2016安徽中考数学试题及答案(清晰扫描版)

合集下载

安徽省2016年中考数学试题

安徽省2016年中考数学试题

新课标第一网系列资料
沁园春·雪 <毛泽东>
北国风光,千里冰封,万里雪飘。

望长城内外,惟余莽莽;
大河上下,顿失滔滔。

山舞银蛇,原驰蜡象,
欲与天公试比高。

须晴日,看红装素裹,分外妖娆。

江山如此多娇,引无数英雄竞折腰。

惜秦皇汉武,略输文采;
唐宗宋祖,稍逊风骚。

一代天骄,成吉思汗,
只识弯弓射大雕。

俱往矣,数风流人物,还看今朝。

薄雾浓云愁永昼,瑞脑消金兽。

佳节又重阳,玉枕纱厨,半夜凉初透。

东篱把酒黄昏后,有暗香盈袖。

莫道不消魂,帘卷西风,人比黄花瘦。

2016安徽中考试题及答案.doc

2016安徽中考试题及答案.doc

2016 安徽中考试题及答案【篇一:2016 年安徽省中考数学试卷(含答案)】txt> 一、选择题(本大题共10 小题,每小题 4 分,满分40 分)1.(4 分)(2016? 安徽)﹣2 的绝对值是()﹣5﹣858a .a b .a c .a d .a3.(4 分)(2016? 安徽)2016 年3 月份我省农产品实现出口额8362 万美元,其中8362 万用科学记数法表示为()4.(4 分)(2016? 安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()a.b.c.d.5.(4 分)(2016? 安徽)方程a.﹣b.c.﹣4 d .4 =3 的解是()6.(4 分)(2016? 安徽)2014 年我省财政收入比2013 年增长8.9% ,2015 年比2014 年增长9.5% ,若2013 年和2015 年我省财政收入分别为 a 亿元和 b 亿元,则a、b 之间满足的关系式为()2c .b=a (1+8.9% )(1+9.5% )d.b=a (1+8.9% )(1+9.5% )7.(4 分)(2016? 安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成a、b、c、d、e 五组进行统计,并制作了如图所示的扇形统计图.已知除 b6 吨以下的共有()a.18 户b.20 户c.22 户d.24 户8.(4 分)(2016? 安徽)如图,△abc 中,ad 是中线,bc=8 ,∠b= ∠dac ,则线段ac 的长为()a.4 b .4 c .6 d .49.(4 分)(2016? 安徽)一段笔直的公路ac 长20 千米,途中有一处休息点b,ab 长15 千米,甲、乙两名长跑爱好者同时从点 a 出发,甲以15 千米/时的速度匀速跑至点b,原地休息半小时后,再以10 千米/时的速度匀速跑至终点c;乙以12 千米/时的速度匀速跑至终点c,下列选项中,能正确反映甲、乙两人出发后 2 小时内运动路程y(千米)与时间x(小时)函数关系的图象是()a.b.c.d.10.(4 分)(2016? 安徽)如图,rt△abc 中,ab⊥bc ,ab=6 ,bc=4 ,p 是△abc 内部的一个动点,且满足∠pab= ∠pbc ,则线段cp长的最小值为()a.b.2 c .d.二、填空题(本大题共 4 小题,每小题5分,满分20 分)11.(5 分)(2016? 安徽)不等式x﹣2≥1的解集是.312.(5 分)(2016? 安徽)因式分解:a﹣a=.为.的长线段bf 上的点h处,有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共 2 小题,每小题8分,满分16 分)15.(8 分)(2016? 安徽)计算:(﹣2016 )+四、(本大题共 2 小题,每小题8分,满分16 分)(1)试在图中标出点d,并画出该四边形的另两条边;(2)将四边形abcd 向下平移 5 个单位,画出平移后得到的四边形a′b′c.′d′18.(8 分)(2016? 安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+⋯+(2n﹣1)+()+(2n﹣1)+⋯+5+3+1= .五、(本大题共 2 小题,每小题10 分,满分20 分)20.(10 分)(2016? 安徽)如图,一次函数y=kx+b 的图象分别与反比例函数y=的图象在第一象限交于点a(4,3),与y轴的负半轴交于点b,且oa=ob .(1)求函数y=kx+b 和y=的表达式;(2)已知点c(0,5),试在该一次函数图象上确定一点m ,使得mb=mc ,求此时点m 的坐标.六、(本大题满分12 分)21.(12 分)(2016? 安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于7 的概率.七、(本大题满分12 分)222.(12 分)(2016? 安徽)如图,二次函数y=ax+bx 的图象经过点a(2,4)与b(6,0).(1)求a,b 的值;(2)点c 是该二次函数图象上a,b 两点之间的一动点,横坐标为x(2<x<6),写出四边形oacb 的面积s关于点c 的横坐标x的函数表达式,并求s 的最大值.八、(本大题满分14 分)23.(14 分)(2016? 安徽)如图1,a,b 分别在射线o a,on 上,且∠mon为钝角,现以线段oa,ob为斜边向∠mon 的外侧作等腰直角三角形,分别是△oap ,△obq ,点c,d,e 分别是oa ,ob ,ab 的中点.(1)求证:△pce ≌△edq ;【篇二:2016 年安徽省中考数学试卷(含答案)】txt> 一、选择题(本大题共10 小题,每小题4分,满分40 分)1.(4 分)(2016? 安徽)﹣2的绝对值是()﹣5﹣858a .a b .a c .a d .a3.(4 分)(2016? 安徽)2016 年3 月份我省农产品实现出口额8362 万美元,其中8362 万用科学记数法表示为()4.(4 分)(2016? 安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()7688a.b.c.d.5.(4 分)(2016? 安徽)方程a.﹣b.c.﹣4 d .4 =3 的解是()6.(4 分)(2016? 安徽)2014 年我省财政收入比2013 年增长8.9% ,2015 年比2014 年增长9.5% ,若2013 年和2015 年我省财政收入分别为a亿元和b亿元,则a、b 之间满足的关系式为()2c .b=a (1+8.9% )(1+9.5% )d.b=a (1+8.9% )(1+9.5% )7.(4 分)(2016? 安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成a、b、c、d、e 五组进行统计,并制作了如图所示的扇形统计图.已知除 b6 吨以下的共有()a.18户b.20户c.22户d.24 户8.(4 分)(2016? 安徽)如图,△abc 中,ad 是中线,bc=8 ,∠b= ∠dac ,则线段ac 的长为()a.4 b .4 c .6 d .49.(4 分)(2016? 安徽)一段笔直的公路ac长20 千米,途中有一处休息点b,ab长15 千米,甲、乙两名长跑爱好者同时从点 a 出发,甲以15 千米/时的速度匀速跑至点b,原地休息半小时后,再以10 千米/时的速度匀速跑至终点c;乙以12 千米/时的速度匀速跑至终点c,下列选项中,能正确反映甲、乙两人出发后 2 小时内运动路程y(千米)与时间x(小时)函数关系的图象是()a.b.c.d.10.(4 分)(2016? 安徽)如图,rt△abc 中,ab⊥bc ,ab=6 ,bc=4 ,p 是△abc 内部的一个动点,且满足∠pab= ∠pbc ,则线段cp长的最小值为()a.b.2 c .d.二、填空题(本大题共 4 小题,每小题5分,满分20 分)11.(5 分)(2016? 安徽)不等式x﹣2≥1 的解集是312.(5 分)(2016? 安徽)因式分解:a﹣a=.为.的长14.(5 分)(2016? 安徽)如图,在矩形纸片abcd 中,ab=6 ,bc=10 ,点e 在cd 上,将△bce 沿be 折叠,点 c 恰落在边a d 上的点f处;点g 在af 上,将△abg 沿bg 折叠,点 a 恰落在线段bf 上的点h处,有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共 2 小题,每小题8分,满分16 分)15.(8 分)(2016? 安徽)计算:(﹣2016 )+16.(8 分)(2016? 安徽)解方程:x﹣2x=4 .四、(本大题共 2 小题,每小题8分,满分16 分)(1)试在图中标出点d,并画出该四边形的另两条边;(2)将四边形abcd 向下平移 5 个单位,画出平移后得到的四边形a′b′c.′d′18.(8 分)(2016? 安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+⋯+(2n﹣1)+()+(2n﹣1)+⋯+5+3+1= .五、(本大题共 2 小题,每小题10 分,满分20 分)20.(10 分)(2016? 安徽)如图,一次函数y=kx+b 的图象分别与反比例函数y=的图象在第一象限交于点a(4,3),与y轴的负半轴交于点b,且oa=ob .(1)求函数y=kx+b 和y=的表达式;(2)已知点c(0,5),试在该一次函数图象上确定一点m ,使得mb=mc ,求此时点m 的坐标.【篇三:2016 安徽中考语文试题word 版含答案】=txt>语文试题注意事项:1.你拿到的试卷满分为150 分(其中卷面书写占 5 分),考试时间为150 分钟。

2016年安徽省中考数学试题及答案解析

2016年安徽省中考数学试题及答案解析

2016年安徽省中考数学试题及答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4D.46.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.2016年中考数学答案解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2B.2C.±2D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我财政收入和2014年我财政收入比2013年增长8.9%,求出2014年我财政收入,再根据出2015年比2014年增长9.5%,2015年我财政收为b亿元,即可得出a、b之间的关系式.【解答】解:△2013年我财政收入为a亿元,2014年我财政收入比2013年增长8.9%,△2014年我财政收入为a(1+8.9%)亿元,△2015年比2014年增长9.5%,2015年我财政收为b亿元,△2015年我财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,△B=△DAC,则线段AC的长为()A.4B.4C.6D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA△△CAD,得出=,求出AC即可.【解答】解:△BC=8,△CD=4,在△CBA和△CAD中,△△B=△DAC,△C=△C,△△CBA△△CAD,△=,△AC2=CD•BC=4×8=32,△AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB△BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足△PAB=△PBC,则线段CP长的最小值为()A.B.2C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的△O上,连接OC与△O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:△△ABC=90°,△△ABP+△PBC=90°,△△PAB=△PBC,△△BAP+△ABP=90°,△△APB=90°,△点P在以AB为直径的△O上,连接OC交△O于点P,此时PC最小,在RT△BCO中,△△OBC=90°,BC=4,OB=3,△OC==5,△PC=OC=OP=5﹣3=2.△PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知△O的半径为2,A为△O外一点,过点A作△O的一条切线AB,切点是B,AO的延长线交△O于点C,若△BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角△BOC的大小,然后利用弧长公式即可解决问题.【解答】解:△AB是△O切线,△AB△OB,△△ABO=90°,△△A=30°,△△AOB=90°﹣△A=60°,△△BOC=120°,△的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF 上的点H处,有下列结论:①△EBG=45°;②△DEF△△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得△1=△2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得△3=△4,BH=BA=6,AG=HG,易得△2+△3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF 中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于△A=△D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:△△BCE沿BE折叠,点C恰落在边AD上的点F处,△△1=△2,CE=FE,BF=BC=10,在Rt△ABF中,△AB=6,BF=10,△AF==8,△DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,△DE2+DF2=EF2,△(6﹣x)2+22=x2,解得x=,△ED=,△△ABG沿BG折叠,点A恰落在线段BF上的点H处,△△3=△4,BH=BA=6,AG=HG,△△2+△3=△ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,△GH2+HF2=GF2,△y2+42=(8﹣y)2,解得y=3,△AG=GH=3,GF=5,△△A=△D,==,=,△≠,△△ABG与△DEF不相似,所以②错误;△S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,△S△ABG=S△FGH,所以③正确;△AG+DF=3+2=5,而GF=5,△AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1△(x﹣1)2=5△x=1±△x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,△a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得△CAB=90°,△DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得△DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,△△DEB=60°,△DAB=30°,△△ADE=△DEB﹣△DAB=30°,△△ADE为等腰三角形,△DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,△DF△AF,△△DFB=90°,△AC△DF,由已知l1△l2,△CD△AF,△四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,△y=.OA==5,△OA=OB,△OB=5,△点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:△y=2x﹣5.(2)△点M在一次函数y=2x﹣5上,△设点M的坐标为(x,2x﹣5),△MB=MC,△解得:x=2.5,△点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S 的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE△AD,CF△x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,△S关于x的函数表达式为S=﹣x2+8x(2<x<6),△S=﹣x2+8x=﹣(x﹣4)2+16,△当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且△MON为钝角,现以线段OA,OB为斜边向△MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE△△EDQ;(2)延长PC,QD交于点R.①如图1,若△MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB△△PEQ,求△MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,△OC,CE=OD,CE△OD,推出四边形ODEC是平行四边形,于是得到△OCE=△ODE,根据等腰直角三角形的定义得到△PCO=△QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到△ARC=△ORC,△ORQ=△BRO,根据四边形的内角和得到△CRD=30°,即可得到结论;②由(1)得,EQ=EP,△DEQ=△CPE,推出△PEQ=△ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=△PEQ=90°,根据四边形的内角和得到△MON=135°,求得△APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:△点C、D、E分别是OA,OB,AB的中点,△DE=OC,△OC,CE=OD,CE△OD,△四边形ODEC是平行四边形,△△OCE=△ODE,△△OAP,△OBQ是等腰直角三角形,△△PCO=△QDO=90°,△△PCE=△PCO+△OCE=△QDO=△ODQ=△EDQ,△PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,△△PCE△△EDQ;(2)①如图2,连接RO,△PR与QR分别是OA,OB的垂直平分线,△AP=OR=RB,△△ARC=△ORC,△ORQ=△BRO,△△RCO=△RDO=90°,△COD=150°,△△CRD=30°,△△ARB=60°,△△ARB是等边三角形;②由(1)得,EQ=EP,△DEQ=△CPE,△△PEQ=△CED﹣△CEP﹣△DEQ=△ACE﹣△CEP﹣△CPE=△ACE﹣△RCE=△ACR=90°,△△PEQ是等腰直角三角形,△△ARB△△PEQ,△△ARB=△PEQ=90°,△△OCR=△ODR=90°,△CRD=△ARB=45°,△△MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且△APB=90°,△AB=2PE=2×PQ=PQ,△=.。

2016年安徽省中考数学试卷(含答案)(K12教育文档)

2016年安徽省中考数学试卷(含答案)(K12教育文档)

(直打版)2016年安徽省中考数学试卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2016年安徽省中考数学试卷(含答案)(word 版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2016年安徽省中考数学试卷(含答案)(word版可编辑修改)的全部内容。

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2D .2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是( )A.a5B.a﹣5 C.a8D.a﹣8 3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A.8。

362×107B.83。

62×106 C.0.8362×108D.8。

362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A .B .C .D .5.(4分)(2016•安徽)方程=3的解是()A .﹣B .C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9。

5%) B.b=a (1+8。

9%×9。

5%)C.b=a(1+8。

2016年中考数学真题试题及答案(word版)

2016年中考数学真题试题及答案(word版)

保密★启用前2016年中考真题数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2(1)⨯-的结果是()A、12-B、2-C、1 D、22、若∠α的余角是30°,则cosα的值是()A、12BCD3、下列运算正确的是()A、21a a-=B、22a a a+=C、2a a a⋅=D、22()a a-=-4、下列图形是轴对称图形,又是中心对称图形的有()A、4个B、3个C、2个D、1个5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A、40°B、50°C、60°D、80°6、已知二次函数2y ax=的图象开口向上,则直线1y ax=-经过的象限是()A、第一、二、三象限B、第二、三、四象限C、第一、二、四象限D、第一、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是()8、如图,是我市5月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A、28℃,29℃B、28℃,29.5℃C、28℃,30℃D、29℃,29℃9、已知拋物线2123y x=-+,当15x≤≤时,y的最大值是()A、2B、23C、53D、7310、如图,已知OBOA,均为⊙O上一点,若︒=∠80AOB,则=∠ACB()A.80°B.70°C.60°D.40°11、如图,是反比例函数1kyx=和2kyx=(12k k<)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若2AOBS∆=,则21k k-的值是()A、1B、2C、4D、812、一个容器装有1升水,按照如下要求把水倒出:第1次倒出12升水,第2次倒出的水量是12升的13,第3次倒出的水量是13升的14,第4次倒出的水量是14升的15,…按照这种倒水的方法,倒了10次后容器内剩余的水量是()A、1011升B、19升C、110升D、111升二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答题卡中的横线上)13、2011-的相反数是__________14、近似数0.618有__________个有效数字.15、分解因式:39a a-= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为__________17、如图,等边△ABC绕点B逆时针旋转30°时,点C转到C′的位置,且BC′与AC交于点D,则'C DCD的值为__________ABCD16题图17题图18题图(第10题18、如图,AB是半圆O的直径,以0A为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E.则下列四个结论:①点D为AC的中点;②'12O OE AOCS S∆∆=;③2AC AD=;④四边形O'DEO是菱形.其中正确的结论是__________.(把所有正确的结论的序号都填上)三、解答题(本大题共8小题,满分共66分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤).19、计算:101()(5)32π-----+20、已知:12x x、是一元二次方程2410x x-+=的两个实数根.求:2121211()()x xx x+÷+的值.21、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为10米,小强的身高AB为1.55米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到11.411.73 )22、如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.(1)求证:AB是⊙O的切线;(2)若D为OA3π,求⊙O的半径r.23、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子3个(分别用白A、白B、白C表示),若从中任意摸出一个棋子,是白色棋子的概率为34.(1)求纸盒中黑色棋子的个数;(2)第一次任意摸出一个棋子(不放回),第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.24、上个月某超市购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍,且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=100%⨯利润进价)25、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;(2)判断EB与GD的位置关系,并说明理由;(3)若AB=2,EB的长.26、已知抛物线223 (0)y ax ax a a=--<与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为抛物线的顶点.(1)求A、B的坐标;(2)过点D作DH丄y轴于点H,若DH=HC,求a的值和直线CD的解析式;(3)在第(2)小题的条件下,直线CD与x轴交于点E,过线段OB的中点N作NF丄x轴,并交直线CD于点F,则直线NF上是否存在点M,使得点M到直线CD的距离等于点M到原点O的距离?若存在,求出点M的坐标;若不存在,请说明理由.。

(完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

(完整word版)2016年安徽省中考数学试卷及答案(Word解析版),推荐文档

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.方程=3的解是()A.﹣B.C.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a=.13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:1+3+5+…+(2n ﹣1)+( 2n+1 )+(2n ﹣1)+…+5+3+1= 2n 2+2n+1 .【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n 幅图中球的个数为a n ,列出部分a n 的值,根据数据的变化找出变化规律“a n ﹣1=1+3+5+…+(2n ﹣1)=n 2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…,∴a n ﹣1=1+3+5+…+(2n ﹣1)=n 2.故答案为:42;n 2.(2)观察图形发现:图中黑球可分三部分,1到n 行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n ﹣1)+[2(n+1)﹣1]+(2n ﹣1)+…+5+3+1,=1+3+5+…+(2n ﹣1)+(2n+1)+(2n ﹣1)+…+5+3+1,=a n ﹣1+(2n+1)+a n ﹣1,=n 2+2n+1+n 2,=2n 2+2n+1.故答案为:2n+1;2n 2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l 1与l 2相互平行,A 、B 是l 1上的两点,C 、D 是l 2上的两点,某人在点A 处测得∠CAB=90°,∠DAB=30°,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得∠DEB=60°,求C 、D 两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF 为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.2016年6月25日。

2016年安徽中考大联考数学试题(一)及答案

2016年安徽中考大联考数学试题(一)及答案

2016年安徽中考“合肥十校”大联考(一)数学试题本试卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分。

满分40分,每小题只有一个选项符合题意)1.64的算术平方根是 ( )A.4 B.±4 C. 8 D.±82.下列各式正确的是 ( )A.一22=4 B.20=0 C.再=±2 D.︱-2︱ =23.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100 000 000 000美元,用科学记数法表示为 ( )A.1.0×109美元 B.1.0×1010美元C.1.0×1011美元 D.1.0×1012美元4.如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是( )5.下列因式分解错误的是( )A.2a -2b=2(a- b)B.x2-9=(x+3)(x-3)C.a2+4a-4=(a+2)2D.-x2-x+2=-(x-1)(x+2)6.如图,直线AB∥CD,直线EF与AB,CD相交于点E,F,∠BEF的平分线与CD相交于点N.若∠1=63°,则∠2= ( )A.64° B.63°C.60° D. 54°。

7.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性.若把第一个三角数记为a1,第二个三角数记为a2…,第n个三角数记为a n,则a n+a n+1 = ( )A.n2+n B.n2+n+1C.n2+2n D.n2+2n+18.如图,将⊙0沿弦AB折叠,圆弧恰好经过圆心0,点P是优弧AMB上一点,连接PB,则∠APB的度数为 ( )A.45° B.30° C.75° D.60°9.已知二次函数y=a(x一2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若︱x1-2︱>︱x2-2︱,则下列表达式正确的是 ( )A.y l+y2>O B.y1一y2>O C.a(y1一y2)>0 D.a(y l+y2)>O10.如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则下面结论错误的是 ( ) A.BF=EF B.DE=EF C.∠EFC=45° D.∠BEF=∠CBE二、填空题(每小题5分,共20分)11.17的整数部分是______________.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是___________.13.在平面直角坐标系的第一象限内,边长为l的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线y=4/x(x>0)与此正方形的边有交点,则a的取值范围是_________.14.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B'CP,连接B'A,则下列判断:①当AP=BP时,AB’∥CP;②当AP=BP时,∠B'PC=2∠B’AC③当CP⊥AB时,AP=17/5;④B'A长度的最小值是1.其中正确的判断是_________ (填入正确结论的序号)三、本题共2小题。

近3年安徽省中考数学试题及答案

近3年安徽省中考数学试题及答案

2017年安徽省初中学业水平考试数 学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.12的相反数是A .21B .12- C .2 D .2-【答案】B【考查目的】考查实数概念——相反数.简单题.2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题.6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D . 第3题图 A . B . C . D . 第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数b y x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( )ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .第7题图 A . B . C . D . 第10题图 第14题图第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的»DE的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-. 【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。

安徽省2016年中考数学试题(word版)

安徽省2016年中考数学试题(word版)

2016年安徽省初中毕业学业考试数 学一、选择题.1.-2的绝对值是A .-2B .2C .2±D .21 2.计算)0(210≠÷a a a 的结果是A .5aB .5-aC .8aD .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程 3112=-+x x 的解是 A .54- B .54 C .4- D .4 6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和 2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是 A. b =a (1+8.9%+9.5%) B. b =a (1+8.9%⨯9.5%)C. b =a (1+8.9%)(1+9.5%)D. b =a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .349.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好 者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时 的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、 乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23B .2C .13138D .131312二、填空题11.不等式12≥-x 的解集是 .12.因式分解:=-a a 3 .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠, 点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF上的点H 处.有下列结论:其中正确的是 .(把所有正确结论的序号都选上)三、解答题15.计算:︒+-+-45tan 8)2016(30.16.解方程:422=-x x .17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形 .18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.19.如图,一次函数b kx y +=的图像分别与反比例函数x a y =的图像在第一象限交于点)3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和xa y =的表达式; (2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现 规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均 匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQAB 的值.数学试题卷 第4页(共4页)。

【精校】2016年安徽省中考真题数学

【精校】2016年安徽省中考真题数学

2016年安徽省中考真题数学一、选择题(本大题共10小题,每小题4分,满分40分)1. -2的绝对值是( )A.-2B.2C.±2D.1 2解析:数轴上某个数与原点的距离叫做这个数的绝对值.-2的绝对值是:2.答案:B.2.计算a10÷a2(a≠0)的结果是( )A.a5B.a-5C.a8D.a-8解析:a10÷a2(a≠0)=a8.答案:C.3.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A.8.362×107B.83.62×106C.0.8362×108D.8.362×108解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.8362万=8362 0000=8.362×107.答案:A.4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )A.B.C.D.解析:圆柱的主(正)视图为矩形.答案:C.5.方程211xx+-=3的解是( )A.-4 5B.4 5C.-4D.4解析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得:2x+1=3x-3,解得:x=4,经检验x=4是分式方程的解.答案:D.6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为( )A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)解析:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%).答案:C.7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( ) 组别月用水量x(单位:吨)A.18户B.20户C.22户D.24户解析:根据题意,参与调查的户数为:6410%35%30%5%+++=80(户),其中B组用户数占被调查户数的百分比为:1-10%-35%-30%-5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户). 答案:D8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4C.6解析:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴AC CDBC AC,∴AC2=CD·BC=4×8=32,∴.答案:B.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )A.B.C.D.解析:由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了53小时到了C地,在C地休息了13小时.由此可知正确的图象是A.答案:A.10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )A.3 2B.2D.13解析:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴,∴PC=OC=OP=5-3=2.∴PC最小值为2.答案:B.二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x-2≥1的解集是 .解析:不等式x-2≥1,解得:x≥3.答案:x≥312.因式分解:a3-a= .解析:原式=a(a2-1)=a(a+1)(a-1).答案:a(a+1)(a-1)13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧BC的长为 .解析:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°-∠A=60°,∴∠BOC=120°,∴弧BC的长为12024 1803ππ⋅=.答案:4 3π14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32S△FGH;④AG+DF=FG.其中正确的是 .(把所有正确结论的序号都选上)解析:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt △ABF 中,∵AB=6,BF=10,∴,∴DF=AD-AF=10-8=2, 设EF=x ,则CE=x ,DE=CD-CE=6-x ,在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x)2+22=x 2,解得x=103,∴ED=83, ∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠3=∠4,BH=BA=6,AG=HG ,∴∠2+∠3=12∠ABC=45°,所以①正确; HF=BF-BH=10-6=4,设AG=y ,则GH=y ,GF=8-y ,在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y)2,解得y=3,∴AG=GH=3,GF=5, ∵∠A=∠D ,69843AB DE ==,32AG DF =,∴AB AG DE DF ≠,∴△ABG 与△DEF 不相似,所以②错误;∵S △ABG =12·6·3=9,S △FGH =12·GH ·HF=12×3×4=6,∴S △ABG =32S △FGH ,所以③正确; ∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF ,所以④正确.答案:①③④.三、(本大题共2小题,每小题8分,满分16分)15.计算:(-2016)0°.解析:直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案. 答案:(-2016)0°=1-2+1=0.16.解方程:x 2-2x=4.解析:在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.答案:配方x2-2x+1=4+1,∴(x-1)2=5,∴x=1x1x2四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.解析:(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.答案:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18. 观察.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+( )+(2n-1)+…+5+3+1= .解析:(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n-1=1+3+5+…+(2n-1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.答案:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n-1=1+3+5+…+(2n-1)=n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n-1)+[2(n+1)-1]+(2n-1)+…+5+3+1=1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=an-1+(2n+1)+an-1=n2+2n+1+n2=2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.解析:直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.答案:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB-∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE·cos60°=20×12=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30. 答:C、D两点间的距离为30m.20.如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解析:(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x-5),根据MB=MC,=,即可解答.答案:(1)把点A(4,3)代入函数y=ax得:a=3×4=12,∴y=12x,∵OA=OB,∴OB=5,∴点B的坐标为(0,-5),把B(0,-5),A(4,3)代入y=kx+b得:543bk b=-+=⎧⎨⎩,,解得:25kb=⎧⎨=-⎩,,∴y=2x-5.(2)∵点M在一次函数y=2x-5上,∴设点M的坐标为(x,2x-5),∵MB=MC=x=2.5,∴点M的坐标为(2.5,0).21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解析:(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.答案:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率= 63.16822.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.解析:(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E ,F ,分别表示出三角形OAD ,三角形ACD ,以及三角形BCD 的面积,之和即为S ,确定出S 关于x 的函数解析式,并求出x 的范围,利用二次函数性质即可确定出S 的最大值,以及此时x 的值.答案:(1)将A(2,4)与B(6,0)代入y=ax 2+bx ,得4243660a b a b +=+=⎧⎨⎩,,解得:23.1a b ⎧=-⎪⎨⎪=⎩,(2)如图,过A 作x 轴的垂直,垂足为D(2,0),连接CD ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD ·AD=12×2×4=4; S △ACD =12AD ·CE=12×4×(x-2)=2x-4; S △BCD =12BD ·CF=12×4×(-12x 2+3x)=-x2+6x , 则S=S △OAD +S △ACD +S △BCD =4+2x-4-x 2+6x=-x 2+8x ,∴S 关于x 的函数表达式为S=-x 2+8x(2<x <6),∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.23.如图1,A ,B 分别在射线OA ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和ABPQ的值.解析:(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC 是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.答案:(1)∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=12AO=OC=ED,CE=OD=12OB=DQ,在△PCE与△EDQ中,PC DEPCE EDQCE DQ=∠=∠=⎧⎪⎨⎪⎩,,,∴△PCE≌△EDQ.(2)①如图2,连接RO,∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AP=OR=RB ,∴∠ARC=∠ORC ,∠ORQ=∠BRO ,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB 是等边三角形;②由(1)得,EQ=EP ,∠DEQ=∠CPE ,∴∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-∠CPE=∠ACE-∠RCE=∠ACR=90°, ∴△PEQ 是等腰直角三角形,∵△ARB ∽△PEQ ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=12∠ARB=45°,∴∠MON=135°, 此时P ,O ,B 在一条直线上,△PAB 为直角三角形,且∠APB=90°,∴AB=2PE=2×2PQ ,∴AB PQ考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2016年安徽省中考数学试卷及答案

2016年安徽省中考数学试卷及答案

2016年安徽省初中毕业学业考试数学(满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)1.-2的绝对值是()A.-2B.2C.±2D.122.计算a10÷a2(a≠0)的结果是()A.a5B.a-5C.a8D.a-83.2016年3月份我省农产品实现出口额8 362万美元,其中8 362万用科学记数法表示为()A.8.362×107B.83.62×108C.0.836 2×108D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()5.方程2x+1x-1=3的解是()A.-45B.45C.-4D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013年和2015年我省财政收入分别为a亿元和b亿元,则a,b之间满足的关系式是()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A,B,C,D,E五组进行统计,并制作了如下统计表和扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段AC 的长为( )A.4B.4√2C.6D.4√39.一段笔直的公路AC 长20 km,途中有一处休息点B,AB 长15 km.甲、乙两名长跑爱好者同时从点A 出发.甲以15 km/h 的速度匀速跑至点B,原地休息半小时后,再以10 km/h 的速度匀速跑至终点C;乙以12 km/h 的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2 h 内运动的路程y(km)与时间x(h)之间的函数关系的图象是( )A BC D10.如图,Rt △ABC 中,AB ⊥BC,AB=6,BC=4.P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC.则线段CP 长的最小值为( )A.32 B.2C.8√1313 D.12√1313二、填空题(本大题共4小题,每小题5分,满分20分) 11.不等式x-2≥1的解集是12.因式分解:a3-a=.13.如图,已知☉O的半径为2,A为☉O外一点.过点A作☉O的一条切线AB,切点是点B.AO的延长线交☉O于点C.若∠BAC=30°,则劣弧BC的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10.点E在CD上,将△BCE沿BE折叠,点C恰好落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的点H处.有下列结论:S△FGH;④AG+DF=FG.①∠EBG=45°;②△DEF∽△ABG;③S△ABG=32其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)3+tan 45°.15.计算:(-2 016)0+√-816.解方程:x2-2x=4.17.如图,在由边长为1个单位长度的小正方形组成的12×12的网格中,给出了四边形ABCD的两条边AB 与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A'B'C'D'(点A,B,C,D的对应点分别为点A',B',C',D').18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中“”的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+()+(2n-1)+…+5+3+1=.19.如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点.某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C,D两点间的距离.的图象在第一象限交于点A(4,3),与y轴的负半20.如图,一次函数y=kx+b的图象分别与反比例函数y=ax轴交于点B,且OA=OB.的表达式;(1)求函数y=kx+b和y=ax(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC.求此时点M的坐标.六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数字;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数字.(1)写出按上述规定得到的所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本题满分14分)23.如图(1),A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图(2),若∠MON=150°,求证:△ABR为等边三角形;的值.②如图(3),若△ARB∽△PEQ,求∠MON的大小和ABPQ图(1) 图(2) 图(3)2016年安徽省初中毕业学业考试参考答案1.B 【解析】 负数的绝对值是其相反数,则-2的绝对值为2.2.C 【解析】 同底数幂的除法,底数不变,指数相减,则a 10÷a 2=a 10-2=a 8(a≠0).3.A 【解析】 8 362万=8.362×107.4.C 【解析】 从圆柱的正前方观察所得到的平面图形是矩形.5.D 【解析】 去分母,得2x+1=3x-3,解得x=4.当x=4时,x-1=3≠0,故该分式方程的解是x=4.6.C 【解析】 由题意,得2014年我省财政收入为a(1+8.9%)亿元,2015年我省财政收入为a(1+8.9%)(1+9.5%)亿元.故选C.7.D 【解析】 A,C,D,E 组占调查总用户的80%,共有64户,则参与调查的用户共有64÷80%=80(户).月用水量在6吨以下的是A,B 两组用户,占调查总用户的30%,则共有80×30%=24(户). 知识归纳 认识各统计图、统计表的特点和功能:特点和功能 条形统计图 (频数分布直方图) 能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,那么一般选用条形统计图.扇形统计图 每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,如果想了解各数据所占的百分比,那么一般采用扇形统计图.折线统计图能够清晰地显示数据的增减变化,如果想了解数据增减变化的情况,那么就采用折线统计图.频数分布表 用于显示统计数据的基本工具.8.B 【解析】 ∵∠B=∠DAC,∠ACD=∠BCA,∴△ACD ∽△BCA,∴CD AC =ACBC ,即AC 2=CD×BC=4×8=32,解得AC=4√2(负值已舍去).9.A 【解析】 甲跑步1 h 后休息半小时,然后又用12 h 跑到终点C;乙中途没有休息,到达终点C 所用的时间为20÷12=53(h),故比甲提前到达终点.综上所述,选项A 中的图象符合题意.10.B 【解析】 如图所示,以AB 为直径作☉O,由AB ⊥BC,∠PAB=∠PBC,得∠APB=90°,∴点P 在☉O 上.连接OP,当点O,P,C 在一条直线上时,线段CP 的长最小.因此CP 长的最小值为OC-OP=2+BC 2-OP=√32+42-3=2.11.x≥3 【解析】 移项可得x≥1+2,合并同类项可得x≥3. 12.a(a-1)(a+1) 【解析】 原式=a(a 2-1)=a(a-1)(a+1).归纳总结 因式分解的一般思路为“一提二公式”,即一个多项式中的每一项若有公因式,则先提取公因式,再用公式法进行因式分解.注意因式分解要彻底,要分解到不能再分解为止.13.43π 【解析】 连接OB.根据切线的性质可知,∠ABO=90°,则∠BOC=∠A+∠ABO=30°+90°=120°.根据弧长公式可得=120180×π×2=43π.14.①③④ 【解析】 由折叠的性质可知,∠ABG=∠FBG,∠CBE=∠EBF,则∠EBG=12∠ABC=45°,故结论①正确;根据题中条件,无法推出Rt △DEF 和Rt △ABG 中的两个锐角分别相等,故结论②错误;由折叠的性质可知,BH=AB=6,BF=BC=10,则HF=BF-BH=10-6=4,∴S △BHG ∶S △FGH =6∶4=3∶2,∴S △ABG =S △BHG =32S △FGH ,故结论③正确;设AG=HG=x,由AF=√BF 2-AB 2=√102-62=8,可得FD=2,FG=8-x.在Rt △GHF 中,根据勾股定理可得FG 2=GH 2+FH 2,即(8-x)2=x 2+42,解得x=3,则FG=8-3=5,∴AG+DF=FG,故结论④正确.综上所述,结论①③④正确. 15.【参考答案及评分标准】 原式=1-2+1=0.(8分)16.【参考答案及评分标准】 方程两边都加上1,得x 2-2x+1=5,即(x-1)2=5,(4分) 所以x-1=±√5.所以原方程的解是x 1=1+√5,x 2=1-√5.(8分)17.【参考答案及评分标准】 (1)点D 及四边形ABCD 的另两条边如图所示.(4分)(2)四边形A'B'C'D'如图所示.(8分)18.【参考答案及评分标准】 (1)42 n 2(4分) (2)2n+1 2n 2+2n+1(8分)19.【参考答案及评分标准】 如图,过点D 作l 1的垂线,垂足为点F.∵∠DEB=60°,∠DAB=30°, ∴∠ADE=∠DEB-∠DAB=30°, ∴DE=AE=20米.(3分)在Rt △DEF 中,EF=DE·cos 60°=20×12=10(米).(6分)∵DF ⊥AF, ∴∠DFB=90°, ∴AC ∥DF.由已知l 1∥l 2,∴CD ∥AF, ∴四边形ACDF 为矩形. ∴CD=AF=AE+EF=30米.答:C,D 两点间的距离为30米.(10分)20.【参考答案及评分标准】 (1)将A(4,3)代入y=ax ,得3=a4,∴a=12.(2分) OA=√42+32=5.∵OA=OB,且点B 在y 轴负半轴上, ∴B(0,-5).将A(4,3),B(0,-5)分别代入y=kx+b, 得{3=4k +b,-5=b. 解得{k =2,b =−5.则所求函数表达式分别为y=2x-5和y=12x .(6分) (2)∵MB=MC,∴点M 在线段BC 的中垂线上,即x 轴上. 又∵点M 在一次函数的图象上, ∴点M 为一次函数图象与x 轴的交点. 令2x-5=0,解得x=52.故此时点M 的坐标为(52,0).(10分)21.【参考答案及评分标准】 (1)按规定得到的所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(6分)(2)这些两位数共有16个,其中算术平方根大于4且小于7的共有6个,分别为17,18,41,44,47,48. 则所求概率P=616=38.(12分)22.【参考答案及评分标准】 (1)将A(2,4)与B(6,0)代入y=ax 2+bx, 得{4a +2b =4,36a +6b =0.解得{a =−12,b =3.(5分)(2)由题意,得点C 的坐标为(x,-12x 2+3x).如图,过点A 作x 轴的垂线,垂足为D(2,0),连接CD,过点C 作CE ⊥AD,CF ⊥x 轴,垂足分别为点E,F.则S △OAD =12OD·AD=12×2×4=4,S △ACD =12AD·CE=12×4×(x-2)=2x-4,S △BCD =12BD·CF=12×4×(-12x 2+3x)=-x 2+6x,(8分)∴S=S △OAD +S △ACD +S △BCD =4+(2x-4)+(-x 2+6x)=-x 2+8x.即S 关于x 的函数表达式为S=-x 2+8x(2<x<6).(10分)∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 取最大值,最大值为16.(12分)23.【参考答案及评分标准】 (1)证明:∵点C,D,E 分别是OA,OB,AB 的中点,∴DE OC,CE OD.∴四边形ODEC 为平行四边形.∴∠OCE=∠ODE.又∵△OAP,△OBQ 都是等腰直角三角形,∴∠PCO=∠QDO=90°.∴∠PCE=∠PCO+∠OCE=∠QDO+∠ODE=∠EDQ.又∵PC=12AO=CO=ED,CE=OD=12OB=DQ,∴△PCE ≌△EDQ.(4分)(2)①证明:连接OR.∵PR 与QR 分别为线段OA 与OB 的中垂线,∴AR=OR=BR,∠OCR=∠ODR=90°,∠MON=150°,∴∠CRD=30°.∴∠ARB=∠ARO+∠BRO=2∠CRO+2∠ORD=2∠CRD=60°.∴△ABR 为等边三角形.(9分)②由(1)知,EQ=PE,∠DEQ=∠CPE,∠CED=∠AOD=∠ACE.∴∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-∠CPE=∠ACE-∠RCE=∠ACR=90°,即△PEQ 为等腰直角三角形.∵△ARB ∽△PEQ,∴∠ARB=90°.∴在四边形OCRD中,∠OCR=∠ODR=90°,∠CRD=1∠ARB=45°,2∴∠MON=135°.(12分)此时点P,O,B在一条直线上,△PAB为直角三角形,且∠APB为直角, PQ=√2PQ,∴AB=2PE=2×√22=√2.(14分)即ABPQ。

2016安徽中考试题及答案

2016安徽中考试题及答案

2016安徽中考试题及答案【篇一:2016年安徽省中考数学试卷(含答案)】txt>一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016?安徽)﹣2的绝对值是()﹣5﹣858a.a b.a c.a d.a3.(4分)(2016?安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()4.(4分)(2016?安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()a. b. c. d.5.(4分)(2016?安徽)方程a.﹣ b. c.﹣4 d.4 =3的解是()6.(4分)(2016?安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()2c.b=a(1+8.9%)(1+9.5%) d.b=a(1+8.9%)(1+9.5%)7.(4分)(2016?安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成a、b、c、d、e五组进行统计,并制作了如图所示的扇形统计图.已知除b6吨以下的共有()a.18户 b.20户 c.22户 d.24户8.(4分)(2016?安徽)如图,△abc中,ad是中线,bc=8,∠b=∠dac,则线段ac的长为()a.4 b.4 c.6 d.49.(4分)(2016?安徽)一段笔直的公路ac长20千米,途中有一处休息点b,ab长15千米,甲、乙两名长跑爱好者同时从点a出发,甲以15千米/时的速度匀速跑至点b,原地休息半小时后,再以10千米/时的速度匀速跑至终点c;乙以12千米/时的速度匀速跑至终点c,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()a. b. c.d.10.(4分)(2016?安徽)如图,rt△abc中,ab⊥bc,ab=6,bc=4,p是△abc内部的一个动点,且满足∠pab=∠pbc,则线段cp长的最小值为()a.b.2 c. d.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016?安徽)不等式x﹣2≥1的解集是.312.(5分)(2016?安徽)因式分解:a﹣a=.为.的长线段bf上的点h处,有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016?安徽)计算:(﹣2016)+四、(本大题共2小题,每小题8分,满分16分)(1)试在图中标出点d,并画出该四边形的另两条边;(2)将四边形abcd向下平移5个单位,画出平移后得到的四边形a′b′c′d′.18.(8分)(2016?安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)20.(10分)(2016?安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点a(4,3),与y轴的负半轴交于点b,且oa=ob.(1)求函数y=kx+b和y=的表达式;(2)已知点c(0,5),试在该一次函数图象上确定一点m,使得mb=mc,求此时点m的坐标.六、(本大题满分12分)21.(12分)(2016?安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)222.(12分)(2016?安徽)如图,二次函数y=ax+bx的图象经过点a(2,4)与b(6,0).(1)求a,b的值;(2)点c是该二次函数图象上a,b两点之间的一动点,横坐标为x(2<x<6),写出四边形oacb的面积s关于点c的横坐标x的函数表达式,并求s的最大值.八、(本大题满分14分)23.(14分)(2016?安徽)如图1,a,b分别在射线oa,on上,且∠mon为钝角,现以线段oa,ob为斜边向∠mon的外侧作等腰直角三角形,分别是△oap,△obq,点c,d,e分别是oa,ob,ab的中点.(1)求证:△pce≌△edq;【篇二:2016年安徽省中考数学试卷(含答案)】txt>一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016?安徽)﹣2的绝对值是()﹣5﹣858a.a b.a c.a d.a3.(4分)(2016?安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()4.(4分)(2016?安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是() 7688a. b. c. d.5.(4分)(2016?安徽)方程a.﹣ b. c.﹣4 d.4 =3的解是()6.(4分)(2016?安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()2c.b=a(1+8.9%)(1+9.5%) d.b=a(1+8.9%)(1+9.5%)7.(4分)(2016?安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成a、b、c、d、e五组进行统计,并制作了如图所示的扇形统计图.已知除b6吨以下的共有()a.18户 b.20户 c.22户 d.24户8.(4分)(2016?安徽)如图,△abc中,ad是中线,bc=8,∠b=∠dac,则线段ac的长为()a.4 b.4 c.6 d.49.(4分)(2016?安徽)一段笔直的公路ac长20千米,途中有一处休息点b,ab长15千米,甲、乙两名长跑爱好者同时从点a出发,甲以15千米/时的速度匀速跑至点b,原地休息半小时后,再以10千米/时的速度匀速跑至终点c;乙以12千米/时的速度匀速跑至终点c,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()a. b. c.d.10.(4分)(2016?安徽)如图,rt△abc中,ab⊥bc,ab=6,bc=4,p是△abc内部的一个动点,且满足∠pab=∠pbc,则线段cp长的最小值为()a.b.2 c. d.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016?安徽)不等式x﹣2≥1的解集是312.(5分)(2016?安徽)因式分解:a﹣a=.为.的长14.(5分)(2016?安徽)如图,在矩形纸片abcd中,ab=6,bc=10,点e在cd上,将△bce沿be折叠,点c恰落在边ad上的点f处;点g在af上,将△abg沿bg折叠,点a恰落在线段bf上的点h处,有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016?安徽)计算:(﹣2016)+16.(8分)(2016?安徽)解方程:x﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)(1)试在图中标出点d,并画出该四边形的另两条边;(2)将四边形abcd向下平移5个单位,画出平移后得到的四边形a′b′c′d′.18.(8分)(2016?安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)20.(10分)(2016?安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点a(4,3),与y轴的负半轴交于点b,且oa=ob.(1)求函数y=kx+b和y=的表达式;(2)已知点c(0,5),试在该一次函数图象上确定一点m,使得mb=mc,求此时点m的坐标.【篇三:2016安徽中考语文试题word版含答案】=txt>语文试题注意事项:1.你拿到的试卷满分为150分(其中卷面书写占5分),考试时间为150分钟。

-2016安徽省中考数学试卷及答案(word解析版)

-2016安徽省中考数学试卷及答案(word解析版)

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣2的绝对值是()A.﹣2 B.2 C.±2 D2.计算a10÷a2(a≠0)的结果是()A.a5 B.a﹣5 C.a8 D.a﹣83.2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108 D.8.362×1084.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()ACD5的解是()AC.﹣4 D.46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5% D.b=a(1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()A.18户 B.20户 C.22户 D.24户8.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B..6 D.9.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()AB.2 CD二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x﹣2≥1的解集是.12.因式分解:a3﹣a= .13.如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30的长为.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣2016)0°.16.解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.如图,一次函数y=kx+b的图象分别与反比例函数A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON2015年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1、在―4,2,―1, 3这四个数中,比是―2小的数是( ) A 、―4 B 、2 C 、―1 D 、3 2、计算8×2的结果是( )A 、10B 、4C 、 6D 、43、移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A 、1.62×104B .1.62×106C .1.62×108D .0.162×1094、下列几何体中,俯视图是矩形的是( )5、与1+5最接近的整数是( )A 、4B 、3C 、2D 、16、我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是( )A .1.4(1+x )=4.5B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5 D .1.4(1+x )+1.4(1+x )2=4.57、某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:..A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分8、在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 9、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .610、如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c的图象可能是( )二、填空题(本大题共4小题,每小题5分,满分20分) 11、-64的立方根是12. 如图,点A 、B 、C 在半径为9的⊙O 上,AB ⌒的长为π2,则∠ACB 的大小是13.按一定规律排列的一列数: 21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 .14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则 1 a + 1b=1;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上). 三.(本大题共2小题,每小题8分,满分16分)15、先化简,再求值:⎝ ⎛⎭⎪⎫a 2a ―1 +1 1―a · 1 a ,其中a =- 1 2.【解】16、解不等式: x 3>1- x -36.【解】四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点).(1)请画出△ABC 关于直线l 对称的△A 1B 1C 1;(2)将线段AC 向左平移3个单位,再向下平移5个单位,画出平移得到的线段A 2C 2,并以它为一边作一个格点△AEBCFD G H第9题图AOCB 第12题图A 2B 2C 2,使A 2B 2=C 2B 2.18. 如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(3=1.7).五、(本大题共2小题,每小题10分,满分20分)19. A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率;(2)求三次传球后,球恰在A 手中的概率.20. 在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值六、(本题满分12分)21. 如图,已知反比例函数y = k1x 与一次函数y =k2x +b 的图象交于点A(1,8)、B(-4,m).(1)求k1、k2、b 的值; (2)求△AOB 的面积;(3)若M(x1,y1)、N(x2,y2)是比例函数y = k1x 图象上的两点,且x1<x2,y1<y2,指出点M 、N 各位于哪个象限,并简要说明理由.七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?八、(本题满分14分)23. 如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ; (2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求 ADEF的值.AB Cl第17题图第22题图2014年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(﹣2)×3的结果是()2.x2•x3=()3.如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()4.下列四个多项式中,能因式分解的是()5.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()6.设n为正整数,且n<<n+1,则n的值为()7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()8.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()9.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()10.如图,正方形ABCD的对角线BD长为2,若直线l满足:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()二、填空题(本大题共4小题,每小题5分,满分20分)11.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为.12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y= .13.方程=3的解是x= .14.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣|﹣3|﹣(﹣π)0+2013.16.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4× 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点). (1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1; (2)请画一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.18.如图,在同一平面内,两条平行高速公路l 1和l 2间有一条“Z ”型道路连通,其中AB 段与高速公路l 1成30°角,长为20km ;BC 段与AB 、CD 段都垂直,长为10km ,CD 段长为30km ,求两高速公路间的距离(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.如图,在⊙O 中,半径OC 与弦AB 垂直,垂足为E ,以OC 为直径的圆与弦AB 的一个交点为F ,D 是CF 延长线与⊙O 的交点.若OE=4,OF=6,求⊙O 的半径和CD 的长.20.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元. (1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?六、(本题满分12分)21.如图,管中放置着三根同样的绳子AA 1、BB 1、CC 1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA 1的概率是多少?(2)小明先从左端A 、B 、C 三个绳头中随机选两个打一个结,再从右端A 1、B 1、C 1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.七、(本题满分12分)22.若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2﹣4mx+2m 2+1和y 2=ax 2+bx+5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.八、(本题满分14分)23.如图1,正六边形ABCDEF 的边长为a ,P 是BC 边上一动点,过P 作PM ∥AB 交AF 于M ,作PN ∥CD 交DE 于N . (1)①∠MPN= ; ②求证:PM+PN=3a ;(2)如图2,点O 是AD 的中点,连接OM 、ON ,求证:OM=ON ;(3)如图3,点O 是AD 的中点,OG 平分∠MON ,判断四边形OMGN 是否为特殊四边形?并说明理由.安徽省2013年中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分) 1.﹣2的倒数是( )A 、﹣B 、C 、2D 、﹣22.用科学记数法表示537万正确的是( ) A 、5.37×10 B 、45.37×105C 、5.37×106D 、5.37×1073.如图所示的几何体为圆台,其主(正)视图正确的是( )A B C D 4.下列运算正确的是( )A.235x y xy +=B.23555m m m ⋅=C.222()a b a b -=-D.236m m m ⋅= 5.已知不等式组,其解集在数轴上表示正确的是( ) A 、 B 、C 、D 、6.如图,AB ∥CD ,∠A+∠E=75°,则∠C 为( ) A 、60° B 、65° C 、75° D 、80°7.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( ) A 、438(1+x )2=389 B 、389(1+x )2=438 C 、389(1+2x )2=438 D 、438(1+2x )2=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( )A 、B 、C 、D 、9.图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是( ) A 、当x=3时,EC <EM B 、y=9时,EC >EMC 、当x 增大时,EC •CF 的值增大D 、当y 增大时,BE •DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( )三、填空题(本大题4小题,每小题5分,满分20分) 11、12在实数范围内有意义,则x 的取值范围是 .13、14、因式分解2x y y -=15、如图P 为平行四边形ABCD 边AD 上的一点,E,F分别为PB,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为12,,S S S ,若2S =,则12S S += .第14题图16、在矩形ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A ’处,给出以下判断:①当四边形A ’CDF 为正方形时,;②当时,四边形A ’CDF 为正方形;③当BA ’CD 为等腰梯形;④当四边形BA ’CD 为等腰梯形时,;其中正确的是 .(把所有正确结论的序号都填在横线上)三、(本大题共两小题,每小题8分,满分16分) 15、计算:22sin 30(1)|2︒+--16、已知二次函数的顶点坐标为(1,1)-,且经过原点(0,0),求该函数的解析式。

2016年安徽省中考数学试卷附详细答案(原版+解析版)

2016年安徽省中考数学试卷附详细答案(原版+解析版)

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.49.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是.12.(5分)(2016•安徽)因式分解:a3﹣a=.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.16.(8分)(2016•安徽)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【考点】绝对值.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【考点】同底数幂的除法;负整数指数幂.【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.【点评】此题主要考查了同底数幂的除法运算法则,正确掌握相关法则是解题关键.3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.【点评】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图.5.(4分)(2016•安徽)方程=3的解是()A.﹣B.C.﹣4 D.4【考点】分式方程的解.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.【点评】此题考查了分式方程的解,求出分式方程的解是解本题的关键.6.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【考点】列代数式.【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【点评】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有A.18户B.20户C.22户D.24户【考点】扇形统计图.【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC 的长为()A.4 B.4C.6 D.4【考点】相似三角形的判定与性质.【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.【点评】此题考查了相似三角形的判断与性质,关键是根据AA证出△CBA∽△CAD,是一道基础题.9.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.【考点】函数的图象.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C 地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.【点评】本题考查函数图象、路程.速度、时间之间的关系,解题的关键是理解题意求出两人到达C地的时间,属于中考常考题型.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.【考点】点与圆的位置关系;圆周角定理.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P 位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是x≥3.【考点】解一元一次不等式.【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥3【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.12.(5分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)【点评】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【考点】切线的性质;弧长的计算.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.【点评】本题考查切线的性质、弧长公式、直角三角形两锐角互余等知识,解题的关键是记住弧长公式,求出圆心角是关键,属于中考常考题型.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【考点】相似形综合题.【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出AF=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.【点评】此题主要考查了实数运算,正确利用相关性质化简各数是解题关键.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【考点】解一元二次方程-配方法;零指数幂.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【考点】作图-平移变换.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.【点评】本题考查平移变换、轴对称的性质,解题的关键是理解轴对称的意义,图形的平移实际是点在平移,属于基础题,中考常考题型.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.【考点】规律型:图形的变化类.【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为a n,列出部分a n的值,根据数据的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.【点评】本题考查了规律型中图形的变化类,解题的关键是根据图中小球数量的变化找出变化规律“a n﹣1=1+3+5+…+(2n﹣1)=n2”.本题属于中档题,难度不大,解决该题型题目时,罗列出部分图中球的数量,根据数值的变化找出变化规律是关键.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D 是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【考点】两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.【点评】此题主要考查了两点之间的距离以及等腰三角形的判定与性质以及锐角三角函数关系,得出EF的长是解题关键.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【点评】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【考点】列表法与树状图法;算术平方根.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果数n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或B的概率.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•A D=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.【点评】此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握二次函数的性质是解本题的关键.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【考点】相似形综合题.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ 中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ ,∴=.【点评】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,全等三角形的判定和性质,平行四边形的判定和性质,等边三角形的判定和性质,线段垂直平分线的性质,熟练掌握等腰直角三角形的性质是解题的关键.第21页(共21页)。

2016安徽省中考数学试题及答案解析

2016安徽省中考数学试题及答案解析

2016年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2016安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31 D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3. 解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2016安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形. 解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2016安徽,3,4分)计算32)2(x -的结果是( ) A.52x - B. 68x - C.62x - D.58x - 3. 解析:根据积的乘方和幂的运算法则可得. 解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义. 4. (2016安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .得分 评卷人点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. (2016安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元5. 解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a , 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a , 解答:A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6. (2016安徽,6,4分)化简xxx x -+-112的结果是( ) A.x +1 B. x -1 C.—x D. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D . 点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7. (2016安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边 形与其内部小正方形的边长都为a ,则阴影部分的面积为( ) A.22a B. 32a C. 42a D.52a7. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解:222242121a a a =⨯⨯+故选A . 点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8. (2016安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.32 8. 解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31.解答: 故选B .9. (2016安徽,9,4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )9. 解析:利用AB 与⊙O 相切,△BAP 是直角三角形,把直角三角形的直角边表示出来,从而用x 表示出三角形的面积,根据函数解析式确定函数的图象. 解答:解:∵AB 与⊙O 相切,∴∠BAP=90°, OP=x ,AP=2-x,∠BPA=60°,所以AB=)2(3x -,所以△APB 的面积2)2(23x y -=,(0≤x ≤2)故选D . 点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值. 10. (2016安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或17210. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C .点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A 或B ;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.二、填空题(本大题共4小题,每小题5分,满分20分)11. (2016安徽,11,5分)2015年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11. 解析:科学记数法形式:a ×10n (1≤|a |<10,n 为整数)中n 的值是易错点,由于378 000有6位,所以可以确定n =6﹣1=5,所以378 000=3.78×105 答案: 3.78×105 12. (2016安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362=甲S ,252=乙S ,162=丙S ,则数据波动最小的一组是___________________.12. 解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小. 答案:丙组13. (2016安徽,13,5分)如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______________°.13. 解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D ;又因为四边形OABC 是平行四边形,所以∠B=∠AOC ;圆内接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD ,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14. (2016安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上得分 评卷人其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 14. 解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15. (2016安徽,15,8分)计算:)2()1)(3(-+-+a a a a15. 解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a 2-a+3a -3+a 2-2a =2a 2-3 16. (2016安徽,16,8分)解方程:1222+=-x x x16. 解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4 整理,得(x -2)2=5∴x -2=5±,即521+=x ,522-=x .四、(本大题共2小题,每小题8分,满分16分)17. (2016安徽,17,8分)在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:mnm n +f1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 3 5 7猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明); 解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立, 17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f ,再对照表中数值归纳f 与m 、n 的关系式.(2)根据题意,画出当m 、n 不互质时,结论不成立的反例即可. 解:(1)如表:f=m+n-1(2)当m 、n 不互质时,上述结论不成立,如图2× 42×418. (2016安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;m n m n f 1 2 3 2 1 3 4 32 3 5 4 2 4 7 6 3 5 7 6(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可2(2)作图如上,∵AB=10,AD=10,BD=5∴AB2+AD2=BD2 新课标一网∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.五、(本大题共2小题,每小题10分,满分20分)2,求19. (2016安徽,19,10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=3C45°30°ABAB 的长, 解:19. 解析:本题在一个三角形中已知两个角和一边,求三角形的边.不是直角三角形,要利用三角函数必须构筑直角三角形,过点C 作CD ⊥AB 于D,利用构造的两个直角三角形来解答. 解:过点C 作CD ⊥AB 于D,在Rt △ACD 中,∠A=30°,AC=32 ∴CD=AC ×sinA=32×0.5=3,AD=AC ×cosA=32×23=3, 在Rt △BCD 中,∠B=45°,则BD=CD=3, ∴AB=AD+BD=3+3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角. 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角. 这时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. (2016安徽,20,10分)九(1)班同学为了解2015年某小区家庭月均用水情况,随月均用水量x (t) 频数(户) 频率05x <≤ 6 0.12510x <≤ 0.241015x <≤ 16 0.321520x <≤ 10 0.20 2025x <≤ 4 2530x <≤ 2 0.04 请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比; 解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户? 解:20. 本题考查了数据的统计中的频数分布表和不完整的频数分布直方图.所有的频数和就是样本容量,所有频率和等于1,且有n数据总数频数频率=,(1)数据总数5012.06===频率频数 ,50×0.24=12,4÷50=0.08, (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪第20题图 月用水量(t)(3)用样本来估计总体,根据抽取的样本超过20吨的家庭数,来估计该小区的情况.. 解:(1)统计中的频数分布表和不完整的频数分布直方图,补充如下 (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪ (3)1000×(0.04+0.08)=120(户)六、(本题满分12分)21. (2016安徽,21,12分)甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档