围.
(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.。