2016年安徽省中考数学试卷含答案

合集下载

2016-2017安徽省中考数学试题及解答

2016-2017安徽省中考数学试题及解答

2016年XX省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•XX)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)(2016•XX)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)(2016•XX)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×1084.(4分)(2016•XX)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)(2016•XX)方程=3的解是()A.﹣B.C.﹣4 D.46.(4分)(2016•XX)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)(2016•XX)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.(4分)(2016•XX)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4C.6 D.49.(4分)(2016•XX)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)(2016•XX)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2 C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•XX)不等式x﹣2≥1的解集是.12.(5分)(2016•XX)因式分解:a3﹣a=.13.(5分)(2016•XX)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)(2016•XX)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•XX)计算:(﹣2016)0++tan45°.16.(8分)(2016•XX)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•XX)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(2016•XX)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•XX)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)(2016•XX)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.六、(本大题满分12分)21.(12分)(2016•XX)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)(2016•XX)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)(2016•XX)如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图1,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年XX省中考数学试卷参考答案一、选择题1.B2.C3.A4.C5.D6.C7.D8.B9.A10.B二、填空题11.x≥312.a(a+1)(a﹣1)13..14.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.(﹣2016)0++tan45°=1﹣2+1=0.16.解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、17.解:(1)点D以与四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.2n+1;2n2+2n+1.五、19.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、21.解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、22.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、23.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.2017年XX 省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟。

2016年安徽省初中毕业学业考试数学试题及答案解析

2016年安徽省初中毕业学业考试数学试题及答案解析

2016年安徽省初中毕业学业考试数学试题(试题卷)注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟.2. 本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4. 考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. -2的绝对值是( )A. -2B. 2C. ±2D. 122. 计算a 10÷a 2(a ≠0)的结果是( )A. a 5B. a -5C. a 8D. a -83. 2016年3月份我省农产品实现出口额8362万美元.其中8362万用科学记数法表示为( )A. 8.362×107B. 83.62×106C. 0.8362×108D. 8.362×1084. 如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )5. 方程2x +1x -1=3的解是( ) A. -45 B. 45C. -4D. 4 6. 2014年我国省财政收入比2013年增长8.9%,2015年比2014年增长9.5%.若2013和2015年我省财政收入分别为a 亿元和b 亿元,则a 、b 之间满足的关系式是( )A. b =a(1+8.9%+9.5%)B. b =a(1+8.9%×9.5%)C. b =a(1+8.9%)(1+9.5%)D. b =a(1+8.9%)2(1+9.5%)7. 自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )组别月用水量x(单位:吨) A0≤x<3 B3≤x<6 C6≤x<9 D9≤x<12 E x ≥12第7题图A. 18户B. 20户C. 22户D. 24户8. 如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为( )第8题图A. 4B. 4 2C. 6D. 4 39. 一段笔直的公路AC 长20千米,途中有一处休息点B ,AB 长15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点B ,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C.下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )10. 如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC.则线段CP 长的最小值为( )A. 32B. 2C. 81313D. 121313第10题图 第13题图 第14题图二、填空题(本大题共4小题,每小题5分,满分20分)11. 不等式x -2≥1的解集是________.12. 因式分解:a 3-a =________________.13. 如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B ,AO 的延长线交⊙O 于点C.若∠BAC =30°,则劣弧BC ︵的长为______.14. 如图,在矩形纸片ABCD 中,AB =6,BC =10.点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG +DF =FG. 其中正确的是______________.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,共16分)15. 计算:(-2016)0+3-8+tan45°.16. 解方程:x 2-2x =4.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形A ′B ′C ′D ′.第17题图18. (1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+(________________)+(2n-1)+…+5+3+1=____________.五、(本大题共2小题,每小题10分,满分20分)19. 如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点.某人在点A 处测得∠CAB =90°,∠DAB =30°,再沿AB 方向前进20米到达点E(点E 在线段AB 上),测得∠DEB =60°,求C 、D 两点间的距离.第19题图20. 如图,一次函数y =kx +b 的图象分别与反比例函数y =a x的图象在第一象限交于点A(4,3),与y 轴的负半轴交于点B ,且OA =OB.(1)求函数y =kx +b 和y =a x的表达式; (2)已知点C(0,5),试在该一次函数图象上确定一点M ,使得MB =MC.求此时点M 的坐标.第20题图六、(本题满分12分)21. 一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.第22题图八、(本题满分14分)23. 如图1,A,B分别在射线OM,ON上,且∠MON为钝角.现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;AB的值.②如图3,若△ARB∽△PEQ,求∠MON大小和PQ2016年安徽省初中毕业学业考试数学试题参考答案1. B 【解析】依据负数的绝对值是它的相反数求解.∵-2是负数,∴-2的相反数是2,∴-2的绝对值是2.2. C 【解析】根据同底数幂的除法运算法则:“底数不变,指数相减”计算即可.a 10÷a 2=a 10-2=a 8.3. A 【解析】∵1万=104,8362=8.362×103,∴8362万=8.362×103×104=8.362×107.4. C 【解析】该圆柱从正面看是一个宽与圆柱的底面直径相等,长与圆柱高相等的矩形.(注:该圆柱的主视图不包括水平桌面部分的主视图)5. D 【解析】将方程2x +1x -1=3去分母,得2x +1=3(x -1),去括号,得2x +1=3x -3,移项、合并同类项,得-x =-4.解得x =4.经检验x =4是原分式方程的根.6. C 【解析】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,又∵2015年我省财政收入为b 亿元,2015年比2014年增长9.5%,∴b =a(1+8.9%)(1+9.5%).7. D 【解析】∵由扇形统计图可知,除B 组以外,其余四组在所有参与调查的用户中所占的比例为10%+5%+30%+35%=80%,且参与调查的用户共有64户,∴所有参与调查的总用户数为64÷80%=80(户).∵A 、B 两组用户所占的比例为10%+(1-80%)=30%,∴所有参与调查的用户中月用水量在6吨以下的共有80×30%=24(户).8. B 【解析】∵∠B =∠DAC ,∠C =∠C ,∴△ABC ∽△DAC.∴BC AC =AC DC ,即AC 2=BC ·DC.∵AD 是中线,BC =8,∴DC =12BC =4.∴AC 2=8×4,∴AC =4 2. 9. A 【解析】由题意可知:甲所跑路程分为3个时段:开始1小时,以15千米/时的速度匀速由点A 跑至点B ,所跑路程为15千米;第1小时至第32小时休息,所跑路程不变;第32小时至第2小时,以10千米/时的速度匀速跑至终点C ,所跑路程为5千米,即甲累计所跑路程为20千米时,所用时间为2小时,并且甲开始1小时内的速度大于第32小时至第2小时之间的速度.因此选项A 、C 符合甲的情况.乙从点A 出发,以12千米/时的速度匀速一直跑至终点C ,所跑路程为20千米,所用时间为53小时,并且乙的速度小于甲开始的速度但大于甲第3时段的速度.所以选项A 、B 符合乙的情况.故选A.10. B 【解析】如解图,∵∠PAB =∠PBC ,∠ABC =90°,∴∠BAP +∠PBA =90°,∴∠APB =90°,∴点P 始终在以AB 的中点O 为圆心,以OA =OB =OP =12AB =3为半径的圆上,由解图知,只有当在点P 在OC 与⊙O 的交点处时, PC 的长最小.在Rt △OBC 中,OC =OB 2+BC 2=32+42=5,∴P ′C =OC -OP ′=5-3=2,∴线段CP 长的最小值为2.第10题解图11. x ≥3 【解析】移项,得x ≥1+2,合并同类项,得x ≥3.12 .a(a +1)(a -1)【解析】a 3-a 提取公因式a 得,a(a 2-1),利用平方差公式分解因式得,原式=a(a +1)(a -1).13. 43π【解析】如解图,连接OB.∵AB 为⊙O 的切线,B 为切点,∴∠B =90°,又∵∠A =30°,∴∠AOB =60°,∴∠BOC =120°,∴劣弧BC ︵的长=120×π×2180=43π.第13题解图14. ①③④【解析】由折叠的性质得,∠CBE =∠FBE ,∠ABG =∠FBG ,∴∠EBG =∠FBE +∠FBG =12×90°=45°,故①正确;由折叠的性质得,BF =BC =10,BA =BH =6,∴HF =BF -BH =4,AF =BF 2-BA 2∴AF =8,设GH =x ,则GF =8-x ,在Rt △GHF 中,x 2+42=(8-x)2,∴x =3,∴GF =5,∴AG =3,同理在Rt △FDE 中,由FD 2=EF 2-ED 2得ED =83,EF =103,∴ED FD =43≠ABAG=2,∴△DEF 与△ABG 不相似,故②不正确;S △ABG =12×3×6=9,S △FGH =12×3×4=6,S △ABG S △FGH=96=32,故③正确;∵AG =3,DF =AD -AF =2,FG =5,∴AG +DF =FG =5,故④正确.15. 解:原式=1+(-2)+1 =0.16. 解:两边都加上1,得x 2-2x +1=4+1, 即(x -1)2=5,开平方,得x-1=±5,∴原方程的解是x1=1+5,x2=1- 5.17. 解:(1)所求点D及四边形ABCD的另两条边AD、CD如解图所示;(2)所求四边形A′B′C′D′如解图所示.第17题解图18. 解:(1)42;n2;【解法提示】观察每一行图形变换,可以发现,当小球有4行时,小球的总个数=4×4=42(个),∴第一个空填42;根据此规律可知,当小球有n行时,小球的总数=n·n=n2,∴第二个空填n2.(2)2n+1;2n2+2n+1.【解法提示】在连续的奇数中,2n-1后边的数是2n+1,∴第一个空填“2n+1”;由第(1)小题的结论可知,在等式的左边的数中,“2n-1”前面的所有数之和等于n2,后面的所有的数之和也等于n2,∴总和=n2+(2n+1)+n2=2n2+2n+1,∴等式的右边填“2n2+2n+1”.19. 解:∵∠DEB=60°,∠DAB=30°,∴∠ADE=60°-30°=30°,∴∠DAB=∠ADE,∴DE=AE=20,如解图,过点D 作DF ⊥AB 于点F ,则∠EDF =30°, ∴在Rt △DEF 中,EF =12DE =10,∴AF =20+10=30, ∵DF ⊥AB ,∠CAB =90°, ∴CA ∥DF , 又∵l 1∥l 2,∴四边形CAFD 是矩形, ∴CD =AF =30,答:C 、D 两点间的距离为30米.第19题解图20. 【思路分析】(1)由点A 的坐标和OA =OB 可得点B 的坐标,用待定系数法即可求出一次函数的解析式;将点A 的坐标代入反比例函数解析式中即可求出反比例函数的解析式;(2)由题意可知,使MB =MC 的点在线段BC 的垂直平分线上,故求出线段BC 的垂直平分线和一次函数的交点即可.解:(1)∵点A(4,3), ∴OA =42+32=5, ∴OB =OA =5, ∴B(0,-5),将点A(4, 3)、点B(0, -5)代入函数y =kx +b 得,⎩⎪⎨⎪⎧4k +b =3b =-5,解得⎩⎪⎨⎪⎧k =2b =-5, 将点A(4, 3)代入y =ax 得,3=a 4, ∴a =12,∴所求函数表达式分别为y =2x -5和y =12x;(2) 如解图,∵点B 的坐标为(0, -5),点C 的坐标为(0, 5), ∴x 轴是线段BC 的垂直平分线, ∵MB =MC , ∴点M 在x 轴上,又∵点M 在一次函数图象上,∴点M 为一次函数的图象与x 轴的交点,如解图所示, 令2x -5=0,解得x =52,∴此时点M 的坐标为(52, 0).第20题解图21.解:(1)所有可能的两位数用列表法列举如下表:个位数 十位数 1 4 7 8 111141718(2)由(1)知,所有可能的两位数共有16个,即16种等可能结果,其中算术平方根大于4且小于7即大于16且小于49的两位数共6种等可能结果:17,18,41,44,47,48,则所求概率P =616=38.22.解:(1)∵二次函数y =ax 2+bx 的图象经过点A(2,4)与B(6,0). ∴⎩⎪⎨⎪⎧4=4a +2b0=36a +6b ,解得,⎩⎪⎨⎪⎧a =-12b =3; (2)如解图①,过点A 作x 轴的垂线,垂足为点D(2,0),连接CD ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为点E ,点F ,则S △OAD =12OD ·AD =12×2×4=4,S △ACD =12AD ·CE =12×4×(x -2)=2x -4,S △BCD =12BD ·CF =12×4×(-12x 2+3x)=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+(2x -4)+(-x 2+6x)=-x 2+8x. ∴S 关于x 的函数表达式为S =-x 2+8x(2<x<6). ∵S =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.第22题解图①【一题多解】解法一:由(1)知y =-12x 2+3x ,如解图②,连接AB ,则S =S △AOB +S △ABC ,其中S △AOB =12×6×4=12,设直线AB 解析式为y 1=k 1x +b 1,将点A(2,4),B(6,0)代入,易得,y 1=-x +6,过C 作直线l ⊥x 轴交AB 于点D , ∴C(x ,-12x 2+3x),D(x ,-x +6),∴S △ABC =S △ADC +S △BDC =12·CD ·(x -2)+12·CD ·(6-x)=12·CD ·4=2CD ,其中CD =-12x 2+3x -(-x +6)=-12x 2+4x -6,∴S △ABC =2CD =-x 2+8x -12,∴S =S △ABC +S △AOB =-x 2+8x -12+12=-x 2+8x =-(x -4)2+16(2<x<6), 即S 关于x 的函数表达式为S =-x 2+8x(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.第22题解图②解法二:∵点C 在抛物线上y =-12x 2+3x 上,∴点C(x ,-12x 2+3x),如解图③,过点A 作AD ⊥x 轴,垂足为点D ,过点C 作CE ⊥x 轴,垂足为点E ,则点D 的坐标为(2,0),点E 的坐标为(x ,0),∴S =S △OAD +S 梯形ADEC +S △CEB =12×2×4+12(4-12x 2+3x)(x -2)+12(6-x)(-12x 2+3x)=-x 2+8x ,∵S =-x 2+8x =-(x -4)2+16(2<x<6),∴当x =4时,四边形OACB 的面积S 取最大值,最大值为16.第22题解图③23.(1)证明:∵点C ,D ,E 分别是OA ,OB ,AB 的中点, ∴DE=OC ,DE ∥OC 且CE=OD ,CE ∥OD , ∴四边形CEDO 是平行四边形,∴∠ECO =∠EDO ,又∵△OAP ,△OBQ 都是等腰直角三角形, ∴∠PCO =∠QDO =90°,∴∠PCE =∠PCO +∠ECO =∠QDO +∠EDO =∠EDQ , 又∵PC =12AO =OC =DE ,CE =12BO =OD =DQ ,∴△PCE ≌△EDQ ;(2)①证明:如解图①,连接OR , ∵PR 与QR 分别为线段OA 与OB 的中垂线, ∴AR =OR =BR ,∠ARC =∠ORC ,∠ORD =∠BRD ,在四边形OCRD 中,∠OCR =∠ODR =90°,∠MON =150°, ∴∠CRD =30°,∴∠ARB =∠ARO +∠BRO =2∠CRO +2∠ORD =2∠CRD =60°.(9分) ∴∠ABR 为等边三角形;第23题解图①②解:如解图②,由(1)知EQ =PE ,∠DEQ =∠CPE , ∴∠PEQ =∠CED -∠CEP -∠DEQ =∠ACE -∠CEP -∠CPE =∠ACE -∠RCE =∠ACR =90°, 即△PEQ 为等腰直角三角形, ∵△ARB ∽△PEQ , ∴∠ARB =90°,∴在四边形OCRD中,∠OCR=∠ODR=90°,∠CRD=12∠ARB=45°,∴∠MON=360°-90°-90°-45°=135°,又∵∠AOP=45°,∴∠POD=180°,即P、O、B三点共线,在△APB中,∠APB=90°,E为AB中点,∴AB=2PE,又∵在等腰直角△PEQ中,PQ=2PE,∴ABPQ=PEPE22= 2.第23题解图②。

年安徽省中考数学试卷及答案详解

年安徽省中考数学试卷及答案详解

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2 B.2C.±2D.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为( )A.8.362×107B.83.62×106C.0.8362×108D.8.362×1084.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C. D.5.(4分)方程=3的解是()A.﹣B. C.﹣4 D.46.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )组别月用水量x(单位:吨)A0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12 Ex≥12A.18户B.20户C.22户D.24户8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )A.4B.4C.6D.49.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )A.B.C. D.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A.B.2C. D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是.12.(5分)因式分解:a3﹣a=.13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.16.(8分)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD 的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+( )+(2n﹣1)+…+5+3+1= .五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB 上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MO N的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2016•安徽)﹣2的绝对值是()A.﹣2 B.2 C.±2 D.【分析】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【解答】解:﹣2的绝对值是:2.故选:B.2.(4分)(2016•安徽)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8【分析】直接利用同底数幂的除法运算法则化简求出答案.【解答】解:a10÷a2(a≠0)=a8.故选:C.3.(4分)(2016•安徽)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8362万=8362 0000=8.362×107,故选:A.4.(4分)(2016•安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )A. B. C.D.【分析】根据三视图的定义求解.【解答】解:圆柱的主(正)视图为矩形.故选C.5.(4分)(2016•安徽)方程=3的解是( )A.﹣ B.C.﹣4 D.4【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+1=3x﹣3,解得:x=4,经检验x=4是分式方程的解,故选D.6.(4分)(2016•安徽)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)【分析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【解答】解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.(4分)(2016•安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B 3≤x<6C6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:根据题意,参与调查的户数为:=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.8.(4分)(2016•安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6 D.4【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出=,求出AC即可.【解答】解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.(4分)(2016•安徽)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B. C.D.【分析】分别求出甲乙两人到达C地的时间,再结合已知条件即可解决问题.【解答】解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.(4分)(2016•安徽)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )A. B.2C. D.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC=OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2016•安徽)不等式x﹣2≥1的解集是x≥3 .【分析】不等式移项合并,即可确定出解集.【解答】解:不等式x﹣2≥1,解得:x≥3,故答案为:x≥312.(5分)(2016•安徽)因式分解:a3﹣a=a(a+1)(a﹣1) .【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)13.(5分)(2016•安徽)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.【分析】根据已知条件求出圆心角∠BOC的大小,然后利用弧长公式即可解决问题.【解答】解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.(5分)(2016•安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△AB G=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)【分析】由折叠性质得∠1=∠2,CE=FE,BF=BC=10,则在Rt△ABF中利用勾股定理可计算出A F=8,所以DF=AD﹣AF=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中利用勾股定理得(6﹣x)2+22=x2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG,易得∠2+∠3=45°,于是可对①进行判断;设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中利用勾股定理得到y2+42=(8﹣y)2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D和≠,可判断△ABG与△DEF不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2016•安徽)计算:(﹣2016)0++tan45°.【分析】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【解答】解:(﹣2016)0++tan45°=1﹣2+1=0.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2016•安徽)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC. (1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.【分析】(1)画出点B关于直线AC的对称点D即可解决问题.(2)将四边形ABCD各个点向下平移5个单位即可得到四边形A′B′C′D′.【解答】解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(8分)(2016•安徽)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1 )+(2n﹣1)+…+5+3+1= 2n2+2n+1 .【分析】(1)根据1+3+5+7=16可得出16=42;设第n幅图中球的个数为an,列出部分a n的值,根据数据的变化找出变化规律“an﹣1=1+3+5+…+(2n﹣1)=n2”,依此规律即可解决问题;(2)观察(1)可将(2)图中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再结合(1)的规律即可得出结论.【解答】解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴an﹣1=1+3+5+…+(2n﹣1)=n2.故答案为:42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=an﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为:2n+1;2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2016•安徽)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.【分析】直接利用等腰三角形的判定与性质得出DE=AE=20,进而求出EF的长,再得出四边形ACDF为矩形,则CD=AF=AE+EF求出答案.【解答】解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.(10分)(2016•安徽)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.【分析】(1)利用待定系数法即可解答;(2)设点M的坐标为(x,2x﹣5),根据MB=MC,得到,即可解答.【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.(12分)(2016•安徽)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.【分析】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【解答】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.(12分)(2016•安徽)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值.【分析】(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S 关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.【解答】解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得:;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.(14分)(2016•安徽)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.【分析】(1)根据三角形中位线的性质得到DE=OC,∥OC,CE=OD,CE∥OD,推出四边形ODEC 是平行四边形,于是得到∠OCE=∠ODE,根据等腰直角三角形的定义得到∠PCO=∠QDO=90°,根据等腰直角三角形的性质得到得到PC=ED,CE=DQ,即可得到结论(2)①连接RO,由于PR与QR分别是OA,OB的垂直平分线,得到AP=OR=RB,由等腰三角形的性质得到∠ARC=∠ORC,∠ORQ=∠BRO,根据四边形的内角和得到∠CRD=30°,即可得到结论;②由(1)得,EQ=EP,∠DEQ=∠CPE,推出∠PEQ=∠ACR=90°,证得△PEQ是等腰直角三角形,根据相似三角形的性质得到ARB=∠PEQ=90°,根据四边形的内角和得到∠MON=135°,求得∠APB=90°,根据等腰直角三角形的性质得到结论.【解答】(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。

安徽省中考数学真题试题(含答案)

安徽省中考数学真题试题(含答案)

21:2016年安徽省初中毕业学业考试数学注意事项:1. 你拿到的试卷满分为 150分,考试时间为120分钟。

2. 本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3. 请务必在“答题卷”上答题,在“试题卷”上答题是无效的。

4. 考试结束后,请将“试题卷”和“答题卷”一并交回。

、选择题(本大题共 10小题,每小题4分,满分40分) 每小题都给出 A B C 、D 四个选项,其中只有一个是正确的. 12的绝对值是7 6 8 8A . 8.362 10B . 83.62 10C . 0.8362 10D . 8.362 104.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成 A 、B C D E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以夕卜,参与调查的用户共 64户,则A . — 2 B.2 C.2D1 • 22 .计算a 102a (a 0)的结果是A . a 5B5a iC8.aD.a3. 2016年3月份我省农产品实现出口额5.方程A .2x 1 x 14 5的解是6 . 2014年我省财政收入比 2013年增长8.9 %,2015我省财政收入分别为 a 亿元和 A. b =a (1+8.9 % +9.5 %) b 亿元和 B. 2014年增长了 9.5 % .若2013年和2015年比 b 亿元,则a 、b 之间满足的关系式是b =a (1+8.9 % 9.5 %) C. b =a (1+8.9 %) (1+9.5 %)D.b =a (1+8.9 %) 2(1+9.5 %)8362万美元.其中8362万用科学记数法表示为射洋僂:呦A 0 S z < 5BcD笫丁题图9•一段笔直的公路AC长为20千米,途中有一处休息点B, AB长为15千米•甲、乙两名长跑爱好者同时从点A出发•甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C •下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y (千米)与时间x (小时)函数关系的图像是、填空题(本大题共4小题,每小题5分,满分20分)11 •不等式x 2 1的解集是_____________12 .因式分解:a3 a _________________ •13.如图,已知O O的半径为2, A为。

2016年合肥市中考数学真题试题与答案

2016年合肥市中考数学真题试题与答案

2016年合肥市中考数学试题与答案 注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟。

2. 本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3. 请务必在“答题卷...”上答题,在“试题卷”上答题是无效的。

4. 考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.-2的绝对值是A .-2B .2C .2±D .21 2.计算)0(210≠÷a a a的结果是 A .5a B .5-a C .8a D .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程 3112=-+x x 的解是 A .54- B .54 C .4- D .4 6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是A. b =a (1+8.9%+9.5%)B. b =a (1+8.9%⨯9.5%)C. b =a (1+8.9%)(1+9.5%)D. b =a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .34 9.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23 B .2 C .13138 D .131312二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式12≥-x 的解集是 . 12.因式分解:=-a a 3.13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF 上的点H 处.有下列结论:其中正确的是 .(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.计算:︒+-+-45tan 8)2016(30.16.解方程:422=-x x .四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形 .18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空: ()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.20.如图,一次函数b kx y +=的图像分别与反比例函数xa y =的图像在第一象限交于点 )3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和xa y =的表达式; (2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.八、(本题满分14分)22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQAB 的值.。

2016年安徽省中考数学试卷-答案

2016年安徽省中考数学试卷-答案

安徽省2016年初中毕业学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】2-的绝对值是:2,故选B.【提示】直接利用数轴上某个数与原点的距离叫做这个数的绝对值,进而得出答案.【考点】绝对值2.【答案】C【解析】10280a a a a ÷≠=(),故选C.【提示】直接利用同底数幂的除法运算法则化简求出答案.【考点】同底数幂的除法,负整数指数幂3.【答案】A【解析】783628362 00008.36210==⨯万,故选A.【提示】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【考点】科学记数法—表示较大的数4.【答案】C【解析】圆柱的主(正)视图为矩形,故选C.【提示】根据三视图的定义求解.【考点】简单几何体的三视图5.【答案】D【解析】去分母得:2133x x +=-,解得:4x =,经检验4x =是分式方程的解,故选D.【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【考点】分式方程的解6.【答案】C【解析】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为(18.9%)a +亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b 亿元,∴2015年我省财政收为(18.9%)(19.5%)b a =++;故选C.【提示】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b 亿元,即可得出a 、b 之间的关系式.【考点】列代数式7.【答案】D 【解析】根据题意,参与调查的户数为:648010%35%30%5%=+++(户),其中B 组用户数占被调查户数的百分比为:110%35%30%5%20%----=,则所有参与调查的用户中月用水量在6吨以下的共有:8010%20%24⨯+=()(户),故选D. 【提示】根据除B 组以外参与调查的用户共64户及A 、C 、D 、E 四组的百分率可得参与调查的总户数及B 组的百分率,将总户数乘以月用水量在6吨以下(A 、B 两组)的百分率可得答案.【考点】扇形统计图8.【答案】B【解析】∵8BC =,∴4CD =,在△CBA 和△CAD 中,∵B DAC C C ∠=∠∠=∠,,∴CBA CAD △∽△, ∴AC CD BC AC=, ∴2•4832AC CD BC ==⨯=,∴AC = B.【提示】根据AD 是中线,得出4CD =,再根据AAS 证出CBA CAD ∆∆∽,得出AC CD BC AC =,求出AC 即可.【考点】相似三角形的判定与性质9.【答案】A【解析】解:由题意,甲走了1小时到了B 地,在B 地休息了半个小时,2小时正好走到C 地,乙走了53小时到了C 地,在C 地休息了13小时.由此可知正确的图象是A ,故选A.【提示】分别求出甲乙两人到达C 地的时间,再结合已知条件即可解决问题.【考点】函数的图象10.【答案】B【解答】∵90ABC ∠=︒,∴90ABP PBC ∠+∠=︒,∵PAB PBC ∠=∠,∴90BAP ABP ∠+∠=︒,∴90APB ∠=︒,∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小,在R t △BCO 中,∵9043OBC BC OB ∠=︒==,,,∴5OC ,∴532PC OC OP ====﹣. ∴PC 最小值为2,故选B .【提示】首先证明点P 在以AB 为直径的⊙O 上,连接OC 与⊙O 交于点P ,此时PC 最小,利用勾股定理求出OC 即可解决问题.【考点】点与圆的位置关系,圆周角定理二、填空题11.【答案】3x ≥【解析】不等式21x≥﹣ 解得:3x ≥故答案为:3x ≥【提示】不等式移项合并,即可确定出解集.【考点】解一元一次不等式12.【答案】(1)(1)a a a +-【解析】原式2(1)(1)(1)a a a a a ==+--,故答案为:(1)(1)a a a +-【提示】原式提取a ,再利用平方差公式分解即可.【考点】提公因式法与公式法的综合运用13.【答案】43π 【解析】∵AB 是⊙O 切线,∴AB OB ⊥,∴90ABO ∠=︒,∵30A ∠=︒,∴9060AOB A ∠=︒∠=︒﹣, ∴120BOC ∠=︒,∴BC 的长为120241803ππ=,故答案为43π.【提示】根据已知条件求出圆心角∠BOC 的大小,然后利用弧长公式即可解决问题.【考点】切线的性质,弧长的计算14.【答案】①③④【解析】∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴12∠=∠,10CE FE BF BC ===,,在R t △A BF 中,∵610AB BF ==,,∴8AF ,∴1082DF AD AF =-=-=,设EF x =,则6CE x DE CD CE x ==-=-,,在Rt △DEF 中,∵222DE DF EF +=,∴22262x x -+=(),解得103x =, ∴83ED =, ∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴346BH BA AG HG ∠=∠===,,,∴2345ABC ∠+∠=∠=︒,所以①正确;1064HF BF BH =-=-=,设AG y =,则8GH y GF y ==-,,在Rt △HGF 中,∵222GH HF GF +=,∴22248y y +=-(),解得3y =,∴35AG GH GF ===,, ∵6133842AB AG A D DE DF ∠=∠=÷==,,, ∴AB AG DE DF≠, ∴△ABG 与△DE F 不相似,所以②错误; ∵16392ABG S ∆==,1134622FGH GH S HF ==⨯⨯= ∴32ABG FGH S S ∆∆=,所以③正确; ∵325AG DF +=+=,而5GF =,∴AG DF GF +=,所以④正确.故答案为①③④.【考点】相似形综合题三、解答题15.【答案】020********tan ︒=-+=(-)【提示】直接利用特殊角的三角函数值以及立方根的性质分别化简求出答案.【考点】实数的运算,零指数幂,特殊角的三角函数值16.【答案】配方22141x x +=+﹣∴215x =(﹣)∴1x =∴1211x x ==【提示】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【考点】解一元二次方程-配方法,零指数幂17.【答案】(1)点D 以及四边形ABCD 另两条边如图所示.(2)得到的四边形A′B′C′D ′如图所示.【提示】(1)画出点B 关于直线AC 的对称点D 即可解决问题.(2)将四边形ABCD 各个点向下平移5个单位即可得到四边形A′B′C′D′.【考点】作图平移变换18.【答案】(1)21357164+++==,设第n 幅图中球的个数为a n ,观察,发现规律:222123132135313574a a a =+==++==+++=,,,…,∴2113521n a n n =+++⋯+=﹣(﹣). 故答案为:24;2n .(2)观察图形发现:图中黑球可分三部分,1到n 行,第n +1行,n +2行到2n +1行,即:11222135(21)[2(1)1](21)531135(21)(21)(21)531(21)21221n n n n n n n n a n a n n n n n +++⋯+++++⋯+++=+++⋯+++++⋯+++=+++=+++=++﹣﹣﹣﹣﹣﹣﹣故答案为:21n +;2221n n ++.【提示】(1)根据135716+++=可得出2164=;设第n 幅图中球的个数为n a ,列出部分n a 的值,根据数据的变化找出变化规律2113521n a n n =+++⋯+=﹣(﹣),依此规律即可解决问题; (2)观察(1)可将(2)图中得黑球分三部分,1到n 行,第1n +行,2n +行到21n +行,再结合(1)的规律即可得出结论.【考点】规律型:图形的变化类19.【答案】过点D 作1l 的垂线,垂足为F ,∵6030DEB DAB ∠=︒∠=︒,,∴30ADE DEBDAB ∠=∠∠=︒﹣, ∴△ADE 为等腰三角形,∴20DE AE ==.在Rt △DEF 中,1•6020102EF DE cos =︒=⨯= ∵DF AF ⊥,∴90DFB ∠=︒,∴AC ∥DF.由已知1l ∥2l ,∴CD ∥AF .∴四边形ACDF 为矩形,30CD AF AE EF ==+=.答:C 、D 两点间的距离为30m.【提示】直接利用等腰三角形的判定与性质得出20DE AE ==,进而求出EF 的长,再得出四边形ACDF 为矩形,则CD AF AE EF ==+求出答案.【考点】两点间的距离20.【答案】(1)把点A (4,3)代入函数a y x =得:3412a =⨯=, ∴12y x=.5OA ==,∵OA OB =,∴5OB =.∴点B 的坐标为(0,5)-.把B (05)-,,A (4,3)代入y kx b =+得:543b k b =-⎧⎨+=⎩解得:25k b =⎧⎨=-⎩ ∴25y x =-.(2)∵点M 在一次函数25y x =-上,∴设点M 的坐标为(,25)x x -,∵MB MC ==解得:52x =,∴点M 的坐标为5(,0)2.【提示】(1)利用待定系数法即可解答;(2)设点M 的坐标为(,25)x x -,根据MB MC =答.【考点】反比例函数与一次函数的交点问题21.【答案】(1)画树状图:共有16种等可能的结果数,它们是:11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率63168P == 【提示】(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来;(2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.【考点】列表法与树状图法;算术平方根.22.【答案】(1)将A (2,4)与B (6,0)代入2y ax bx =+, 得4243660a b a b +=⎧⎨+=⎩,解得:123a b ⎧=-⎪⎨⎪=⎩; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,11•24422OAD S OD AD ∆==⨯⨯=; 11•422422ACD S AD CE x x ∆==⨯⨯-=-(); 2211•43622BCD S BD CF x x x x ∆==⨯⨯+=-+(-), 则2242468OAD ACD BCD S S S S xx x x x ∆∆∆=++=+-+=-+﹣. ∴S 关于x 的函数表达式为2826S x x x =-+(<<),∵228(x 4)16S x x =-+=--+.∴当4x =时,四边形OACB 的面积S 有最大值,最大值为16.【提示】(1)把A 与B 坐标代入二次函数解析式求出a 与b 的值即可;(2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE AD ⊥,CF x ⊥轴,垂足分别为E ,F ,分别表示出三角形OAD ,三角形ACD ,以及三角形BCD 的面积,之和即为S ,确定出S 关于x 的函数解析式,并求出x 的范围,利用二次函数性质即可确定出S 的最大值,以及此时x 的值.【考点】待定系数法求二次函数解析式,二次函数的最值23.【答案】(1)证明:∵点C 、D 、E 分别是OA ,OB ,AB 的中点,∴DE OC CE OD ==,,CE ∥OD∴四边形ODEC 是平行四边形,∴OCE ODE ∠=∠.∵△OAP ,△OBQ 是等腰直角三角形,∴90PCO QDO ∠=∠=︒.∴PCE PCO OCE QDO ODQ EDQ ∠=∠+∠=∠=∠=∠. ∵1122PC AO OC ED CE OD OB DQ ======, 在△PCE 与△EDQ 中,PC DE PCE EDQ CE DQ =⎧⎪∠=∠⎨⎪=⎩∴PCE EDQ ∆∆≌.(2)①如图2,连接RO ,∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AP OR RB ==,∴ARC ORC ORQ BRO ∠=∠∠=∠,.∵90150RCO RDO COD ∠=∠=︒∠=︒,,∴30CRD ∠=︒,∴60ARB ∠=︒.∴△ARB 是等边三角形.②由(1)得,EQ EP DEQ CPE =∠=∠,,∴90PEQ CED CEP DEQ ACE CEP CPE ACE RCE ACR ∠=∠-∠-∠=∠-∠-∠=∠-∠=∠=︒, ∴△PEQ 是等腰直角三角形.∵ARB PEQ ∆∆∽,∴90ARB PEQ ∠=∠=︒,∴9045OCR ODR CRD ARB ∠=∠=︒∠=∠=︒,.∴135MON ∠=︒.此时P ,O ,B 在一条直线上,△P AB 为直角三角形,且90APB ∠=︒.∴22AB PE ===,∴AB PQ=【考点】相似形综合题。

2016-2017安徽省中考数学试题及解答

2016-2017安徽省中考数学试题及解答

2016年省中考数学试卷一、选择题〔本大题共10小题,每题4分,总分值40分〕1.〔4分〕〔2016•〕﹣2的绝对值是〔〕A.﹣2 B.2 C.±2 D.2.〔4分〕〔2016•〕计算a10÷a2〔a≠0〕的结果是〔〕A.a5B.a﹣5C.a8D.a﹣83.〔4分〕〔2016•〕2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为〔〕A.8.362×107 B.83.62×106 C.0.8362×108D.8.362×1084.〔4分〕〔2016•〕如图,一个放置在水平桌面上的圆柱,它的主〔正〕视图是〔〕A.B.C.D.5.〔4分〕〔2016•〕方程=3的解是〔〕A.﹣B.C.﹣4 D.46.〔4分〕〔2016•〕2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,假设2013年和2015年我省财政收入分别为a亿元和b亿元,那么a、b之间满足的关系式为〔〕A.b=a〔1+8.9%+9.5%〕B.b=a〔1+8.9%×9.5%〕C.b=a〔1+8.9%〕〔1+9.5%〕D.b=a〔1+8.9%〕2〔1+9.5%〕7.〔4分〕〔2016•〕自来水公司调查了假设干用户的月用水量x〔单位:吨〕,按月用水量将用户分成A、B、C、D、E五组进展统计,并制作了如下图的扇形统计图.除B组以外,参与调查的用户共64户,那么所有参与调查的用户中月用水量在6吨以下的共有〔〕组别月用水量x〔单位:吨〕A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12A.18户B.20户C.22户D.24户8.〔4分〕〔2016•〕如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,那么线段AC的长为〔〕A.4 B.4C.6 D.49.〔4分〕〔2016•〕一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,以下选项中,能正确反映甲、乙两人出发后2小时运动路程y〔千米〕与时间x〔小时〕函数关系的图象是〔〕A.B.C.D.10.〔4分〕〔2016•〕如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC部的一个动点,且满足∠PAB=∠PBC,那么线段CP长的最小值为〔〕A.B.2 C.D.二、填空题〔本大题共4小题,每题5分,总分值20分〕11.〔5分〕〔2016•〕不等式x﹣2≥1的解集是.12.〔5分〕〔2016•〕因式分解:a3﹣a=.13.〔5分〕〔2016•〕如图,⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,假设∠BAC=30°,那么劣弧的长为.14.〔5分〕〔2016•〕如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE 沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有以下结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的选项是.〔把所有正确结论的序号都选上〕三、〔本大题共2小题,每题8分,总分值16分〕15.〔8分〕〔2016•〕计算:〔﹣2016〕0++tan45°.16.〔8分〕〔2016•〕解方程:x2﹣2x=4.四、〔本大题共2小题,每题8分,总分值16分〕17.〔8分〕〔2016•〕如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.〔1〕试在图中标出点D,并画出该四边形的另两条边;〔2〕将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.〔8分〕〔2016•〕〔1〕观察以下图形与等式的关系,并填空:〔2〕观察以下图,根据〔1〕中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+〔2n﹣1〕+〔〕+〔2n﹣1〕+…+5+3+1=.五、〔本大题共2小题,每题10分,总分值20分〕19.〔10分〕〔2016•〕如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E 〔点E在线段AB上〕,测得∠DEB=60°,求C、D两点间的距离.20.〔10分〕〔2016•〕如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A〔4,3〕,与y轴的负半轴交于点B,且OA=OB.〔1〕求函数y=kx+b和y=的表达式;〔2〕点C〔0,5〕,试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、〔本大题总分值12分〕21.〔12分〕〔2016•〕一袋中装有形状大小都一样的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.〔1〕写出按上述规定得到所有可能的两位数;〔2〕从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、〔本大题总分值12分〕22.〔12分〕〔2016•〕如图,二次函数y=ax2+bx的图象经过点A〔2,4〕与B〔6,0〕.〔1〕求a,b的值;〔2〕点C是该二次函数图象上A,B两点之间的一动点,横坐标为x〔2<x<6〕,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、〔本大题总分值14分〕23.〔14分〕〔2016•〕如图1,A,B分别在射线OA,ON上,且∠MON为钝角,现以线段OA,OB为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.〔1〕求证:△PCE≌△EDQ;〔2〕延长PC,QD交于点R.①如图1,假设∠MON=150°,求证:△ABR为等边三角形;②如图3,假设△ARB∽△PEQ,求∠MON大小和的值.2016年省中考数学试卷参考答案一、选择题1.B2.C3.A4.C5.D6.C7.D8.B9.A10.B二、填空题11.x≥312.a〔a+1〕〔a﹣1〕13..14.解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,那么CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴〔6﹣x〕2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,那么GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=〔8﹣y〕2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.〔﹣2016〕0++tan45°=1﹣2+1=0.16.解:配方x2﹣2x+1=4+1∴〔x﹣1〕2=5∴x=1±∴x1=1+,x2=1﹣.四、17.解:〔1〕点D以与四边形ABCD另两条边如下图.〔2〕得到的四边形A′B′C′D′如下图.18.2n+1;2n2+2n+1.五、19.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.解:〔1〕把点A〔4,3〕代入函数y=得:a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为〔0,﹣5〕,把B〔0,﹣5〕,A〔4,3〕代入y=kx+b得:解得:∴y=2x﹣5.〔2〕∵点M在一次函数y=2x﹣5上,∴设点M的坐标为〔x,2x﹣5〕,∵MB=MC,∴解得:x=2.5,∴点M的坐标为〔2.5,0〕.六、21.解:〔1〕画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;〔2〕算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、22.解:〔1〕将A〔2,4〕与B〔6,0〕代入y=ax2+bx,得,解得:;〔2〕如图,过A作x轴的垂直,垂足为D〔2,0〕,连接CD,过C作CE⊥AD,CF⊥x 轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×〔x﹣2〕=2x﹣4;S△BCD=BD•CF=×4×〔﹣x2+3x〕=﹣x2+6x,那么S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x〔2<x<6〕,∵S=﹣x2+8x=﹣〔x﹣4〕2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、23.〔1〕证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;〔2〕①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AP=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由〔1〕得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△PAB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.2017年省初中学业水平考试数学〔试题卷〕考前须知:1.你拿到的试卷总分值为150分,考试时间为120分钟。

2016年安徽省中考数学试卷

2016年安徽省中考数学试卷

2016年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2B.2C.±2D.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣83.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108 4.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.(4分)方程=3的解是()A.﹣B.C.﹣4D.46.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.49.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是.12.(5分)因式分解:a3﹣a=.13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.16.(8分)解方程:x2﹣2x=4.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.2016年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)﹣2的绝对值是()A.﹣2B.2C.±2D.解:﹣2的绝对值是2.故选B.2.(4分)计算a10÷a2(a≠0)的结果是()A.a5B.a﹣5C.a8D.a﹣8解:a10÷a2(a≠0)=a8.故选C.3.(4分)2016年3月份我省农产品实现出口额8362万美元,其中8362万用科学记数法表示为()A.8.362×107B.83.62×106C.0.8362×108D.8.362×108解:8362万=8362 0000=8.362×107,故选A.4.(4分)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.解:圆柱的主(正)视图为矩形.故选C.5.(4分)方程=3的解是()A.﹣B.C.﹣4D.4解:去分母得2x+1=3x﹣3,解得x=4,经检验x=4是分式方程的解,故选D.6.(4分)2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)解:∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.7.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A.18户B.20户C.22户D.24户解:根据题意,参与调查的户数为=80(户),其中B组用户数占被调查户数的百分比为1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选D.8.(4分)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.4C.6D.4解:∵BC=8,∴CD=4,在△CBA和△CAD中,∵∠B=∠DAC,∠C=∠C,∴△CBA∽△CAD,∴=,∴AC2=CD•BC=4×8=32,∴AC=4;故选B.9.(4分)一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()A.B.C.D.解;由题意,甲走了1小时到了B地,在B地休息了半个小时,2小时正好走到C地,乙走了小时到了C地,在C地休息了小时.由此可知正确的图象是A.故选A.10.(4分)如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()A.B.2C.D.解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠P AB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故选B.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)不等式x﹣2≥1的解集是x≥3.解:不等式x﹣2≥1,解得x≥3,故答案为x≥312.(5分)因式分解:a3﹣a=a(a+1)(a﹣1).解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为a(a+1)(a﹣1)13.(5分)如图,已知⊙O的半径为2,A为⊙O外一点,过点A作⊙O的一条切线AB,切点是B,AO的延长线交⊙O于点C,若∠BAC=30°,则劣弧的长为.解:∵AB是⊙O切线,∴AB⊥OB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=90°﹣∠A=60°,∴∠BOC=120°,∴的长为=.故答案为.14.(5分)如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.其中正确的是①③④.(把所有正确结论的序号都选上)解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠1=∠2,CE=FE,BF=BC=10,在Rt△ABF中,∵AB=6,BF=10,∴AF==8,∴DF=AD﹣AF=10﹣8=2,设EF=x,则CE=x,DE=CD﹣CE=6﹣x,在Rt△DEF中,∵DE2+DF2=EF2,∴(6﹣x)2+22=x2,解得x=,∴ED=,∵△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠3=∠4,BH=BA=6,AG=HG,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF﹣BH=10﹣6=4,设AG=y,则GH=y,GF=8﹣y,在Rt△HGF中,∵GH2+HF2=GF2,∴y2+42=(8﹣y)2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D,==,=,∴≠,∴△ABG与△DEF不相似,所以②错误;∵S△ABG=•6•3=9,S△FGH=•GH•HF=×3×4=6,∴S△ABG=S△FGH,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:(﹣2016)0++tan45°.解:(﹣2016)0++tan45°=1﹣2+1=0.16.(8分)解方程:x2﹣2x=4.解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位,画出平移后得到的四边形A′B′C′D′.解:(1)点D以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.(8分)(1)观察下列图形与等式的关系,并填空(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=2n2+2n+1.解:(1)1+3+5+7=16=42,设第n幅图中球的个数为a n,观察,发现规律:a1=1+3=22,a2=1+3+5=32,a3=1+3+5+7=42,…,∴a n﹣1=1+3+5+…+(2n﹣1)=n2.故答案为42;n2.(2)观察图形发现:图中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1,=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1,=a n﹣1+(2n+1)+a n﹣1,=n2+2n+1+n2,=2n2+2n+1.故答案为2n+1;2n2+2n+1.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.解:过点D作l1的垂线,垂足为F,∵∠DEB=60°,∠DAB=30°,∴∠ADE=∠DEB﹣∠DAB=30°,∴△ADE为等腰三角形,∴DE=AE=20,在Rt△DEF中,EF=DE•cos60°=20×=10,∵DF⊥AF,∴∠DFB=90°,∴AC∥DF,由已知l1∥l2,∴CD∥AF,∴四边形ACDF为矩形,CD=AF=AE+EF=30,答:C、D两点间的距离为30m.20.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数y=得a=3×4=12,∴y=.OA==5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得解得∴y=2x﹣5.(2)方法一:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得x=2.5,∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),∴BC=10,∴BC的中垂线为直线y=0,当y=0时,2x﹣5=0,即x=2.5,∴点M的坐标为(2.5,0).六、(本大题满分12分)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)画树状图:共有16种等可能的结果数,它们是11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7的结果数为6,所以算术平方根大于4且小于7的概率==.七、(本大题满分12分)22.(12分)如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.解:(1)将A(2,4)与B(6,0)代入y=ax2+bx,得,解得;(2)如图,过A作x轴的垂线,垂足为D(2,0),连接CD、CB,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,S△OAD=OD•AD=×2×4=4;S△ACD=AD•CE=×4×(x﹣2)=2x﹣4;S△BCD=BD•CF=×4×(﹣x2+3x)=﹣x2+6x,则S=S△OAD+S△ACD+S△BCD=4+2x﹣4﹣x2+6x=﹣x2+8x,∴S关于x的函数表达式为S=﹣x2+8x(2<x<6),∵S=﹣x2+8x=﹣(x﹣4)2+16,∴当x=4时,四边形OACB的面积S有最大值,最大值为16.八、(本大题满分14分)23.(14分)如图1,A,B分别在射线OM,ON上,且∠MON为钝角,现以线段OA,OB 为斜边向∠MON的外侧作等腰直角三角形,分别是△OAP,△OBQ,点C,D,E分别是OA,OB,AB的中点.(1)求证:△PCE≌△EDQ;(2)延长PC,QD交于点R.①如图2,若∠MON=150°,求证:△ABR为等边三角形;②如图3,若△ARB∽△PEQ,求∠MON大小和的值.(1)证明:∵点C、D、E分别是OA,OB,AB的中点,∴DE=OC,DE∥OC,CE=OD,CE∥OD,∴四边形ODEC是平行四边形,∴∠OCE=∠ODE,∵△OAP,△OBQ是等腰直角三角形,∴∠PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO+∠EDO=∠EDQ,∵PC=AO=OC=ED,CE=OD=OB=DQ,在△PCE与△EDQ中,,∴△PCE≌△EDQ;(2)①如图2,连接RO,∵PR与QR分别是OA,OB的垂直平分线,∴AR=OR=RB,∴∠ARC=∠ORC,∠ORQ=∠BRO,∵∠RCO=∠RDO=90°,∠COD=150°,∴∠CRD=30°,∴∠ARB=60°,∴△ARB是等边三角形;②由(1)得,EQ=EP,∠DEQ=∠CPE,∴∠PEQ=∠CED﹣∠CEP﹣∠DEQ=∠ACE﹣∠CEP﹣∠CPE=∠ACE﹣∠RCE=∠ACR=90°,∴△PEQ是等腰直角三角形,∵△ARB∽△PEQ,∴∠ARB=∠PEQ=90°,∴∠OCR=∠ODR=90°,∠CRD=∠ARB=45°,∴∠MON=135°,此时P,O,B在一条直线上,△P AB为直角三角形,且∠APB=90°,∴AB=2PE=2×PQ=PQ,∴=.。

安徽省2016年中考数学试题(word版)

安徽省2016年中考数学试题(word版)

2016年安徽省初中毕业学业考试数 学一、选择题.1.-2的绝对值是A .-2B .2C .2±D .21 2.计算)0(210≠÷a a a 的结果是A .5aB .5-aC .8aD .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程 3112=-+x x 的解是 A .54- B .54 C .4- D .4 6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和 2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是 A. b =a (1+8.9%+9.5%) B. b =a (1+8.9%⨯9.5%)C. b =a (1+8.9%)(1+9.5%)D. b =a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .349.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好 者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时 的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、 乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23B .2C .13138D .131312二、填空题11.不等式12≥-x 的解集是 .12.因式分解:=-a a 3 .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠, 点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF上的点H 处.有下列结论:其中正确的是 .(把所有正确结论的序号都选上)三、解答题15.计算:︒+-+-45tan 8)2016(30.16.解方程:422=-x x .17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形 .18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.19.如图,一次函数b kx y +=的图像分别与反比例函数x a y =的图像在第一象限交于点)3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和xa y =的表达式; (2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现 规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均 匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQAB 的值.数学试题卷 第4页(共4页)。

2016年安徽蚌埠中考数学试题免费版含答案

2016年安徽蚌埠中考数学试题免费版含答案

2016年安徽省蚌埠市中考数学试题(免费版 含答案)为了方便您的阅读请点击全屏查看一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.-2的绝对值是A .-2B .2C .2±D .212.计算)0(210≠÷a a a 的结果是 A .5a B .5-a C .8a D .8-a3. 2016年3月份我省农产品实现出口额8362万美元. 其中8362万用科学记数法表示为A .710362.8⨯B .61062.83⨯C .8108362.0⨯D .810362.8⨯4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是5.方程 3112=-+x x 的解是A .54-B .54C .4-D .46.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长了9.5%.若2013年和2015我省财政收入分别为a 亿元和b 亿元和b 亿元,则a 、b 之间满足的关系式是 A.b=a (1+8.9%+9.5%)B.b=a (1+8.9%⨯9.5%)C.b=a (1+8.9%)(1+9.5%)D.b=a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有A. 18户B. 20户C. 22户D. 24户数学试题卷第1页(共4页)8.如图,ABC ∆中,AD 是中线,DAC B BC ∠=∠=,8,则线段AC 的长为A .4B .24C .6D .349.一段笔直的公路AC 长为20千米,途中有一处休息点AB B ,长为15千米.甲、乙两名长跑爱好 者同时从点A 出发.甲以15千米/时的速度匀速跑至点,B 原地休息半小时后,再以10千米/时 的速度匀速跑至终点C ;乙以12千米/时的速度匀速跑至终点C .下列选项中,能正确反映甲、 乙两人出发后2小时内运动路程 y (千米)与时间 x (小时)函数关系的图像是10.如图,ABC Rt ∆中,P BC AB BC AB .4,6,==⊥是ABC ∆内部的一个动点,且满足.PBC PAB ∠=∠则线段CP 长的最小值为A .23B .2C .13138D .131312二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式12≥-x 的解集是 .12.因式分解:=-a a 3 .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点.过点A 作⊙O 的一条切线AB ,切点是B . AO 的延长线交⊙O 于点C .若︒=∠30BAC ,则劣弧的长为 .14.如图,在矩形纸片ABCD 中,10,6==BC AB .点E 在CD 上,将BCE ∆沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将ABG ∆沿BG 折叠,点A 恰落在线段BF上的点H 处.有下列结论:其中正确的是.(把所有正确结论的序号都选上)三、(本大题共2小题,每小题8分,满分16分)[来源:]15.计算:︒+-+-45tan 8)2016(30. 16.解方程:422=-x x .数学试题卷第2页(共4页)四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1个单位长度的小正方形组成的1212⨯网格中,给出了四边形ABCD 的两条边AB 与BC ,且四边形ABCD 是一个轴对称图形,其对称轴为直线AC .(1)试在图中标出点四边形D ,并画出该四边形的另两条边;(2)将四边形ABCD 向下平移5个单位,画出平移后得到的四边形.18.(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:()12(531+-+⋅⋅⋅+++n =+++⋅⋅⋅+-+135)12()n五、(本大题共2小题,每小题10分,满分20分)19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某人在点A 处测得︒=∠︒=∠30,90DAB CAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得︒=∠60DEB ,求C 、D 两点间的距离.数学试题卷第3页(共4页)19.如图,一次函数b kx y +=的图像分别与反比例函数x a y =的图像在第一象限交于点)3,4(A ,与y 轴的负半轴交于点B ,且OB OA =.(1)求函数b kx y +=和x a y =的表达式;(2)已知点)5,0(C ,试在该一次函数图像上确定一点M ,使得MC MB =.求此时点M 的坐标.[来源:Z§xx§]六、(本题满分12分)21.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均 匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.七、(本题满分12分)22.如图,二次函数bx ax y +=2的图象经过点)4,2(A 与)0,6(B .(1)求b a ,的值;(2)点C 是该二次函数图象上B A ,两点之间的一动点,横坐标为)62(<<x x .写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.八、(本题满分14分)22.如图1,B A ,分别在射线ON OM ,上,且MON ∠为钝角.现以线段OB OA ,为斜边向MON ∠的外侧作等腰直角三角形,分别是OBQ OAP ∆∆,,点E D C ,,分别是AB OB OA ,,的中点.(1)求证:EDQ PCE ∆≅∆;(2)延长DQ PC ,交于点R .① 如图2,若︒=∠150MON ,求证:ABR ∆为等边三角形;② 如图3,若ARB ∆∽PEQ ∆,求MON ∠大小和PQ AB的值.数学试题卷第4页(共4页)2016年安徽省蚌埠市中考数学中考试题答案解析。

2016年安徽中考数学试题(附含答案解析)

2016年安徽中考数学试题(附含答案解析)

2016 年安徽省中考数学试卷C. b=a( 1+8.9%)( 1+9.5%)D. b=a2( 1+8.9%)( 1+9.5%)一、选择题(本大题共10 小题,每小题 47.( 4 分)(2016?安徽)自来水公司调查了分,满分40 分)若干用户的月用水量 x(单位:吨),按月用1.( 4 分)( 2016?安徽)﹣2 的绝对值是()水量将用户分成A、B、C、D、E 五组进行统A.﹣ 2B. 2C.±2 D.计,并制作了如图所示的扇形统计图.已知除 B 组以外,参与调查的用户共64 户,则102所有参与调查的用户中月用水量在6吨以下2.( 4 分)(2016?安徽)计算 a÷a(a≠0)的结果是()的共有()A. a5B. a﹣5C. a8D. a﹣8组别月用水量 x(单位:吨)3.( 4 分)(2016?安徽) 2016 年 3 月份我省A0≤x< 3农产品实现出口额8362 万美元,其中 8362B3≤x< 6万用科学记数法表示为()C6≤x< 9A.8.362 ×10 7B.83.62 ×10 6D9≤x< 1288E x≥12C.0.8362 ×10D.8.362 ×104.( 4 分)(2016?安徽)如图,一个放置在水平桌面上的圆柱,它的主(正)视图是()A.B.C.D.5.( 4 分)(2016?安徽)方程=3 的解是()A.﹣B.C.﹣ 4D. 46.( 4 分)(2016?安徽) 2014 年我省财政收入比2013 年增长8.9%,2015 年比2014 年增长 9.5%,若 2013 年和 2015 年我省财政收入分别为 a 亿元和 b 亿元,则 a、 b 之间满足的关系式为()A. b=a( 1+8.9%+9.5%)B. b=a(1+8.9%×9.5%)A.18 户 B.20 户 C.22 户 D. 24 户8.( 4 分)(2016?安徽)如图,△ ABC 中,AD是中线, BC=8,∠ B=∠DAC,则线段 AC的长为()A.4B.4 C .6D. 49.(4 分)(2016?安徽)一段笔直的公路 AC长 20 千米,途中有一处休息点 B,AB长 15 千米,甲、乙两名长跑爱好者同时从点 A 出发,甲以 15 千米 / 时的速度匀速跑至点 B,原地休息半小时后,再以 10 千米 / 时的速度匀速跑至终点C;乙以12 千米/ 时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后 2小时内运动路程 y(千米)与时间 x(小时)函数关系的图象是()A.B.11.(5 分)(2016?安徽)不等式x﹣2≥1的解集是.12.(5 分)(2016?安徽)因式分解:a3﹣a=.13.( 5 分)(2016?安徽)如图,已知⊙O的半径为 2,A 为⊙O外一点,过点 A 作⊙O 的一条切线AB,切点是B,AO的延长线交⊙O于点 C,若∠ BAC=30°,则劣弧的长为.C.D.10.(4 分)(2016?安徽)如图,Rt△ABC中,AB⊥BC, AB=6, BC=4, P 是△ ABC内部的一个动点,且满足∠ PAB=∠PBC,则线段 CP长的最小值为()A.B.2C.D.二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)14.( 5 分)(2016?安徽)如图,在矩形纸片ABCD中,AB=6,BC=10,点 E 在 CD上,将△ BCE 沿 BE折叠,点 C 恰落在边 AD上的点 F 处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段 BF 上的点 H 处,有下列结论:①∠ EBG=45°;②△ DEF∽△ ABG;③S△ABG=S△FGH;④ AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)三、(本大题共 2 小题,每小题8 分,满分16分)15.(8 分)(2016?安徽)计算:(﹣ 2016 )0++tan45 °.16.(8 分)(2016?安徽)解方程: x2﹣2x=4.四、(本大题共 2 小题,每小题8 分,满分16分)17.( 8 分)(2016?安徽)如图,在边长为1个单位长度的小正方形组成的12×12 网格中,给出了四边形 ABCD的两条边 AB 与 BC,且四边形 ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点 D,并画出该四边形的另两条边;(2)将四边形 ABCD向下平移 5 个单位,画出平移后得到的四边形 A′B′C′D′.18.( 8 分)(2016?安徽)( 1)观察下列图形与等式的关系,并填空:( 2)观察下图,根据( 1)中结论,计算图中黑球的个数,用含有 n 的代数式填空:1+3+5+ +( 2n﹣1)+()+( 2n ﹣ 1)+ +5+3+1=.五、(本大题共 2 小题,每小题10 分,满分20 分)19.( 10 分)(2016?安徽)如图,河的两岸l 1与 l 2相互平行, A、B 是 l 1上的两点, C、D 是 l 2上的两点,某人在点 A 处测得∠CAB=90°,∠ DAB=30°,再沿AB方向前进 20 米到达点 E(点 E 在线段 AB 上),测得∠DEB=60°,求 C、 D 两点间的距离.20.( 10 分)(2016?安徽)如图,一次函数y=kx+b 的图象分别与反比例函数y=的图象在第一象限交于点 A( 4,3),与 y 轴的负半轴交于点 B,且 OA=OB.(1)求函数 y=kx+b 和 y= 的表达式;(2)已知点 C( 0, 5),试在该一次函数图象上确定一点 M,使得 MB=MC,求此时点 M 的坐标.线段 OA,OB为斜边向∠ MON的外侧作等腰直角三角形,分别是△ OAP,△ OBQ,点C, D,E 分别是 OA, OB, AB 的中点.( 1)求证:△ PCE≌△ EDQ;( 2)延长 PC,QD交于点 R.①如图 1,若∠ MON=150°,求证:△ ABR 为等边三角形;②如图 3,若△ ARB∽△ PEQ,求∠ MON大小和的六、(本大题满分12 分)21.( 12 分)(2016?安徽)一袋中装有形状值.大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于 4 且小于 7 的概率.七、(本大题满分12 分)22.( 12 分)(2016?安徽)如图,二次函数2y=ax +bx 的图象经过点A( 2, 4)与 B( 6,0).(1)求 a, b 的值;(2)点C 是该二次函数图象上A,B 两点之间的一动点,横坐标为x(2<x<6),写出四边形 OACB的面积 S 关于点 C 的横坐标 x的函数表达式,并求S 的最大值.八、(本大题满分14 分)23.( 14 分)(2016?安徽)如图1, A, B 分别在射线OA,ON上,且∠ MON为钝角,现以2016 年安徽省中考数学试卷参考答案一、选择题1. B2. C3. A4. C5. D6. C7. D8. B9. A10. B二、填空题11.x≥312. a ( a+1)( a﹣ 1)13..14.解:∵△ BCE 沿 BE折叠,点 C恰落在边 AD 上的点 F 处,∴∠ 1=∠2, CE=FE,BF=BC=10,在 Rt△ABF 中,∵ AB=6, BF=10,∴AF==8,∴D F=AD﹣ AF=10﹣ 8=2,设 EF=x,则 CE=x, DE=CD﹣ CE=6﹣x,在 Rt △DEF中,∵ DE2+DF2=EF2,∴( 6﹣ x)2+22=x2,解得 x=,∴E D= ,∵△ ABG沿 BG折叠,点 A 恰落在线段 BF 上的点 H处,∴∠ 3=∠4, BH=BA=6, AG=HG,∴∠ 2+∠3=∠ABC=45°,所以①正确;HF=BF﹣ BH=10﹣ 6=4,设 AG=y,则 GH=y, GF=8﹣ y,在 Rt△HGF中,∵ GH2+HF2=GF2,222∴y+4 =( 8﹣ y),解得 y=3,∴AG=GH=3, GF=5,∵∠A=∠D,= =,=,∴≠,∴△ ABG与△ DEF 不相似,所以②错误;∵S=?6?3=9,△ABGS△FGH= ?GH?HF= ×3×4=6,∴S△ABG=S△FGH,所以③正确;∵A G+DF=3+2=5,而 GF=5,∴AG+DF=GF,所以④正确.故答案为①③④.三、15.(﹣ 2016)0++tan45 °=1﹣ 2+1=0.16.2解:配方x ﹣ 2x+1=4+1∴x=1±∴x1=1+,x2=1﹣.四、17.解:( 1)点 D 以及四边形ABCD另两条边如图所示.(2)得到的四边形A′B′C′D′如图所示.18.2n+1; 2n2+2n+1.五、19.解:过点D作 l 1的垂线,垂足为F,∵∠ DEB=60°,∠ DAB=30°,∴∠ ADE=∠DEB﹣∠ DAB=30°,∴△ ADE为等腰三角形,∴D E=AE=20,在 Rt△DEF中, EF=DE?cos60°=20× =10,∵D F⊥AF,∴∠ DFB=90°,∴AC∥DF,由已知 l 1∥l2,∴CD∥AF,∴四边形 ACDF为矩形, CD=AF=AE+EF=30,答: C、 D两点间的距离为 30m.20.解:( 1)把点 A( 4, 3)代入函数y=得:a=3×4=12,∴y= .OA==5,∴O B=5,∴点 B 的坐标为( 0,﹣ 5),把 B(0,﹣ 5), A( 4, 3)代入 y=kx+b 得:解得:∴y=2x﹣ 5.(2)∵点 M在一次函数 y=2x ﹣ 5 上,∴设点 M的坐标为( x, 2x﹣ 5),∵MB=MC,∴解得: x=2.5 ,∴点 M的坐标为( 2.5 , 0).六、21.解:( 1)画树状图:共有 16 种等可能的结果数,它们是: 11,41,71,81,14,44,74,84,17,47,77,87,18, 48, 78, 88;( 2)算术平方根大于 4 且小于 7 的结果数为 6,所以算术平方根大于 4 且小于 7 的概率== .七、22.解:( 1)将 A( 2,4)与 B(6,0)代入 y=ax 2+bx,得,解得:;(2)如图,过 A 作 x 轴的垂直,垂足为 D(2, 0),连接 CD,过 C作 CE⊥AD,CF⊥x轴,垂足分别为 E, F,S△OAD=OD?AD= ×2×4=4;∵OA=OB,S△ACD= AD?CE= ×4×( x﹣ 2) =2x﹣ 4;S△BCD= BD?CF= ×4×(﹣x2+3x)=﹣ x2+6x,则 S=S△OAD+S△ACD+S△BCD=4+2x﹣ 4﹣x2+6x= ﹣x2+8x,∴S关于 x 的函数表达式为 S=﹣ x2+8x( 2<x < 6),∵S=﹣ x2+8x=﹣( x﹣ 4)2+16,∴当 x=4 时,四边形 OACB的面积 S 有最大值,最大值为 16.∴∠ ARB=60°,∴△ ARB是等边三角形;②由( 1)得, EQ=EP,∠ DEQ=∠CPE,∴∠ PEQ=∠CED﹣∠ CEP﹣∠ DEQ=∠ACE﹣∠CEP﹣∠ CPE=∠ACE﹣∠ RCE=∠ACR=90°,∴△ PEQ是等腰直角三角形,∵△ ARB∽△ PEQ,∴∠ ARB=∠PEQ=90°,∴∠ OCR=∠ODR=90°,∠CRD= ∠ARB=45°,∴∠ MON=135°,此时 P, O, B 在一条直线上,△ PAB 为直角三角形,且∠ APB=90°,∴AB=2PE=2×PQ= PQ,∴=.八、23.(1)证明:∵点C、 D、 E 分别是 OA,OB,AB的中点,∴DE=OC,∥ OC, CE=OD,CE∥OD,∴四边形 ODEC是平行四边形,∴∠ OCE=∠ODE,∵△ OAP,△ OBQ 是等腰直角三角形,∴∠ PCO=∠QDO=90°,∴∠PCE=∠PCO+∠OCE=∠QDO=∠ODQ=∠EDQ ,∵P C= AO=OC=ED, CE=OD= OB=DQ,在△ PCE与△ EDQ中,,∴△ PCE≌△ EDQ;(2)①如图2,连接 RO,∵PR与 QR分别是 OA, OB的垂直平分线,∴AP=OR=RB,∴∠ ARC=∠ORC,∠ ORQ=∠BRO,∵∠ RCO=∠RDO=90°,∠ COD=150°,∴∠ CRD=30°,(素材和资料部分来自网络,供参考。

安徽省2016年中考数学试题(附解析)

安徽省2016年中考数学试题(附解析)

1.【答案】B. 【解析】试题分析:根据绝对值的性质可得-2的绝对值是2,故答案选B. 考点:绝对值. 2.【答案】C.考点:同底数幂的除法. 3.【答案】A. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ,n 为原数的整数位数减一.8362万=83620000=8.362×107.故答案选A. 考点:科学计数法.4.【答案】C.【解析】试题分析:几何体的主视图是从正面看到的图形,圆柱从正面看是一个矩形,故答案选C. 考点:几何体的三视图.5.【答案】D.考点:解方式方程.6.【答案】C.【解析】试题分析:由题意可得2014年的财政收入为a(1+8.9%),2015年的财政收入为a(1+8.9%)(1+9.5%),所以b=a(1+8.9%)(1+9.5%),故答案选C.考点:列代数式.7.【答案】D.考点:扇形统计图;用样本估计总体.8.【答案】B. 【解析】试题分析:已知AD 是直线,BC=8,所以CD=4,又因∠B=∠DAC,∠C 为公共角,可得△ACD ∽Rt △BCA ,根据相似三角形的性质可得AC CD BC AC =,即ACAC 48=,解得AC=42,故答案选B.考点:相似三角形的判定及性质.9.【答案】A. 【解析】试题分析:由题意可知,甲图中休息半个小时,可排除选项B 、D,由题意可以计算出乙35小时到达终点,甲1小时到达B 处,休息半小时后再用半个小时到达终点,符合要求的选项只有A ,故答案选A. 考点:函数图像.10【答案】B.考点:最短距离问题.11.【答案】x ≥3. 【解析】试题分析:解不等式可得x ≥3. 考点:解不等式. 12.【答案】a (a+1)(a-1). 【解析】试题分析:先提公因式a 后再利用平方差公式分解即可,即原式=a (a 2-1)=a (a+1)(a-1). 考点:因式分解. 13.【答案】34.考点:切线的性质;弧长公式. 14.【答案】①③④. 【解析】试题分析:由折叠的性质可得BC=BF=10,CE=EF,AB=BH=8,AG=GH,∠CBE=∠FBE,∠ABG=∠HBG,因∠CBE+∠FBE+∠ABG+∠HBG=90°,所以∠HBG+∠FBE=40°,即∠EBG=45°,故①正确;在Rt △ABF 中,由勾股定理求得AF=8,所以DF=AD-AF=2,在Rt △DEF 中,设CE=EF=x,则DE=6-x ,由勾股定理得22262x x =-+)(,解得x=310,即CE=EF=310,DE=38;在Rt △GHF 中,设AG=GH=y,则GF=8-y ,HF=10-6=4,由勾股定理得222)8(4y y -=+,解得y=3,即GF=5;因∠A=∠D=90°,DFAGDE AB ≠,所以△DEF 与△ABG 不相似,故②错误;因9632121=⨯⨯=⋅=∆AB AG S ABG ,6432121=⨯⨯=⋅=∆HF GH S FGH ,所以ABG S ∆=FGH S ∆23,故③正确;因AG+DF=FG=5,所以④正确.故正确答案为①③④.考点:四边形综合题.15.【答案】0.考点:零指数幂;立方根;特殊角的三角函数值. 16.【答案】51,5121-+==x x . 【解析】试题分析:用配方法解方程即可.试题解析:考点:一元二次方程的解法.17.【答案】(1)详见解析;(2)详见解析.考点:轴对称作图;平移变换作图.18.【答案】(1)24,2n ;(2)2n+1,1222++n n .【解析】试题分析:(1)观察图形,得出规律,即可得答案;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .试题解析:(1)24,2n ;(2)中间这个数为2n-1+2=2n+1;由(1)的规律可得,原式=2n +2n+1+2n =1222++n n .考点:规律探究题.19.【答案】30米.考点:解直角三角形的应用.20.【答案】(1)x y 12,y=2x-5;(2)(25,0).考点:待定系数法求函数解析式.21.【答案】(1)11、14、17、18、41、44、47、48、71、74、77、78、81、84、87、88;(2)83. 【解析】试题分析:(1)按顺序直接列举出所有的两位数即可;(2)找出这16个数中算术平方根大于4且小于7的两位数的个数,根据概率公式即可求得答案. 试题解析:考点:用列举法求概率. 22.【答案】(1)21-=a ,b=3;(2))62(82 x x x S +-=,16.试题解析:考点:二次函数的综合题.23.【答案】(1)详见解析;(2)①详见解析;②135°,2.(2)①连接OR,由已知可得PR、RQ分别是线段OA、OB的垂直平分线,根据线段垂直平分线的性质可得RA=RO=RB,∠ARC=∠ORC,∠ORD=∠BRQ,在四边形RCOD中,根据四边形的内角和为360°可求得∠PRQ=30°,所以∠ARB=2∠PRQ=60°,再由AR=RB 即可判定△ABR为等边三角形;②由(1)得EQ=PE,∠DEQ=∠CPE,由四边形CODE是平行四边形可得∠CED=∠COD=∠ACE,所以∠PEQ=∠CED-∠CEP-∠DEQ=∠ACE-∠CEP-1∠CPE=∠ACE-∠ACR=90°,由△ARB∽△PEQ可得∠ARB=90°,由(2)可得∠PRQ=2∠ARB=45°,在四边形RCOD 中,根据四边形的内角和为360°可求得∠MON=135°,由此可得P 、O 、B 三点共线,△APB 为直角三角形,根据直角三角形斜边的中线等于斜边的一半可得AB=2PE,在Rt △PEC 中,由勾股定理可得PE=22PQ,所以22222=⨯==PQPQ PQPE PQ AB . 试题解析:考点:三角形与四边形的综合题.。

2016安徽省中考数学试题及答案解析

2016安徽省中考数学试题及答案解析

2016年安徽省初中毕业学业考试数学试题解析本试卷共8大题,计23小题,满分150分,考试时间120分钟。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2016安徽,1,4分)下面的数中,与-3的和为0的是 ………………………….( )A.3B.-3C.31 D.31- 1. 解析:根据有理数的运算法则,可以把选项中的数字和-3相加,进行筛选只有选项A符合,也可以利用相反数的性质,根据互为相反数的两数和为0,必选-3的相反数3. 解答:A .点评:本题考查了有理数的运算、及其概念,理解有关概念,掌握运算法则,是解答此类题目的基础.2. (2016安徽,2,4分)下面的几何体中,主(正)视图为三角形的是( )A. B. C. D.2. 解析:根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个靠着的矩形. 解答:C .点评:此题是由立体图形到平面图形,熟悉常见几何体的三视图,如果要求画出几何体的三视图,要注意它们之间的尺寸大小,和虚实线.3. (2016安徽,3,4分)计算32)2(x -的结果是( ) A.52x - B. 68x - C.62x - D.58x - 3. 解析:根据积的乘方和幂的运算法则可得. 解答:解:6323328)()2()2(x x x -=-=- 故选B .点评:幂的几种运算不要混淆,当底数不变时,指数运算要相应的降一级,还要弄清符号,这些都是易错的地方,要熟练掌握,关键是理解乘方运算的意义. 4. (2016安徽,4,4分)下面的多项式中,能因式分解的是()A.n m +2B. 12+-m mC. n m -2D.122+-m m 4. 解析:根据分解因式的方法,首先是提公因式,然后考虑用公式,如果项数较多,要分组分解,本题给出四个选项,问哪个可以分解,对照选项中的多项式,试用所学的方法分解.就能判断出只有D 项可以.解答:解:22)1(12-=+-m m m 故选D .得分 评卷人点评:在进行因式分解时,首先是提公因式,然后考虑用公式,(两项考虑用平方差公式,三项用完全平方公式,当然符合公式才可以.)如果项数较多,要分组分解,最后一定要分解到每个因式不能再分为止.5. (2016安徽,5,4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元5. 解析:根据4月份比3月份减少10﹪,可得4月份产值是(1-10﹪)a , 5月份比4月份增加15﹪,可得5月份产值是(1-10﹪)(1+15﹪)a , 解答:A .点评:此类题目关键是弄清楚谁是“基准”,把“基准”看作“单位1”,在此基础上增加还是减少,就可以用这个基准量表示出来了.6. (2016安徽,6,4分)化简xxx x -+-112的结果是( ) A.x +1 B. x -1 C.—x D. x6. 解析:本题是分式的加法运算,分式的加减,首先看分母是否相同,同分母的分式加减,分母不变,分子相加减,如果分母不同,先通分,后加减,本题分母互为相反数,可以化成同分母的分式加减.解答:解:x x x x x x x x x x x =--=--=---=1)1(11122 故选D . 点评:分式的一些知识可以类比着分数的知识学习,分式的基本性质是关键,掌握了分式的基本性质,可以利用它进行通分、约分,在进行分式运算时根据法则,一定要将结果化成最简分式.7. (2016安徽,7,4分)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边 形与其内部小正方形的边长都为a ,则阴影部分的面积为( ) A.22a B. 32a C. 42a D.52a7. 解析:图案中间的阴影部分是正方形,面积是a 2,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为a 的正方形的一半,它的面积用对角线积的一半来计算. 解答:解:222242121a a a =⨯⨯+故选A . 点评:本题考查了正多边形的性质,关键要找出正八边形和原来正方形的关系,尽量用所给数据来计算.8. (2016安徽,8,4分)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A.61 B. 31 C.21 D.32 8. 解析:第1个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,所以第一个打电话给甲的概率是31.解答: 故选B .9. (2016安徽,9,4分)如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线 ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图像大致是( )9. 解析:利用AB 与⊙O 相切,△BAP 是直角三角形,把直角三角形的直角边表示出来,从而用x 表示出三角形的面积,根据函数解析式确定函数的图象. 解答:解:∵AB 与⊙O 相切,∴∠BAP=90°, OP=x ,AP=2-x,∠BPA=60°,所以AB=)2(3x -,所以△APB 的面积2)2(23x y -=,(0≤x ≤2)故选D . 点评:此类题目一般都是根据图形性质,用字母表示出这个变量,把运动变化的问题转化成静止的.再根据函数的性质解答.有时变化过程的有几种情况,注意它们的临界值. 10. (2016安徽,10,4分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A.10B.54C. 10或54D.10或17210. 解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的. 解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯故选C .点评:在几何题没有给出图形时,有的同学会忽略掉其中一种情况,错选A 或B ;故解决本题最好先画出图形,运用数形结合和分类讨论的数学思想进行解答,避免出现漏解.二、填空题(本大题共4小题,每小题5分,满分20分)11. (2016安徽,11,5分)2015年安徽省棉花产量约378000吨,将378000用科学计数法表示应是______________.11. 解析:科学记数法形式:a ×10n (1≤|a |<10,n 为整数)中n 的值是易错点,由于378 000有6位,所以可以确定n =6﹣1=5,所以378 000=3.78×105 答案: 3.78×105 12. (2016安徽,12,5分)甲乙丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为362=甲S ,252=乙S ,162=丙S ,则数据波动最小的一组是___________________.12. 解析:平均数是反映数据集中趋势的特征量,方差反映数据离散程度的特征量,由于平均数相等,方差越大,说明数据越离散,波动越大,方差越小,说明数据越集中,波动越小.丙组方差最小,波动最小. 答案:丙组13. (2016安徽,13,5分)如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=_______________°.13. 解析:根据同圆中同弧所对的圆周角是圆心角的一半,所以∠AOC=2∠D ;又因为四边形OABC 是平行四边形,所以∠B=∠AOC ;圆内接四边形对角互补,∠B+∠D=180°,所以∠D= 60°,连接OD ,则OA=OD,OD=OC,∠OAD=∠ODA,∠OCD=∠ODC,即有∠OAD+∠OCD=60°. 答案:60.点评:本题是以圆为背景的几何综合题,在圆内圆周角和圆心角之间的关系非常重要,经常会利用它们的关系来将角度转化,另外还考查了平行四边形对角相等,圆内接四边形对角互补,以及等腰三角形的性质.解决此类题目除了数学图形的性质,还要学会识图,做到数形结合.14. (2016安徽,14,5分)如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上得分 评卷人其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上). 14. 解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立答案:②④.点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.三、(本大题共2小题,每小题8分,满分16分)15. (2016安徽,15,8分)计算:)2()1)(3(-+-+a a a a15. 解析:根据整式的乘法法则,多项式乘多项式时,用其中一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加;单项式乘多项式,可以按照乘法分配率进行.最后再根据合并同类项法则进行整式加减运算.解:原式=a 2-a+3a -3+a 2-2a =2a 2-3 16. (2016安徽,16,8分)解方程:1222+=-x x x16. 解析:根据一元二次方程方程的几种解法,本题不能直接开平方,也不可用因式分解法.先将方程整理一下,可以考虑用配方法或公式法.解:原方程化为:x 2-4x=1配方,得x 2-4x+4=1+4 整理,得(x -2)2=5∴x -2=5±,即521+=x ,522-=x .四、(本大题共2小题,每小题8分,满分16分)17. (2016安徽,17,8分)在由m ×n (m ×n >1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f ,(1)当m 、n 互质(m 、n 除1外无其他公因数)时,观察下列图形并完成下表:mnm n +f1 2 3 2 1 3 4 3 2 3 5 4 2 4 7 3 5 7猜想:当m 、n 互质时,在m ×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式是______________________________(不需要证明); 解:(2)当m 、n 不互质时,请画图验证你猜想的关系式是否依然成立, 17:解析:(1)通过题中所给网格图形,先计算出2×5,3×4,对角线所穿过的小正方形个数f ,再对照表中数值归纳f 与m 、n 的关系式.(2)根据题意,画出当m 、n 不互质时,结论不成立的反例即可. 解:(1)如表:f=m+n-1(2)当m 、n 不互质时,上述结论不成立,如图2× 42×418. (2016安徽,18,8分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC 全等且A 与A1是对应点;m n m n f 1 2 3 2 1 3 4 32 3 5 4 2 4 7 6 3 5 7 6(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.解:18.解析:(1)考查全等变化,可以通过平移、旋转、轴对称等来完成;(2)先作出图形,因为要回答旋转角度,利用方格纸算出AB、AD、BD的长度,再计算角度.解:(1)答案不唯一,如图,平移即可2(2)作图如上,∵AB=10,AD=10,BD=5∴AB2+AD2=BD2 新课标一网∴△ABD是直角三角形,AD可以看作由AB绕A点逆时针旋转90°得到的.点评:图形变换有两种,全等变换和相似变换,掌握每种变换的概念、性质是作图的基础,一般难度不大.五、(本大题共2小题,每小题10分,满分20分)2,求19. (2016安徽,19,10分)如图,在△ABC中,∠A=30°,∠B=45°,AC=3C45°30°ABAB 的长, 解:19. 解析:本题在一个三角形中已知两个角和一边,求三角形的边.不是直角三角形,要利用三角函数必须构筑直角三角形,过点C 作CD ⊥AB 于D,利用构造的两个直角三角形来解答. 解:过点C 作CD ⊥AB 于D,在Rt △ACD 中,∠A=30°,AC=32 ∴CD=AC ×sinA=32×0.5=3,AD=AC ×cosA=32×23=3, 在Rt △BCD 中,∠B=45°,则BD=CD=3, ∴AB=AD+BD=3+3点评:解直角三角形中,除了直角外,还知道两个元素(至少有一个是边),就能求出其余的边和角. 一般三角形中,知道三个元素(至少有一个是边),就能求出其余的边和角. 这时将三角形转化为直角三角形时,注意尽量不要破坏所给条件.20. (2016安徽,20,10分)九(1)班同学为了解2015年某小区家庭月均用水情况,随月均用水量x (t) 频数(户) 频率05x <≤ 6 0.12510x <≤ 0.241015x <≤ 16 0.321520x <≤ 10 0.20 2025x <≤ 4 2530x <≤ 2 0.04 请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)若该小区用水量不超过15t 的家庭占被调查家庭总数的百分比; 解:(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t 的家庭大约有多少户? 解:20. 本题考查了数据的统计中的频数分布表和不完整的频数分布直方图.所有的频数和就是样本容量,所有频率和等于1,且有n数据总数频数频率=,(1)数据总数5012.06===频率频数 ,50×0.24=12,4÷50=0.08, (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪第20题图 月用水量(t)(3)用样本来估计总体,根据抽取的样本超过20吨的家庭数,来估计该小区的情况.. 解:(1)统计中的频数分布表和不完整的频数分布直方图,补充如下 (2)用水量不超过15吨是前三组,(0.12+0.24+0.32)×100﹪=68﹪ (3)1000×(0.04+0.08)=120(户)六、(本题满分12分)21. (2016安徽,21,12分)甲、乙两家商场进行促销活动,甲商场采用“慢200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;……,乙商场按顾客购买商品的总金额打6折促销。

2016安徽中考数学试题及答案大全_数学难易程度怎样

2016安徽中考数学试题及答案大全_数学难易程度怎样

2016安徽中考数学试题及答案大全_数学难易程度怎样
2016安徽中考数学考试结束,中国教育在线在考试后及时公布安徽中考试题、答案和中考作文。

那么首先来看看2016安徽中考数学的试题以及答案吧,大家看看有没有难度。

2016年安徽省中考数学试题及答案
2016年安徽中考数学试卷难易程度调查合肥部分考生认为较难
今天上午,2016年安徽中考数学科目开考。

据悉,昨日的语文考试试卷整体不难,那么今天的数学考试试卷难吗?据合肥42中考点,提前交卷的个别考生透露,数学试卷较难。

小编做个小调查,今年中考数学试题难不难,欢迎来吐槽。

6月15日,中考进入第二天。

相比前一天的骄阳似火,昨天的天气算是相当“给力”,让等候在考场外的家长们也觉得轻松不少。

题目难易方面,考生们普遍觉得,数学大题有点难度,历史政治很轻松。

昨日下午,在合肥50中新区天鹅湖校区考点外,没有烈日,陪考的家长明显比第一天多不少。

上午11点左右,数学考试结束,不少考生一出大门就互相询问。

“最后一题做出来没有?”合肥宁溪中学考生王同学告诉记者,这次数学感觉有点难,尤其是最后一题。

“是一道几何解析题,关于正三角形的,我没有做出来。

”50中东区的李同学也表示,数学前面的题目还好,后面几道大题有点难度,自己没有全部答出来。

相比数学,下午的政治历史则让考生和家长轻松不少,走出考场的考生大部分是满面笑容。

“历史和政治都不难,政治有些大题要想一想,选择题也有难度。

”考生刘同学告诉记者,历史最后一道大题是关于外交政策的,不过自己正好复习到了,觉得答得还可以。

考生小秦则觉得历史比政治还要简单一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年安徽省中考数学试卷一、选择题(本题共10小题,每小题4分,共40分) 1.-2的绝对值是( ) A .-2B .2C .±2D .212.计算a 10÷a 2(a ≠0)的结果是( ) A .a 5B .a -5C .a 8D .a -83.2016年3月份我省农产品实现出口额8 362万美元,其中8 362万用科学记数法表示 为( )A .8.362×107B .83.62×106C .0.8362×108D .8.362×108 4.如图,一个放置在水平桌面上的圆柱,它的主(正)视图是( )(第4题图)A BCD5.方程112-+x x =3的解是( ) A .-45B.54C .-4D .4 6.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a 亿元和b 亿元,则a ,b 之间满足的关系式为( ) A .b =a (1+8.9%+9.5%) B .b =a (1+8.9%×9.5%) C .b =a (1+8.9%)(1+9.5%) D .b =a (1+8.9%)2(1+9.5%)7.自来水公司调查了若干用户的月用水量x (单位:吨),按月用水量将用户分成A ,B ,C ,D ,E 五组进行统计,并制作了如图的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有( )组别月用水量x/吨A 0≤x<3B 3≤x<6C 6≤x<9D 9≤x<12E x≥12(第7题图)A.18户B.20户C.22户D.24户8.如图,在△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()(第8题图)A.4 B.42C.6 D.439.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(时)函数关系的图像是()A B C D10.如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()(第10题图)A .23 B .2 C .13138 D .131312 二、填空题(本题共4小题,每小题5分,共20分) 11.不等式21x -≥的解集是 . 12.分解因式:a 3-a = .13.如图,已知⊙O 的半径为2,A 为⊙O 外一点,过点A 作⊙O 的一条切线AB ,切点是B ,AO 的延长线交⊙O 于点C ,若∠BAC =30°,则劣弧BC 的长为 .(第13题图)14.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =23S △FGH ;④AG +DF =FG .其中正确的是 .(把所有正确结论的序号都填上)(第14题图)三、解答题(本题共9小题,共90分) 15.(8分)计算:(-2 016)0+38-+tan 45°. 16.(8分)解方程:x 2-2x =4.17.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.(第17题图)18.(8分)(1)观察下列图形与等式的关系,并填空:(第18题图)(2)观察下图,根据(1)中的结论,计算图中黑球的个数,用含有n的代数式填空:1+3+5+…+(2n-1)+()+(2n-1)+…+5+3+1=.19.(10分)如图,河的两岸l1与l2相互平行,A,B是l1上的两点,C,D是l2上的两点,某人在点A 处测得∠CAB =90°,∠DAB =30°,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得∠DEB =60°,求C ,D 两点间的距离.(第19题图)20.(10分)如图,一次函数y =kx +b 的图像分别与反比例函数y =xa的图像在第一象限交于点A (4,3),与y 轴的负半轴交于点B ,且OA =OB . (1)求函数y =kx +b 和y =xa的表达式; (2)已知点C (0,5),试在该一次函数图像上确定一点M ,使得MB =MC ,求此时点M 的坐标.(第20题图)21.(12分)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数. (1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率. 22.(12分)如图,二次函数y =ax 2+bx 的图像经过点A (2,4)与B (6,0). (1)求a ,b 的值;(2)点C 是该二次函数图像上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值.(第22题图)23.(14分)如图1,A ,B 分别在射线OM ,ON 上,且∠MON 为钝角,现以线段OA ,OB 为斜边向∠MON 的外侧作等腰直角三角形,分别是△OAP ,△OBQ ,点C ,D ,E 分别是OA ,OB ,AB 的中点. (1)求证:△PCE ≌△EDQ . (2)延长PC ,QD 交于点R .①如图2,若∠MON =150°,求证:△ABR 为等边三角形. ②如图3,若△ARB ∽△PEQ ,求∠MON 的大小和PQAB的值.(第23题图)参考答案一、1.B 【分析】-2的绝对值是2.故选B . 2.C 【分析】a 10÷a 2=a 8(a ≠0).故选C .3.A 【分析】8 362万=83 620 000=8.362×107.故选A . 4.C 【分析】圆柱的主(正)视图为矩形.故选C .5.D 【分析】去分母,得2x +1=3x -3.解得x =4.经检验,x =4是分式方程的解.故选D . 6.C 【分析】∵2013年我省财政收入为a 亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a (1+8.9%)亿元.∵2015年比2014年增长9.5%,2015年我省财政收入为b 亿元,∴2015年我省财政收入为b =a (1+8.9%)(1+9.5%).故选C . 7.D 【分析】根据题意,得参与调查的户数为%5%30%35%1064+++=80,其中B 组用户数占被调查户数的百分比为1-10%-35%-30%-5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有80×(10%+20%)=24(户).故选D .8.B 【分析】∵BC =8,∴CD =4.在△CBA 和△CAD 中,∵∠B =∠DAC ,∠C =∠C , ∴△CBA ∽△CAD ,∴ACCD BC AC =,∴2AC =CD •BC =4×8=32,∴AC =42.故选B . 9.A 【分析】由题意知,甲走了1小时到了B 地,在B 地休息了21小时,2小时正好走到C 地,乙走了35小时到了C 地,在C 地休息了31小时.由此可知,正确的图像是A .故选A .10.B 【分析】如答图.∵∠ABC =90°,∴∠ABP +∠PBC =90°.∵∠P AB =∠PBC ,∴∠BAP + ∠ABP =90°,∴∠APB =90°,∴OP =OA =OB (直角三角形斜边的中线等于斜边的一半),∴点P 在以AB 为直径的⊙O 上,连接OC 交⊙O 于点P ,此时PC 最小.在Rt △BCO 中,∵∠OBC =90°,BC =4,OB =3,∴OC =BC BO 22+=5,∴PC =OC -OP =5-3=2.∴PC 的最小值为2.故选B .(第10题答图)二、11.x ≥3 【分析】不等式x -2≥1,解得x ≥3.12.a (a +1)(a -1) 【分析】原式=a (a 2-1)=a (a +1)(a -1). 13.3π4 【分析】∵AB 是⊙O 的切线,∴AB ⊥OB ,∴∠ABO =90°.∵∠A =30°,∴∠AOB = 90°-∠A =60°,∴∠BOC =120°.∴BC 的长为180220π1⨯=3π4. 14. ①③④ 【分析】如答图,∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =61022-=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD ﹣CE =6﹣x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =310,∴ED =38.∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠3=∠4,BH =BA =6,AG =HG ,∴∠2+∠3=21∠ABC =45°,故①正确.HF =BF -BH =10-6=4.设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3.∴AG =GH =3,GF =5.∵∠A =∠D ,49386==DE AB ,23=DF AG ,∴DE AB ≠DF AG ,∴△ABG 与△DEF 不相似,故②错误.∵S △ABG =21×6×3=9,S △FGH =21GH •HF =21×3×4=6,∴S △ABG =23S △FGH ,故③正确.∵AG +DF =3+2=5,GF =5,∴AG +DF =GF ,故④正确.(第14题答图)三、15.解:(-2 016)0+38-+tan 45°=1-2+1=0. 16.解:配方x 2-2x +1=4+1,即(x -1)2=5. ∴x =1±5.∴x 1=1+5,x 2=1-5.17.解:(1)点D 以及四边形ABCD 另两条边如答图. (2)得到的四边形A′B′C′D′如答图.(第17题答图)18.解:(1)42;n 2. 设第n 幅图中球的个数为a n ,观察,发现规律:a 1=1+3=22,a 2=1+3+5=32,a 3=1+3+5+7=42,…, ∴a n -1=1+3+5+…+(2n -1)=n 2. (2)2n +1;2n 2+2n +1.观察图形发现:图中黑球可分为三部分,1到n 行,第n +1行,n +2行到2n +1行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =1+3+5+…+(2n -1)+(2n +1)+(2n -1)+…+5+3+1 =a n -1+(2n +1)+a n -1 =n 2+2n +1+n 2 =2n 2+2n +1.19.解:如答图,过点D 作l 1的垂线,垂足为F . ∵∠DEB =60°,∠DAB =30°, ∴∠ADE =∠DEB -∠DAB =30°, ∴△ADE 为等腰三角形,∴DE =AE =20. 在Rt △DEF 中,EF =DE • cos 60°=20×21=10. ∵DF ⊥AF ,∴∠DFB =90°,∴AC ∥DF . ∵l 1∥l 2,∴CD ∥AF , ∴四边形ACDF 为矩形, ∴CD =AF =AE +EF =30(m ). 答:C ,D 两点间的距离为30 m .(第19题答图)20.解:(1)把点A (4,3)代入函数y =xa , 得a =3×4=12,∴y =x12.由题图知,OA =4322+=5.∵OA =OB ,∴OB =5,∴点B 的坐标为(0,-5). 把B (0,-5),A (4,3)代入y =kx +b , 得⎩⎨⎧=+-=,,345b k b 解得⎩⎨⎧-==.52b k ,∴y =2x -5.(2)∵点M 在一次函数y =2x -5上, ∴设点M 的坐标为(x ,2x -5).∵MB =MC ,∴)552()552(2222--+=+-+x x x x ,解得x =2.5. ∴点M 的坐标为(2.5,0). 21.解:(1)画树状图如答图.(第21题答图)共有16种等可能的结果数,它们分别是11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88.(2)算术平方根大于4且小于7的结果数为6, 所以算术平方根大于4且小于7的概率为166=83. 22.解:(1)将A (2,4)与B (6,0)代入y =ax 2+bx ,得⎩⎨⎧=+=+,,0636424b a b a 解得123.a b ⎧=-⎪⎨⎪=⎩,(2)如答图,过点A 作x 轴的垂直,垂足为D (2,0),连接CD ,CB ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F , 则S △OAD =21OD •AD =21×2×4=4, S △ACD =21AD •CE =21×4×(x -2)=2x -4, S △BCD =21BD •CF =21×4×(-21x 2+3x )=-x 2+6x . 所以S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x , 所以S 关于x 的函数表达式为S =-x 2+8x (2<x <6).因为S =-x 2+8x =-(x -4)2+16,所以当x =4时,四边形OACB 的面积S 有最大值,最大值为16.(第22题答图)23.(1)证明:∵C ,D ,E 分别是OA ,OB ,AB 的中点,∴DE =OC ,DE ∥OC ,CE =OD ,CE ∥OD ,∴四边形ODEC 是平行四边形,∴∠OCE =∠ODE .∵△OAP ,△OBQ 是等腰直角三角形,∴∠PCO =∠QDO =90°,∴∠PCE =∠PCO +∠OCE =∠QDO +∠EDO =∠EDQ .由题意知,PC =21AO =OC =ED ,CE =OD =21OB =DQ . 在△PCE 和△EDQ 中,⎪⎩⎪⎨⎧=∠=∠=,,,DQ CE EDQ PCE DE PC∴△PCE ≌△EDQ .(2)①证明:如答图,连接RO .∵PR 与QR 分别是OA ,OB 的垂直平分线,∴AR =OR =RB ,∴∠ARC =∠ORC ,∠ORQ =∠BRQ .∵∠RCO =∠RDO =90°,∠COD =150°,∴∠CRD =30°,∴∠ARB =60°,∴△ARB 是等边三角形.②解:由(1)知,EQ =EP ,∠DEQ =∠CPE ,∴∠PEQ =∠CED -∠CEP -∠DEQ =∠ACE -∠CEP -∠CPE =∠ACE -∠RCE =∠ACR =90°,∴△PEQ 是等腰直角三角形.∵△ARB ∽△PEQ ,∴∠ARB =∠PEQ =90°,∴∠OCR =∠ODR =90°,∠CRD =21∠ARB =45°, ∴∠MON =135°.此时点P ,O ,B 在一条直线上,△P AB 为直角三角形,且∠APB =90°, ∴AB =2PE =2×22PQ =2PQ ,∴PQ AB =2.(第23题答图)。

相关文档
最新文档