江西省2018秋七年级数学上册第2章有理数及其运算2.1有理数课件(新版)北师大版
合集下载
北师大版七年级数学上册第二章有理数及其运算有理数课件
(1)既然小明家的收入2 500元可表示为在“2 500元”前面加上“+”号, 由于“支出”和“收入”的意义相反,那么支出1 500元则可在“1 500元”前 面加上“-”号,表示为-1 500 元.
(2)“零上”和“零下”意义相反,零上41 ℃记作+41 ℃,那么零下3 ℃可表示为-3 ℃.
B C
“±5 mL”表示实际容量比250 mL最多多5 mL,最少少5 mL,抽查的 5盒容量都在(250±5) mL范围内,所以它们都是合格的.
【拓展训练】 9. 某农民出售10麻袋黄豆给镇粮食收购站,按规定,每袋应为100千克,在 过磅时,记录如下表(单位:千克):
试完成表格,并计算一下这位农民共出售了多少千克黄豆,实际平均每袋黄 豆多少千克.
第二章 有理数及其运负
负数 负数
0 整数 分数
负整数
正数 负分数
比海平面低100m的地方
C A
5. (1)小明家今年八月份的总收入为2 500元,可表示为+2 500元,那么 他们家八月份的总支出1 500 元如何表示呢?
(2)武汉市某年七月份的最高气温为零上41 ℃,可表示为+41 ℃,一月份 的最低气温为零下3 ℃又该如何表示呢?
差,即最多超出标准质量5g,最少少于标准质量5g.
【提升训练】 7. 一架飞机进行特技表演,第一次上升6 m,第二次上升4 m,第三次下降5 m, 第四次又下降7 m(记升为正,下降为负). (1)这时飞机在初始位置的上方还是下方?相距初始位置多少米? (2)飞机在表演中共运行了多少米?
8. 某乳品公司的一种盒装牛奶的外包装上标注着“250 mL ±5 mL”的 字样,“±5 mL”是什么含义?质检局对该产品抽查了5盒,容量分别为253 mL,252 mL,249 mL,246 mL,254 mL,则被抽查产品的容量是否合格?
(2)“零上”和“零下”意义相反,零上41 ℃记作+41 ℃,那么零下3 ℃可表示为-3 ℃.
B C
“±5 mL”表示实际容量比250 mL最多多5 mL,最少少5 mL,抽查的 5盒容量都在(250±5) mL范围内,所以它们都是合格的.
【拓展训练】 9. 某农民出售10麻袋黄豆给镇粮食收购站,按规定,每袋应为100千克,在 过磅时,记录如下表(单位:千克):
试完成表格,并计算一下这位农民共出售了多少千克黄豆,实际平均每袋黄 豆多少千克.
第二章 有理数及其运负
负数 负数
0 整数 分数
负整数
正数 负分数
比海平面低100m的地方
C A
5. (1)小明家今年八月份的总收入为2 500元,可表示为+2 500元,那么 他们家八月份的总支出1 500 元如何表示呢?
(2)武汉市某年七月份的最高气温为零上41 ℃,可表示为+41 ℃,一月份 的最低气温为零下3 ℃又该如何表示呢?
差,即最多超出标准质量5g,最少少于标准质量5g.
【提升训练】 7. 一架飞机进行特技表演,第一次上升6 m,第二次上升4 m,第三次下降5 m, 第四次又下降7 m(记升为正,下降为负). (1)这时飞机在初始位置的上方还是下方?相距初始位置多少米? (2)飞机在表演中共运行了多少米?
8. 某乳品公司的一种盒装牛奶的外包装上标注着“250 mL ±5 mL”的 字样,“±5 mL”是什么含义?质检局对该产品抽查了5盒,容量分别为253 mL,252 mL,249 mL,246 mL,254 mL,则被抽查产品的容量是否合格?
七年级数学上册第二章有理数及其运算8有理数的除法课件(新版)北师大版
1.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那
么这两个数一定 ( ) A.相等 B.互为相反数 C.互为倒数 D.相等或互为相反数 答案 D 两个数相等时,商都为1,两个数互为相反数时,商都为-1,故选
D.
2.等式
2
1 3
÷ 3
除;多个有理数相除时,可以按从左到右的顺序依次计算,也可以转化为
乘法后再计算.
解析 (1)(-15)÷(-3)=15÷3=5.
(2)2 13 ÷ 1
1 6
=- 7 × 6 =-2.
37
(3)0÷ 18
7 25
=0.
(4)解法一:(-12)÷ 112
1.下列运算结果错误的是 ( )
A. 1 ÷(-3)=3×(-3)=-9
3
B.-5÷ 12
=5×2=10
C.8÷(-2)=-(8÷2)=-4
D.0÷(-3)=0
答案
A
选项A中, 13 ÷(-3)=- 13
1 3
=- 1 .
9
2.一个数与-4的乘积等于1 53 ,这个数是 (
3
3.已知a、b在数轴上的位置如图,则a÷b的值 ( ) A.大于0 B.小于0 C.等于0 D.以上答案均有可能 答案 B 由数轴可知a<0,b>0,两个不等于0的数相除,异号得负,负数 小于0.故选B.
1.如果a+b<0且 b >0,那么下列结论成立的是 ( )
a
A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0
七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
A.高于正常水位 3 米记作+3 米 B.低于正常水位 5 米记作-5 米 C.+6 米表示水深为 6 米 D.-1 米表示比正常水位低 1 米
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷
12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.
幂
底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)
新北师大版七年级数学上册第2章 有理数及其运算《第1课 有理数》教学PPT
正有理数 正整数
正分数
有理数
负整数
负有理数
负分数不能忘了 零Fra bibliotek!正数
有 整数 理 分数 数 负数
零
分类要有标准 哦!
能力提升找规律:
(1)1,-2,3,-4,5,-6,7,-8 ,………其 中第199个数为 _1_9_9__ ,第2002个数_-_2_0_0_2 , 规律是_奇__数__为__+_偶__数__为__-;
三、实际应用
例 (1)某人转动转盘,如果用+5圈表示沿逆时针方向
转了5圈,那么沿顺时针方向转了12圈怎样表 示? (2)在某次乒乓球质量检测中,一只乒乓球超出标 准质量0.02克记作+0.02克,那么﹣0.03克表示 什么? (3)某大米包装袋上标注着:“净重量: 10kg±150g”, 这里的“10kg±150g” 表示什么?
(一)实际问题
2.珠穆朗玛峰的高度比海 平面高8848米 ; 吐鲁番盆
1.在冬季的某一天,某城市中 地的高度比海平面低155
午 12点的气温是10℃,夜晚 米,若海平面的高度为零
12点的气温是 -5℃.请问10℃ 米,则它们的高度分别如
和 -5℃有什么意义?
何表示?
8848米 珠穆朗玛峰
海平面 155米
_向__东__运__动__2_米__,物体原地不动记作__0_米____;
(3)某仓库运进面粉7.5吨记为+7.5吨,那 么运出3.8吨应记作-_3_.8_吨______。
2.判 断对错
(1)0是整数(√ ) (2)自然数一定是整数(√ ) (3)0一定是正整数(×) (4)整数一定是自然数(×)
“净含量:10kg±150g”,这里
的“10kg±150g”表示什么?
七年级数学上册 第二章 有理数及其运算 1 有理数课件上册数学课件
12/9/2021
第四页,共三十七页。
例1 (1)如果节约10吨水记作+10吨,那么浪费2吨水记作什么?
(2)如果-2 015元表示(biǎoshì)亏本2 015元,那么+1 009元表示(biǎoshì)什么? (3)如果+20%表示增加20%,那么-8%表示什么?
解析(jiě xī) (1)浪费2吨水记作-2吨. (2)+1 009元表示盈利1 009元. (3)-8%表示减少8%.
7
5
正整数集合:{
…};
负整数集合:{
…};
正分数集合:{
…};
负分数集合:{
…};
正数集合:{
…};
负数集合:{
…}.
分析 有理数的分类:按照定义有理数分为整数和分数两部分,其中整数包括
正整数、0、负整数;按照符号有理数分为正有理数、0、负有理数三部分.
12/9/2021
第九页,共三十七页。
解析 正整数集合:{5,+2,…}; 负整数集合:{-3,-600,…};
在海12/平9/2面021下60 m处,所以鲨鱼所在的海拔高度为-60 m,故选A.
第十九页,共三十七页。
3.(2016山西大同一中期中)下列说法正确(zhèngquè)的有 ( ) (1)整数就是正整数和负整数;(2)零是整数,但不是自然数;(3)分数包括
正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数,它不是整 数就是分数.
答案 15.02;不符合
点拨(diǎn bo) 解决此类问题的关键是正确理解题中“+、-”号的含义:“+”
12/9/2021
号表示比标准量多,“-”号表示比标准量少.
北师版七年级数学上册课件(BS) 第二章 有理数及其运算 有理数的加法 第1课时 有理数的加法法则
5 . (4 分 ) 有 理 数 a , b 在 数 轴 上 的 位 置 如 图 所 示 , 则 a + b__<__0( 填 “ >”“<” 或 “=”).
7.(3分)(武汉中考)气温由-4 ℃上升7 ℃后是( A )
A.3 ℃ B.-3 ℃ C.11 ℃ D.-11 ℃ 8.(4分)(1)冰箱冷冻室的温度由-5 ℃调高4 ℃是_-__1_℃; (2)甲地的海拔是-63米,乙地比甲地高24米,则乙地的海拔为_-__3_9___米.
三、解答题(共 35 分) 15.(12 分)计算: (1)-1031 +331 ;
解:原式=-7
(2)715 +(-235 ); 解:原式=435
解:原式=-12
(4)(-134 )+(-432 ). 解:原式=-6152
16.(10分)已知|a+2|=5,|b+(-3)|=7,|a+b|≠a+b,求 a和b的值. 解:因为|a+2|=5,|b+(-3)|=7,所以a=3或-7,b=-4或10.又因为|a+ b|≠a+b,所以a+b<0.①当a=3,b=-4时,a+b=-1<0;②当a=3,b=10时, a+b=13>0,不合题意,舍去;③当a=-7,b=-4时,a+b=-11<0;④当a =-7,b=10时,a+b=3>0,不合题意,舍去.综上所述,a=3,b=-4或a= -7,b=-4
数学 七年级上册 北师版
第二章 有理数及其运算
2.4 有理数的加法
第1课时 有理数的加法法则
1.(4分)在每题后面的横线上填写和的符号、运算过程及结果. (1)(-16)+6=_-___(|-16|-|+6|)=_-__1_0___;
(2)(-17)+(-8)=_-___(|-17|+|-8|)=-__2_5____; (3)(-8)+23=_+___(|+23|-|-8|)=_1_5__; (4)0+(-12)=__-__1_2__.
北师大版七年级数学上册 (有理数)有理数及其运算教育教学课件
知2-讲
1.生活中到处都存在相反意义的量. 2.在相反意义的量中,我们把其中一个意义的量规定为正,
那么另一个量就是负. 要点精析: (1)相反意义的量是指意义相反的两个量,相反意义
的量是成对出现的. (2)判断相反意义的量的标准:①两个同类量;②意义相反. (3)具有相反意义的量的正负性是相对的,且是可以互换的.
(来自《典中点》)
知识点 3 有理数及其分类
知3-讲
1.定义:整数和分数统称有理数. 要点精析: (1)一个有理数不是整数就是分数. (2)如果一个数既不是整数也不是分数,那么它一 定不是有理数.
知3-讲
2. 整数和分数:正整数、0、负整数统称为整数. 正分数、负分数统称为分数. 要点精析:几种常用整数和分数名词的含义: (1)正整数:既是正数,又是整数的数; (2)负整数:既是负数,又是整数的数; (3)正分数:既是正数,又是分数的数; (4)负分数:既是负数,又是分数的数; (5)非负整数:正整数和0; (6)非正整数:0和负整数.
(3)判断一个数是正、负数的方法:①不为零;②含 “+”“-”的情况 (无“+” “-”视同含“+”),两 者必须同时看.
知1-讲
2. 数的特征及种类: (1)数有带符号(+、-)的数和不带符号的数两 种呈现形式; (2)数包括正数、0、负数三种情况. 拓展:符号“+” “-”的含义: (1)作为运算符号是加减号; (2)作为数的性质是正负号.
解题关键点 看符号
特征 数(0除外)前面带“+”
或无符号 数(0除外)前面带
“-”的数
结论 正数 负数
(来自《点拨》)
知1-练
1 (中考·广州)四个数-3.14,0,1,2中为负数
的是( A )
北师大版七年级数学上册第二章有理数及其运算2.4有理数的加法第1课时有理数的加法课件(共20张PPT
解:①冬季某天早晨温度为0度,到中午气 温上升了3度,再到下午又下降了3度,下午气 温为0度;
②取向东为正方向,先向西走了1 km,后 又走了2 km,一共向西走了3 km.
课堂小结
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
课后作业
先向左移动 3 个单位,再向右移动 2 个单位.
.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
一个数同 0 相加,仍得这个数.
(4)45 + ( - 45 ) .
某班举行知识竞赛,评分标准是:答对一题加 1 分,答错一题扣 1 分,不回答得 0 分.
(2) 4+(-6);
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8. (3)( - 23 ) + 0 = -23. (4)45 + ( - 45 ) = 0.
练习
1. 土星表面的夜间平均温度为 - 150 ℃,白天比 夜间高 27 ℃,那么白天的平均温度是多少?
解:( - 150 ) + 27 = - ( 150 - 27 ) = -123 ( ℃ )
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
= - ( 10 + 1 ) 因此,(-3)+2 = -1.
因此,(-3)+2 = -1.
在数轴上,先先向左移动 2 个单位,再向左移动 3 个单位.
②取向东为正方向,先向西走了1 km,后 又走了2 km,一共向西走了3 km.
课堂小结
有理数加法的运算步骤:
一要辨别加数的类型(同号、异号); 二要确定和的符号; 三要计算绝对值的和(或差).
课后作业
先向左移动 3 个单位,再向右移动 2 个单位.
.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
一个数同 0 相加,仍得这个数.
(4)45 + ( - 45 ) .
某班举行知识竞赛,评分标准是:答对一题加 1 分,答错一题扣 1 分,不回答得 0 分.
(2) 4+(-6);
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8. (3)( - 23 ) + 0 = -23. (4)45 + ( - 45 ) = 0.
练习
1. 土星表面的夜间平均温度为 - 150 ℃,白天比 夜间高 27 ℃,那么白天的平均温度是多少?
解:( - 150 ) + 27 = - ( 150 - 27 ) = -123 ( ℃ )
(2)( - 13 ) + 5 = -( 13 – 5 ) = - 8.
解:(1)( - 25 ) + ( - 7 ) = - ( 25 + 7 ) = - 32.
= - ( 10 + 1 ) 因此,(-3)+2 = -1.
因此,(-3)+2 = -1.
在数轴上,先先向左移动 2 个单位,再向左移动 3 个单位.
七年级数学上册第二章有理数及其运算7有理数的乘法课件新版北师大版
×(-24)
= 14
×(-24)+ 13 ×(-24)+ 152
×(-24)
= 1 ×24- 1 ×24+ 5 ×24
43
12
=6-8+10
=8.
(2)9 1141 ×(-5)= 10
3 14
×(-5)
=10×(-5)+ 134 ×(-5)
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
(2)
1 2
1 6
3 8
5 12
×(-24)
= 12
×(-24)+ 1 ×(-24)- 3 ×(-24)+ 5 ×(-24)
6
8
12
=12-4+9-10=7.
(3)(-4)×57+(-4)×43=(-4)×(57+43)
=(-4)×100=-400.
(4)49 124 125
=-50+ 15 =-48 13 .
14 14
(3)(-10)× 272
+19× 272
-5× 272
七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版
C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.
第二章有理数及其运算复习课课件北师大版数学七年级上册
数为 ±2022 .
-
2.一个数的倒数的相反数是3,则这个数为
.
3.在数轴上,到原点距离为2个单位长度的点所表示的数
±2
为
.
+
4.若a、b互为相反数,c、d互为倒数,|m|=2,求 +m-
3cd的值.
解:因为a、b互为相反数,
所以a+b=0.
因为c、d互为倒数,
所以cd=1.
示这两数的点位于原点的两侧,两点之间的距离是9,求这两个
数.若数轴上表示这两数的点位于原点同侧,求这两个数.
解:若在数轴上表示这两数的点位于原点的两侧,则这两个
数到原点的距离分别是3和6,所以这两个数是-3, 6或-6,3.
若在数轴上表示这两数的点位于原点的同侧,则这两个数到原
点的距离分别是9和18,所以这两个数是-18,-9或18,9.
(2)异号相加:①若a>0,b<0,则a+b > 0;②若a<0,
b>0,则a+b < 0.
6.有理数减法法则:减去一个数,等于 加
相反数 .
上这个数的
7.有理数乘法法则:两个数相乘,同号得 正
,异号得
负 ,再把绝对值相 乘 .
8.有理数除法法则:两个数相除,同号得 正
,异号得
负 ,再把绝对值相 除 ;除一个数(不是0)等于 乘以 这
个数的 倒数 .
9.有理数混合运算的运算顺序:先 乘方 ,后 乘除 ,
最后算 加减 ,有括号的先算括号里面的.加减法统一成 加
法,乘除法统一成 乘 法.
·导学建议·
以问题形式引导学生回顾、归纳本章所学知识,让学生在
思考、交流的过程中进一步巩固所学知识.
有理数的有关概念
-
2.一个数的倒数的相反数是3,则这个数为
.
3.在数轴上,到原点距离为2个单位长度的点所表示的数
±2
为
.
+
4.若a、b互为相反数,c、d互为倒数,|m|=2,求 +m-
3cd的值.
解:因为a、b互为相反数,
所以a+b=0.
因为c、d互为倒数,
所以cd=1.
示这两数的点位于原点的两侧,两点之间的距离是9,求这两个
数.若数轴上表示这两数的点位于原点同侧,求这两个数.
解:若在数轴上表示这两数的点位于原点的两侧,则这两个
数到原点的距离分别是3和6,所以这两个数是-3, 6或-6,3.
若在数轴上表示这两数的点位于原点的同侧,则这两个数到原
点的距离分别是9和18,所以这两个数是-18,-9或18,9.
(2)异号相加:①若a>0,b<0,则a+b > 0;②若a<0,
b>0,则a+b < 0.
6.有理数减法法则:减去一个数,等于 加
相反数 .
上这个数的
7.有理数乘法法则:两个数相乘,同号得 正
,异号得
负 ,再把绝对值相 乘 .
8.有理数除法法则:两个数相除,同号得 正
,异号得
负 ,再把绝对值相 除 ;除一个数(不是0)等于 乘以 这
个数的 倒数 .
9.有理数混合运算的运算顺序:先 乘方 ,后 乘除 ,
最后算 加减 ,有括号的先算括号里面的.加减法统一成 加
法,乘除法统一成 乘 法.
·导学建议·
以问题形式引导学生回顾、归纳本章所学知识,让学生在
思考、交流的过程中进一步巩固所学知识.
有理数的有关概念
北师大版数学七年级上册第二章2.1有理数课件(共29张PPT)
负有理数
分数
负分数:如 -1/5、-3.5、-5/6
整数与分数统称为有理数
做一做
随堂练习
关键:以800个零件为正、负数的标准(分界限)
2、下表是某日上海发行的部分债券行情表,试说 第三天超产零件是-50个
3、某厂计划每天生产零件800个,第一天生产零件850个,第二天生产零件800个,第三天生产零件750个,
(1)分数(
);
46663.6
295.1
171440
(2)某人转动转盘,如果用+5表示沿逆时针方向转 了5圈,那么沿顺时针方向转了12圈怎样表示?
66 家乐福 39855.7 2、请举出3对具有相反意义的量,并分别用
负数是
。
805.6
297290
负分数:如 -1/5、-3.
111 特斯科 30351.9 第三天超产零件是-50个
(3)-0.03克表示乒乓球的质量低于标 准质量0.03克.
(4)如果向东运动4m记作+4m,那么向西运动 7m应记作什么?若在原地不动又记作什么?
做一做 随堂练习
1、填空题
(1)如果零上5℃记作+5 ℃,那么零下3 ℃记作 ______________.
(2)东、西为两个相反方向,如果-4米表示一个 物体向西运动4米,那么+2米表示___________,物 体原地不动记作________。
某班进行知识竞赛,评分标准是:答对一题加10分,
(2)沿顺时针方向转12圈记作-12圈;
25,-9/10,-301,4/27,31.
米5、,调记查作八9月9份家国中。的债收入(和支1出)情_涨况_,_并0_且._0_1_元___;99国债(2)_跌__0_._0_5_元__;
七年级数学上册 第2章 有理数及其运算 9 有理数的乘方课件上册数学课件
12/7/2021
1.(-23)×(-23)×(-23)×(-23)写成乘方的式子为 (-32)4;其底数为 -23 , 指数为 4 . 2.(-21)5 写成乘积的形式是 (-12)×(-12)×(-12)×(-12)×(-12) . 3.下列说法中正确的是( C ) A.42 表示 4 个 2 相乘 B.3 个-2 相乘写成乘方形式为-23
2018年秋
数学 七年级 上册 • B
第二章 有理数及其运算
9 有理数的乘方
12/7/2021
1.求 n 个相同因数 a 的 积 的运算叫乘方,乘方的结果叫做 幂 ,a 叫做 底数 ,n 叫做 指数 ,an 读做 a的n次方 或 a的n次幂 . 2.正数的任何次幂都是 正 数,0 的任何正整数次幂都是 0 ,负数 的奇次幂是 负 数,负数的偶次幂是 正 数. 易错题:-23 表示 2的3次方的相反数 ,结果是 -8 .
12/7/2021
(1)通过计算,探索规律:
152=225 可写成 100×1×(1+1)+25,
252=625 可写成 100×2×(2+1)+25,
352=1225 可写成 100×3×(3+1)+25,
452=2025 可写成 100×4×(4+1)+25,
…
752=5625 可写成 100×7×(7+1)+25 ,
12/7/2021
25.问题:你能很快算出 20152 吗? 为了解决这个问题,我们考虑个位上的数字为 5 的自然数的平方,任意一 个个位数是 5 的自然数的平方可写成(10n+5)2 的值(n 为自然数).请你试着 分析 n=1,n=2,n=3,…,这些简单情况,从中探索其规律,并归纳、 猜想出结论(在下面空格内填上你的探索结果).
1.(-23)×(-23)×(-23)×(-23)写成乘方的式子为 (-32)4;其底数为 -23 , 指数为 4 . 2.(-21)5 写成乘积的形式是 (-12)×(-12)×(-12)×(-12)×(-12) . 3.下列说法中正确的是( C ) A.42 表示 4 个 2 相乘 B.3 个-2 相乘写成乘方形式为-23
2018年秋
数学 七年级 上册 • B
第二章 有理数及其运算
9 有理数的乘方
12/7/2021
1.求 n 个相同因数 a 的 积 的运算叫乘方,乘方的结果叫做 幂 ,a 叫做 底数 ,n 叫做 指数 ,an 读做 a的n次方 或 a的n次幂 . 2.正数的任何次幂都是 正 数,0 的任何正整数次幂都是 0 ,负数 的奇次幂是 负 数,负数的偶次幂是 正 数. 易错题:-23 表示 2的3次方的相反数 ,结果是 -8 .
12/7/2021
(1)通过计算,探索规律:
152=225 可写成 100×1×(1+1)+25,
252=625 可写成 100×2×(2+1)+25,
352=1225 可写成 100×3×(3+1)+25,
452=2025 可写成 100×4×(4+1)+25,
…
752=5625 可写成 100×7×(7+1)+25 ,
12/7/2021
25.问题:你能很快算出 20152 吗? 为了解决这个问题,我们考虑个位上的数字为 5 的自然数的平方,任意一 个个位数是 5 的自然数的平方可写成(10n+5)2 的值(n 为自然数).请你试着 分析 n=1,n=2,n=3,…,这些简单情况,从中探索其规律,并归纳、 猜想出结论(在下面空格内填上你的探索结果).