High power focused-beam microwave hyperthermia combined with intrapleural injection of Shapeilin
RFL-P20Q 激光器英文说明书
User Instruction RFL-P20QWuhan Raycus Fiber Laser Technologies CO., Ltd.2021Safety InformationPlease read this instruction carefully and familiarize yourself with the information we have provided before you use the product. In this brochure, important operation procedures, safety and other information are provided for you and all future users. In order to ensure operating safely and optimal performance of the product, please do according to following warnings, cautions and other information.a)Raycus pulsed fiber laser is classified as a high power Class IV laser device. Beforesupplying the power to the device, please make sure that the correct voltage of 24VDC power source is connected and the anode and cathode are right. Failure to connectpower source correctly will cause damage to the device.b)The device emits invisible 1060~1085nm wavelength light with average power 20W.Do not expose your eyes or skin to the radiation of the laser.c)Do not take apart the device, because there are no replaceable accessories available forusers to use. Any maintenance can only be proceeded in Raycus.d)Do not look into the light output end directly. Use appropriate laser safety eyewearwhen operating the device.Safety labels and locationsThe two labels above is located on the top of the cover of the device, representing laser radicalization.Content1.Description (1)1.1.Product description (1)1.2.Actual configuration list (1)1.3.Environmental requirements and cautions (1)1.4.Specifications (2)2.Mounting (3)2.1Mounting dimensions (3)2.2Method of installation (3)3.Control Interface (4)4.Operation Regulations (7)4.1Pre-inspection (7)4.2Operation procedures (7)4.3Cautions (7)5.Instructions for warranty, return and maintenance (8)5.1General warranty (8)5.2Limitations of warranty (8)5.3Service and repairs (8)1.Description1.1.Product descriptionRaycus pulsed laser is an ideal high power laser source with high speed and high efficiency. It is specially designed for industrial laser making system and other applications.Compared with traditional lasers, pulsed laser has some unique advantages in increasing the conversion efficiency of the pump light 10 times higher.Its low power consumption and automotive design make it appropriate for operating both in and outside the lab. Besides, it is exquisite and convenient for its independence in placement, free time in using and facility in connecting to equipment directly.The device can emit 1060~1085nm wavelength pulsed light under the control of industrial laser’s standard interface driven by 24V DC power source.1.2.Actual configuration listTable 1. Configuration list1.3.Environmental requirements and cautionsPulsed laser should be driven by 24V DC±1V power source.a)Caution: Make sure the corresponding wires of the device are properly grounded.b)All the maintenance to the device should only be done by Raycus, because there is noreplacement or accessory provided with the device. Please do not try to damage thelabels or open the cover in order to prevent against electric shock, or the warranty willbe invalid.c)The output head of the product is connected with an optical cable. Please be carefulhandling the output head. Avoid dirt and any other contaminations. Please use thespecialized lens paper when cleaning the lens. Please lid the laser with protective coverof the light isolator to be against dirt only when the laser is not installed in the deviceor not in working.d)If the operating the device fails to follow this instruction, the protective function willbe weakened. Therefore, it should be used under normal conditions.e)Do not install the collimating device into the output head when the laser device is inworking.f)The device has three cooling fans at the rear panel to dissipate heat. In order toguarantee enough airflow to help giving heat off, there must be a space of at least10cm’s width for airflow in front and rear side of the device. As the cooling fans areworking at blow condition, if laser is mounted in a cabinet with fans, the directionshould be same as laser’s fans.g)Do not look into the output head of the device directly. Please do wear appropriatelaser safety eyewear during the time when operating the device.h)Make sure the pulse repetition rate higher than 20kHz.i)For the longest time without pulse is only 50 x 10-6s. If there is no pulse output, pleasestopmarking at once, to avoid further damage of the device.j)Power source sudden interruption will do great harm to the laser device. Please make sure the power supply works continuously.1.4.SpecificationsTable 2.pulsed fiber laser specifications2.Mounting2.1Mounting dimensionsa)Fiber Laser module dimensions (As shown in Fig. 1).Figure 1. Dimension drawing of laser module(Unit: mm).b)Isolated output head dimensions (As shown in Fig. 2).Figure 2. Dimension drawing of output isolator (Unit: mm).2.2Method of installationa)Fix the module stable to the bracket and keep the laser in good ventilation.b)Connect the power line to 24V DC power and ensure enough DC output power.Keep itclear to the polarity of the electric current: anode-brown; cathode-blue; PE-yellow andgreen. The definition figure is shown in Fig. 3.Figure 3. Definition of power line wiresc) Make sure that the interface of the external controllermatches the laser and the controlcable is well connected to the laser ’s interface. The recommended electrical connection is shown in Fig. 4.L N Figure 4. Schematic of recommended electrical connectiond) The bending radius of the delivery fiber should not exceed 15cm.3. Control InterfaceThere are DB9 and DB25 interfaces at the rear of the laser. The DB9 is a RS232 interface only used for debugging, no needs to connect. And DB25 is the joint interface connecting control system with laser system, please make sure the connection is reliable before operation. Feet of the DB25 are defined as follows in Fig. 5.24V+GND24V-Figure 5. Connect port of controllerTable 3Definition of connect ports of controllera)The pump current of diode laser and the laser output power are controlled by settingthe value of PIN1-PIN8 (TTL level). PIN1-PIN8 can be set from 0~255,corresponding to the laser output power from 0~100%(the actual laser power may not be strictly linear with the setting value). The relationship between PIN value and output power is shown in Table 4:b)PIN 10,13,14,15,24,25 are all digital GND.c)PIN 17 is the external 5V DC input, providing power for inside chips of alarm signal toensure that alarm signals are valid.d)PIN 18 is the start signal of the MO. PIN19 is the input for the optical output signal.The electrical level for both PIN18 and PIN19 are 5V. Before turning on PIN 19, MO signal must be switched ON, in other word, the signal of PIN 18 must be ahead of PIN19 at least 5 ms, and otherwise the laser machine may be damaged.Table 4 Definition of power control PIN valuee)20kHz~60kHz, depends on the varying power levels of different laser machines. ATTENTION: The frequency signal must be ahead of the EM signal at least 5 ms, otherwise the laser machine may be damaged.f)Definition of alarm signalTable 5 Definition of warning signalg)Internal circuit of input/output signalInternal circuit of input signal:(current of input signal must be greater than 7mA)Figure 6. Internal circuit of input signalInternal circuit of output signal:Figure 7. Internal circuit of output signal4.Operation Regulations4.1Pre-inspectiona)Make sure the device appearance is in good condition and the output fiber isneitherexcessively bended nor broken.b)Make sure signal line of laser and marking system are properly connected.4.2Operation proceduresa)Starting proceduresPlease make sure the control system is on before you turn on the fiber laser. Only afterat least 1 minute since the power turned on, the subsequent operations can be preceded.b)Frequency set introductionsFor modelP20Q, the frequency setting range is from 20kHz to 60kHz.c)Laser marking checkingd)For the device initial testing, firstturn the power down to zero without turning on themarking system after the device is successfully started. Then draw a quadrate, markingcontinuously whileslowly increasing the power from zero to 100% at the same time.Meanwhile, use a ceramic material to observe the laser and the laser should becomestronger, otherwise shut down the device and check. If operating normally, themarking system can be used in common order afterwards.4.3Cautionsa)Marking frequency must be in the range of20~60 kHz.b)It should not modulate the frequency while marking.c)Stop marking first before shutting down the device, then turn the power down to zeroand cut the power off.5.Instructions for warranty, return and maintenance5.1General warrantyAll products are warranted by Raycus against defects and problems in materials and workmanship during the warranty period according to the purchase order or specifications and we guarantee the product will accord with the specification under normal use.Raycus has the right to choose to repair or replace any product that proves to be defective in materials and workmanship selectively during the warranty period. Only products with particular defects are under warranty. Raycus reserves the right to issue a credit note for any defective products produced in normal conditions.5.2Limitations of warrantyThe warranty does not cover the maintenance or reimbursement of our product of which the problem results from tampering, disassembling, misuse, accident, modification, unsuitable physical or operating environment, improper maintenance, damages due to excessive use or not following the instructions caused by those who are not from Raycus. Customer has the responsibility to understand and follow this instruction to use the device. Any damage caused by fault operating is not warranted. Accessories and fiber connectors are excluded in this warranty.According to the warranty, client should write to us within 31days since the defect is discovered. This warranty does not involve any other party, including specified buyer, end-user or customer and any parts, equipment or other products produced by other companies.5.3Service and repairsRaycus is responsible for all the maintenance, for there is no accessory available inside for users to use. Please contact Raycus as soon as possible when problems under warranty about maintenance happen to the product. The product returned with permission should be placed in a suitable container. If any damage happens to the product, please notify the carrier in document immediately.All the items about warranty and service above provided by Raycus are only for reference; formal contents about warranty and service are subject to the contract.© 2021Wuhan Raycus Fiber Laser Technologies Co. Ltd.All Rights Recerved.。
里德堡原子微波电场测量
doi:10.11823/j.issn.1674-5795.2021.01.01里德堡原子微波电场测量白金海,胡栋,贡昊,王宇(航空工业北京长城计量测试技术研究所,北京100095)摘要:里德堡原子是处于高激发态的原子,其主量子数大、寿命高,具有极化率高、电偶极矩大等特点,对外电场十分敏感。
基于热蒸气室中里德堡原子的量子干涉原理(电磁感应透明和Autler-Towns分裂效应)的微波电场精密测量不仅具有远高于传统偶极天线的灵敏度,且具有自校准、对外电场干扰少、测量频率范围大等优点,是下一代电场测量标准。
本文综述了里德堡原子的微波电场测量研究,详细介绍了其基本原理和当前研究进展,并讨论了未来发展方向。
关键词:量子精密测量;里德堡原子;微波电场;电磁感应透明中图分类号:TB97文献标识码:A文章编号:1674-5795(2021)01-0001-09Rydberg Atoms Based Microwave Electric Field SensingBAIJinhai,HU Dong,GONG Hao$WANG Yu(Changcheng Institute of Metrology&Measurement,Beijing100095,China)Abstract:Rydberg atoms are the atoms in highly excited states with lar-e principaO quantum numbers n,and long lifetimes.The lar-e Ryd-ber-atom polarizabilitu and strong dipole transitions between enereetically nearby states are highly sensitive to electris fielOs.The new developed scheme for microwave electric field precision measurement is based on quantum interference effects(electromaaneticclly induced transparency and Autler-Townes splitting)in Rydbere atoms contained in a dielectric vapoe cell.The mininium measured strengths of microwave electric fieies of the new scheme are far below the standard values obtained by traditional antenna methods.And it has several advantages,such as self-calibration,non-perturbation to the measured field,a broadband measurement frequency range,etc,is the next-generation electric field standard.In this review,we describe work on the new method for measuring microwave electric field based on Rydberg atoms.We introducc the basic theory and experimental techniques of the new method,and discuss the future development direction.Key words:quantum precision measurement;Rydberg atoms;microwave electric fielO;electromagnetically induced transparency0引言原子是一种典型的量子体系,具有可复现、性能稳定、能级精确等优点。
裁剪小功率红光灯
裁剪小功率红光灯(HT)本产品采用原装进口激光二极管,品质优良。
体积小;光学透镜,光线清晰,低发散度,垂直度好,高精确度,工业适用性强。
我们可以制作可调节焦点来改变线宽。
红光激光灯线条清晰、小巧、易于安装,使用简单方便。
从根本解决了传统的激光灯的主要问题如使用寿命较短、光线强度低等。
红光激光灯的管芯采用日本进口半导体激光二极管,内置电路板经改良,欢迎具有高抗干扰性、高稳定性、抑制浪涌电流及缓启动等特点,特别适于恶劣来电零二玖捌捌柒贰陆七七叁的工作环境,能有效保证产品的稳定性和使用寿命。
The laser has original import laser diode with high quality. It has small body, optics, clear beam and low divergence and favorable verticality and high accuracy and industrial strength. We can make adjustable focus to change line thickness.输出波长:635nm 650nm输出功率:635nm 0.5~30mw650nm 0.5~200mw工作电压:2.7~24V DC工作电流:≤450mA光束发散度:0.3~0.6mrad出光张角:10º~110º光线直径:≤0.5mm @0.5m;≤1.0mm @3.0m;≤1.5mm @6.0m;垂直度:±1´光学透镜:光学镀膜玻璃或塑胶透镜尺寸:Φ12×40mm;Φ16×55mm;Φ16×65mm;Φ16×80mm;Φ22×85mm;Φ26×110mm (可定制)工作温度:-10~75℃储存温度:-40~85℃激光等级:ⅢbOutput wavelength: 635nm 650nmOutput power: 635nm 0.5~30mw650nm 0.5~200mwOperating voltage: 2.7~24V DCOperating current: ≤450mABeam divergence: 0.3~0.6mradFan angle: 10º~110ºBeam diameter: ≤0.5mm @0.5m;≤1.0mm @3.0m;≤1.5mm @6.0m;Verticality: ±1´Optics: coated glass lens or plastic lensSize: Φ12×40mm;Φ16×55mm;Φ16×65mm;Φ16×80mm;Φ22×85mm;Φ26×110mm (made as requirement)Operating temperature: -10℃~75℃Storage temperature:-40℃~85℃Laser classification: Ⅲb。
负压状态窄缝通道乙二醇水溶液传热特性
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期负压状态窄缝通道乙二醇水溶液传热特性赵晨1,苗天泽2,张朝阳3,洪芳军1,汪大海1(1 上海交通大学机械与动力工程学院,上海 200240;2 清华大学先进高功率微波重点实验室,北京100084;3上海交通大学巴黎卓越工程师学院,上海 200240)摘要:高效、紧凑的换热方式需求日益增大,具有高度方向速度梯度大的窄缝通道成为最有前景的方式之一。
本文以质量分数为55%的乙二醇水溶液为工质,针对钛窄缝通道在负压工况进行流动沸腾换热实验。
实验在质量流率750~2000kg/(m 2·s)、饱和温度为80~90℃、入口温度60~70℃的条件下进行。
结果表明,钛需要更高的热流密度激活大量成核点,从而其过冷沸腾起始点(ONB )前后平均换热系数h 基本不变;质量流量对于ONB 和沸腾充分发展阶段的平均换热系数影响很大;在高过冷度时,沸腾充分发展阶段,钛窄缝通道换热性能对于入口温度不敏感;提高进口温度降低过冷度可以极大提高平均换热系数,70℃条件下平均换热系数在沸腾充分发展阶段可以提高65%;背压对于换热性能的影响主要在沸腾充分发展阶段,背压越低平均换热系数越大。
关键词:微通道;乙二醇水溶液;负压;气液两相流;流动沸腾;传热中图分类号:TK124 文献标志码:A 文章编号:1000-6613(2023)S1-0148-10Heat transfer characteristics of ethylene glycol aqueous solution in slitchannel under negative pressureZHAO Chen 1,MIAO Tianze 2,ZHANG Chaoyang 3,HONG Fangjun 1,WANG Dahai 1(1 School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Advanced High PowerMicrowave Key Laboratory, Tsinghua University, Beijing 100084, China; 3 Ecole d'ingenieurs Paris, Shanghai Jiao TongUniversity, Shanghai 200240, China)Abstract: The increasing demand for efficient and compact methods of heat transfer has generated interest in the utilization of a narrow channel with a significant velocity gradient along its height, thus presenting substantial potential. This research study focused on investigating the heat transfer phenomena in a flow boiling system that employs a narrow slot channel made of titanium under negative pressure conditions. The experimental analysis employed a designated working fluid, namely an ethylene glycol aqueous solution with a mass concentration of 55%. The experimentation was conducted under specific operational parameters, encompassing a mass flow rate spanning from 750kg/(m²·s) to 2000kg/(m²·s), a saturation temperature within the range of 80℃ to 90℃, and an inlet temperature ranging from 60℃ to 70℃. The findings of the study revealed that the activation of a substantial quantity of nucleation sites in titanium necessitated an elevated heat flux. Consequently, this phenomenon maintained the average heat transfer coefficient (h ) in a state of relative constancy both prior to and subsequent to the onset of nucleate boiling (ONB). The heat flux required to start of ONB and the mean heat transfer coefficient during the研究开发DOI :10.16085/j.issn.1000-6613.2023-1153收稿日期:2023-07-09;修改稿日期:2023-08-28。
南京欧卓科技有限公司OH44E单极性霍尔效应开关IC说明书
OH44E Unipolar Hall Effect Switch ICGeneral Description:Part No.:OH44E Operate temperature:-40~125℃Package:1000pcs/BagFeaturesHigh load capacityThe good consistencya wide range of power supply voltagehigh reliabilityAbsolute Maximum Ratings(T A=25℃)Supply Voltage V CC··············4-30VOutput Current I O···················50mAOperating Temperature Range T A········-40~150℃Storage Temperature RangeT S················-65~150℃Typical Working ModeApplicationsThe brushless DC motor,DC fans,DC water pumpThe home appliance control panelsewing equipment,textile machineryspeed sensor,position detecting,counting andThe flow sensor,flow meterThe auto ignition,safety alarm deviceother industrial control fieldMagnetic-electrical Transfer Characteristics Functional Block Diagram:REGm AMPPin1.V CCPin3.VoutPin2.GND V OUTB HB RP B OP BV OHV OLOH44E unipolar hall IC includes an on-chip Hall voltage generator for magnetic sensing,anamplifier that amplifies the Hall voltage,a schmitt trigger to provide switching hysteresis fornoise rejection,and an open-collector output.It detects the changes of Magnetic field andoutput a digital voltage signal.With the typical feature of wide range of working Voltage,operate temperature and high load capicity,OH44E performs well in many application,suchas position control,speed detection and flow detetion as an non-contact magnetic sensor.Electrical Characteristics(Ta=25°C)Parameter Symbol ConditionsValueUnit Min Typ MaxSupply Voltage V CC4-30VOutput Saturation Voltage V OL Vcc=4.5V,Iout=20mA,B≥B OP-200400mVOutput Leakage Current I OH Vout=24V,B≤B RP- 1.010μA Supply Current I CC V CC=Vccmax OC output-5-mAOutput Rise Time t r Vcc=12V,RL=820Ω,C L=20pF -0.5-μSOutput Falling Time t f-0.5-μS Magnetic Characteristics(Ta=25°C)(1mT=10Gauss)Parameter symbolValueUnit Min Typ MaxOperate Point B OP--20mT Release Point B RP3--mT Hysteresis B H5-7mTDimension(unit:mm)Pin Descriptions:1.V CC2.GND3.VoutTypical Application CuicuitsPrecautions OH Series Hall ICSHall ICs are sensitive devices which performance could be influenced in some extent by magnetic, optical,thermal and mechanical stress.1)A pull-up resistor RL should be connected between the power supply(Vcc)and the output(Vout) Since most of hall ICs are open collector output(OC output)circuits.Such as OH44E,OH137,OH513, OH543.Hall ICs with Build-in Resistor are not necessary to add one,for example OH921.2)Avoid reversing the power supply(Vcc)and the output(Vout)and overload use.Be careful of the burn and damage caused by instant large current and instantaneous high voltage.3)The Protection circuit should be added in the test cuicuits of hall ICS,such as large capacitor and a voltage stabilizing diode,which could absorb the effects of the external circuit and power fluctuation.4)Try to minimise the mechanical stress applied to the device and leads during the installation, especially on the pins where close to the root of the device when bending shaping etc.5)Strictly regulate the welding temperature and time(lead-free welding process reference).When manual welding,the temperature of soldering iron shall not exceed260degrees and time should be less than3seconds..6)When designing,please fully consider the influence factors of temperature,magnetic field attenuation, the movement way,etc.。
WNM6001 单向 N 渠道 60V 0.5A 电源 MOSFET 数据手册说明书
WNM6001Single N-Channel, 60V, 0.50A, Power MOSFETDescriptionsThe WNM6001 is N-Channel enhancement MOS Field Effect Transistor. Uses advanced trench technology and design to provide excellent R DS (ON) with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit. Standard Product WNM6001 is Pb-free and Halogen-free.Features● Trench Technology● Supper high density cell design● Excellent ON resistance for higher DC current ● Extremely Low Threshold Voltage ● Small package SOT-23Applications● Driver for Relay, Solenoid, Motor, LED etc. ● DC-DC converter circuit ● Power Switch ● Load Switch ● ChargingHttp//:SOT-23Pin configuration (Top view)W61*W61= Device Code*= Month (A~Z) MarkingOrder information3 12Absolute Maximum ratingsThermal resistance ratingsa Surface mounted on FR-4 Board using 1 square inch pad size, 1oz copperb Surface mounted on FR-4 board using minimum pad size, 1oz copperc Pulse width<380µsd Maximum junction temperature T J=150°C.Electronics Characteristics (Ta=25o C, unless otherwise noted)On-Resistance vs. Drain currentOn-Resistance vs. Junction temperatureOn-Resistance vs. Gate-to-Source voltageThreshold voltage vs. TemperatureI D -Drain Current(A)N o r m a l i z e d G a t e T h r e s h o l d V o l t a g eTemperature (oC)V GS -Gate-to-Source Voltage(V)R D S (o n )-O n -R e s i s t a n c eN o m a l i z e dTemperature(oC)CapacitanceSingle pulse powerBody diode forward voltageGate Charge CharacteristicsV G S -G A T E -t o -s o u r c e V o l t a g e (V )Q g (nC)C (p F )Time(s)S DV SD -Source-to-Drain Voltage(V)Safe operating powerI D - D r a i n C u r r e n t (A )VDS- Drain Source Voltage (V)V DS (V)1E-41E-30.010.111010010001020304050P o w e r (W )Transient thermal response (Junction-to-Ambient)Square Wave Pulse Duration (s)N o r m a l i z e d E f f e c t i v e T r a n s i e n t T h e r m a l I m p e d a n c ePackage outline dimensionsSOT-23TOP VIEW SIDE VIEW SIDE VIEWSymbolDimensions in Millimeters Min.Typ.Max.A0.89 1.10 1.30 A10.00-0.10 b0.300.430.55 c0.05-0.20D 2.70 2.90 3.10E 1.15 1.33 1.50 E1 2.10 2.40 2.70 e0.95Typ.e1 1.70 1.90 2.10TAPE AND REEL INFORMATIONReel DimensionsQuadrant Assignments For PIN1Orientation In Tape1User Direction of FeedQ1Q2Q3Q4Q1Q2Q3Q47inch 13inch 2mm 8mm 4mm Q1Q2Q3Q48mm12mm。
大功率点阵式红外线激光HJ1测试报告
High Power 點陣式激光800mW/1.2A測試報告光電特性驅動電路設計概念1.在12V的方案最多以3串搭配多並及定電流操作方式去設計驅動電路2顆---2串1並(6.4V/1.2A)3顆---3串1並(9.6V/1.2A)4顆---2串2並(6.4V/2.4A)6顆---3串2並(9.6V/2.4A)2.在14V的方案最多以4串搭配多並及定電流方式去設計驅動電路4顆---4串1並(12.8V/1.2A)8顆---4串2並(12.8V/2.4A)12顆---4串3並(12.8V/3.6A)3.因為激光的電壓比LED高,所以不能比照LED的方式去做,按照此邏輯去設計電路可以避免驅動板壓降造成電壓不足的現象發生1.在光源輸出功率與投射距離計算上,可以推估若增加一倍的輸出功率可以增加10~20%的投射距離,發光角度越小投射距離增加越多,發光角度越大投射距離增加越少2.激光原始發光角度激光原始發光角度<<30度,當經過二次光學之後發光角度大於30度時,其特性越接近LED,當經過二次光學之後發光角度小於30度時,激光指向性高的特性才會顯現出來發光功率發光功率、、發光角度VS 投射距離燈板溫度曲線以上燈板均有安裝散熱鋁鰭片,並確認光源不能有衰減的情況發生角度/鏡頭/距離搭配表2顆2串3顆3串4顆2串2並15度25mm 180米25mm 200米25mm 220米30度12mm 70米12mm 80米12mm 90米45度8mm 50米8mm 60米8mm 70米60度6mm 30米6mm 40米6mm 50米75度3.6mm 20米3.6mm 30米3.6mm 40米攝影機型號攝影機型號::Lilin 日夜兩用超高解析攝影機(PIH-8198N) 5~50mm 自動光圈鏡頭(PLH-SCV550D)攝影機參數設定攝影機參數設定::自動增益(AGC) Low 、快門比(Shutter) 1/60測試環境測試環境::無光害全暗環境1.紅外線燈數量及品質紅外線燈數量及品質::燈數量越多越亮燈數量越多越亮,,但燈也有分品質但燈也有分品質,,品質不同亮度也不一品質不同亮度也不一,,好燈一顆可抵兩顆壞燈亮度抵兩顆壞燈亮度。
华新电阻规格书
Functional code X : Thick film low ohm M : Metal low ohm N : Metal low ohm, high power W : Thick film low TCR P : Thick film low TCR high power ( 2512 size=2 watt, 2010 size=1 watt, 1210 size=0.5 watt, 1206 size=0.5 watt,
R002
Tolerance F : +/- 1% J : +/- 5% P : Jumper
Packaging code P : 4” reel taping T : 7” reel taping A : 7” reel taping 15Kpcs Q : 10” reel taping G : 13” reel taping R : 0603 2mm pitch taping B : Bulk K : Bulkcase
Termination code L = Sn base (Lead free) 5 3E SSP (total)
WW
25
M
F
T
L
Type code WW: R< 1ohm MW: R< 1ohm Automotive SW: R< 1ohm Anti-sulfuration
Size code 25 : 2512 (6432) 20 : 2010 (5025) 18 : 1218 (3248) 12 : 1206 (3216) 10 : 1210 (3225) 08 : 0805 (2012) 06 : 0603 (1608) 04 : 0402 (1005)
微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷
第 29 卷第 4 期分析测试技术与仪器Volume 29 Number 4 2023年12月ANALYSIS AND TESTING TECHNOLOGY AND INSTRUMENTS Dec. 2023分析测试经验介绍(407 ~ 413)微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷陈丽梅,张 慧,白国涛,马彩霞,姚思雨,王 婧(呼和浩特海关技术中心,内蒙古呼和浩特 010020)摘要:采用微波灰化-电感耦合等离子体发射光谱法(ICP-OES)测定婴幼儿乳粉中钙、磷元素含量. 采用微波灰化法对婴幼儿乳粉进行前处理,正交试验方法确定微波灰化最佳条件,灰化后产物用2 mL硝酸溶液(体积比为1∶1)溶解后,用ICP-OES对钙、磷元素进行含量检测. 磷加标回收率为86%~104%,钙加标回收率为87%~96%.磷的相对标准偏差为2.5%~7.0%,钙的相对标准偏差为3.9%~10.0%,能够满足日常检测要求. 采用微波灰化法对婴幼儿乳粉中钙、磷元素进行样品前处理,相比微波消解方法,具有用时短、用酸量少、消解效果好、不需要进行赶酸处理等优点. 与干法灰化和湿法消解相比大大减少了样品处理时间. 采用微波灰化与ICP-OES结合对婴幼儿乳粉中的重要指标元素进行检测,在婴幼儿乳粉质量控制中有很好的应用价值.关键词:微波灰化;电感耦合等离子体发射光谱法;婴幼儿乳粉;钙;磷中图分类号:O657. 31 文献标志码:B 文章编号:1006-3757(2023)04-0407-07DOI:10.16495/j.1006-3757.2023.04.010Detemination of Calcium and Phosphorus in Infant Formula by Microwave Ashing- Inductive Coupled Plasma Emission SpectrometryCHEN Limei, ZHANG Hui, BAI Guotao, MA Caixia, YAO Siyu, WANG Jing(Technology Center of Hohhot Custom, Hohhot 010020, China)Abstract:The microwave ashing-inductive coupled plasma emission spectrometry (ICP-OES ) was used to determine the content of calcium and phosphorus in infant formula. The method of microwave ashing was used to pretreatment of the infant formula. The optimization conditions were determined by orthogonal test. After the microwave ashing, the ashes were dissolved with 2 mL nitric acid solution (volume ratio was 1∶1). The ICP-OES was used to determine the content of calcium and phosphorus. The recoveries of phosphorus and calcium were 86%~104% and 87%~96%, respectively. The relative standard deviation of phosphorus and calcium were 2.5%~7.0% and 3.9%~10.0%, respectively, which could meet the detection requirements. Compared with the method of microwave digestion, microwave ashing has the advantages of shorter time, less acid, better digestion effect and no need to drive acid treatment for calcium and phosphorus in infant formula. Compared with wet digestion and dry ashing, the sample processing time was greatly reduced. The detection of important index elements in infant formula by microwave ashing combined with ICP-OES has a good application value in the quality control of infant formula.Key words:microwave ashing;ICP-OES;infant formula;calcium;phosphorus收稿日期:2023−10−09; 修订日期:2023−12−12.基金项目:海关总署科研项目(批准号:2021HK186)[The Research Project of General Administration of Customs (2021HK186)]作者简介:陈丽梅(1981−),女,高级工程师,主要从事食品中元素检测工作,E-mail:******************.微波灰化技术是一种创新的样品前处理方法,利用抗热的密闭腔体及微波技术来加热,使得灰化速度提高,减少了能量损耗,增加了样品的处理量,工作环境清洁,使用安全. 不同于湿法酸消解,微波灰化的优点是处理过程比较简单,实验室日常工作非常通用,多用于过程及质量控制. 在石油工业、制药业、食品工业、塑料制品制造业、污染物治理等领域都有着广泛的应用. 微波灰化的原理是微波系统发射均匀的微波,穿透高温泡沫陶瓷护体,内置的耐高温泡沫瓷体内的碳化硅板将微波能量转化为热能,热量直接辐射到样品内,样品被均匀加热.微波的使用大大增加了加热效率,相较于传统马弗炉,加热速度大幅提高. 同时,微波灰化消解用酸量也非常小,既节约了酸的使用量,又减少了赶酸过程对环境的污染. 微波灰化消解法在元素检测前处理中主要应用于油料油品[1-5]、塑料 [6-7]、傣药[8]、食用菌[9]、小麦淀粉[10-11]、电泳材料[12]等样品.钙、磷都是人体必须的营养元素. 在人体吸收代谢过程中,钙和磷会相互影响. 根据GB 10765—2021《食品安全国家标准婴儿配方食品》[13]和GB 10767—2021《食品安全国家标准幼儿配方食品》[14]要求,钙磷元素比值范围分别为1∶1~2∶1和1.2∶1~2∶1,如果婴幼儿乳粉中钙磷比例失衡,婴幼儿对钙的有效吸收就会降低,造成膳食中钙营养元素的相对缺乏,影响骨骼和牙齿的发育,因此对婴幼儿乳粉中钙、磷元素进行检测十分必要.目前婴幼儿乳粉前处理方法主要有微波消解[13]、干法灰化[14]、高压罐消解[15]和湿法消解[16]. 国内未见微波灰化法在乳粉前处理中的应用研究. 由于乳粉基质比较复杂,添加物质较多,用传统的前处理方法对乳粉进行消解,有消解时间长、使用酸量大等不足. 本文以微波灰化为前处理方法,结合电感耦合等离子体发射光谱仪(ICP-OES)检测婴幼儿乳粉中钙、磷元素的含量,建立一种用时短、用酸量少的测定乳粉中钙、磷元素含量的检测方法.1 试验部分1.1 仪器与试剂电感耦合等离子体发射光谱仪(720型,安捷伦科技,美国),微波灰化仪(CEM,培安科技,美国),电子天平(Sartorius,塞多利斯公司,德国)(感量:0.001 g),瓷坩埚(50 mL). 硝酸(默克,优级纯),钙、磷标准溶液1 000 mg/L(中国计量科学研究院). 试验过程中所使用婴幼儿乳粉均购自超市,样品编号1、2、5样品为婴幼儿1段乳粉,样品编号3、4为纯奶粉,样品编号6为婴幼儿2段乳粉,样品编号7样品为婴幼儿3段乳粉. 试验过程中使用水均为去离子水. 所有使用的器具使用前均经20%硝酸浸泡过夜.1.2 试验方法1.2.1 标准溶液配制分别吸取钙、磷标准溶液1.0、2.0、3.0、4.0、5.0 mL于100.0 mL容量瓶中,使用2%硝酸定容至刻度,所配制溶液质量浓度分别为10、20、30、40、50 mg/L.硝酸溶液(硝酸∶水体积比为1∶1)配制:量取100 mL硝酸加入至100 mL去离子水中,混合均匀.1.2.2 试验方案在瓷坩埚中称量0.500 g乳粉,设定微波灰化程序进行试验,灰化完成后待微波灰化炉温冷却至150 ℃以下取出坩埚,晾至室温,用2.0 mL硝酸溶液(硝酸∶水体积比为1∶1)溶解灰分,将溶液转移至100.0 mL容量瓶中,用水清洗瓷坩埚,将清洗液转移至容量瓶中,用去离子水定容至刻度,混合均匀后进行钙、磷元素含量测定.1.3 ICP-OES仪器条件ICP-OES检测条件:功率1.2 kW,等离子体气气体流量:15.0 L/min,辅助器流量:1.50 L/min,雾化器流量:0.75 L/min,读数时间:1 s,进样时间:15 s,稳定时间:15 s. 各元素检测波长分别为钙317.933 nm、磷213.618 nm.1.4 微波灰化条件优化方案采用正交试验法对微波灰化条件进行优化,选取4因素4水平正交试验表,因素和水平如表1所列.表 1 正交试验的因素和水平Table 1 Factors and levels of orthogonal test因素因素A(灰化温度)/℃因素B(灰化时间)/min因素C(碳化温度)/℃因素D(碳化时间)/min 水平1450152002水平2500302504水平3550603008水平46009035012408分析测试技术与仪器第 29 卷2 结果与讨论2.1 微波灰化参数优化采用正交试验法对微波灰化的各个参数进行优化. 正交试验方案及结果如表2所列,正交试验结果分析如表3所列.从表3可以看出,磷元素4个因素极差从大到小的顺序为:A>C>B>D,钙元素4个因素极差从大到小的顺序为:A>B>C>D,因此灰化温度在整个灰化过程中起到重要的作用,碳化时间因素影响最小.2.1.1 微波灰化温度的优化正交试验因素的极差结果越大,代表该因素在试验条件中影响较大. 从正交试验极差分析结果可以看出,微波灰化温度极差最大,是影响灰化的最主要因素. 将微波灰化温度各个水平对应的k值为纵坐标,灰化温度为横坐标作因素水平图,如图1(a)所示. 从图1(a)可以看出,当灰化温度达到500 ℃时,钙和磷随着微波灰化温度的提高,所得到的含量没有明显的增加. 钙、磷两种元素最佳微波灰化温度虽然有所差别,但是差别不大. 综合以上结果,选择500 ℃作为微波灰化的最优温度.2.1.2 微波碳化温度的优化从表3可以看出,碳化温度是灰化效果的次主要因素. 碳化过程是将待处理的样品置于低温下使表 2 微波灰化正交试验方案及试验结果Table 2 Orthogonal test programs and results ofmicrowave ashing方案编号试验方案试验结果/(mg/kg)灰化温度/℃灰化时间/min碳化温度/℃碳化时间/min磷钙1450152002 2 605 3 514 2500153508 2 489 3 338 35501525012 2 545 3 411 4600153004 2 638 3 574 54503035012 2 199 2 928 6500302004 2 625 3 532 7550303002 2 615 3 504 8600302508 2 617 3 513 9450602504 2 490 3 334 105006030012 2 710 3 645 11550602008 2 542 3 414 12600603502 2 545 3 451 134******** 2 544 3 392 14500902502 2 650 3 565 155******** 2 721 3 664 166009020012 2 636 3 625表 3 灰化参数优化正交试验结果分析Table 3 Results analysis of orthogonal test/(mg/kg)元素 因素A因素B因素C因素D元素 因素A因素B因素C因素D 磷K19 83810 27710 40810 415钙K113 16813 83714 08514 034 K210 4741005610 30210 474K214 08013 47713 82314 104K310 4231028710 50710 192K313 99313 84414 11513 657K410 43610 5519 95410 090K414 16314 24613 38113 609k1 2 459 2 569 2 602 2 604k1 3 292 3 459 3 521 3 509k2 2 618 2 514 2 576 2 619k2 3 520 3 369 3 456 3 526k3 2 606 2 572 2 627 2 548k3 3 498 3 461 3 529 3 414k4 2 609 2 638 2 488 2 522k4 3 541 3 562 3 345 3 402极差159********极差249193184124极差顺序:A>C>B>D极差顺序:A>B>C>D最优水平:A2B4C3D2最优水平:A4B4C3D2注:K1、K2、K3、K4表示任意列上水平1、水平2、水平3、水平4所对应的试验结果之和;k1、k2、k3、k4表示水平1、水平2、水平3、水平4对应试验结果均值第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷409其碳化,减少因温度上升过快而使得样品灰分的挥发. 以微波灰化碳化温度各个水平对应k 值为纵坐标,碳化温度为横坐标作因素水平图,如图1(b )所示.从图1(b )可以看出,过高的碳化温度并不利于微波灰化的结果. 随着碳化温度的提高,样品碳化过程过快,使得元素随着碳化的烟雾挥出,造成了元素含量的损失. 当碳化温度为300 ℃时,钙和磷含量均达到最佳水平. 因此选择最佳的碳化温度为300 ℃.2.1.3 微波灰化时间的优化以微波灰化时间各个水平对应k 值为纵坐标,微波灰化时间为横坐标作因素水平图,如图1(c )所示.从图1(c )中可看到并没有最优的灰化时间点出现,因此对微波灰化时间进行了单点优化,结果如图1(d)所示. 从图1(d) 中可以看出,当灰化时间达到90 min 后,延长灰化时间对于消解并没有明显的改善,综合考虑各元素的灰化时间,选择最优的灰化时间为90 min.2.1.4 碳化时间的优化以碳化时间各个水平对应k 值为纵坐标,碳化时间为横坐标作因素水平图,结果如图2所示. 从图2可以看出,当碳化时间达到4 min 时,钙和磷的含量水平达到最优,因此所选碳化时间为4 min.2.1.5 称样量的优化通过正交试验结果,选择最佳微波灰化条件:微波灰化温度500 ℃,灰化时间90 min ,碳化温度300 ℃,碳化时间4 min. 在最优的条件下对不同称样量(0.2、0.5、1.0、2.0、3.0 g )样品进行前处理,采用ICP-OES 对其含量进行检测,以样品含量为纵坐标,样品称样量为横坐标作图3. 当称样量达到2.0 g 时,婴幼儿乳粉出现了灰化不完全的情况,定容样品中含有黑色沉淀. 从图3也可以看出,当称2 0002 5003 0003 5004 000元素质量分数/(m g /k g )T /℃1 5002 0002 5003 0003 5004 000T /℃元素质量分数/(m g /k g )1 5002 0002 5003 0003 5004 000元素质量分数/(mg /k g )t /min2 0002 5003 0003 5004 0004 5005 000元素质量分数/(m g /k g )t /min图1 (a )灰化温度、(b )碳化温度、(c )微波灰化时间的因素水平图、(d )微波灰化时间的单点优化Fig. 1 Factor level diagrams of (a) microwave ashing temperatures, (b) microwave carbonization temperatures and(c) microwave ashing times, (d) optimization of microwave ashing times1 5002 0002 5003 0003 5004 000元素质量分数/(m g /k g )t /min图2 碳化时间的因素水平图Fig. 2 Factor level diagram of microwave carbonizationtimes410分析测试技术与仪器第 29 卷样量达到2.0 g 时,检测到的样品含量出现下降的趋势,这是由于样品称样量过多时,样品没有被完全灰化,待测元素无法完全转移到溶液中,造成检测含量降低. 因此最佳称样量应小于2.0 g.2.2 各元素仪器方法学考察采用外标法对各元素进行检测,以元素浓度(X )为横坐标,元素在ICP-OES 检测强度(Y )为纵坐标拟合线性方程,得到线性方程和相对标准偏差(RSD ). 各元素检出限取3倍样品空白标准偏差(n =11)计算,定量限取10倍样品空白标准偏差(n =11)计算. 所得结果如表4所列.表 4 线性方程、检出限和定量限Table 4 Linear regression equations, limits of detection and limits of quantitation元素线性方程线性范围/(mg/L )相关系数RSD/%检出限/(mg/L )定量限/(mg/L )钙Y =37 341.809 + 55 064.512X 0~500.9990.860.023 70.079磷Y =602.582 + 1 742.811X0~500.9990.750.022 50.0752.3 加标回收试验在婴幼儿乳粉中添加标准溶液,采用最优灰化条件进行样品处理后采用ICP-OES 进行检测,结果如表5所列. 从表5可以看出,磷元素加标回收率为86%~104%,钙元素加标回收率为87%~96%. 磷和钙元素6次加标回收率的RSD 分别为2.5%~7.0%,3.9%~10.0%. 加标回收率结果能够满足日常检测要求.表 5 加标回收率Table 5 Results of recovery元素背景/(mg/kg)添加质量分数/(mg/kg)测得质量分数/(mg/kg)加标回收率/%RSD/(%,n =6)磷2 582500 3 0911027.01 000 3 623104 4.22 0004 30386 2.5钙4 1771 0005 0478710.02 0006 01792 4.73 0007 057963.92.4 实际样品的检测采用所建立的方法对市场采购的婴幼儿乳粉进行钙、磷元素含量测定,测定结果如表6所列. 从表中可以看出,所检测的样品编号1、2、5号样品钙磷比值分别为1.4、1.6、1.6,符合GB 10765—2021《食品安全国家标准 婴儿配方食品》[13]要求. 样品编号3、4 号样品是纯奶粉和甜奶粉,钙磷比值分别为1.2和1.1. 样品编号6、7号样品比值分别为1.7、1.3,符合GB 10767—2021《食品安全国家标准 幼儿配方食品》[14]要求.2.5 微波灰化与其他消解方法的比较将微波灰化法与其他前处理方法消解体系和所用时间进行比较,结果如表7所列. 微波灰化前处理方法的精密度和回收率能够满足日常检测的需求. 与干法灰化相比,由于微波的使用,大大增加了加热效率,从而使在进行婴幼儿乳粉前处理过程m /g1 5002 0002 5003 0003 5004 0004 500元素质量分数/(m g /k g )图3 样品称样量的选择Fig. 3 Optimization of sample weights第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷411中所需要的灰化时间更短,总体处理时间与微波消解相当. 微波灰化前处理只需要在灰化完成后用少量酸溶解样品,因此用酸量与湿法消解相比更少.说明微波灰化用于婴幼儿乳粉中钙、磷检测的前处理,所用时间少,消解所用到的酸的种类和剂量也很少,减少了酸的使用对于实验环境和实验人员的危害.3 结论采用微波灰化对婴幼儿乳粉中钙、磷元素进行样品前处理,相比微波消解方法,具有用时短、用酸量少、消解效果好、不需要进行赶酸处理等优势. 与干法灰化和湿法消解相比大大减少了样品处理时间. 采用微波灰化与ICP-OES 结合对婴幼儿乳粉中重要的指标元素钙、磷元素进行检测,是一种快速、环保、准确度高的方法,在婴幼儿乳粉质量控制中有很好的应用价值.参考文献:俞晔, 乙小娟, 刘一军. 微波灰化-原子荧光光谱法测定植物油中砷[J ]. 现代科学仪器,2002(6):48-50.[YU Ye, YI Xiaojuan, LIU Yijun. Determination of arsenic in vegetable oil by AFS method using mi-crowave ashing [J ]. Modern Scientific Instruments ,2002 (6):48-50.][ 1 ]王楼明, 叶锐钧, 林燕奎, 等. 微波灰化-氢化物发生-原子荧光光谱法测定原油和燃料油中的铅和砷[J ].[ 2 ]化学分析计量,2009,18(2):33-36. [WANG Lou ming, YE Ruijun, LIN Yankui, et al. Determination of lead and arsenic in crude oil and fuel oil by mi-crowave ashing hydride generation atomic fluores-cence spectrometry [J ]. Chemical Analysis and Meter-age ,2009,18 (2):33-36.]徐晓霞, 张海峰, 谭智毅, 等. 微波灰化-电感耦合等离子体原子发射光谱法测定石油焦中铁[J ]. 检验检疫学刊,2015,25(3):21-24. [XU Xiaoxia,ZHANG Haifeng, TAN Zhiyi, et al. Determination of iron in petroleum coke by ICP-AES with microwave ash technology [J ]. Journal of Inspection and Quarant-ine ,2015,25 (3):21-24.][ 3 ]荣丽丽, 孙玲, 王磊, 等. 微波灰化等离子发射光谱法测定渣油中的铁、镍和钒[J ]. 精细石油化工进展,2014,15(1):56-58. [RONG Lili, SUN Ling, WANG Lei, et al. Determination of iron, nickel and vanadium contents in residual oil with microwave ashing tech-nique and inductively coupled plasma atom emission spectrometry [J ]. Advances in Fine Petrochemicals ,2014,15 (1):56-58.][ 4 ]胡健. 微波灰化样品-电感耦合等离子体原子发射光谱法测定原油中微量金属元素[J ]. 化学工程与装备,2021(11):205-206. [HU Jian. ICP-OES De-termination of trace amount of metal elements in crude oil with microwave assisted ashing of sample [J ].Chemical Engineering and Equipment ,2021 (11):205-206.][ 5 ]王鹏, 沈良君, 李啸峰, 等. 微波灰化-ICP 法测定塑料中钡、镉、钴、铜含量[J ]. 广州化工,2013,41(15):[ 6 ]表 6 实际样品的检测Table 6 Detection of samples/(mg/kg)元素样品编号1样品编号2样品编号3样品编号4样品编号5样品编号6样品编号7磷 2 968 3 0958 109 4 760 2 431 3 793 5 964钙4 2174 9459 5315 0353 9706 3587 973表 7 微波灰化与其他前处理方法比较Table 7 Comparison between microwave ashing and other pretreatment methods方法体系所用时间文献微波灰化 2.0 mL 硝酸溶液(硝酸∶水体积比1∶1)90 min 本方法微波消解 5.0 mL 硝酸+1 mL 双氧水约2 h [15]干法灰化 2.0 mL 硝酸溶液(硝酸∶水体积比1∶1)4~5 h [16]高压消解 5.0 mL 硝酸+1.0 mL 双氧水 3 h [17]湿法消解10 mL 硝酸∶高氯酸(体积比为4∶1)4~5 h[18]412分析测试技术与仪器第 29 卷129-131. [WANG Peng, SHEN Liangjun, LI Xiaofeng, et al. Determination of barium, cadmium,cobalt, copper content in plastics by ICP-OES after mi-crowave ashing [J ]. Guangzhou Chemical Industry ,2013,41 (15):129-131.]张树全. 微波灰化-等离子发射光谱法测定茂金属聚乙烯中的钛、铝、锆[J ]. 橡塑技术与装备,2017,43(6):44-46. [ZHANG Shuquan. Determination of Ti, Al and Zr in metallocene polyethylene with mi-crowave ashing technique and inductively coupled plasmaemissionspectrometry [J ].ChinaRubber/Plastics Technology and Equipment ,2017,43(6):44-46.][ 7 ]夏从芳, 张龙旺, 白玮, 等. 微波灰化-ICP-MS 法测定傣药肾叶山蚂蝗中的金属元素[J ]. 江苏农业科学,2013,41(11):342-344. [XIA Congfang, ZHANG Longwang, BAI Wei, et al. Determination of metal elements in Desmodium reniforme by microwave ash-ing-ICP-MS [J ]. Jiangsu Agricultural Sciences ,2013,41 (11):342-344.][ 8 ]倪张林, 汤富彬, 屈明华, 等. 微波灰化-液相色谱-电感耦合等离子体质谱联用测定干食用菌中的三价铬和六价铬[J ]. 色谱,2014,32(2):174-178. [NI Zhanglin, TANG Fubin, QU Minghua, et al. Determin-ation of trivalent chromium and hexavalent chromium in dried edible fungi by microwave ashing-liquid chro-matography with inductively coupled plasma mass spectrometry [J ]. Chinese Journal of Chromatography ,2014,32 (2):174-178.][ 9 ]张慧, 夏拥军. 微波灰化-氢化物发生-原子荧光光谱法测定出口小麦淀粉中痕量铅[J ]. 光谱实验室,2005,22(3):559-563. [ZHANG Hui, XIA Yongjun.Determination of trace lead in exported wheat starch by microwave ashing-hydride generation-atomic fluor-escence spectrometry [J ]. Chinese Journal of Spectro-scopy Laboratory ,2005,22 (3):559-563.][ 10 ]李旭, 吴维吉, 刘佳, 等. 微波灰化电感耦合等离子体质谱法测定小麦中6种金属元素含量[J ]. 食品安全质量检测学报,2019,10(4):866-869. [LI Xu, WU Weiji, LIU Jia, et al. Determination of 6 kinds of met-al elements in wheat by microwave ashing and induct-ively coupled plasma-mass spectrometry [J ]. Journal[ 11 ]of Food Safety & Quality ,2019,10 (4):866-869.]吴志刚, 曹璨. 微波灰化-电感耦合等离子体质谱法测定电泳涂料中15种金属元素[J ]. 化学分析计量,2023,32(1):6-10. [WU Zhigang, CAO Can. Determ-ination of fifteen elements in electrophoretic coating by microwave ashing-inductively coupled plasma mass spectrometry [J ]. Chemical Analysis and Meterage ,2023,32 (1):6-10.][ 12 ]国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 婴儿配方食品: GB 10765—2021[S ]. 北京: 中国标准出版社, 2021.[ 13 ]国家卫生健康委员会, 国家市场监督管理总局. 食品安全国家标准 幼儿配方食品: GB 10767—2021[S ]. 北京: 中国标准出版社, 2021.[ 14 ]马征, 常雅宁. 微波消解-ICP-OES 法同时测定婴幼儿奶粉中的14种无机元素[J ]. 中国乳品工业,2017,45(1):43-46, 60. [MA Zheng, CHANG Yaning. De-termination of 14 trace elements in infant formula milk powder by microwave digestion-ICP-OES [J ]. China Dairy Industry ,2017,45 (1):43-46, 60.][ 15 ]宋龙波, 赵龙刚, 赵延伟, 等. 火焰原子吸收光谱法测定婴幼儿奶粉中铁、锌元素含量[J ]. 安徽农业科学,2012,40(33):16374-16376. [SONG Longbo, ZHAO Longgang, ZHAO Yanwei, et al. Determination of Fe and Zn in infant formula milk power by flame atomic absorption spectrometry [J ]. Journal of Anhui Agricul-tural Sciences ,2012,40 (33):16374-16376.][ 16 ]吴育廉. 高压密封湿法消解-火焰原子吸收光谱法测定婴儿配方奶粉中铁和锌[J ]. 微量元素与健康研究,2011,28(3):49-50. [WU Yulian. Digestion with high pressure airproof pot - Determined of Fe and Zn in Baby formula by using flame atomic absorption spectrometry [J ]. Studies of Trace Elements and Health ,2011,28 (3):49-50.][ 17 ]陈晓, 张晓文, 赵广才. 三种不同前处理方法对标准奶粉中锰含量测定的影响[J ]. 广东微量元素科学,2015,22(11):27-29. [CHEN Xiao, ZHANG Xiao wen, ZHAO Guangcai, et al. The effect of manganese contentdeterminationbythreepretreatmentmethods [J ]. Guangdong Trace Element Science ,2015,22 (11):27-29.][ 18 ]第 4 期陈丽梅,等:微波灰化-电感耦合等离子体发射光谱法测定婴幼儿乳粉中的钙和磷413。
Thermo Scientific Genesys 30 P4400 辐照计量仪说明书
DESCRIPTIONThe P4400 Thermo Scientific Genesys 30 Spectrophotometer (G30) is an optical measurement device used to measure the absorbance of dosimeters. It is designed to be simple and fast with the highest performance and quality.The G30 Spectrophotometer uses specially designed dosimeter holders to fit a variety of dosimeters to include the B3 DoseStix and B3 WINdose dosimeters. This spectrophotometer is built for the fast-paced, high-volume processing environment, and reduces time spent at every step of the dosimetry process.APPLICATIONThe Genesys 30 is used for the measurement of optical absorbance of dosimeters using a select wavelength in the ultraviolet (UV) or visible spectrum, such as GEX B3 radiochromic film dosimeters, and FWT-60 radiochromic film dosimeters. SPECIFICATIONSPhysical Specifications:GEX PartNo. Description Product Dimensions Packaging Dimensions Product WeightP4400 Spectrophotometer – US Plug34.3 cm L x 38.1 cm W x 20.3 cm H(13.5” L x 15” W x 8” H) 58.4 cm L x 50.8 cm W x 33.0cm H(23” L x 20” W x 13” H)10.0 kg(22 lbs.)P4400EU Spectrophotometer – EU PlugP4400UK Spectrophotometer – UK PlugMaterial Molded plasticColor Grey and WhitePrinting Thermo Scientific logo plate on frontElectrical Supply 100–240 V, 50–60 Hz, selected automatically; 150 W maximumOptical Design Single-beamSpectral Bandwidth(s) 5 nmLight Source Tungsten-Halogen lampDetector Silicon PhotodiodeScan Ordinate Modes Absorbance, % Transmittance, % Reflectance, Kubelka-Munk, log (1/R), log (Abs), Abs*Factor, IntensityResolution >1.6 (peak-to-valley ratio; toluene in hexane)Wavelength Range: 325 –1100 nmAccuracy: ±2 nm (full range 325 to 1100 nm) Repeatability: ≤ 1 nmScanning Speed Automatic – up to 1200 nm/min; variablePhotometric Range: -3A to +3ADisplay Range: -3A to +3A; 0 to 200,000 %T; 0 to 9,999,999 C Accuracy – Instrument: ±0.002 A (0 – 0.3A)0.5% of ABS reading (0.301A – 2.5A) Repeatability: ±0.002 ADrift (Stability) <0.002 A/hrNoise: ≤0.001 A at 0A≤0.001 A at 1A≤0.002 A at 2AStray Light <0.1 %T at 340nm and 400nmBaseline Flatness <0.003 AKeypad Tactile rubber 23 keys with numeric keypadLocal Control Option Display: Touchscreen LCD panel; 800 x 480; 12.7 cm (5 in) diagonalIncluded Components:•Plastic insert plate with cuvette holder•USB thumb drive•Power cord•USB interface cordPackaging:Unit is shipped in a cardboard box with a form-fitting foam enclosure.Storage:Store the instrument in a cool and dry location.INSTALLATIONPlease refer to the Thermo Scientific Genesys 30 Spectrophotometer User Manual and all other references for explicit detail on the specifications, set up, operation, performance verification, and general care of the instrument. Information supplied herein should be considered supplemental and specific to dosimetry usage.CAUTION!Whenever the spectrophotometer has been stored or shipped, immediate exposure to room air can cause condensation damage. Move the shipping cartons to the installation location at least 24 hours before installation. This allows the instrument to equilibrate at room temperature before the shipping cartons are opened and protective packaging is removed.Unboxing:After at least 24 hours, open the shipping box and remove the documentation packet and USB thumb drive. Remove the instrument from its shipping box.Operating Environment:Instrument was designed for use under the following conditions:Temperature Range* 5°C to 35°C (41°F to 95°F)Relative Humidity <20% to 80% noncondensingAltitude 0m to 200m*Operating the instrument outside of this temperature range may cause permanent damage.Instrument performance should be verified when operating outside of the relative humidity (RH) and altitude ranges. GEX verified instrument performance at an altitude of approximately 1610m without any problems.The instrument should be positioned on a surface that is level and free of vibration. Anytime the instrument location is moved, the user is advised to conduct performance verification testing. Consider all GLP’s (Good Laboratory Practices) concerning cleanliness of the area.Power and USB:Connect the power cord and ensure the instrument’s sample chamber is empty. Power ‘ON’ the spectrophotometer. The unit will perform a series of self-checks that will take approximately one minute.Dosimeter Holders:Install the hot-swappable baseplate and holders according to GEX Doc# 100-168, Genesys 30 Dosimeter Holder System.IQ/OQ, CALIBRATION & PERFORMANCE VERIFICATIONCalibration:This instrument has been certified by Thermo Scientific to conform to approved test specifications. A Production Test Report is included with the instrument.The instrument is not required to be re-calibrated unless it is failing to meet performance verification specifications. See the section on ‘Care & Maintenance’ below for more information.Performance Verification:Please refer to page 26 of the Genesys 30 User Guide for complete information on performance verification.Operational Qualification (OQ):Upon completion of any and all PV activities, the user must verify the operation of the instrument. The user should verify the ability of the instrument to reproducibly perform fixed wavelength measurements. It is suggested to perform a gage R&R study for each dosimeter type that will be used. It is suggested to conduct thirty (30) repeated measurements of single dosimeters irradiated at low, middle, and high doses in the user’s range, and to reproduce this test for a minimum of three (3) days.To complete these measurements, the protocol below must be followed in order to make fixed wavelength dosimeter measurements:Protocol for Dosimeter Measurements:1.Insert the appropriate dosimeter holder according to GEX Doc #100-168, Genesys 30 Dosimeter Holder System.2.From the instrument home screen, highlight “Fixed” and press the enter ( ) button.3.Input the correct wavelength setting for the dosimeter type you are measuring and press “Done”.4.Ensure the dosimeter holder is empty, then zero the instrument by pressing the yellow “0.00” button.5.After the instrument is zeroed, insert a dosimeter to be measured and press the green diamond-shaped button. Themeasurement will be captured on the screen.6.After the measurement is recorded, you may remove the dosimeter and insert the next sample to be measured.Repeat step 5 above for all dosimeters.NOTE: Only 10 consecutive measurements may be taken. If more than 10 are needed, you must save or discard the data before proceeding. The recorded measurements may be output to an external USB drive in the form of .CSV files.Saving a Measurement Session:1.Insert a USB drive into the port located on the front of the G30.e the directional arrows to highlight the floppy disk icon and press enter.e the enter key to select “Export data to USB drive” from the window that is displayed and press OK.4.The top of the screen will display “Data is successfully saved” when complete.5.The USB drive may be removed and the data transferred to a computer for review and analysis.6.Clear out the measurements by selecting the trash can icon and press enter.CARE & MAINTENANCECleaning:The instrument’s exterior and the sample compartment should be periodically cleaned as part of a Preventative Maintenance program along with the dosimeter holder system. An instrument that is maintained and cared for will perform better and have a longer life. Complete cleaning instructions which include the proper materials can be found in the G30 User Guide. Instructions for cleaning the dosimeter holder system are located in GEX Doc# 100-168, Genesys 30 Dosimeter Holder System.Lamp Replacement:P4401 Tungsten-Halogen Lamp (light source) should be replaced every 800 hours. It is recommended to warm-up the instrument 15-30 minutes before use, and the lid may remain open during measurements. Measurement time for each dosimeter is less than 1 second.If the device requires service for any reason there are two options:(Note: Not all services are available with both options. Please consult with GEX or Thermo for more detail.)1.Depot Service:The Genesys 30 is designed to be serviced on-site, but from time to time it may need to be sent to Thermo Scientific in Madison, WI U.S.A. for repair or other services. Please contact GEX Customer Service for more information if depot service is required.2.On-site Service & Service Agreements:On-site service is available in some areas. A qualified technician can arrive on-site for cleaning, calibration, andmaintenance on your Genesys 30. Service agreements may also be available in your area. Contact GEX CustomerService for details.PRODUCT PHOTOSThermo Scientific Genesys 30 SpectrophotometerACCESSORIESGEX Part No. Description PurposeP4220Spectronic Standards Set Photometric accuracy, wavelength accuracy verificationP4330GEX Hot-Swappable Base Plate The base platform is the mount for all dosimeter holders as well as the laser micrometer and barcode reader. Beam tubes allow user to leave the lid open during measurements: protects measurements from stray light.P4332DoseStix Dosimeter Holder Dosimeter positioning for GEX DoseStix style dosimetersP4334WINdose Dosimeter Holder Dosimeter positioning for 1cm2 radiochromic film dosimetersP4336PMMA Dosimeter Holder Dosimeter positioning for Red and Amber Perspex PMMA dosimetersP4350Laser Micrometer Measures thickness of PMMA dosimeter inside the Evo220P4355Custom Gage blocks For calibrating the P4350 Laser MicrometerP4360B3 DoseStix Barcode Scanner Barcode scanner and mounting post for automated B3 DoseStix barcode readingP4401G30 Tungsten-Halogen LampAssembly Genesys 30 Spectrophotometer light sourcePRECAUTIONSPlease refer to the Thermo Scientific Site and Safety User Guide for additional information and the full listing of precautions.NOTICE:Immediate exposure to room (ambient) air can cause condensation damage whenever the spectrophotometer has been stored or shipped. Move the shipping cartons to the installation location at least 24 hours before installation. This allows the instrument to equilibrate with the room temperature before the shipping cartons are opened and protective packaging is removed.•Keep shipping cartons upright at all times. Damages due to improper moving techniques are not covered by the warranty.•Connect the spectrophotometer to a suitable uninterruptable power supply to minimize line current fluctuations that may alter the measurement or damage the spectrophotometer.•Keep the top cover closed and latched as much as possible. Minimize exposure of the spectrophotometer to airborne contaminants like smoke, dust, oil vapor, or chemical fumes.WARRANTY/GUARANTEEWarranty:Please refer to the Thermo Scientific product information for warranty information. User modifications are not warranted and are the sole responsibility of the user.Guarantee:1 year GEX satisfaction guarantee. Product may be returned within one year from the date of delivery for any customer dissatisfaction.REFERENCESReferences:•ISO 10012: Measurement Management Systems -- Requirements for Measurement Processes and Measuring Equipment•ISO/ASTM 51261: Calibration of Routine Dosimetry Systems for Use in Radiation Processing•ISO/ASTM 52628: Dosimetry for Use in Radiation ProcessingThermo Fisher Scientific Documents:•Genesys 30 User Guide•Genesys 30 Setup Guide•Genesys 30 Warranty Information•Site & Safety Information•Production Test ReportGEX Product Specification and Usage (PSU):•GEX Doc #100-168, Genesys 30 Dosimeter Holder SystemTo learn more about GEX products and services, visit or contact a GEX representative at +1 303 400-9640.。
超短脉冲微波高效激发的高分辨率热声成像
超短脉冲微波高效激发的高分辨率热声成像娄存广;计钟;丁文正【摘要】Pulsed microwave induced thermoacoustic imaging takes advantage of the depth penetration of microwave energy and the resolution of acoustic waves. The microwave source generally employed in thermoacoustic imaging has a pulse width of sub-microsecond, with the energy density of several mJ/cm2 . The excited thermoacoustic wave has a main frequency of 2 MHz, and a resolution of 500 μm can be obtained. With the development of thermoacoustic imaging toward clinical application, it is very important to effectively reduce the radiation dose and improve the imaging resolution, which is a key factor for the successful application of thermoacoustic imaging system. In this paper, we designed a ultra-short microwave induced thermoacoustic imaging system, the experimental results show that this system can improve the generation efficiency of thermoacoustic waves with two orders of magnitude, and the resolution can approximately reach up to about 100 μm.%微波热声成像综合了微波成像和超声成像的优点,具有很好的穿透深度及较高的图像分辨率.热声成像的激发源通常为基于脉冲调制的亚微秒级脉冲微波,激发能量密度约为几mJ/cm2,激发出的热声信号主频通常为2 MHz,成像分辨率约为500 μm.随着热声成像向着临床应用方向发展,能否有效的减小辐射剂量并提高成像分辨率,是热声成像系统设计成败的一个关键因素.为了有效改善微波热声成像中热损伤及分辨率,设计开发了超短脉冲微波热声成像系统,实验结果表明该系统提高了热声转化效率约两个数量级,成像分辨率达到105 μm,为热声成像的临床应用铺平了道路.【期刊名称】《激光生物学报》【年(卷),期】2013(022)001【总页数】5页(P48-52)【关键词】热声成像;脉冲微波;转化效率;分辨率【作者】娄存广;计钟;丁文正【作者单位】华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室,广东,广州,510631;华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室,广东,广州,510631;华南师范大学生物光子学研究院激光生命科学研究所、暨激光生命科学教育部重点实验室,广东,广州,510631【正文语种】中文【中图分类】Q684;R3120 引言脉冲激光激发的光声成像及脉冲微波激发的热声成像近年在生物医学及材料的无损检测等领域引起了广泛关注[1-3]。
红外距离传感器产品参考手册说明书
Laser type and high power narrow beam LED type BGS! Types with sensing distances of 100 mm and 300 mm Industry standard sizeHighly accurate height difference detection through low hysteresisRelatedproductsUniversal voltage typeBGS-2VP.384Higher accuracyBGS-HL,BGS-HDLP.310Transparent object detectionZ3R-QP.404 Selection tableFor the connector type, please purchase an optional JCN series connector cable.Options/AccessoriesConnector cablesL-shapedJCN-SCable length: 2 mJCN-5SCable length: 5 mJCN-10SCable length: 10 mJCN-LCable length: 2 mJCN-5LCable length: 5 mJCN-10LCable length: 10 mProtective mounting bracketUltra-durable 2 mm thick typeRust-resistant stainless steelS ensor is firmly secured using M3 Hexsocket head cap screwsT he bracket is also firmly secured usingM6 screwsLK-S01LK-S02 Meander detection of sheet materials Detection of multi-colored trays Detection of items on stainless steel lines Laser type application 1LED type application 1LED type application 2Straight326Laser, standard type BGS-ZL, BGS-Z seriesLaser types (Class 1) and high power narrow beam LED types are availableIdeal for height difference detection using low hysteresisIndustry standard sizeShort-range type hysteresis ≤ 3% (typical value)Mounting hole pitch: 25.4 mmLaser type (equipped with laser OFF input)High power narrow beam LED light source typeThe spot size of the laser type is ø1 mm at 100 mm (short-range type). Optimal for applications that in which small object detection and high repeat accuracy are required. It is also a Class 1 laser in which eye protection for workers is not necessary.*Classified as Class II in the US FDA standards.A short-range type with a sensing distance of 100 mm that achieves a low hysteresis of ≤ 3%. Demonstrates its strength in small height difference detection.* A mid-range type with a sensing distance of 300 mm that achieves a hysteresis of ≤ 5%.Features an industry standard pitch of 25.4 mm.Features a high power narrow beam LED light source . Because the spot light can be seen clearly even in brightfactories regardless of the LED light, confirmation of detection position is easier than for any other conventional model.*Compared to conventional models: Using LED light source.Laser typeH y s t e r e s i s (%)Sensing distance X (mm)High power narrow beam LED typeH y s t e r e s i s (%)Sensing distance X (mm)Laser, standard type BGS-ZL, BGS-Z seriesSpecifications*2. Classified as Class II in the US FDA standards.*3. D efined with center strength 1/e 2 (13.5%). There may be light leakage outside of the specified spot size. The sensor may be affected when there is a highly reflective object close to the target area.*4. Mounting bracket BEF-W100-A is included with the connector type.Specifications are subject to change without prior notice for product improvement purposes.Laser, standard type BGS-ZL, BGS-Z seriesI/O circuit diagramNPN output typePNP output typeConnector typeConnecting1 to 4 are connector pin No.NotesC onnect frame ground to the earth when the switching regulator is used for power supply. B ecause wiring sensor wires with high-voltage wires or power supply wires can result in malfunctions due to noise, which can cause damage, make sure to wire separately. Avoid using the transient state while the power is on (approx. 100 ms). T he connector direction is fixed as in the drawing to the right when you use L-shaped connector cable. Be aware that rotation is not possible.This product emits a Class 1 (II) visible laser beam that is compliant with IEC/JIS, FDA laser safety standards.Warning and explanation labels are affixed to the sides of the sensor.Laser type: BGS-ZL10 /BGS-ZL30Laser light precautions1 10 to 30 VDC2 Laser OFF input (laser type only)3 0 V4 Control output(Pin con guration)Sensor sideConnector cable sideWarningDo not look directly at the laser or intentionally shine the laser beam in another person’s eyes.Laser, standard type BGS-ZL, BGS-Z seriesDimensionsSensorConnector cable (optional)Cable typeConnector typeJCN-S, JCN-5S, JCN-10SJCN-L, JCN-5L, JCN-10L(Unit: mm)Light ON / Dark ONselection switchOutput indicator (orange)Light ON / Dark ONselection switchø4.7, 4-wire × 0.325 mm 2ø4.7, 4-wire × 0.325 mm 2Laser, standard type BGS-ZL, BGS-Z seriesConnector type (when using BEF-W100-A)(Unit: mm)Mounting bracketCable type (when using BEF-W100-B)Laser, standard type BGS-ZL, BGS-Z seriesTypical characteristic dataBGS-ZL10 Laser typeBGS-ZL30 Laser type③S e n s i n g a r e a Y (m m )④③Distance X (mm)④③D i s t a n c eY (m m )④③Sensing distance X (mm)④③Sensing distance (mm)④③Sensing distance (mm)④③H y s t e r e s i s (%)④③S e n s i n g d i s t a n c e (m m )④W h i t e p a p e rB l a c k p a p e rV e n e e b o a r d C a r d b o a r dB l a c k r u b b e rB l a c k s p o n g ③S e n s i n g a r e a Y (m m )④③D i s t a n c e Y(m m )④③H y s t e r e s i s (%)④Hysteresis51002003001015203025③S e n s i n g d i s t a n c e (m m )④③O p t i c a l p l a n e ④③Sensing distance X (mm)④③Sensing distance (mm)④③Distance X (mm)④③Sensing distance (mm)④White paperGray paper/white paper Black paper/white paperW h i t e p a p e rB l a c k p a p e rV e n e e b o a r dC a r d b o a r dB l a c k r u b b e rB l a c k s p o n gLaser, standard type BGS-ZL, BGS-Z seriesBGS-Z10 LED typeBGS-Z30 LED type③S e n s i n g d i s t a n c e (m m )④③S e n s i n g a r e a Y (m m )④③Distance X (mm)④③D i s t a n c e Y (m m )④③Sensing distance X (mm)④③O p t i c a l p l a n e ④③Sensing distance (mm)④③H y s t e r e s i s (%)④③Sensing distance (mm)④W h i t e p a p e rB l a c k p a p e rV e n e e b o a r dC a r d b o a rdB l a c k r u b b e rB l a c k s p o n g③S e n s i n gd i s t a n ce (m m )④③H y s t e r e s i s (%)④③Sensing distance (mm)④③S e n s i n g a r e a Y (m m )④③D i s t a n c e Y (m m )④③Sensing distanceX (mm)④③Distance X (mm)④1020304050③Sensing distance (mm)④③O p t i c a l p l a n e ④5W h i t e p a p e rB l a c k p a p e rV e n e e b o a r dC a r d b o a r dB l a c k r u b b e rB l a c k s p o n g。
Optical Power and Wavelength Meter OMM 6810B 说明书
Optical Power and Wavelength MeterOMM6810B The OMM-6810B is the only power meter capableof measuring the optical power and wavelength ofsemiconductor lasers including short wavelengthlasers, high power pumps, and fiber lasers. A variety of measurement heads cover wavelength ranges from 350 to 1650nm for power only or power andwavelength measurement.In addition to precision power and wavelength measurements, the OMM-6810B is loaded withstandard features such as log/linear display modes, autoranging, user calibration, and reference measurementcapability. All of these features plus an analog output andIEEE-standard GPIB interface combine to make this instrument a cost-effective laser diode development orproduction test tool.NIST traceable calibrationMeasures power and wavelength with ILX Power/Waveheads Integrating sphere-based power measurements Measurement heads cover a wide wavelength range from350 to 1650nm Power measurement up to 10W Free-space and fi ber measurement heads Easy test system integration withstandard GPIB interface The only power meter that measures power and wavelength.Optical Power and Wavelength Meter OMM 6810B Count on High PerformanceThe OMM-6810B is an accurate, low noise power meter capable of measuring optical power over an 80dB dynamic range, and offers the stability and repeatability necessary for precise power measurement. Packed with other features including a novel wavelength measurement technique developed at ILX Lightwave, the OMM-6810B becomes the only power meter to measure wavelength and power in a single, easy to use instrument. Power/Waveheads offer up to 10W of optical power measurement with wavelength measurement accuracies from several tenths of a nanometer to one nanometer. For spectral measurements of high power sources, a fi ber tap is included on the OMH-6790B Power/Wavehead to allow convenient connection to an optical spectrum analyzer. A Wide Variety of Measurement Heads The OMH-6700B Series Optical Measurement Heads, when coupled with the OMM-6810B Optical Multimeter, provide the fl exibility to easily and accurately measure the optical power of most laser diode sources available today including short wavelength lasers, higher power pump, and fi ber laser diodes. In addition, Power/Waveheads are available that measure the power-averaged wavelength.Choose from power only or power and wavelength measurement heads to cover a source wavelength range of 350 to 1650nm and optical power from -50dBm to + 40dBm. Power/Waveheads use proven and efficient integrating sphere technology for both free space measurements and fi ber measurements. Measurement heads can be confi gured for the most common fi ber optic connectors including FC, LC, ST, SC, and bare fi ber.Power Only Heads Power only heads for both free space and fi ber optic measurements offer the capability of measuring power only from laser diode sources while capitalizing on the wide dynamic range of semiconductor detectors. The power measurements are made possible by integrating sphere technology, allowing power measurements up to 30dBm. The fi ber optic heads ensure high sensitivity, high stability, and low noise power measurements by temperature controlling the detectors. Power/Waveheads Power/Waveheads combine precision power measurement capability with ILX Lightwave’s unique wavelength measurement capability to deliver a cost-effective laser diode measurement tool. For example, the OMH-6742B Head with wavelength accuracy of ±1.0nm eliminates the need for additional wavelength measurements in short wavelength laser diode testing, saving time and money.Since these heads measure wavelength, they have the unique capability to “self calibrate” the wavelength dependent response of the detector. There is no need to enter a wavelength for an accurate power measurement ; the instrument does it automatically The Fiber Optic Heads offer high power measurement capability for high power pumps and fi ber lasers.Semiconductor Power/Waveheads provide accuratemeasurements of short wavelength lasers.Optical Power and Wavelength Meter OMM 6810BAffordable optical power and wavelength measurement in a single meter.by sensing the wavelength. This allows the OMM-6810B with one of the power/waveheads to act like a spectrally-fl at thermal detector. Sophisticated, Yet Simple to Operate The OMM-6810B can be intuitively operated from the front panel or via the standard GPIB interface. Optical power can be read on the left hand display in either linear or logarithmic units, while wavelength is displayed on the right hand display in either nanometers or wavenumbers. Both 5-digit, green LED displays are easy to view, even with safety goggles on. For optical alignment, the optical power level is also easy to monitor on the clear, 16-segment, analog intensity bar graph. An analog output port on the rear panel, with a voltage proportional to power, is also provided for remote monitoring.Powerful GPIB Interface Makes Remote Control and Testing Easy For automated control, the GPIB interface allows remote programming and instrument operation in research and development or manufacturing environments. All instrument and measurement head functions accessible from the front panel are also accessible through the GPIB interface, making data gathering quick and accurate. In addition, a LabVIEW ® driver is available for download from the ILX Lightwave website.Measurement Confi dence The OMM-6810B and OMH-6700 Series Measurement Heads are calibrated to NIST traceable standards in our own calibration laboratory where accuracy and traceability are our primary concerns. Our documented quality system ensures conformance to continuous traceability and ultimately your confi dence in the power/waveheads’ measurements.Optical Power and Wavelength Meter OMM 6810B1POWER DISPLAY Type: 5-digit, 7-segment, green LEDs Power Units Linear: pW, nW, µW, mW, W Log: dB, dBm Resolution: .001 unit (log or linear)Power Level Meter: 16-segment bar graph Analog Power Output: 0–10V, for each range, relative to full scale WAVELENGTH DISPLAY Type: 5-digit, 7-segment, green LEDs Units: nm, cm -1Resolution: 0.1nm DISPLAY UPDATE PERIOD (AVERAGING)Slow: 960ms (16 samples/result)Medium: 240ms (4 samples/result)Fast: 60ms (no averaging)GENERAL Power (50–60 Hz): 100V, ±10%, 120V, ±10% 220V, ±10%, 240V, ±10%Operating Temperature: 15°C– 35°C Storage Temperature: –20°C to 60°C Humidity: <85% RH, noncondensing <70% for <100µW input Dimensions (HxWxD): 89mm x 217mm x 313mm3.5" x 8.5" x 12.3"Weight: 2.5kg (5.5lbs)Warm-up: 1 hour NOTES Typical values provide supplemental information beyond guaranteed specifi cation limits.1. Unless otherwise specifi ed, all specifi cations measured at 25°C ±3°Cafter one-hour warm-up period. Fiber optic head specifi cations applicable for 9/125 to 110/140µm, NA = 0.3. 2. Typical photdiode response is linear over a 60 to 70 dB range between the effects of thermal noise and saturation of the diode. ILX power meter heads are calibrated aboe the noise threshold and linearity is verifi ed inorder to produce an accurate calibration for optical power measurements to 10W.3. Includes traceability to NIST. Calibrated to 21o C + 3o C at 10 nm intervals. Uncertainty evaluated according to NIST Technical Note #1297: “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results.” Accuracy specifi cations are verifi ed with the wavelength entered manually (instrument not in auto-wavelength mode). Add 1% for NA > 0.2, Maximum NA 0.30.4. Range of input power necessary for wavelength measurement.5. This instrument’s wavelength measurement technology provides “power-averaged” wavelength (i.e., spectral contributions to which detectors aresensitive are measured).6. Manual wavelength mode. Add +0.5% for auto-wavelength mode. Add +0.5% for <440 nm and >1000 nm. For input power >100 mW, add+0.05%/100 mW.7. For input power >100 mW, add +0.05%/100 mW.8. +1.5 nm for 950 to 1000 nm range.In keeping with our commitment to continuing improvement, ILX Lightwave reserves the right to change specifi cations without notice and without liability for such changes.ORDERING INFORMATION OMM-6810B-100V Optical Multimeter (GPIB included), 100V OMM-6810B-120V Optical Multimeter (GPIB included), 120V OMM-6810B-220V Optical Multimeter (GPIB included), 220V OMM-6810B-240V Optical Multimeter (GPIB included), 240V Power Only Measurement Heads OMH-6703B Silicon Power Head (1W Power Measurement, 400–1100nm)OMH-6708B InGaAs Power Head (100mW Power Measurement, 800–1600nm)Power/WaveHeads (Power and Wavelength Measurement)OMH-6727B InGaAs Power/Wavehead (1W, 950–1650nm)OMH-6742B Short Wavelength Power/Wavehead (1W, 350–1100nm)OMH-6790B Silicon Fiber Power/Wavehead (10W, 830–1100nm)Accessories BF-820 Bare Fiber Holder (requires either AO120 or CA-120)RM-123 Dual Rack Mounting Kit RM-125 Single Rack Mounting Kit Note: Fiber optic adapters available on request for FC, LC, SC, ST , and bare fi ber.REV10. 0613191-800-459-9459For information call GENERAL OMH-6703B Silicon Power Head OMH-6708B InGaAs Power Head OMH-6727B InGaAs Power/Wavehead OMH-6742B Short Wave-length Power/Wavehead OMH-6790B 10W Silicon Power/Wavehead 6mm 6mm 6mm 6mm 2.54mm Fiber Input 0.4-1.1µm 0.8-1.6µm 0.95-1.65µm 0.35-1.1µm 0.83-1.1µm 69mm (dia.) x 30mm (thick)69mm (dia.) x 30mm (thick)69mm (dia.) x 30mm (thick)69mm (dia.) x 30mm (thick)86mm x 86mm x 100mm -40 to +30dBm -50 to +20dBm -40 to +30dBm -40 to +30dBm -30 to +40dBm ±5.0%6±5.0%±5.0%7±3.5%6±5.0% NA NA -20 to +30dBm -10 to +30dBm 0 to 40dBm --------------------±1.0nm 8±1.0nm ±0.2nm Power Only Power and Wavelength Model Aperture Wavelength Dimensions Range 2 Accuracy 3 Range 4 Accuracy 5 Range Application POWER MEASUREMENT OMH-6700B MEASUREMENT HEADS WAVELENGTH MEASUREMENT 31950 Frontage Road, Bozeman, MT 59715 • FAX: 406-586-9405 /ilxlightwave。
OmegaLux QC和QH系列玻璃粒子热电平面板说明书
81,7(' 67$7(6 ZZZRPHJDFRP 7&20(*$
6WDPIRUG &7
&$1$'$ ZZZRPHJDFD /DYDO 4XHEHF 7&20(*$
81,7(' .,1*'20 ZZZ RPHJDFRXN 0DQFKHVWHU (QJODQG
3/4"
Radiant
10"
Surface
Coil Direction
K
To Order (Specify Model No.)
Width Length
Without Thermowell With ThermowellWgt.
(in.)
(in.) Wattage Voltage Phase Model No. Price Model No.
HIGH WATT DENSITY, QUARTZ-FACED INFRARED RADIANT PANEL HEATERS
QC and QH Series
$270
Basic Unit
ߜ High Watt Density
2
QC Series: 40 W/In QH Series: 60 W/In2 ߜ High Temperature 1800°F (981°C) ߜ High Purity Fused Quartz Glass Emitting Face ߜ Output Wavelength Between 2.5 and 6 Microns ߜ Heavy Gauge Aluminized Steel Housing
Ordering Example: QC-061040-T is a 40 W/in2, 240 watt, dual voltage 240/480 Vac heater with optional thermowell, $373.
材料表面处理用强流电子回旋共振离子源
材料表面处理用强流电子回旋共振离子源明建川;郭之虞;彭士香【期刊名称】《强激光与粒子束》【年(卷),期】2012(24)12【摘要】A 2. 45 GHz electron cyclotron resonance ion source with permanent magnets has been developed. Its outline dimension is 160 mm in diameter and 90 mm in height, the discharge chamber's dimension is 70 mm in diameter and 50 mm in he-hight. The microwave window is made of a φ50 mm×10 mm BN disk and two φ30 mm×10 mm ceramic disks. This ion source adopts a three-electrode extraction system and works in the pulsed mode. When the microwave input power is 300 W, the air inflow is 0. 4 mL/min, a more than 30 mA peak current of the nitrogen beam can be extracted from a 5 mm emission aperture at 100 kV extraction voltage. The diameter of the beam uniform area on the working plane is more than 200 mm.%介绍一台2.45 GHz永磁强流电子回旋共振离子源,其外径160 mm,高90 mm,放电室直径70mm,高50 mm.微波馈人采用介质耦合方式,微波窗由一块φ50 mm×10 mm柱形BN和两块φ30 mm×10mm的柱形陶瓷构成.离子源工作在脉冲模式下,采用三电极引出系统,最高引出电压达到100 kV,在微波输入功率300 W、进气量0.4 mL/min时,可引出峰值超过30 mA的氮离子束,在距离离子源引出孔1200mm位置处的束流均匀区直径大于200 mm.【总页数】4页(P2911-2914)【作者】明建川;郭之虞;彭士香【作者单位】北京大学核物理与核技术国家重点实验室,北京100871;北京大学核物理与核技术国家重点实验室,北京100871;北京大学核物理与核技术国家重点实验室,北京100871【正文语种】中文【中图分类】TL503.3【相关文献】1.强流RF离子源研制及初步实验 [J], 顾玉明;胡纯栋;谢亚红;谢远来;李军;梁立振;陈俞钱2.用于质子直线加速器的强流电子回旋共振离子源 [J], 崔保群;李立强;包轶文;蒋渭生;王荣文3.强流激光离子源中的等离子体参数诊断 [J], 董攀;龙继东;陈德彪;张篁;张开志;李杰;石金水4.强流负氢离子源发射度测量仪研制 [J], 管锋平;温立鹏;宋国芳;贾先禄5.进气量对强流正离子源反向电子流的影响研究 [J], 吴铭钐;胡纯栋;谢亚红;邑伟;许永建;梁立振因版权原因,仅展示原文概要,查看原文内容请购买。
高功率微波及材料特性参数对沿面击穿的影响
高功率微波及材料特性参数对沿面击穿的影响董烨;董志伟;周前红;杨温渊;周海京【期刊名称】《强激光与粒子束》【年(卷),期】2013(025)005【摘要】For investigating the influence of high-power microwave and material characteristic parameters on flashover and breakdown on dielectric surfaces, a 1D3V PIC-MCC code is adopted in this simulation. By using this code, the number of electrons and ions, electron and ion density distributions, time and space distribution of space charge field, average electron energy, discharge power, deposited power, excitation and ionization loss power, and ionization frequency are studied numerically in detail. Ionization frequency increases with electric-field increasing, and then reaches to saturation and decreases slowly; higher value of e-lectric-field causes more secondary electrons to form higher deposited power. Ionization frequency increases with microwave frequency decreasing, and then reaches to saturation and decreases slowly; higher frequency may suppress multipactor discharge. Thus high-power microwaves with higher value of electric-field and lower frequency is easier to induce breakdown. Reflection causes electric-field decrease and magnetic-filed increase on dielectric surfaces, which leads to the decrease of ionization frequency and secondary electron decrease, the shortening of the oscillation time of multipactor discharge, and the breakdown risk increase of the inner regionof device. Compared with linear polarization, circular polarization causes more secondary electrons to form higher deposited power, and the breakdown risk increases. Shorter pulses produce fewer electrons and ions with lower average energy, which form lower deposited power, so high-power microwaves with long pulses are easier to induce breakdown. Longer rise time of pulses causes longer breakdown time, but could not decrease the breakdown risk. Compared with surface roughness, higher value of materials secondary emission yield increases breakdown risk markedly. Ionization frequency and average electron energy increase firstly, and then decrease with gas pressure increasing. Multipactor discharge dominates at low pressure, and ionization dominates at high pressure.%为研究高功率微波及材料特性参数对介质沿面闪络击穿过程的影响,采用自编的1D3V PICMCC程序,通过粒子模拟手段,得到了电子与离子数目、电子及离子密度分布、空间电荷场时空分布、电子平均能量、放电功率、表面沉积功率、激发电离损耗功率、电离频率等重要物理量.结果表明:电离频率随场强增加而增加,达到饱和后缓慢下降,强场诱发的二次电子数目更多导致本底沉积功率增高;电离频率随频率减小而增加,达到饱和后缓慢下降,频率太高会抑制次级电子倍增;因此,低频强场下击穿压力较大;反射引发表面电场下降及磁场增加效应,降低表面场强虽使表面击穿压力下降,但磁场的增加会导致二次电子倍增起振时间缩短,且会增加器件内部击穿风险;圆极化相对线极化诱导二次电子数目更多、本底沉积功率更高,击穿风险增加;短脉冲产生电子、离子总数少,平均能量低,沉积功率低,击穿风险低于长脉冲;脉冲上升时间的缩短和延长,只会提前或推后击穿时间,并不会改善击穿压力;材料二次电子发射率的增加会给击穿造成巨大压力,表面光滑度对击穿过程影响不大;电离频率和电子平均能量随释气压强增加均先增加后减小,低气压二次电子倍增占优,高气压碰撞电离占优.【总页数】6页(P1215-1220)【作者】董烨;董志伟;周前红;杨温渊;周海京【作者单位】北京应用物理与计算数学研究所,北京100094【正文语种】中文【中图分类】O461;O462【相关文献】1.高功率微波单一气体及混合气体击穿特性 [J], 魏进进;周东方;余道杰;胡涛;雷雪;胡俊杰;侯德亭2.高功率重复频率三电极气体开关自击穿特性 [J], 罗敏;赵殿林;甘延青;龚胜刚;常安碧;刘忠3.高功率微波孔缝击穿特性 [J], 闫二艳;孟凡宝;邱风;马弘舸4.高功率微波孔缝击穿特性 [J], 闫二艳;孟凡宝;邱风;马弘舸;5.高功率微波在大气击穿时的传输特性研究 [J], 卢洵;赵朝锋;徐振启;侯德亭因版权原因,仅展示原文概要,查看原文内容请购买。
亿光推出超微型High Power Flash LED,输出效率达40lm/W
亿光推出超微型High Power Flash LED,输出效率达40lm
/W
佚名
【期刊名称】《电子制作》
【年(卷),期】2007(000)010
【摘要】亿光电子(Evedlight Electronic)推出2.04×1.64mm High Power Flash LED——EHP-C04。
其操作电流可从350mA至1A电流脉波输入,输出效率可达40lm/w。
适用于相机闪光灯、手电筒光源及其它照明相关应用等。
【总页数】1页(P5)
【正文语种】中文
【中图分类】TN248.4
【相关文献】
1.“亿光LED照明”推出多款BSMI球泡灯系列 [J],
2.亿光推出超薄、高幅射强度之LED遥控器发射组件 940nm特殊镀层封装,发光角度广、强度加倍 [J],
3.亿光推出新型高压XI3030 LED封装系列提供30V,0.5-1W的系列产品,其他电压可依需求客制化 [J],
4.亿光拓展LED照明市场,推出新型5630封装产品系列 [J],
5.欧司朗推出白色LED光效达40lm/W [J], 无
因版权原因,仅展示原文概要,查看原文内容请购买。
能量者HARDCASE专业型可重充电聚光灯HCSPR611说明书
©2015 Energizer
PERFORMANCE BENEFITS
Latest LED technology provides a bright spot for a variety of tasks Powerful beam distance to see objects far away Water resistant for outdoor tasks Rechargeable power supply
Provides
Provides
550
Run Time of
550
Lumens of
2 hours 15
Light
2h 15m
minutes.
Sustains 7 Meter Drop Test
7m
425m
Illuminates objects up to 425m away.
IPX4
IPX 4 Water Resistant
Weight Excluding Batteries: 555 Grams / 19.6 Ounces Dimensions: 203mm x 89mm x 64mm / 8” x 3.5” x 2.5”
NUMBER OF OPERATING MODES: 2
CERTIFICATES AND COMPLIANCE
Tested according to ANSI/NEMA FL1 Standards.
Mode
High Low Results based on: Energizer® NH15-2000
Lumens (lm) Runtime (h)
550
2h 15m
200
6h 45m