2018年湖南省常德市中考真题数学
2018年湖南省常德市中考数学试卷含答案解析(word版)
2018 年湖南省常德市中考数学试卷一、选择题(本大题8 个小题,每题 3 分,满分 24 分)1.(3 分)﹣ 2 的相反数是()﹣ 1A.2B.﹣2 C.2D.﹣【剖析】直接利用相反数的定义剖析得出答案.【解答】解:﹣ 2 的相反数是: 2.应选: A.【评论】本题主要考察了相反数,正确掌握相反数的定义是解题重点.2(.3 分)已知三角形两边的长分别是 3 和 7,则此三角形第三边的长可能是()A.1B.2C.8D.11【剖析】依据三角形的三边关系可得7﹣ 3< x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,应选: C.【评论】本题主要考察了三角形的三边关系,重点是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.)3.( 3 分)已知实数 a,b 在数轴上的地点以下图,以下结论中正确的选项是(A.a>b B.| a| <| b| C.ab>0 D.﹣ a> b【剖析】依据数轴能够判断a、b 的正负,从而能够判断各个选项中的结论能否正确,从而能够解答本题.【解答】解:由数轴可得,﹣2< a<﹣ 1<0<b< 1,∴ a< b,应选项 A 错误,| a| > | b| ,应选项 B 错误,ab<0,应选项 C 错误,﹣a>b,应选项 D 正确,应选: D.【评论】本题考察实数与数轴、绝对值,解答本题的重点是明确题意,利用数形联合的思想解答.4.( 3 分)若一次函数 y=( k﹣ 2)x+1 的函数值 y 随 x 的增大而增大,则()A.k<2B.k>2C.k>0 D. k< 0【剖析】依据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得 k>2,应选: B.【评论】本题考察了一次函数的性质, y=kx+b,当 k>0 时,函数值 y 随 x 的增大而增大.5.(3 分)从甲、乙、丙、丁四人中选一人参加诗词大会竞赛,经过三轮初赛,他们的均匀成绩都是86.5 分,方差分别是 S甲2=1.5,S 乙2=2.6,S丙2 =3.5,S丁2=3.68,你认为派谁去参赛更适合()A.甲B.乙C.丙D.丁【剖析】依据方差是反应一组数据的颠簸大小的一个量.方差越大,则均匀值的失散程度越大,稳固性也越小;反之,则它与其均匀值的失散程度越小,稳固性越好可得答案.【解答】解:∵ 1.5<2.6<3.5<3.68,∴甲的成绩最稳固,∴派甲去参赛更好,应选: A.【评论】本题主要考察了方差,重点是掌握方差越小,稳固性越大.6.(3 分)如图,已知 BD 是△ ABC的角均分线,ED是 BC的垂直均分线,∠BAC=90°,AD=3,则 CE的长为()A.6B.5C.4D.3【剖析】依据线段垂直均分线的性质获得 DB=DC,依据角均分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,依据直角三角形的性质解答.【解答】解:∵ ED是 BC的垂直均分线,∴DB=DC,∴∠C=∠ DBC,∵BD是△ABC的角均分线,∴∠ ABD=∠DBC,∴∠ C=∠ DBC=∠ ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠ C=3 ,应选: D.【评论】本题考察的是线段垂直均分线的性质、直角三角形的性质,掌握线段垂直均分线上的点到线段两头点的距离相等是解题的重点.7.(3 分)把图 1 中的正方体的一角切下后摆在图 2 所示的地点,则图 2 中的几何体的主视图为()A.B.C.D.【剖析】依据从正面看获得的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,应选: D.【评论】本题考察了简单组合体的三视图,从正面看获得的图形是主视图.8.(3 分)阅读理解:a,b,c, d 是实数,我们把符号称为2× 2 阶队列式,并且规定:=a×d﹣b× c,比如:=3×(﹣ 2)﹣ 2×(﹣ 1)=﹣6+2=﹣ 4.二元一次方程组的解能够利用2× 2 阶队列式表示为:;此中 D=,D x=,D y=.问题:对于用上边的方法解二元一次方程组时,下边说法错误的选项是()A.D==﹣7B. D x=﹣14C.D y=27D.方程组的解为【剖析】分别依据队列式的定义计算可得结论.【解答】解: A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣ 1× 3=21,不正确;D、方程组的解:x===2,y== =﹣3,正确;应选: C.【评论】本题是阅读理解问题,考察了 2×2 阶队列式和方程组的解的关系,理解题意,直接运用公式计算是本题的重点.二、填空题(本大题8 个小题,每题 3 分,满分24 分)9.(3 分)﹣ 8 的立方根是﹣2.【剖析】利用立方根的定义即可求解.【解答】解:∵(﹣ 2)3=﹣8,故答案为:﹣ 2.【评论】本题主要考察了平方根和立方根的观点.假如一个数x 的立方等于 a,即 x 的三次方等于(ax3=a),那么这个数 x 就叫做 a 的立方根,也叫做三次方根.读作“三次根号 a”此中, a 叫做被开方数, 3 叫做根指数.10.( 3 分)分式方程﹣=0 的解为 x=﹣1.【剖析】分式方程去分母转变为整式方程,求出整式方程的解获得 x 的值,经查验即可获得分式方程的解.【解答】解:去分母得: x﹣ 2﹣ 3x=0,解得: x=﹣ 1,经查验 x=1 是分式方程的解.故答案为:﹣ 1【评论】本题考察认识分式方程,利用了转变的思想,解分式方程注意要查验.11.( 3 分)已知太阳与地球之间的均匀距离约为150000000 千米,用科学记数法表示为 1.5× 108千米.【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 10 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解: 1 5000 0000=1.5×108,故答案为: 1.5× 108.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.12.( 3 分)一组数据 3,﹣ 3,2,4,1,0,﹣ 1 的中位数是1.【剖析】将数据依据从小到大从头摆列,依据中位数的定义即可得出答案.【解答】解:将数据从头摆列为﹣3、﹣ 1、0、1、2、3、4,因此这组数据的中位数为1,故答案为: 1.【评论】本题考察了中位数的观点:将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.13.( 3 分)若对于 x 的一元二次方程 2x2 +bx+3=0 有两个不相等的实数根,则b 的值可能是6(只写一个).【剖析】依据方程的系数联合根的鉴别式△>0,即可得出对于 b 的一元二次不等式,解之即可得出 b 的取值范围,取其内的随意一值即可得出结论.【解答】解:∵对于x 的一元二次方程2x2+bx+3=0 有两个不相等的实数根,∴△ =b2﹣4×2×3>0,解得: b<﹣ 2或b>2.故答案能够为: 6.“当△> 0时,方程有两个不相等的实数【评论】本题考察了根的鉴别式,切记根”是解题的重点.14.( 3 分)某校正初一全体学生进行了一次视力普查,获得以下统计表,则视力在 4.9≤x<5.5 这个范围的频次为0.35 .视力 x频数4.0≤ x< 4.3204.3≤ x< 4.6404.6≤ x< 4.9704.9≤ x≤5.2605.2≤ x< 5.510【剖析】直接利用频数÷总数 =频次从而得出答案.【解答】解:视力在 4.9≤x<5.5 这个范围的频数为: 60+10=70,则视力在 4.9≤x< 5.5 这个范围的频次为:=0.35.故答案为: 0.35.【评论】本题主要考察了频次求法,正确掌握频次的定义是解题重点.15.(3 分)如图,将矩形 ABCD沿 EF折叠,使点 B 落在 AD 边上的点 G 处,点C 落在点 H 处,已知∠ DGH=30°,连结 BG,则∠ AGB= 75° .【剖析】由折叠的性质可知: GE=BE,∠ EGH=∠ ABC=90°,从而可证明∠EBG=∠ EGB.,而后再依据∠ EGH﹣∠ EGB=∠ EBC﹣∠ EBG,即:∠GBC=∠BGH,由平行线的性质可知∠ AGB=∠ GBC,从而易证∠ AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知: GE=BE,∠ EGH=∠ABC=90°,∴∠ EBG=∠EGB.∴∠ EGH﹣∠ EGB=∠EBC﹣∠ EBG,即:∠ GBC=∠BGH.又∵ AD∥ BC,∴∠ AGB=∠GBC.∴∠ AGB=∠BGH.∵∠ DGH=30°,∴∠ AGH=150°,∴∠ AGB= ∠AGH=75°,故答案为: 75°.【评论】本题主要考察翻折变换,解题的重点是娴熟掌握翻折变换的性质:折叠前后图形的形状和大小不变,地点变化,对应边和对应角相等.16.(3 分)5 个人围成一个圆圈做游戏,游戏的规则是:每一个人内心都想好一个实数,并把自己想好的数照实地告诉他相邻的两个人, 而后每一个人将他相邻的两个人告诉他的数的均匀数报出来, 若报出来的数以下图, 则报 4 的人内心想的数是9.【剖析】 设报 4 的人心想的数是 x ,则能够分别表示报 1,3,5,2 的人心想的数,最后经过均匀数列出方程,解方程即可.【解答】 解:设报 4 的人心想的数是 x ,报 1 的人心想的数是 10﹣x ,报 3 的人心想的数是 x ﹣6,报 5 的人心想的数是 14﹣ x ,报 2 的人心想的数是 x ﹣ 12,因此有 x ﹣12+x=2× 3,解得 x=9.故答案为 9.【评论】本题属于阅读理解和探究规律题, 考察的知识点有均匀数的有关计算及方程思想的运用. 规律与趋向: 这道题的解决方法有点奥数题的思想, 题意理解起来比较简单,但从哪下手却不简单想到,一般地,当数字比许多时,方程是首选的方法,并且,多设几个未知数,把题中的等量关系所有展现出来,再联合题意进行整合,问题即可解决.本题还能够依据报 2 的人心想的数能够是 6﹣ x ,从而列出方程 x ﹣12=6﹣x 求解.三、(本大题 2 个小题,每题 5 分,满分 10 分).( 分)计算:(﹣ π) 0﹣| 1﹣2 |+ ﹣( )﹣2. 17 5【剖析】本题波及零指数幂、负指数幂、二次根式化简和绝对值 4 个考点.在计算时,需要针对每个考点分别进行计算, 而后依据实数的运算法例求得计算结果.【解答】 解:原式 =1﹣( 2 ﹣1)+2 ﹣ 4,=1﹣2 +1+2﹣4,=﹣2.【评论】 本题主要考察了实数的综合运算能力,是各地中考题中常有的计算题型.解决此类题目的重点是娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.( 5 分)求不等式组的正整数解.【剖析】依据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣ 2,解不等式②,得x≤,不等式组的解集是﹣ 2<x≤,不等式组的正整数解是1, 2, 3, 4.【评论】本题考察认识一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题重点.四、(本大题 2 个小题,每题19.( 6 分)先化简,再求值:(6 分,满分+12 分))÷,此中x=.【剖析】直接将括号里面通分运算,再利用分式混淆运算法例计算得出答案.【解答】解:原式 =[+] ×( x﹣3)2=×( x﹣3)2=x﹣ 3,把 x= 代入得:原式 =﹣3=﹣.【评论】本题主要考察了分式的化简求值,正确掌握分式的混淆运算法例是解题重点.20.(6 分)如图,已知一次函数1 11≠0)与反比率函数 y2(2≠0)y =k x+b(k=k的图象交于 A(4,1),B(n,﹣ 2)两点.( 1)求一次函数与反比率函数的分析式;( 2)请依据图象直接写出 y 1<y 2 时 x 的取值范围.【剖析】(1)由点 A 的坐标利用反比率函数图象上点的坐标特点可求出从而可得出反比率函数的分析式, 由点 B 的纵坐标联合反比率函数图象上点的坐标特点可求出点 B 的坐标,再由点 A 、B 的坐标利用待定系数法,即可求出一次函数的分析式;( 2)依据两函数图象的上下地点关系,找出【解答】 解:(1)∵反比率函数y 2=( k 2≠0)的图象过点A (4,1),∴ k 2=4×1=4,∴反比率函数的分析式为 y 2= .∵点 B (n ,﹣ 2)在反比率函数 y 2= 的图象上, ∴ n=4÷(﹣ 2) =﹣2, ∴点 B 的坐标为(﹣ 2,﹣ 2).将 A (4,1)、 B (﹣ 2,﹣ 2)代入 y 1=k 1x+b ,,解得:,∴一次函数的分析式为 y= x ﹣1.( 2)察看函数图象,可知:当 x <﹣ 2 和 0< x < 4 时,一次函数图象在反比率函数图象下方,∴ y 1<y 2 时 x 的取值范围为 x <﹣ 2 或 0< x < 4.【评论】本题考察了待定系数法求一次函数分析式以及反比率函数图象上点的坐标特点,解题的重点是:(1)利用反比率函数图象上点的坐标特点求出点 B 的坐y 1< y 2 时 x 的取值范围. k 2 的值,标;( 2)依据两函数图象的上下地点关系,找出不等式y1<y2的解集.五、(本大题 2 个小题,每题 7 分,满分 14 分)21.( 7 分)某水果店 5 月份购进甲、乙两种水果共花销1700 元,此中甲种水果8 元 / 千克,乙种水果18 元 / 千克. 6 月份,这两种水果的进价上浮为:甲种水果10 元千克,乙种水果20 元 / 千克.(1)若该店6 月份购进这两种水果的数目与5 月份都同样,将多支付货款300 元,求该店 5 月份购进甲、乙两种水果分别是多少千克?( 2)若 6 月份将这两种水果进货总量减少到 120 千克,且甲种水果不超出乙种水果的 3 倍,则 6 月份该店需要支付这两种水果的货款最少应是多少元?【剖析】(1)设该店 5 月份购进甲种水果x 千克,购进乙种水果y 千克,依据总价=单价×购进数目,即可得出对于x、y 的二元一次方程组,解之即可得出结论;( 2)设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果( 120﹣a)千克,依据总价=单价×购进数目,即可得出w 对于a 的函数关系式,由甲种水果不超出乙种水果的 3 倍,即可得出对于 a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店 5 月份购进甲种水果 x 千克,购进乙种水果 y 千克,依据题意得:,解得:.答:该店 5 月份购进甲种水果190 千克,购进乙种水果10 千克.( 2)设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果( 120 ﹣a)千克,依据题意得: w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超出乙种水果的 3 倍,∴a≤3(120﹣a),解得: a≤90.∵ k=﹣10< 0,∴w 随 a 值的增大而减小,∴当 a=90 时, w 取最小值,最小值﹣ 10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500 元.【评论】本题考察了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的重点是:( 1)找准等量关系,正确列出二元一次方程组;(2)依据各数目之间的关系,找出 w 对于 a 的函数关系式.22.(7 分)图 1 是一商场的推拉门,已知门的宽度AD=2 米,且两扇门的大小相同(即AB=CD),将左侧的门ABB1A1绕门轴AA1向里面旋转37°,将右侧的门CDD1C1绕门轴DD1向外面旋转45°,其表示图如图2,求此时 B 与C 之间的距离(结果保存一位小数).(参照数据:sin37 °≈0.6,cos37°≈0.8,≈ 1.4)【剖析】作 BE⊥AD 于点 E,作 CF⊥AD 于点 F,延伸 FC到点 M ,使得 BE=CM,则 EM=BC,在 Rt△ABE、 Rt△CDF中可求出 AE、BE、 DF、FC 的长度,从而可得出 EF的长度,再在 Rt△MEF 中利用勾股定理即可求出 EM 的长,本题得解.【解答】解:作 BE⊥ AD 于点 E,作 CF⊥AD 于点 F,延伸 FC到点 M ,使得BE=CM,以下图.∵ AB=CD, AB+CD=AD=2,∴ AB=CD=1.在 Rt△ABE中, AB=1,∠ A=37°,∴ BE=AB?sin∠ A≈ 0.6, AE=AB?cos∠A≈0.8.在 Rt△CDF中, CD=1,∠ D=45°,∴CF=CD?sin∠ D≈ 0.7,DF=CD?cos∠D≈0.7.∵ BE⊥AD,CF⊥ AD,∴BE∥CM,又∵ BE=CM,∴四边形 BEMC为平行四边形,∴BC=EM, CM=BE.在 Rt△MEF 中, EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴ EM=≈1.4,∴ B 与 C 之间的距离约为1.4 米.【评论】本题考察认识直角三角形的应用、勾股定理以及平行四边形的判断与性质,结构直角三角形,利用勾股定理求出 BC的长度是解题的重点.六、(本大题 2 个小题,每题 8 分,满分 16 分)23.(8 分)某校体育组为认识全校学生“最喜爱的一项球类项目”,随机抽取了部分学生进行检查,下边是依据检查结果绘制的不完好的统计图.请你依据统计图回答以下问题:(1)喜爱乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你预计全校 500 名学生中最喜爱“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在拟订训练计划前,将从最喜爱篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别会谈,请用列表法或树状图法求抽取的两人恰巧是甲和乙的概率.【剖析】(1)先利用喜爱足球的人数和它所占的百分比计算出检查的总人数,再计算出喜爱乒乓球的人数,而后补全条形统计图;( 2)用 500 乘以样本中喜爱排球的百分比可依据预计全校 500 名学生中最喜爱“排球”项目的写生数;(3)用 360°乘以喜爱篮球人数所占的百分比即可;(4)画树状图展现所有 12 种等可能的结果数,再找出抽取的两人恰巧是甲和乙的结果数,而后依据概率公式求解.【解答】解:(1)检查的总人数为8÷16%=50(人),喜爱乒乓球的人数为 50﹣8﹣20﹣ 6﹣ 2=14(人),因此喜爱乒乓球的学生所占的百分比 = ×100%=28%,补全条形统计图以下:(2) 500×12%=60,因此预计全校 500 名学生中最喜爱“排球”项目的有 60 名;(3),篮球”部分所对应的圆心角 =360×40%=144°;(4)画树状图为:共有 12 种等可能的结果数,此中抽取的两人恰巧是甲和乙的结果数为2,因此抽取的两人恰巧是甲和乙的概率 = = .【评论】本题考察了列表法与树状图法:利用列表法或树状图法展现所有等可能的结果n,再从中选出切合事件A 或B 的结果数目m,而后利用概率公式计算事件 A 或事件 B 的概率.也考察了统计图.24.( 8 分)如图,已知⊙ O 是等边三角形ABC的外接圆,点 D 在圆上,在 CD的延伸线上有一点F,使 DF=DA, AE∥BC交 CF于 E.(1)求证: EA是⊙ O 的切线;(2)求证: BD=CF.【剖析】( 1)依据等边三角形的性质可得:∠ OAC=30°,∠ BCA=60°,证明∠ OAE=90°,可得: AE 是⊙ O 的切线;( 2)先依据等边三角形性质得: AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ ADF=∠ABC=60°,得△ ADF是等边三角形,证明△BAD≌△ CAF,可得结论.【解答】证明:(1)连结 OD,∵⊙ O 是等边三角形 ABC的外接圆,∴∠ OAC=30°,∠ BCA=60°,∵AE∥BC,∴∠ EAC=∠BCA=60°,∴∠ OAE=∠OAC+∠EAC=30°+60°=90°,∴ AE是⊙ O 的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵ A、 B、 C、 D 四点共圆,∴∠ADF=∠ABC=60°,∵ AD=DF,∴△ADF是等边三角形,∴ AD=AF,∠ DAF=60°,∴∠ BAC+∠CAD=∠DAF+∠CAD,即∠ BAF=∠CAF,在△ BAD和△ CAF中,∵,∴△ BAD≌△ CAF,∴BD=CF.【评论】本题考察了全等三角形的性质和判断,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,娴熟掌握等边三角形的性质是重点.七、(本大题 2 个小题,每题 10 分,满分 20 分)25.( 10 分)如图,已知二次函数的图象过点O(0,0). A( 8, 4),与 x 轴交于另一点 B,且对称轴是直线x=3.(1)求该二次函数的分析式;(2)若 M 是 OB 上的一点,作 MN∥ AB 交 OA 于 N,当△ ANM 面积最大时,求M的坐标;(3)P 是 x 轴上的点,过 P 作 PQ⊥ x 轴与抛物线交于 Q.过 A 作 AC⊥x 轴于 C,当以 O,P,Q 为极点的三角形与以 O,A,C 为极点的三角形相像时,求 P 点的坐标.【剖析】(1)先利用抛物线的对称性确立 B( 6, 0),而后设交点式求抛物线分析式;( 2)设 M(t,0),先其求出直线 OA 的分析式为 y=x,直线 AB 的分析式为 y=2x ﹣ 12,直线 MN 的分析式为 y=2x﹣2t,再经过解方程组得N(t , t),接着利用三角形面积公式,利用S△AMN△ AOM﹣S△ NOM 获得S△ AMN=?4?t ﹣=S?t? t ,而后依据二次函数的性质解决问题;( 3)设 Q(m, m2﹣ m),依据相像三角形的判断方法,当= 时,△ PQO ∽△ COA,则 | m2﹣ m| =2| m| ;当= 时,△ PQO∽△ CAO,则 |m2﹣m| = | m| ,而后分别解对于 m 的绝对值方程可获得对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线 x=3,∴B 点坐标为( 6,0),设抛物线分析式为 y=ax(x﹣ 6),把 A(8,4)代入得 a?8?2=4,解得 a= ,∴抛物线分析式为y= x(x﹣6),即 y=x2﹣( 2)设 M ( t,0),易得直线 OA 的分析式为 y=x,设直线 AB 的分析式为 y=kx+b,把 B(6,0), A( 8, 4)代入得,解得∴直线 AB 的分析式为 y=2x﹣12,∵MN∥AB,∴设直线 MN 的分析式为 y=2x+n,x;,把 M (t ,0)代入得 2t+n=0,解得 n=﹣2t,∴直线 MN 的分析式为 y=2x﹣ 2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣ S△NOM=?4?t﹣ ?t? t =﹣ t 2+2t=﹣( t﹣3)2 +3,当 t=3 时, S△AMN有最大值 3,此时 M 点坐标为( 3,0);( 3)设 Q(m, m2﹣ m),∵∠ OPQ=∠ACO,∴当=时,△ PQO∽△ COA,即=,∴ PQ=2PO,即 | m2﹣m| =2| m| ,解方程m2﹣ m=2m 得 m(舍去),,此时P 点坐标为(,);1=0m2=141428解方程m2﹣ m=﹣2m 得 m(舍去),﹣,此时P 点坐标为(﹣,);1=0m 2= 2 2 4∴当= 时,△ PQO∽△ CAO,即 =,∴ PQ= PO,即 | m2﹣ m| =| m| ,解方程m2﹣m=m 得 m1=0(舍去), m2=8(舍去),解方程 m2﹣ m=﹣ m 得 m1=0(舍去),m2=2,此时 P 点坐标为( 2,﹣ 1);综上所述, P 点坐标为( 14,28)或(﹣ 2, 4)或( 2,﹣ 1).【评论】本题考察了二次函数的综合题:娴熟掌握二次函数图象上点的坐标特点和二次函数的性质;会利用待定系数法求函数分析式;理解坐标与图形性质;灵巧运用相像比表示线段之间的关系;会运用分类议论的思想解决数学识题.26.(10 分)已知正方形 ABCD中 AC与 BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC于 E,过 D 作 DH⊥AE于 H,设直线 DH 交 AC于 N.(1)如图 1,当 M 在线段 BO 上时,求证: MO=NO;(2)如图 2,当 M 在线段 OD 上,连结 NE,当 EN∥ BD 时,求证: BM=AB;(3)在图 3,当 M 在线段 OD 上,连结 NE,当 NE⊥ EC时,求证:AN2=NC?AC.【剖析】(1)先判断出 OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ ODN=∠OAM,判断出△ DON≌△ AOM 即可得出结论;( 2)先判断出四边形DENM 是菱形,从而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设 CE=a,从而表示出 EN=CE=a,CN= a,设 DE=b,从而表示 AD=a+b,依据勾股定理得, AC= ( a+b),同( 1)的方法得,∠ OAM=∠ODN,得出∠ EDN=∠DAE,从而判断出△ DEN∽△b ,ADE,得出,进而得出a= b ,即可表示出CN=AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形 ABCD的对角线AC,BD 订交于O,∴OD=OA,∠ AOM=∠DON=90°,∴∠ OND+∠ODN=90°,∵∠ ANH=∠OND,∴∠ ANH+∠ODN=90°,∵DH⊥ AE,∴∠ DHM=90°,∴∠ ANH+∠OAM=90°,∴∠ ODN=∠OAM,∴△ DON≌△ AOM,∴OM=ON;(2)连结 MN,∵ EN∥BD,∴∠ ENC=∠DOC=90°,∠ NEC=∠ BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵ OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形 DENM 是平行四边形,∵DN⊥ AE,∴?DENM 是菱形,∴DE=EN,∴∠ EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠ EDN=∠BDN,∵∠ BDC=45°,∴∠ BDN=22.5°,∵∠ AHD=90°,∴∠ AMB=∠DME=90°﹣∠ BDN=67.5°,∵∠ ABM=45°,∴∠ BAM=67.5°=∠AMB,∴BM=AB;(3)设 CE=a(a>0)∵ EN⊥CD,∴∠ CEN=90°,∵∠ ACD=45°,∴∠ CNE=45°=∠ACD,∴ EN=CE=a,∴ CN= a,设 DE=b(b>0),∴ AD=CD=DE+CE=a+b,依据勾股定理得, AC= AD= ( a+b),同( 1)的方法得,∠ OAM=∠ODN,∵∠ OAD=∠ODC=45°,∴∠ EDN=∠DAE,∵∠ DEN=∠ADE=90°,∴△ DEN∽△ ADE,∴,2018年湖南省常德市中考数学试卷含答案分析(word版)∴,∴ a=b(已舍去不切合题意的)∴ CN= a=b, AC=(a+b)=b,∴AN=AC﹣ CN= b,∴ AN2=2b2,AC?CN=b?b=2b2∴AN2=AC?CN.【评论】本题是相像形综合题,主要考察了正方形的性质,平行四边形,菱形的判断,全等三角形的判断和性质,相像三角形的判断和性质,勾股定理,判断出四边形 DENM 是菱形是解(2)的重点,判断出△ DEN∽△ ADE是解(3)的重点.。
2018年湖南省常德市中考数学试卷(含解析)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.2-的相反数是( ) A. 2 B. 2- C. 12-D. 12-【答案】A2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A. 1 B. 2 C. 8 D. 11【答案】C3.已知实数a ,b 在数轴上的位置如图所示,下列结论中正确的是( )A. a b >B. a b <C. 0ab >D. a b ->【答案】D4.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A. 2k < B. 2k > C. 0k > D. k 0<【答案】B5.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是21.5S 甲=,22.6S =乙,23.5S =丙,2 3.68S =丁,你认为派谁去参赛更合适( )A. 甲B. 乙C. 丙D. 丁【答案】A6.如图,已知BD 是V ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A. 6B. 5C. 4D.33【答案】D【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴CE =33,故选D .7.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A. B. C. D.【答案】D【详解】从正面看是一个等腰三角形,高线是虚线,观察只有D选项符合,故选D.8.阅读理解:a,b,c,d是实数,我们把符号a bc d称为22⨯阶行列式,并且规定:a ba db cc d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是( )A. 21732D ==--B. 14x D =-C. 27y D =D. 方程组的解为23x y =⎧⎨=-⎩【答案】C 【详解】A 、D=2132-=2×(-2)-3×1=﹣7,故A 选项正确,不符合题意;B 、D x =11122-=﹣2﹣1×12=﹣14,故B 选项正确,不符合题意;C 、D y =21312=2×12﹣1×3=21,故C 选项不正确,符合题意;D 、方程组的解:x=147x D D -=-=2,y=217y D D =-=﹣3,故D 选项正确,不符合题意, 故选C .二、填空题(本大题8个小题,每小题3分,满分24分)9.8-的立方根是__________. 【答案】-2 10.分式方程213024xx x -=+-的解为x =__________. 【答案】-111.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.【答案】1.5×10812.一组数据是3,3-,2,4,1,0,1-中位数是__________.【答案】1【详解】将数据从小到大进行排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1, 故答案为:1.13.若关于x 的一元二次方程2230x bx ++=有两个不相等的实数根,则b 的值可能是__________(只写一个). 【答案】6【详解】∵关于x 的一元二次方程2x 2+bx+3=0有两个不相等的实数根,∴△=b 2﹣4×2×3>0, 解得:b <﹣26或b >26, 故答案可以为:6.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系: (1)△>0方程有两个不相等的实数根; (2)△=0方程有两个相等的实数根; (3)△<0方程没有实数根.14.某校对初一全体学生进行一次视力普查,得到如下统计表,视力在4.9 5.5x ≤<这个范围的频率为__________.【答案】0.35【详解】视力在4.9≤x <5.5这个范围的频数为:60+10=70,则视力在4.9≤x <5.5这个范围的频率为:702040706010++++=0.35,故答案为:0.35.15.如图,将矩形ABCD 沿EF 折叠,使点B 落在AD 边上的点G 处,点C 落在点H 处,已知30DGH ∠=︒,连接BG ,则AGB ∠=__________.【答案】75°【详解】由折叠的性质可知:GE=BE ,∠EGH=∠ABC=90°, ∴∠EBG=∠EGB ,∴∠EGH ﹣∠EGB=∠EBC ﹣∠EBG ,即:∠GBC=∠BGH , 又∵AD ∥BC , ∴∠AGB=∠GBC , ∴∠AGB=∠BGH , ∵∠DGH=30°, ∴∠AGH=150°, ∴∠AGB=12∠AGH=75°, 故答案为:75°. 16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报4的人心里想的数是__________.【答案】9【详解】设报4的人心想的数是x ,报1的人心想的数是10﹣x ,报3的人心想的数是x ﹣6,报5的人心想的数是14﹣x ,报2的人心想的数是x ﹣12,所以有x ﹣12+x=2×3,解得x=9,故答案为:9. 三、(本大题2个小题,每小题5分,满分10分)17.计算:021(2)|12312()2π---+. 【答案】-2.【详解】原式=1﹣(1)4,=1﹣4, =﹣2.18.求不等式组475(1)2332x x x x -<-⎧⎪-⎨≤-⎪⎩的正整数解.解:()4751x x 2332x x ⎧--⎪⎨-≤-⎪⎩<①②, 解不等式①,得x >﹣2, 解不等式②,得x≤245, 不等式组的解集是﹣2<x≤245, 不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:221613969x x x x ⎛⎫+÷ ⎪+--+⎝⎭,其中12x =. 解:原式=[()()x 3x 3x 3-+-+()()6x 3x 3+-]×(x ﹣3)2=()()x 3x 3x 3+-+×(x ﹣3)2=x ﹣3, 当x=12时,原式=12﹣3=﹣52. 20.如图,已知一次函数()1110y k x b k =+≠与反比例函数()2220k y k x=≠的图象交于()4,1A ,(),2B n -两点.(1)求一次函数与反比例函数的解析式;(2) 请根据图象直接写出12y y <时x 的取值范围. 解:(1)∵反比例函数y 2=2k x(k 2≠0)的图象过点A (4,1), ∴k 2=4×1=4, ∴反比例函数的解析式为y 2=4x, ∵点B (n ,﹣2)在反比例函数y 2=4x的图象上, ∴n=4÷(﹣2)=﹣2, ∴点B 的坐标为(﹣2,﹣2),将A (4,1)、B (﹣2,﹣2)代入y 1=k 1x+b ,114k 12k 2b b +=⎧⎨-+=-⎩,解得:11k 21b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为y=12x ﹣1; (2)观察函数图象,可知:当x <﹣2和0<x <4时,一次函数图象在反比例函数图象下方, ∴y 1<y 2时x 的取值范围为x <﹣2或0<x <4.五、(本大题2个小题,每小题7分,满分14分)21.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=⎧⎨+=+⎩,解得:10050x y =⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克, 根据题意得:w=10a+20(120﹣a )=﹣10a+2400, ∵甲种水果不超过乙种水果的3倍, ∴a≤3(120﹣a ), 解得:a≤90, ∵k=﹣10<0,∴w 随a 值的增大而减小,∴当a=90时,w 取最小值,最小值﹣10×90+2400=1500, ∴月份该店需要支付这两种水果的货款最少应是1500元.22.图1是一商场的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转37︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin370.6︒≈,cos370.8︒≈,2 1.4≈)解:过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,如图所示,∵AB=CD ,AB+CD=AD=2, ∴AB=CD=1,在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8,在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7,∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=22≈1.4,EF FM∴B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=1450×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率=21 126=.24.如图,已知Oe是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF DA,//AE BC交CF于E.(1)求证:EA 是O e 的切线;(2)求证:BD CF =.解:(1)连接OD ,∵⊙O 是等边三角形ABC 的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE ∥BC ,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE 是⊙O 的切线;(2)∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ABC=60°,∵A 、B 、C 、D 四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF ,∴△ADF 是等边三角形,∴AD=AF ,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD ,即∠BAF=∠CAF ,在△BAD 和△CAF 中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩ ,∴△BAD ≌△CAF ,∴BD=CF .七、(本大题2个小题,每小题10分,满分20分)25.如图,已知二次函数的图像过点(0,0)O ,(8,4)A ,与x 轴交于另一点B ,且对称轴是直线3x =.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作//MN AB 交OA 于N ,当ANM V 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ x ⊥轴,与抛物线交于Q ,过A 作AC x ⊥轴于C .当以O 、P 、Q 为顶点的三角形与O 、A 、C 为顶点的三角形相似时,求P 点的坐标.解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=14, ∴抛物线解析式为y=14x (x ﹣6),即y=14x 2﹣32x ; (2)设M (t ,0),易得直线OA 的解析式为y=12x , 设直线AB 的解析式为y=kx+b ,把B (6,0),A (8,4)代入得6084k b k b +=⎧⎨+=⎩,解得212k b =⎧⎨=-⎩, ∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x+n ,把M (t ,0)代入得2t+n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t ,解方程组1222y xy x t⎧=⎪⎨⎪=-⎩得4323x ty t⎧=⎪⎪⎨⎪=⎪⎩,则N(43t,23t),∴S△AMN=S△AOM﹣S△NOM=12•4•t﹣12•t•23t=﹣13t2+2t=﹣13(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,14m2﹣32m),∵∠OPQ=∠ACO,∴当PQOC=POAC时,△PQO∽△COA,即PQ8=PO4,∴PQ=2PO,即|14m2﹣32m|=2|m|,解方程14m2﹣32m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程14m2﹣32m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当PQAC=POOC时,△PQO∽△CAO,即PQ4=PO8,∴PQ=12PO,即|14m2﹣32m|=12|m|,解方程14m2﹣32m=12m得m1=0(舍去),m2=8(舍去),解方程14m2﹣32m=﹣12m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).26.已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH AE⊥于H,设直线DH交AC于N.(1)如图,当M 在线段BO 上时,求证:MO NO =;(2)如图2,当M 在线段OD 上,连接NE ,当//EN BD 时,求证:BM AB =;(3)在图3,当M 在线段OD 上,连接NE ,当NE EC ⊥时,求证:2AN NC AC =⋅. 解:(1)∵正方形ABCD 的对角线AC ,BD 相交于O ,∴OD=OA ,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND ,∴∠ANH+∠ODN=90°,∵DH ⊥AE ,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM ,∴△DON ≌△AOM ,∴OM=ON ;(2)连接MN ,∵EN ∥BD ,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD ,∴EN=CN ,同(1)的方法得,OM=ON ,∵OD=OC ,∴DM=CN=EN ,∵EN ∥DM ,∴四边形DENM 是平行四边形,∵DN ⊥AE ,∴▱DENM 是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴DE EN AD DE=,∴b aa b b=+,∴a=51-b(已舍去不符合题意的)∴CN=2a=102-b,AC=2(a+b)=102+b,∴AN=AC﹣CN=2b,∴AN2=2b2,AC•CN=102+b•102-b=2b2∴AN2=AC•CN.。
2018年湖南省(常德、衡阳)中考数学试题(共2套 附答案)
2018年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.【解答】解:﹣2的相反数是:2.故选:A.2.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.3.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.5.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.6.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.7.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.8.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.二、填空题(本大题8个小题,每小题3分,满分24分)9.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.10.【解答】解:去分母得:x+2﹣3x=0,解得:x=1,经检验x=1是分式方程的解.故答案为:111.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.12.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.13.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.14.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.15.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.16.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.三、(本大题2个小题,每小题5分,满分10分)17.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.18.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.20.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.五、(本大题2个小题,每小题7分,满分14分)21.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.22.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.24.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3, ∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM=•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q (m ,m 2﹣m ),∵∠OPQ=∠ACO ,∴当=时,△PQO ∽△COA ,即=,∴PQ=2PO ,即|m 2﹣m |=2|m |,解方程m 2﹣m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28); 解方程m 2﹣m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).26.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.2018年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.(3分)﹣4的相反数是()A.4B.﹣4C.﹣D.【解答】解:﹣4的相反数是4.故选:A.2.(3分)2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为()A.18×108B.1.8×108C.1.8×109D.0.18×1010【解答】解:1800000000=1.8×109,故选:C.3.(3分)下列生态环保标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.4.(3分)如图是由5个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间.故选:A.5.(3分)已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的【解答】解:A、连续抛一均匀硬币2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故此选项错误;B、连续抛一均匀硬币10次都可能正面朝上,是一个有机事件,有可能发生,故此选项正确;C、大量反复抛一均匀硬币,平均100次出现正面朝上50次,也有可能发生,故此选项正确;D、通过抛一均匀硬币确定谁先发球的比赛规则是公平的,概率均为,故此选项正确.故选:A.6.(3分)下列各式中正确的是()A.=±3B.=﹣3C.=3D.﹣=【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.7.(3分)下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)3【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.8.(3分)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.﹣=10B.﹣=10C.﹣=10D.+=10【解答】解:设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:﹣=10.故选:A.9.(3分)下列命题是假命题的是()A.正五边形的内角和为540°B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.圆内接四边形的对角互补【解答】解:正五边形的内角和=(5﹣2)×180°=540°,A是真命题;矩形的对角线相等,B是真命题;对角线互相垂直的平行四边形是菱形,C是假命题;圆内接四边形的对角互补,D是真命题;故选:C.10.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,解①得x>﹣1,解②得x≤3,所以不等式组的解集为﹣1<x≤3.故选:C.11.(3分)对于反比例函数y=﹣,下列说法不正确的是()A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2【解答】解:A、k=﹣2<0,∴它的图象在第二、四象限,故本选项正确;B、k=﹣2<0,当x>0时,y随x的增大而增大,故本选项正确;C、∵﹣=﹣2,∴点(1,﹣2)在它的图象上,故本选项正确;D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2<0,则y1<y2,故本选项错误.故选:D.12.(3分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个【解答】解:∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),∴x=﹣1时,y=0,即a﹣b+c=0,而抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+c=0,所以①错误;∵2≤c≤3,而c=﹣3a,∴2≤﹣3a≤3,∴﹣1≤a≤﹣,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n﹣1有两个交点,∴关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.二、填空题(本题共6小题,每小题3分,共18分)13.(3分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为90°.【解答】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.14.(3分)某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是0.6万元、0.4万元.【解答】解:由表可知0.6万元和0.4万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是0.6万元和0.4万元,故答案为:0.6万元、0.4万元.15.(3分)计算:=x﹣1.【解答】解:==x﹣1.故答案为:x﹣1.16.(3分)将一副三角板如图放置,使点A落在DE上,若BC∥DE,则∠AFC的度数为75°.【解答】解:∵BC∥DE,△ABC为等腰直角三角形,∴∠FBC=∠EAB=(180°﹣90°)=45°,∵∠AFC是△AEF的外角,∴∠AFC=∠FAE+∠E=45°+30°=75°.故答案为:75°.17.(3分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是16.【解答】解:∵ABCD是平行四边形,∴OA=OC,∵OM⊥AC,∴AM=MC.∴△CDM的周长=AD+CD=8,∴平行四边形ABCD的周长是2×8=16.故答案为16.18.(3分)如图,在平面直角坐标系中,函数y=x和y=﹣x的图象分别为直线l1,l2,过点A1(1,﹣)作x轴的垂线交11于点A2,过点A2作y轴的垂线交l2于点A3,过点A3作x轴的垂线交l1于点A4,过点A4作y轴的垂线交l2于点A5,…依次进行下去,则点A2018的横坐标为1009.【解答】解:由题意可得,A1(1,﹣),A2(1,1),A3(﹣2,1),A4(﹣2,﹣2),A5(4,﹣2),…,∵2018÷4=504…2,2018÷2=1009,∴点A2018的横坐标为:1009,故答案为:1009.三、解答题(本题共8个小题,19-20题每题6分,21-24题每题8分,25题10分,26题12分)19.(6分)先化简,再求值:(x+2)(x﹣2)+x(1﹣x),其中x=﹣1.【解答】解:原式=x2﹣4+x﹣x2=x﹣4,当x=﹣1时,原式=﹣5.20.(6分)如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【解答】(1)证明:在△AEB和△DEC中,,∴△AEB≌△DEC(SAS).(2)解:∵△AEB≌△DEC,∴AB=CD,∵AB=5,∴CD=5.21.(8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,根据测试成绩(成绩都不低于50分)绘制出如图所示的部分频数分布直方图.请根据图中信息完成下列各题.(1)将频数分布直方图补充完整人数;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少;(3)现将从包括小明和小强在内的4名成绩优异的同学中随机选取两名参加市级比赛,求小明与小强同时被选中的概率.【解答】解:(1)70到80分的人数为50﹣(4+8+15+12)=11人,补全频数分布直方图如下:(2)本次测试的优秀率是×100%=54%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:AB、AC、AD、BC、BD、CD,所以小明和小强分在一起的概率为.22.(8分)一名徒步爱好者来衡阳旅行,他从宾馆C出发,沿北偏东30°的方向行走2000米到达石鼓书院A处,参观后又从A处沿正南方向行走一段距离,到达位于宾馆南偏东45°方向的雁峰公园B处,如图所示.(1)求这名徒步爱好者从石鼓书院走到雁峰公园的途中与宾馆之间的最短距离;(2)若这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,那么他在15分钟内能否到达宾馆?【解答】解:(1)作CP⊥AB于P,由题意可得出:∠A=30°,AP=2000米,则CP=AC=1000米;(2)∵在Rt△PBC中,PC=1000,∠PBC=∠BPC=45°,∴BC=PC=1000米.∵这名徒步爱好者以100米/分的速度从雁峰公园返回宾馆,∴他到达宾馆需要的时间为=10<15,∴他在15分钟内能到达宾馆.23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)【解答】解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∵OD=OG,∴四边形ODEG是正方形,∴OA=OD=OG=CG+CE=2+2=4,∠DOG=90°,在Rt△AOG中,∵OA=2AG,∴∠AOG=30°,∴∠BOD=60°,则的长度为=.24.(8分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?【解答】解:(1)设y与x的函数解析式为y=kx+b,将(10,30)、(16,24)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+40(10≤x≤16);(2)根据题意知,W=(x﹣10)y=(x﹣10)(﹣x+40)=﹣x2+50x﹣400=﹣(x﹣25)2+225,∵a=﹣1<0,∴当x<25时,W随x的增大而增大,∵10≤x≤16,∴当x=16时,W取得最大值,最大值为144,答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.25.(10分)如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P 是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.【解答】解:(1)①如图1,∵y=﹣2x2+2x+4=﹣2(x﹣)2+,∴顶点为M的坐标为(,),当x=时,y=﹣2×+4=3,则点N坐标为(,3);②不存在.理由如下:MN=﹣3=,设P点坐标为(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=﹣2m2+2m+4﹣(﹣2m+4)=﹣2m2+4m,∵PD∥MN,当PD=MN时,四边形MNPD为平行四边形,即﹣2m2+4m=,解得m1=(舍去),m2=,此时P点坐标为(,1),∵PN==,∴PN≠MN,∴平行四边形MNPD不为菱形,∴不存在点P,使四边形MNPD为菱形;(2)存在.如图2,OB=4,OA=2,则AB==2,当x=1时,y=﹣2x+4=2,则P(1,2),∴PB==,设抛物线的解析式为y=ax2+bx+4,把A(2,0)代入得4a+2b+4=0,解得b=﹣2a﹣2,∴抛物线的解析式为y=ax2﹣2(a+1)x+4,当x=1时,y=ax2﹣2(a+1)x+4=a﹣2a﹣2+4=2﹣a,则D(1,2﹣a),∴PD=2﹣a﹣2=﹣a,∵DC∥OB,∴∠DPB=∠OBA,∴当=时,△PDB∽△BOA,即=,解得a=﹣2,此时抛物线解析式为y=﹣2x2+2x+4;当=时,△PDB∽△BAO,即=,解得a=﹣,此时抛物线解析式为y=﹣x2+3x+4;综上所述,满足条件的抛物线的解析式为y=﹣2x2+2x+4或y=﹣x2+3x+4.26.(12分)如图,在Rt△ABC中,∠C=90°,AC=BC=4cm,动点P从点C出发以1cm/s的速度沿CA匀速运动,同时动点Q从点A出发以cm/s的速度沿AB匀速运动,当点P到达点A时,点P、Q同时停止运动,设运动时间为t(s).(1)当t为何值时,点B在线段PQ的垂直平分线上?(2)是否存在某一时刻t,使△APQ是以PQ为腰的等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)以PC为边,往CB方向作正方形CPMN,设四边形QNCP的面积为S,求S关于t的函数关系式.【解答】解:(1)如图1中,连接BP.在Rt △ACB 中,∵AC=BC=4,∠C=90°,∴AB=4∵点B 在线段PQ 的垂直平分线上,∴BP=BQ ,∵AQ=t ,CP=t , ∴BQ=4﹣t ,PB 2=42+t 2, ∴(4﹣t )2=16+t 2,解得t=12﹣8或12+8(舍弃), ∴t=12﹣8s 时,点B 在线段PQ 的垂直平分线上.(2)①如图2中,当PQ=QA 时,易知△APQ 是等腰直角三角形,∠AQP=90°.则有PA=AQ , ∴4﹣t=•t ,解得t=.②如图3中,当AP=PQ 时,易知△APQ 是等腰直角三角形,∠APQ=90°.则有:AQ=AP , ∴t=(4﹣t ),解得t=2,综上所述:t=s 或2s 时,△APQ 是以PQ 为腰的等腰三角形.(3)如图4中,连接QC ,作QE ⊥AC 于E ,作QF ⊥BC 于F .则QE=AE ,QF=EC ,可得QE +QF=AE +EC=AC=4.∵S=S △QNC +S △PCQ =•CN•QF +•PC•QE=t (QE +QF )=2t (0<t <4).。
【精编】湖南省常德市2018年中考数学试题(含答案)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b| C.ab>0 D.﹣a>b4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<05.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.37.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A .B .C .D .8.(3分)阅读理解:a ,b ,c ,d 是实数,我们把符号称为2×2阶行列式,并且规定:=a ×d ﹣b ×c ,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x =,D y =.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是( ) A .D==﹣7 B .D x =﹣14C .D y =27 D .方程组的解为二、填空题(本大题8个小题,每小题3分,满分24分) 9.(3分)﹣8的立方根是 . 10.(3分)分式方程﹣=0的解为x= .11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 千米.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是 .13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是(只写一个).14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为.点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB= .16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.18.(5分)求不等式组的正整数解.四、(本大题2个小题,每小题6分,满分12分) 19.(6分)先化简,再求值:(+)÷,其中x=.20.(6分)如图,已知一次函数y 1=k 1x+b (k 1≠0)与反比例函数y 2=(k 2≠0)的图象交于A (4,1),B (n ,﹣2)两点. (1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y 1<y 2时x 的取值范围.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD ),将左边的门ABB 1A 1绕门轴AA 1向里面旋转37°,将右边的门CDD 1C 1绕门轴DD 1向外面旋转45°,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2); (2)请你估计全校500名学生中最喜欢“排球”项目的有多少名? (3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.24.(8分)如图,已知⊙O 是等边三角形ABC 的外接圆,点D 在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.2018年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.【解答】解:﹣2的相反数是:2.故选:A.2.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.3.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.5.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.6.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.7.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.8.【解答】解:A、D==﹣7,正确;B、D==﹣2﹣1×12=﹣14,正确;xC、D==2×12﹣1×3=21,不正确;yD、方程组的解:x===2,y===﹣3,正确;故选:C.二、填空题(本大题8个小题,每小题3分,满分24分)9.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.10.【解答】解:去分母得:x+2﹣3x=0,解得:x=1,经检验x=1是分式方程的解.故答案为:111.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.12.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.13.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.14.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.15.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.16.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.三、(本大题2个小题,每小题5分,满分10分)17.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.18.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.20.【解答】解:(1)∵反比例函数y 2=(k 2≠0)的图象过点A (4,1),∴k 2=4×1=4,∴反比例函数的解析式为y 2=. ∵点B (n ,﹣2)在反比例函数y 2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B 的坐标为(﹣2,﹣2).将A (4,1)、B (﹣2,﹣2)代入y 1=k 1x+b ,,解得:,∴一次函数的解析式为y=x ﹣1.(2)观察函数图象,可知:当x <﹣2和0<x <4时,一次函数图象在反比例函数图象下方,∴y 1<y 2时x 的取值范围为x <﹣2或0<x <4.五、(本大题2个小题,每小题7分,满分14分)21.【解答】解:(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克, 根据题意得:, 解得:. 答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据题意得:w=10a+20(120﹣a )=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.22.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.24.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN =S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO ,即|m 2﹣m|=2|m|, 解方程m 2﹣m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28); 解方程m 2﹣m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,4);∴当=时,△PQO ∽△CAO ,即=,∴PQ=PO ,即|m 2﹣m|=|m|,解方程m 2﹣m=m 得m 1=0(舍去),m 2=8(舍去), 解方程m 2﹣m=﹣m 得m 1=0(舍去),m 2=2,此时P 点坐标为(2,﹣1);综上所述,P 点坐标为(14,28)或(﹣2,4)或(2,﹣1).26.【解答】解:(1)∵正方形ABCD 的对角线AC ,BD 相交于O , ∴OD=OA ,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND ,∴∠ANH+∠ODN=90°,∵DH ⊥AE ,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM ,∴△DON ≌△AOM ,∴OM=ON ;(2)连接MN ,∵EN ∥BD ,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BA M=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.。
2018年湖南常德中考数学试卷及答案解析版
2018年湖南省常德市中考数学试卷
一.填空题 (本大题8个小题 ,每小题3分满分24分)
1.(2018湖南常德,1,3)-4的相反数是 .
【答案】4
2. (2018湖南常德,2,3)打开百度搜索栏,输入“数学学习方法”,百度为你找到的相关信息有12 000 000条.请用科学记数法表示12 000 000= .
【答案】7
1.210⨯
3. (2018湖南常德,3,3)因式分解2x x +=_______.
【答案】()1x x +
4. (2018湖南常德,4,3)如图1,已知a ∥b 分别相交于点E 、F ,若∠1=30,则∠2=_______.
【答案】30° 图121
F
E b a
5. (2018湖南常德,5,3)请写一个图象在第二,第四象限的反比例函数解析式:_________. 【答案】答案不唯一,如1y x
-= 6. (2018湖南常德,6,3)如图2,已知⊙O 是△ABC 的外接圆,若∠BOC=100°,则∠BAC=___
图2
O
C B
A
【答案】50°
7. (2018湖南常德,7,3)分式方程312x x
=+的解为_________. 【答案】1x =
8. (2018湖南常德,8,3)小明在做数学题时,发现下面有趣的结果:
321
87654
1514131211109
242322212019181716
-=+--=++---=+++----
= 根据以上规律可知第100行左起第一个数是_________.
【答案】10200。
湖南省常德市中考数学试卷(word版,含答案解析)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.。
湖南省常德市中考数学试卷(word版,含答案解析)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2B.﹣2C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1B.2C.8D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6B.5C.4D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7B.D x=﹣14C.D y=27D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:150000000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD 的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q .过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.【分析】(1)先利用抛物线的对称性确定B (6,0),然后设交点式求抛物线解析式;(2)设M (t ,0),先其求出直线OA 的解析式为y=x ,直线AB 的解析式为y=2x ﹣12,直线MN 的解析式为y=2x ﹣2t ,再通过解方程组得N (t ,t ),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t ,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q (m ,m 2﹣m ),∵∠OPQ=∠ACO ,∴当=时,△PQO ∽△COA ,即=,∴PQ=2PO ,即|m 2﹣m |=2|m |,解方程m 2﹣m=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28);解方程m 2﹣m=﹣2m 得m 1=0(舍去),m 2=﹣2,此时P 点坐标为(﹣2,4);∴当=时,△PQO ∽△CAO ,即=,∴PQ=PO ,即|m 2﹣m |=|m |,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.。
2018年湖南省常德市中考数学试卷含答案解析(word版)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标. 【解答】解:(1)∵抛物线过原点,对称轴是直线x=3, ∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=, ∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ; (2)设M (t ,0),易得直线OA 的解析式为y=x , 设直线AB 的解析式为y=kx +b , 把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12, ∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t , ∴直线MN 的解析式为y=2x ﹣2t ,解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t =﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b 2,AC•CN=b•b=2b2=AC•CN.∴AN2。
常德市中考数学试卷含答案解析
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键.21。
【优选】湖南省常德市2018年中考数学试题(含答案)
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<05.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.37.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是.10.(3分)分式方程﹣=0的解为x=.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为千米.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是(只写一个).14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.18.(5分)求不等式组的正整数解.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD 的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.2018年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.【解答】解:﹣2的相反数是:2.故选:A.2.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.3.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.4.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.5.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.6.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.7.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.8.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.二、填空题(本大题8个小题,每小题3分,满分24分)9.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.10.【解答】解:去分母得:x+2﹣3x=0,解得:x=1,经检验x=1是分式方程的解.故答案为:111.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.12.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.13.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.14.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.15.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.16.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.三、(本大题2个小题,每小题5分,满分10分)17.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.18.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.20.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.五、(本大题2个小题,每小题7分,满分14分)21.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.22.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.24.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),=S△AOM﹣S△NOM∴S△AMN=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,有最大值3,此时M点坐标为(3,0);当t=3时,S△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).26.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.。
【精校】2018年湖南省常德市中考真题数学
2018年湖南省常德市中考真题数学一、选择题(本大题8个小题,每小题3分,满分24分)1.-2的相反数是( )A.2B.-2C.2-1D.-1 2解析:-2的相反数是:2.答案:A2.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A.1B.2C.8D.11解析:设三角形第三边的长为x,由题意得:7-3<x<7+3,4<x<10.答案:C3.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是( )A.a>bB.|a|<|b|C.ab>0D.-a>b解析:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,-a>b,故选项D正确.答案:D4.若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则( )A.k<2B.k>2C.k>0D.k<0解析:由题意,得k-2>0,解得k>2.答案:B5.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )A.甲B.乙C.丙D.丁解析:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好.答案:A6.如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE 的长为( )A.6B.5C.4D.33解析:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=33.答案:D7.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为( )A.B.C.D.解析:从正面看是一个等腰三角形,高线是虚线. 答案:D8.阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为2×2阶行列式,并且规定:a b c d=a×d-b ×c ,例如:3212--=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组111222a xb yc a x b y c +⎧⎨+⎩==的解可以利用2×2阶行列式表示为:x y D x DD y D⎧⎪⎪⎨⎪⎪⎩==;其中111111222222x y a b c b a c D D D a b c b a c ===,,.问题:对于用上面的方法解二元一次方程组213212x y x y +⎧⎨-⎩==时,下面说法错误的是( )A.D=2132-=-7B.D x =-14C.D y =27D.方程组的解为23x y ⎧⎨-⎩==解析:A 、D=2132-=-7,正确;B 、D x =11122-=-2-1×12=-14,正确;C 、D y =21312=2×12-1×3=21,不正确;D 、方程组的解:x=147x D D --==2,y=217y D D -==-3,正确. 答案:C二、填空题(本大题8个小题,每小题3分,满分24分) 9.-8的立方根是____.解析:∵(-2)3=-8, ∴-8的立方根是-2. 答案:-210.分式方程213024x x x -=+-的解为x=____.解析:去分母得:x+2-3x=0,解得:x=1,经检验x=1是分式方程的解.答案:111.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为____千米. 解析:1 5000 0000=1.5×108.答案:1.5×10812.一组数据3,-3,2,4,1,0,-1的中位数是____.解析:将数据重新排列为-3、-1、0、1、2、3、4,所以这组数据的中位数为1.答案:113.若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是____(只写一个).解析:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2-4×2×3>0,解得:b<-26或b>26.答案:614.某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为____.视力x 频数4.0≤x<4.3 204.3≤x<4.6 404.6≤x<4.9 704.9≤x≤5.2 605.2≤x<5.5 10解析:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:702040706010++++=0.35.答案:0.3515.如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=____.解析:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH. ∵∠DGH=30°, ∴∠AGH=150°, ∴∠AGB=12∠AGH=75°. 答案:75°16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是____.解析:设报4的人心想的数是x ,报1的人心想的数是10-x ,报3的人心想的数是x-6,报5的人心想的数是14-x ,报2的人心想的数是x-12, 所以有x-12+x=2×3, 解得x=9. 答案:9三、(本大题2个小题,每小题5分,满分10分) 17.计算:()212123122π-⎛⎫--- ⎪⎝⎭.解析:本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 答案:原式=1-(233=1-2323=-2.18.求不等式组()47512332x x x x --⎧⎪⎨-≤-⎪⎩<的正整数解.解析:根据不等式组解集的表示方法:大小小大中间找,可得答案.答案:()47512332x x x x --⎧⎪⎨-≤-⎪⎩<①②, 解不等式①,得x >-2,解不等式②,得x ≤245, 不等式组的解集是-2<x ≤245,不等式组的正整数解是1,2,3,4.四、(本大题2个小题,每小题6分,满分12分)19.先化简,再求值:221613969x x x x ⎛⎫+÷⎪+--+⎝⎭,其中x=12. 解析:直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.答案:原式()()()()()23633333x x x x x x ⎡⎤⎢⎥⎣⎦-=+⨯-+-+- ()()()23333x x x x +⨯-+-=x-3, 把x=12代入得:原式=12-3=-52.20.如图,已知一次函数y 1=k 1x+b(k 1≠0)与反比例函数22k y x=(k 2≠0)的图象交于A(4,1),B(n ,-2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y 1<y 2时x 的取值范围.解析:(1)由点A 的坐标利用反比例函数图象上点的坐标特征可求出k 2的值,进而可得出反比例函数的解析式,由点B 的纵坐标结合反比例函数图象上点的坐标特征可求出点B 的坐标,再由点A 、B 的坐标利用待定系数法,即可求出一次函数的解析式; (2)根据两函数图象的上下位置关系,找出y 1<y 2时x 的取值范围. 答案:(1)∵反比例函数22k y x=(k 2≠0)的图象过点A(4,1), ∴k 2=4×1=4,∴反比例函数的解析式为24y x =. ∵点B(n ,-2)在反比例函数24y x=的图象上,∴n=4÷(-2)=-2,∴点B 的坐标为(-2,-2).将A(4,1)、B(-2,-2)代入y 1=k 1x+b ,114122k b k b +⎧⎨-+-⎩==,解得:1121k b ⎧⎪⎨⎪-⎩==, ∴一次函数的解析式为y=12x-1.(2)观察函数图象,可知:当x <-2和0<x <4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<-2或0<x<4.五、(本大题2个小题,每小题7分,满分14分)21.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?解析:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.答案:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:8181700 10201700300 x yx y+⎧⎨++⎩==,解得:19010xy⎧⎨⎩==.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120-a)千克,根据题意得:w=10a+20(120-a)=-10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120-a),解得:a≤90.∵k=-10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值-10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.22.图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,2≈1.4)解析:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt △ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF 中利用勾股定理即可求出EM的长,此题得解.答案:作BE ⊥AD 于点E ,作CF ⊥AD 于点F ,延长FC 到点M ,使得BE=CM ,如图所示.∵AB=CD ,AB+CD=AD=2, ∴AB=CD=1.在Rt △ABE 中,AB=1,∠A=37°,∴BE=AB ·sin ∠A ≈0.6,AE=AB ·cos ∠A ≈0.8. 在Rt △CDF 中,CD=1,∠D=45°,∴CF=CD ·sin ∠D ≈0.7,DF=CD ·cos ∠D ≈0.7. ∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CM , 又∵BE=CM ,∴四边形BEMC 为平行四边形, ∴BC=EM ,CM=BE.在Rt △MEF 中,EF=AD-AE-DF=0.5,FM=CF+CM=1.3,∴EM=22EF FM ≈1.4, ∴B 与C 之间的距离约为1.4米.六、(本大题2个小题,每小题8分,满分16分)23.某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2); (2)请你估计全校500名学生中最喜欢“排球”项目的有多少名? (3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.解析:(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可; (4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.答案:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50-8-20-6-2=14(人),所以喜欢乒乓球的学生所占的百分比=1450×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3)篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率=21= 126.24.如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.解析:(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.答案:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC 是等边三角形, ∴AB=AC ,∠BAC=∠ABC=60°, ∵A 、B 、C 、D 四点共圆, ∴∠ADF=∠ABC=60°, ∵AD=DF ,∴△ADF 是等边三角形, ∴AD=AF ,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD , 即∠BAF=∠CAF , 在△BAD 和△CAF 中,∵AB AC BAD CAF AD AF ⎧⎪∠∠⎨⎪⎩===, ∴△BAD ≌△CAF , ∴BD=CF.七、(本大题2个小题,每小题10分,满分20分)25.如图,已知二次函数的图象过点O(0,0).A(8,4),与x 轴交于另一点B ,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M 是OB 上的一点,作MN ∥AB 交OA 于N ,当△ANM 面积最大时,求M 的坐标;(3)P 是x 轴上的点,过P 作PQ ⊥x 轴与抛物线交于Q.过A 作AC ⊥x 轴于C ,当以O ,P ,Q 为顶点的三角形与以O ,A ,C 为顶点的三角形相似时,求P 点的坐标.解析:(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式; (2)设M(t ,0),先其求出直线OA 的解析式为y=12x ,直线AB 的解析式为y=2x-12,直线MN 的解析式为y=2x-2t ,再通过解方程组1222y xy x t⎧⎪⎨⎪-⎩==得N(4233t t ,),接着利用三角形面积公式,利用S △AMN =S △AOM -S △NOM 得到S △AMN =1124223t t t ⋅⋅-⋅⋅,然后根据二次函数的性质解决问题;(3)设Q(m ,21342m m -),根据相似三角形的判定方法,当PQ POOC AC=时,△PQO ∽△COA ,则|21342m m -|=2|m|;当PQ POAC OC=时,△PQO ∽△CAO ,则2131422m m m -=,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.答案:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax(x-6),把A(8,4)代入得a ·8·2=4,解得a=14, ∴抛物线解析式为y=14x(x-6),即y=21342x x -; (2)设M(t ,0),易得直线OA 的解析式为y=12x , 设直线AB 的解析式为y=kx+b ,把B(6,0),A(8,4)代入得6084k b k b +⎧⎨+⎩==,解得212k b ⎧⎨-⎩==, ∴直线AB 的解析式为y=2x-12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x+n ,把M(t ,0)代入得2t+n=0,解得n=-2t ,∴直线MN 的解析式为y=2x-2t , 解方程组1222y x y x t ⎧⎪⎨⎪-⎩==得4323x t y t ⎧=⎪⎪⎨⎪=⎪⎩,则N(4233t t ,), ∴S △AMN =S △AOM -S △NOM =1124223t t t ⋅⋅-⋅⋅ =-13t 2+2t =-13(t-3)2+3, 当t=3时,S △AMN 有最大值3,此时M 点坐标为(3,0);(3)设Q(m ,21342m m -), ∵∠OPQ=∠ACO , ∴当PQ PO OC AC =时,△PQO ∽△COA ,即84PQ PO =, ∴PQ=2PO ,即|21342m m -|=2|m|, 解方程21342m m -=2m 得m 1=0(舍去),m 2=14,此时P 点坐标为(14,28); 解方程21342m m -=-2m 得m 1=0(舍去),m 2=-2,此时P 点坐标为(-2,4); ∴当PQ PO AC OC =时,△PQO ∽△CAO ,即48PQ PO =, ∴PQ=12PO ,即2131422m m m -=,解方程2131422m m m -=得m 1=0(舍去),m 2=8(舍去), 解方程2131422m m m -=-得m 1=0(舍去),m 2=2,此时P 点坐标为(2,-1); 综上所述,P 点坐标为(14,28)或(-2,4)或(2,-1).26.已知正方形ABCD 中AC 与BD 交于O 点,点M 在线段BD 上,作直线AM 交直线DC 于E ,过D 作DH ⊥AE 于H ,设直线DH 交AC 于N.(1)如图1,当M 在线段BO 上时,求证:MO=NO ;(2)如图2,当M 在线段OD 上,连接NE ,当EN ∥BD 时,求证:BM=AB ;(3)在图3,当M 在线段OD 上,连接NE ,当NE ⊥EC 时,求证:AN 2=NC ·AC.解析:(1)先判断出OD=OA ,∠AOM=∠DON ,再利用同角的余角相等判断出∠ODN=∠OAM ,判断出△DON ≌△AOM 即可得出结论;(2)先判断出四边形DENM 是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a ,进而表示出EN=CE=a ,CN=2a ,设DE=b ,进而表示AD=a+b ,根据勾股定理得,AC=2(a+b),同(1)的方法得,∠OAM=∠ODN ,得出∠EDN=∠DAE ,进而判断出△DEN ∽△ADE ,得出DE EN AD DE=,进而得出51a b -=,即可表示出102102222CN b AC b AN AC CN b -+===-=,,,即可得出结论. 答案:(1)∵正方形ABCD 的对角线AC ,BD 相交于O ,∴OD=OA ,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND ,∴∠ANH+∠ODN=90°,∵DH ⊥AE ,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM ,∴△DON ≌△AOM ,∴OM=ON ;(2)连接MN ,∵EN ∥BD ,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD ,∴EN=CN ,同(1)的方法得,OM=ON ,∵OD=OD ,∴DM=CN=EN ,∵EN ∥DM ,∴四边形DENM 是平行四边形,∵DN ⊥AE ,∴▱DENM 是菱形,∴DE=EN ,∴∠EDN=∠END ,∵EN ∥BD ,∴∠END=∠BDN ,∴∠EDN=∠BDN ,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°-∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB ,∴BM=AB ;(3)设CE=a(a >0)∵EN ⊥CD ,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD ,∴EN=CE=a ,∴a ,设DE=b(b >0),∴AD=CD=DE+CE=a+b ,根据勾股定理得,(a+b),同(1)的方法得,∠OAM=∠ODN ,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE ,∵∠DEN=∠ADE=90°,∴△DEN ∽△ADE , ∴DE EN AD DE=, ∴b a a b b+=,∴a =(已舍去不符合题意的)∴)CN AC a b ===+=,,∴b ,∴AN 2=2b 2,AC ·CN=22b ⋅=2b 2 ∴AN 2=AC ·CN.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2018年湖南省常德市中考数学试题及参考答案案
2018年常德市初中学业水平考试数学试题卷一、选择题:(本大题共8个小题,每小题3分,满分共24分)1.(2018湖南常德中考,1,3分,★☆☆)-2的相反数是()A.2 B.-2 C.2-1 D.-1 22.(2018湖南常德中考,2,3分,★☆☆)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.113. (2018湖南常德中考,3,3分,★☆☆)己知实数a,b在数轴上的位置如图1所示,下列结论中正确的是()图1A.a>b B.a<b C.ab>0 D.-a>b4.(2018湖南常德中考,4,3分,★☆☆)若一次函数y=(k-2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<05. (2018湖南常德中考,5,3分,★☆☆)从甲、乙、内,四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S2甲=1.5,S2乙=2.6,S2丙=3.5,S2甲=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁6.(2018湖南常德中考,6,3分,★★☆)如图2,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()图2A.6 B.5 C.4 D.37. (2018湖南常德中考,7,3分,★★☆)把图3中的正方体的一角切下后摆在图4所示的位置,则图4中的几何体的主视图为( )图3 图4A B C D8. (2018湖南常德中考,8,3分,★★☆)阅读理解,a ,b ,c ,d 是实数,我们把符号a b c d称为2×2行列式,并且规定:a b c d =a×d -b×c ,例如32-1-2=3×(-2)-2×(-1)=-6+2=-4.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用2×2阶行列式表示为( )x yD x D D y D ⎧⎪=⎨=⎪⎪⎪⎩:其中D =1122a b a b ,D x =1122c b c b ,D y =1122a c a c . 问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是( )A .D =2132-=-7 B .D x =-14 C .D y =27 D .方程组的解为23x y ==-⎧⎨⎩ 二、填空题(本大题共8小题,每小题3分,满分24分)9. (2018湖南常德中考,9,3分,★☆☆)-8的立方根是 .10. (2018湖南常德中考,10,3分,★★☆)分式方程12x +-234x x -=0的解为x = . 11. (2018湖南常德中考,11,3分,★☆☆)已知太阳与地球之间的平均距离为150000000千米,用科学记数法表示为千米.12.(2018湖南常德中考,12,3分,★☆☆)一组数据3,-3,2,4,1,0,-1的中位数是.13. (2018湖南常德中考,13,3分,★☆☆)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b的值可能是.(只写一个)14.(2018湖南常德中考,14,3分,★☆☆)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为.视力x 频数4.0≤x<4.3 204.3≤x<4.6 404.6≤x<4.9 704.9≤x≤5.2 605.2≤x<5.5 1015.(2018湖南常德中考,15,3分,★★☆)如图5,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C落在点H处,已知∠DGH=30°,连接BG,则∠AGB=.图516.(2018湖南常德中考,16,3分,★★☆)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图6所示,则报4的人心里想的数是.图6 三、(本大题共2小题,每小题5分,满分10分)17.(2018湖南常德中考,17,5分,★★☆)计算:(2-π)0-321-+12-(12)-2. 18. (2018湖南常德中考,18,5分,★★☆)求不等式组475(1)2332x x x x -<-⎧⎪-⎨≤-⎪⎩的正整数解. 四、(本大题2个小题,每小题6分,满分12分)19. (2018湖南常德中考,19,6分,★★☆)先化简,再求值:(13x ++269x -)÷2169x x -+,其中x =12. 20. (2018湖南常德中考,20,6分,★★☆)如图7,已知一次函数y 1=k 1x +b(k 1≠0)与反比例函数y 2=2k x(k 2≠0)的图象交于A(4,1),B(n ,-2)两点. (1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y 1<y 2时x 的取值范围.图7五、(本大题2个小题,每小题7分,满分14分)21. (2018湖南常德中考,21,7分,★★☆) 某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?22.(2018湖南常德中考,22,7分,★★☆)如图8是一商场的推拉门,已知门的宽度AD =2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A绕门轴AA1向里面转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图9,求此时B与C之间的距离(结果保留一位小数).参考数据:sin37°≈0.6,cos37°≈0.8,2≈1.4)图8 图9六、(本大题2个小题,每小题8分,满分16分)23. (2018湖南常德中考,23,8分,★★☆) 某校体育组为了解全校学生“最喜欢的项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:图10 图11请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图11);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.24.(2018湖南常德中考,24,8分,★★☆)如图12,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.图12七、(本大题2个小题,每小题10分,满分20分)25. (2018湖南常德中考,25,10分,★★★)如图13,已如二次函数的图象过点O(0,0),A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.图1326. (2018湖南常德中考,26,10分,★★★)已知正方形ABCD中,AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH 交AC于N.(1)如图14,当M在线段BO上时,求证:MO=NO;(2)如图15,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图16,当M在线段OD上,连接NE,当ME⊥EC时,求证:AN2=MC.AC图 14 图15 图162018年常德市初中学业水平考试数学试卷答案全解全析1.答案:A解析:根据相反数的意义,-2的相反数是2.故选A.考查内容:相反数.命题意图:本题考查利用定义求一个数的相反数,难度较小.2.答案:C解析:设三角形第三边的长为x,根据三角形两边之和大于第三边,两边之差小于第三边,得7﹣3<x<7+3,即4<x<10,故选C.考查内容:三角形三边关系.命题意图:本题考查利用三角形的三边关系,确定第三边的取值范围,难度较小.3.答案:D解析:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,选项A错误;|a|>|b|,选项B错误;ab<0,选项C错误;﹣a>b,选项D正确,故选D.考查内容:实数与数轴.命题意图:本题考查利用数轴判断实数的正负和大小,注意数形结合思想的运用,难度较小.4.答案:B解析:因为一次函数y=kx+b的函数值y随x的增大而增大,所以k-2>0,解得k>2.考查内容:一次函数的性质.命题意图:本题考查利用一次函数的性质,判定比例系数的符号,难度较小.5.答案:A解析:在平均数一致的条件下,方差越小,成绩越稳定,∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选A.考查内容:方差.命题意图:本题主要考查利用方差的意义进行决策的能力,难度较小.6.答案:D解析:∵ED是BC的垂直平分线,∴BE=CE,CD=DB,∴∠C=∠DBC.∵BD是△ABC的角平分线,∴DE=AD=3,∠ABD=∠DBC,∴∠DBC=∠C=∠ABD.∵∠BAC =90°,∴∠C =30°.在Rt △CED 中,∵tan ∠C=DE CE, ∴CE=tan DE C ∠=D . 考查内容:线段垂直平分线的性质;角平分线的性质;锐角三角函数.命题意图:本题考查利用线段垂直平分线的性质、角平分线的性质、直角三角形的性质熟练计算的能力,难度中等.7.答案:D解析:将正方形的一角切下后,从放置中的虚线判断PSQ 面朝下POQ 面朝前放置,所以该几何体的主视图为等腰三角形, OS 为等腰三角形的高,且要画成虚线,故选D . 考查内容:截一个几何体;简单几何体的三视图.命题意图:本题考查的是判定几何体的三视图形状,难度较小.8.答案:C解析:因为213212x y x y +=⎧⎨-=⎩,所以D =1122a b a b =2132-=2×(-2)-3×1=-7, D x =1122c b c b =11122-=1×(-2)-1×12=-14,D y =1122a c a c =21312=2×12-1×3=21, 因为14272137x y D x D D y D -===-===--⎧⎪⎪⎨⎪⎪⎩,所以方程组的解为23x y ==-⎧⎨⎩,所以说法错误的是C ,故选C .考查内容:二元一次方程组的解;新定义题.命题意图:本题考查利用新定义求二元一次方程组的解的能力,难度中等.9.答案:-2解析:因为(-2)3=-8,所以-8的立方根是-2.考查内容:立方根.命题意图:本题考查利用立方根的概念求一个数的立方根,难度较小.10.答案:x =-1解析:去分母,得x -2-3x =0. 解方程,得x =-1.经检验x =-1是原分式方程的解, 所以分式方程的解为x =-1.考查内容:解分式方程.命题意图:本题考查解分式方程的一般步骤,注意解完要检验,难度中等..11.答案:1.5×108解析:根据科学计数法的表示方法,150 000 000=1.5×108.考查内容:科学记数法表示较大的数.命题意图:本题考查科学记数法的表示方法,关键是正确确定a与n的值,难度较小. 12.答案:1解析:将数据从小到大排列为:-3,-1,0,1,2,3,4,处于最中间位置的数是1,所以中位数是1.考查内容:中位数.命题意图:本题考查利用中位数的定义计算一组数据的中位数的能力,难度较小.13.答案:6(答案不唯一)解析:因为2x2+bx+3=0有两个不相等的实数根,所以△=b2-4×2×3=b2-24>0,解得b2>24,此题答案不唯一,如b=6或b=-6等.考查内容:一元二次方程根的判别式.命题意图:本题考查利用一元二次方程根的情况,确定方程组未知系数的值的能力,难度中等.14.答案:0.35解析:视力在4.9≤x<5.5这个范围的频数为60+10=70,根据“频率=频数数据总数”,得视力在4.9≤x<5.5这个范围的频率为7020+40+70+60+10=70200=0.35.考查内容:频数(率)分布表.命题意图:本题考查利用频率的定义,计算频率的能力,难度较小.15.答案:75°解析:由折叠的性质可知,∠EGH=∠ABC=90°,GE=BE.∵∠DGH=30°,∴∠AGE=60°,∴∠AEG=30°.∵EG=EB,∴∠EGB=∠EBG =12∠AEG =15°,∴∠AGB=∠AGE+∠BGE=60°+15°=75°.考查内容:矩形的性质;翻折变换(折叠问题).命题意图:本题考查利用翻折变换的性质,解决折叠问题的能力,难度中等.16.答案:9解析:设报1的人想的数是a ,报2的人想的数是b ,报3的人想的数是c ,报4的人想的数是d ,报5的人想的数是e ,则a +c =4①, b +d =6②, c +e =8③, d +a =10④, e +b =2⑤,①+②+③+④+⑤,得2a+2b+2c+2d+2e=30,所以a +b +c +d +e =15⑥,⑥-⑤-①,得d =9,所以报4的人心里想的数是9.考查内容:阅读理解题; 平均数.命题意图:本题考查阅读理解题的解决能力,用字母表示未知的数,根据题意建立多个方程,采用加减消元法和整体思想求得结果是常用方法,难度中等.17.解析:原式=1-(1)+-4=1-1+-4=-2.考查内容:实数的计算;零指数幂;负整数指数幂;绝对值.命题意图:本题主要考查实数的综合运算能力,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算是正确解答的关键,难度不大.18.解析:475(x 1)2332x x x -<-⎧⎪⎨-≤-⎪⎩①②,解不等式①,得x >﹣2,解不等式②,得x ≤245, 所以不等式组的解集是﹣2<x ≤245,不等式组的正整数解是1,2,3,4. 考查内容:一元一次不等式组的整数解.命题意图:本题考查求一元一次不等式组的正整数解,难度不大.19.解析:原式=[ 3(3)(3)x x x -+-+ 6(3)(3)x x +-]×(x ﹣3)2= 3(3)(3)x x x ++-×(x ﹣3)2=x ﹣3.当x= 12时,原式= 12﹣3=52-. 考查内容:分式的化简求值.命题意图:本题考查利用分式的化简求值步骤计算的能力,难度中等.20.解析:(1)将A(4,1)代入y 2=2k x ,得k 2=4,所以反比例函数的解析式为y 2=4x . 将B(n ,-2)代入y 2=4x,得n =-2,所以点B 坐标为(-2,-2). 将A(4,1),B(-2,-2)代入y 1=k 1x +b ,得114122k b k b +=⎧⎨-+=-⎩,解得⎪⎩⎪⎨⎧-==1211b k ,所以一次函数解析式为y1=12x-1.(2)根据两函数的图像可以看出,当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.考查内容:待定系数法;反比例函数与一次函数的交点问题.命题意图:本题考查用待定系数法确定函数解析式,根据两函数图象的上下位置关系,找出不等式的解集,难度中等.21.解析:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得818170010201700300x yx y+=⎧⎨+=+⎩,解得:10050xy==⎧⎨⎩.答:该店5月份购进甲种水果100千克,购进乙种水果10千克.(2)设该店6月份购进乙种水果m千克,则购进甲种水果(120-m)千克,购进这两种水果将花费w元,由题意,得120-m≤3m,解得m≥30.易得W=10(120-m)+20m=10m+1200.∵k=10>0,∴w随m值的增大而增大,∴当m=30时,w最小,为10×30+1200=1500.故该店6月份购进这两种水果最少花费1500元.考查内容:二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.命题意图:本题考查二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.难度中等.22.解析:如图,连接BC,过点B作BE⊥AD于E,过点C作CF⊥AD于F,CG⊥BE交BE延长线于G.∵AD=2米,∴AB=CD=1米.在Rt△ABE中,∵sinA=BEAB,cosA=AEAB,∴BE=ABsinA=sin37°×1≈0.6米,AE=ABcosA=cos37°×1≈0.8米.在Rt△CDF中,CF=DF=CDcosD=cos45°×1=2×1≈0.7米,∴BG=BE+EG=BE+CF=1.3米,GC=EF=AD-AE-DF=2-0.8-0.7=0.5米.由勾股定理得BC 1.4(米).答:此时点B与点C之间的距离约是1.4米.考查内容:解直角三角形的应用.命题意图:本题考查利用解直角三角形知识解决实际问题的能力,难度中等.23.解析:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=5014×100%=28%,补全条形统计图如下:(2)估计全校500名学生中最喜欢“排球”项目的有500×12%=60(名);(3)“篮球”部分所对应的圆心角度数是360×40%=144°;(4)由题意画树状图为由树状图可知共有12种等可能的结果数,其中抽取的两名同学恰好是甲和乙的结果有2种, 故所求概率=122=16. 考查内容:扇形统计图;条线统计图;列举法求概率.命题意图:本题考查从扇形统计图和条线统计图获取信息,利用列表法或树状图法求概率的能力,难度适中.24.解析:(1)连接AO ,并延长AO 交BC 于M .∵△ABC 为等边三角形,∴AB=AC ,∴AB AC ,∴AM ⊥BC .∵AE ∥BC ,∴OM ⊥AE ,∴EA 是⊙O 的切线.(2)∵△ABC 为等边三角形,∴∠BAC =∠BCA=60°,AB =AC ,∴∠BDC =∠BDA =60°, ∴∠ADF =180°﹣∠BDC ﹣∠BDA =60°.∵DA =DF ,∴△ADF 为等边三角形,∴∠DAF =60°,AD =AF ,∴∠BAC+∠CAD =∠DAF+∠CAD ,即∠BAD =∠CAF ,∴△BAD ≌△CAF (SAS ),∴BD =CF .考查内容:等边三角形的性质;垂径定理;切线的判定定理;全等三角形的判定与性质. 命题意图:本题考查了全等三角形的性质和判定,等边三角形及切线的判定定理等知识点的综合运用,难度中等.25.解析:(1)因为二次函数图象的对称轴为x =3,设抛物线解析式为y =a (x-3)2+c ,将点O (0,0)和A(8,4)代入,得⎩⎨⎧=+=+42509c a c a ,解得⎪⎪⎩⎪⎪⎨⎧-==4941c a ,所以二次函数解析式为y =14(x -3)2-49=14x 2-32x . (2)设点M 的坐标为(m ,0),直线AB 解析式为y =kx +b ,由抛物线的对称性,得B (6,0),把B (6,0)和A (8,4)代入y =kx +b ,得8460k b k b +=⎧⎨+=⎩,解得212k b =⎧⎨=-⎩,所以直线AB 解析式为y =2x -12.∵MN ∥AB ,∴设MN 解析式为y =2x +h ,把点M(m ,0)代入y =2x +h ,得0=2m+h ,h=﹣2m ,∴直线MN 表达式为y=2x ﹣2m .易得直线OA 的解析式为y =12x ,解方程组2212y x m y x =-⎧⎪⎨=⎪⎩,,得4323x m y m ⎧=⎪⎪⎨⎪=⎪⎩,,∴点N 坐标为(34m ,32m). ∴S △AMN =S △AOM -S △OMN =12×4m -12×m×32m =-31m 2+2m =-31(m -3)2+3, ∵-31<0,∴当m =3,S △AMN 最大,此时点M 坐标为(3,0). (3)设点P 坐标为(n ,0),则点Q 坐标为(n ,14n 2-32n),分以下两种情况讨论:①当△OAC ∽△OQP 时,OC:AC =OP:PQ =2,即OP =2PQ ,∴n =221342n n -,解得n 1=8,n 2=0(不合题意,舍去),n 3=4,∴点P 坐标为(8,0)或(4,0);②当△OAC ∽△QOP 时,OC: AC =PQ:OP =2,即PQ =2OP ,所以21342n n -=2n ,解得n 4=14,n 5=0(不合题意,舍去),n 6=-2,∴点P 坐标为(-14,0)或(-2,0); 综上,点P 的坐标为(8,0),(4,0),(-14,0),(-2,0).考查内容:待定系数法;相似三角形的性质;二次函数的性质.命题意图:本题考查待定系数法确定函数关系式,灵活运用相似比表示线段之间的关系,及二次函数的性质解决问题的能力,注意分类讨论思想及数形结合思想的运用,难度大. 一题多解:本题第(1)小题还可以用以下方法求解:设二次函数的解析式为y=ax2+bx+c ,根据题意,得3264840b a a b c c ⎧-=⎪⎪⎪++=⎨⎪⎪=⎪⎩,,,解方程组,得14320a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,,故该二次函数的解析式为y =14x 2-32x . 26.解析:证明:(1)∵四边形ABCD 是正方形,∴BD ⊥AC ,OD =OA ,∴∠ODA+∠DAO=90°.∵DH ⊥AE ,∴∠HDA+∠DAH=90°,∴∠ODA+∠DAO=∠HDA+∠DAH ,即∠ODH+∠HDA+∠DAO=∠HDA+∠DAO+∠OAH ,∴∠ODH=∠OAH .又∠DON=∠AOM ,∴△DON ≌△AOM ,∴OM =ON .(2)∵BD ⊥AC ,EN ∥BD ,∴EN ⊥AC ,∠DNE =∠NDO .∵∠ADC=900,∴D ,A ,N ,E 四点共圆,∴∠DAE=∠DNE =∠NDO .∵DN ⊥AE ,∴∠HDM+∠ HMD=90°,又∵∠DAM+∠MAB=90°,∴∠BAM=∠DMH =∠BMA ,∴MB =AB ;(3)连接NM 并延长,交AD 于点G ,由(1)同理可得OM =ON ,∴MN ∥DC ,∴△AGN 为等腰直角三角形,∴AN 2=2GN 2=2DE 2.∵DN ⊥AE ,EN ⊥CD ,BD ⊥AC ,∴△DEH ∽△DNE ,且O ,N ,H ,M 四点共圆,∴DE ∶DN =DH ∶DE ,∴DE 2=DN ·DH 易得△DMH ∽△DNO ,∴DM ∶DN =DH ∶DO ,∴DN ·DH= DM ·DO ,∴DE 2==DM·DO ,∴2DE 2=DM ·2DO =CN ·AC ,即AN 2=CN ·AC .考查内容:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质。
2018年湖南省常德市中考数学试题
2018年湖南省常德市中考数学试卷一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016•常德)4的平方根是()A.2 B.﹣2 C.±D.±22.(3分)(2016•常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<33.(3分)(2016•常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°4.(3分)(2016•常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.5.(3分)(2016•常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上6.(3分)(2016•常德)若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.57.(3分)(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.48.(3分)(2016•常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016•常德)使代数式有意义的x的取值范围是.10.(3分)(2016•常德)计算:a2•a3=.11.(3分)(2016•常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为.12.(3分)(2016•常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式.13.(3分)(2016•常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是.14.(3分)(2016•常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.15.(3分)(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=.16.(3分)(2016•常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.18.(5分)(2016•常德)解不等式组,并把解集在是数轴上表示出来..四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016•常德)先化简,再求值:(),其中x=2.20.(6分)(2016•常德)如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016•常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?22.(7分)(2016•常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016•常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?24.(8分)(2016•常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016•常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.26.(10分)(2016•常德)如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.2016年湖南省常德市中考数学试卷参考答案与试题解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)(2016•常德)4的平方根是()A.2 B.﹣2 C.±D.±2【分析】直接利用平方根的定义分析得出答案.【解答】解:4的平方根是:±=±2.故选:D.【点评】此题主要考查了平方根的定义,正确掌握相关定义是解题关键.2.(3分)(2016•常德)下面实数比较大小正确的是()A.3>7 B. C.0<﹣2 D.22<3【分析】根据实数比较大小的法则对各选项进行逐一分析即可.【解答】解:A、3<7,故本选项错误;B、∵≈1.7,≈1.4,∴>,故本选项正确;C、0>﹣2,故本选项错误;D、22>3,故本选项错误.故选B.【点评】本题考查的是实数的大小比较,熟知实数比较大小的法则是解答此题的关键.3.(3分)(2016•常德)如图,已知直线a∥b,∠1=100°,则∠2等于()A.80°B.60°C.100°D.70°【分析】先根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补列式计算即可得解.【解答】解:如图,∵∠1与∠3是对顶角,∴∠3=∠1=100°,∵a∥b,∴∠2=180°﹣∠3=180°﹣100°=80°.故选A.【点评】本题考查了平行线的性质,对顶角相等的性质,是基础题,熟记性质是解题的关键.4.(3分)(2016•常德)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2016•常德)下列说法正确的是()A.袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球B.天气预报“明天降水概率10%”,是指明天有10%的时间会下雨C.某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,一定会中奖D.连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上【分析】根据概率的意义对各选项进行逐一分析即可.【解答】解:A、袋中有形状、大小、质地完全一样的5个红球和1个白球,从中随机抽出一个球,一定是红球的概率是,故本选项错误;B、天气预报“明天降水概率10%”,是指明天有10%的概率会下雨,故本选项错误;C、某地发行一种福利彩票,中奖率是千分之一,那么,买这种彩票1000张,可能会中奖,故本选项错误;D、连续掷一枚均匀硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,故本选项正确.故选D.【点评】本题考查的是概率的意义,熟知一般地,在大量重复实习中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率是解答此题的关键.6.(3分)(2016•常德)若﹣x3y a与x b y是同类项,则a+b的值为()A.2 B.3 C.4 D.5【分析】根据同类项中相同字母的指数相同的概念求解.【解答】解:∵﹣x3y a与x b y是同类项,∴a=1,b=3,则a+b=1+3=4.故选C.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母指数相同的概念.7.(3分)(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).8.(3分)(2016•常德)某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天【分析】根据题意设有x天早晨下雨,这一段时间有y天;有9天下雨,即早上下雨或晚上下雨都可称之为当天下雨,①总天数﹣早晨下雨=早晨晴天;②总天数﹣晚上下雨=晚上晴天;列方程组解出即可.【解答】解:设有x天早晨下雨,这一段时间有y天,根据题意得:①+②得:2y=22y=11所以一共有11天,故选B.【点评】本题以天气为背景,考查了学生生活实际问题,恰当准确设未知数是本题的关键;根据生活实际可知,早晨和晚上要么下雨,要么晴天;本题也可以用算术方法求解:(9+6+7)÷2=11.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)(2016•常德)使代数式有意义的x的取值范围是x≥3.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴2x﹣6≥0,解得:x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.10.(3分)(2016•常德)计算:a2•a3=a5.【分析】根据同底数的幂的乘法,底数不变,指数相加,计算即可.【解答】解:a2•a3=a2+3=a5.故答案为:a5.【点评】熟练掌握同底数的幂的乘法的运算法则是解题的关键.11.(3分)(2016•常德)如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P 到OA的距离为3.【分析】过P作PD⊥OA于D,根据角平分线上的点到角的两边的距离相等可得PD=PC,从而得解.【解答】解:如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.12.(3分)(2016•常德)已知反比例函数y=的图象在每一个象限内y随x的增大而增大,请写一个符合条件的反比例函数解析式y=﹣.【分析】由反比例函数的图象在每一个象限内y随x的增大而增大,结合反比例函数的性质即可得出k<0,随便写出一个小于0的k值即可得出结论.【解答】解:∵反比例函数y=的图象在每一个象限内y随x的增大而增大,∴k<0.故答案为:y=﹣.【点评】本题考查了反比例函数的性质,解题的关键是找出k<0.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质得出k的取值范围是关键.13.(3分)(2016•常德)张朋将连续10天引体向上的测试成绩(单位:个)记录如下:16,18,18,16,19,19,18,21,18,21.则这组数据的中位数是18.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:16,16,18,18,18,18,19,19,21,21.位于最中间的两个数都是18,所以这组数据的中位数是18.故答案为:18.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.(3分)(2016•常德)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.【点评】本题主要考查扇形面积的计算和圆周角定理,根据等边三角形性质和圆周角定理求得圆心角度数是解题的关键.15.(3分)(2016•常德)如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D 落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.16.(3分)(2016•常德)平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8)或(﹣3,﹣2)或(3,2).【分析】以O,A,B,C四点为顶点的四边形是“和点四边形”,分3种情况讨论:①C为点A、B的“和点”;②B为A、C的“和点”;③A为B、C的“和点”,再根据点A、B的坐标求得点C的坐标.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点”时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).【点评】本题主要考查了点的坐标,解决问题的关键是掌握“和点”的定义和“和点四边形”的定义.坐标平面内的点与有序实数对是一一对应的关系.三、(本大题2个小题,每小题5分,满分10分)17.(5分)(2016•常德)计算:﹣14+sin60°+()﹣2﹣()0.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式﹣14+sin60°+()﹣2﹣()0的值是多少即可.【解答】解:﹣14+sin60°+()﹣2﹣()0=﹣1+2×+4﹣1=﹣1+3+3=5【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.18.(5分)(2016•常德)解不等式组,并把解集在是数轴上表示出来..【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)(2016•常德)先化简,再求值:(),其中x=2.【分析】先算括号里面的,再算除法,最后把x的值代入进行计算即可.【解答】解:原式=[+]÷[﹣]=÷=÷=•=,当x=2时,原式==.【点评】本题考查的是分式的化简求值,在解答此类问题时要注意把分式化为最简形式,再代入求值.20.(6分)(2016•常德)如图,直线AB与坐标轴分别交于A(﹣2,0),B(0,1)两点,与反比例函数的图象在第一象限交于点C(4,n),求一次函数和反比例函数的解析式.【分析】设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得出方程组,解方程组即可;求出点C的坐标,设反比例函数的解析式为y=,把C(4,3)代入y=求出m即可.【解答】解:设一次函数的解析式为y=kx+b,把A(﹣2,0),B(0,1)代入得:,解得:,∴一次函数的解析式为y=x+1;设反比例函数的解析式为y=,把C(4,n)代入得:n=3,∴C(4,3),把C(4,3)代入y=得:m=3×4=12,∴反比例函数的解析式为y=.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.五、(本大题2个小题,每小题7分,满分14分)21.(7分)(2016•常德)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?【分析】(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,再根据等量关系:第二批进的件数=×第一批进的件数可得方程;(2)设第二批衬衫每件售价y元,由利润=售价﹣进价,根据这两批衬衫售完后的总利润不低于1950元,可列不等式求解.【解答】解:(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x﹣10)元,根据题意可得:,解得:x=150,经检验x=150是原方程的解,答:第一批T恤衫每件进价是150元,第二批每件进价是140元,(件),(件),答:第一批T恤衫进了30件,第二批进了15件;(2)设第二批衬衫每件售价y元,根据题意可得:30×(200﹣150)+15(y﹣140)≥1950,解得:y≥170,答:第二批衬衫每件至少要售170元.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.22.(7分)(2016•常德)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)【分析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.【解答】解:过B作BD⊥AC,∵∠BAC=75°﹣30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,熟练掌握直角三角形的性质是解本题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)(2016•常德)今年元月,国内一家网络诈骗举报平台发布了《2015年网络诈骗趋势研究报告》,根据报告提供的数据绘制了如下的两幅统计图:(1)该平台2015年共收到网络诈骗举报多少例?(2)2015年通过该平台举报的诈骗总金额大约是多少亿元?(保留三个有效数字)(3)2015年每例诈骗的损失年增长率是多少?(4)为提高学生的防患意识,现准备从甲、乙、丙、丁四人中随机抽取两人作为受骗演练对象,请用树状图或列表法求恰好选中甲、乙两人的概率是多少?【分析】(1)利用条形统计图求解;(2)利用2015年每例诈骗的损失乘以2015年收到网络诈骗举报的数量即可;(3)用2015年每例诈骗的损失减去2014年每例诈骗的损失,然后用其差除以2014年每例诈骗的损失即可;(4)画树状图(用A、B、C、D分别表示甲乙丙丁)展示所有12种等可能的结果数,再找出选中甲、乙两人的结果数,然后根据概率公式求解.【解答】解:(1)该平台2015年共收到网络诈骗举报24886例;(2)2015年通过该平台举报的诈骗总金额大约是24886×5.106≈1.27亿元;(3)2015年每例诈骗的损失年增长率=(5106﹣2070)÷2070=147%;(4)画树状图为:(用A、B、C、D分别表示甲乙丙丁)共有12种等可能的结果数,其中选中甲、乙两人的结果数为2,所以恰好选中甲、乙两人的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.24.(8分)(2016•常德)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OF,再用平行线分线段成比例定理求出半径R,最后根据相似求出BE即可.【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∴AB==∵=,∴BE=.【点评】此题是切线的判定,主要考查了圆周角的性质,切线的判定,平行线分线段成比例定理,相似三角形的判定和相似,圆内接四边形的性质,解本题的关键是作出辅助线.七、(本大题2个小题,每小题10分,满分20分)25.(10分)(2016•常德)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.【分析】(1)①利用SAS证全等;②易证得:BC∥FH和CH=HE,根据平行线分线段成比例定理得BF=EF,也可由三角形中位线定理的推论得出结论.(2)作辅助线构建平行线和全等三角形,首先证明△MAE≌△DAC,得AD=AM,根据等量代换得AB=AM,根据②同理得出结论.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.【点评】本题考查了全等三角形的性质和判定,平行线分线段成比例的性质,本题的关键是能正确找出全等三角形;在几何图形中证明线段相等或已知线段相等的一般思路是:①证明相等线段所在的三角形全等;②利用相等线段的比值为1证相等.26.(10分)(2016•常德)如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)H是C关于x轴的对称点,P是抛物线上的一点,当△PBH与△AOC相似时,求符合条件的P点的坐标(求出两点即可);(3)过点C作CD∥AB,CD交抛物线于点D,点M是线段CD上的一动点,作直线MN 与线段AC交于点N,与x轴交于点E,且∠BME=∠BDC,当CN的值最大时,求点E的坐标.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣4),然后将(0,﹣2)代入解析式即可求出a的值;(2)当△PBH与△AOC相似时,△PBH是直角三角形,由可知∠AHB=90°,所以求出直线AH的解析式后,联立一次函数与二次函数的解析式后即可求出P的坐标;(3)设M的坐标为(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用对应边的比相等即可得出CN与m的函数关系式,利用二次函数的性质即可求出m=时,CN有最大值,然后再证明△EMB∽△BDM,即可求出E的坐标.【解答】解:(1)∵抛物线与x轴交于A(﹣1,0),B(4,0),∴设抛物线的解析式为:y=a(x+1)(x﹣4),把(0,﹣2)代入y=a(x+1)(x﹣4),∴a=,∴抛物线的解析式为:y=x2﹣x﹣2;(2)当△PBH与△AOC相似时,∴△AOC是直角三角形,∴△PBH也是直角三角形,由题意知:H(0,2),∴OH=2,∵A(﹣1,0),B(4,0),∴OA=1,OB=4,∴AH=,BH=2,∴AH2+BH2=AB2,∴∠AHB=90°,且∠ACO=∠AHO=∠HBA,∴△AOC∽△AHB,∴A(﹣1,0)符合要求,取AB中点G,则G(,0),连接HG并延长至F使GF=HG,连接AF,则四边形AFBH为矩形,∴∠HBD=90°,∠BHG=∠GBH=∠AHO=∠ACO,且F点坐标为(3,﹣2),将F(3,﹣2)代入y=x2﹣x﹣2得,F在抛物线上,∴点(3,﹣2)符合要求,所以符合要求的P点的坐标为(﹣1,0)和(3,﹣2).(3)过点M作MF⊥x轴于点F,设点E的坐标为(n,0),M的坐标为(m,0),∵∠BME=∠BDC,∴∠EMC+∠BME=∠BDC+∠MBD,∴∠EMC=∠MBD,∵CD∥x轴,∴D的纵坐标为﹣2,令y=﹣2代入y=x2﹣x﹣2,∴x=0或x=3,∴D(3,﹣2),∵B(4,0),∴由勾股定理可求得:BD=,∵M(m,0),∴MD=3﹣m,CM=m(0≤m≤3)∴由抛物线的对称性可知:∠NCM=∠BDC,∴△NCM∽△MDB,∴,∴,∴CN==﹣(m﹣)2+,∴当m=时,CN可取得最大值,∴此时M的坐标为(,﹣2),∴MF=2,BF=,MD=∴由勾股定理可求得:MB=,∵E(n,0),∴EB=4﹣n,∵CD∥x轴,∴∠NMC=∠BEM,∠EBM=∠BMD,∴△EMB∽△BDM,。
湖南省常德市中考数学试卷(word版,含答案解析)
2018年湖南省常德市中考数学试卷含解析一、选择题(本大题8个小题,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.2 B.﹣2 C.2﹣1D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣2的相反数是:2.故选:A【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)已知三角形两边的长分别是3和7,则此三角形第三边的长可能是()A.1 B.2 C.8 D.11【分析】根据三角形的三边关系可得7﹣3<x<7+3,再解即可.【解答】解:设三角形第三边的长为x,由题意得:7﹣3<x<7+3,4<x<10,故选:C.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.3.(3分)已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A.a>b B.|a|<|b|C.ab>0 D.﹣a>b【分析】根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由数轴可得,﹣2<a<﹣1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,﹣a>b,故选项D正确,故选:D.【点评】本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2 B.k>2 C.k>0 D.k<0【分析】根据一次函数的性质,可得答案.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.【点评】本题考查了一次函数的性质,y=kx+b,当k>0时,函数值y随x的增大而增大.5.(3分)从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,他们的平均成绩都是86.5分,方差分别是S甲你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁【分析】根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【解答】解:∵1.5<2.6<3.5<3.68,∴甲的成绩最稳定,∴派甲去参赛更好,故选:A.【点评】此题主要考查了方差,关键是掌握方差越小,稳定性越大.6.(3分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A.6 B.5 C.4 D.3【分析】根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据直角三角形的性质解答.【解答】解:∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CE=CD×cos∠C=3,故选:D.【点评】本题考查的是线段垂直平分线的性质、直角三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.(3分)把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个等腰三角形,高线是虚线,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.8.(3分)阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定:=a×d﹣b×c,例如:=3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为【分析】分别根据行列式的定义计算可得结论.【解答】解:A、D==﹣7,正确;B、D x==﹣2﹣1×12=﹣14,正确;C、D y==2×12﹣1×3=21,不正确;D、方程组的解:x===2,y===﹣3,正确;故选:C.【点评】本题是阅读理解问题,考查了2×2阶行列式和方程组的解的关系,理解题意,直接运用公式计算是本题的关键.二、填空题(本大题8个小题,每小题3分,满分24分)9.(3分)﹣8的立方根是﹣2.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.10.(3分)分式方程﹣=0的解为x=﹣1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=1是分式方程的解.故答案为:﹣1【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.11.(3分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为 1.5×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1 5000 0000=1.5×108,故答案为:1.5×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)一组数据3,﹣3,2,4,1,0,﹣1的中位数是1.【分析】将数据按照从小到大重新排列,根据中位数的定义即可得出答案.【解答】解:将数据重新排列为﹣3、﹣1、0、1、2、3、4,所以这组数据的中位数为1,故答案为:1.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(3分)若关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,则b 的值可能是6(只写一个).【分析】根据方程的系数结合根的判别式△>0,即可得出关于b的一元二次不等式,解之即可得出b的取值范围,取其内的任意一值即可得出结论.【解答】解:∵关于x的一元二次方程2x2+bx+3=0有两个不相等的实数根,∴△=b2﹣4×2×3>0,解得:b<﹣2或b>2.故答案可以为:6.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.14.(3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为0.35.视力x频数4.0≤x<4.3204.3≤x<4.6404.6≤x<4.9704.9≤x≤5.2605.2≤x<5.510【分析】直接利用频数÷总数=频率进而得出答案.【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,则视力在4.9≤x<5.5这个范围的频率为:=0.35.故答案为:0.35.【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.15.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的点G处,点C 落在点H处,已知∠DGH=30°,连接BG,则∠AGB=75°.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,故答案为:75°.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.(3分)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是9.【分析】设报4的人心想的数是x,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x,报1的人心想的数是10﹣x,报3的人心想的数是x﹣6,报5的人心想的数是14﹣x,报2的人心想的数是x﹣12,所以有x﹣12+x=2×3,解得x=9.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6﹣x,从而列出方程x﹣12=6﹣x求解.三、(本大题2个小题,每小题5分,满分10分)17.(5分)计算:(﹣π)0﹣|1﹣2|+﹣()﹣2.【分析】本题涉及零指数幂、负指数幂、二次根式化简和绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣(2﹣1)+2﹣4,=1﹣2+1+2﹣4,=﹣2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(5分)求不等式组的正整数解.【分析】根据不等式组解集的表示方法:大小小大中间找,可得答案.【解答】解:,解不等式①,得x>﹣2,解不等式②,得x≤,不等式组的解集是﹣2<x≤,不等式组的正整数解是1,2,3,4.【点评】本题考查了解一元一次不等式组,利用解一元一次不等式组的解集的表示方法是解题关键.四、(本大题2个小题,每小题6分,满分12分)19.(6分)先化简,再求值:(+)÷,其中x=.【分析】直接将括号里面通分运算,再利用分式混合运算法则计算得出答案.【解答】解:原式=[+]×(x﹣3)2=×(x﹣3)2=x﹣3,把x=代入得:原式=﹣3=﹣.【点评】此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.20.(6分)如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征可求出k2的值,进而可得出反比例函数的解析式,由点B的纵坐标结合反比例函数图象上点的坐标特征可求出点B的坐标,再由点A、B的坐标利用待定系数法,即可求出一次函数的解析式;(2)根据两函数图象的上下位置关系,找出y1<y2时x的取值范围.【解答】解:(1)∵反比例函数y2=(k2≠0)的图象过点A(4,1),∴k2=4×1=4,∴反比例函数的解析式为y2=.∵点B(n,﹣2)在反比例函数y2=的图象上,∴n=4÷(﹣2)=﹣2,∴点B的坐标为(﹣2,﹣2).将A(4,1)、B(﹣2,﹣2)代入y1=k1x+b,,解得:,∴一次函数的解析式为y=x﹣1.(2)观察函数图象,可知:当x<﹣2和0<x<4时,一次函数图象在反比例函数图象下方,∴y1<y2时x的取值范围为x<﹣2或0<x<4.【点评】本题考查了待定系数法求一次函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出点B的坐标;(2)根据两函数图象的上下位置关系,找出不等式y1<y2的解集.五、(本大题2个小题,每小题7分,满分14分)21.(7分)某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?【分析】(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据总价=单价×购进数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据总价=单价×购进数量,即可得出w关于a的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设该店5月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得:.答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400.∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a),解得:a≤90.∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于a的函数关系式.22.(7分)图1是一商场的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转37°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin37°≈0.6,cos37°≈0.8,≈1.4)【分析】作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,则EM=BC,在Rt△ABE、Rt△CDF中可求出AE、BE、DF、FC的长度,进而可得出EF的长度,再在Rt△MEF中利用勾股定理即可求出EM的长,此题得解.【解答】解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,如图所示.∵AB=CD,AB+CD=AD=2,∴AB=CD=1.在Rt△ABE中,AB=1,∠A=37°,∴BE=AB•sin∠A≈0.6,AE=AB•cos∠A≈0.8.在Rt△CDF中,CD=1,∠D=45°,∴CF=CD•sin∠D≈0.7,DF=CD•cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵BE=CM,∴四边形BEMC为平行四边形,∴BC=EM,CM=BE.在Rt△MEF中,EF=AD﹣AE﹣DF=0.5,FM=CF+CM=1.3,∴EM=≈1.4,∴B与C之间的距离约为1.4米.【点评】本题考查了解直角三角形的应用、勾股定理以及平行四边形的判定与性质,构造直角三角形,利用勾股定理求出BC的长度是解题的关键.六、(本大题2个小题,每小题8分,满分16分)23.(8分)某校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图.请你根据统计图回答下列问题:(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图(图2);(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率【分析】(1)先利用喜欢足球的人数和它所占的百分比计算出调查的总人数,再计算出喜欢乒乓球的人数,然后补全条形统计图;(2)用500乘以样本中喜欢排球的百分比可根据估计全校500名学生中最喜欢“排球”项目的写生数;(3)用360°乘以喜欢篮球人数所占的百分比即可;(4)画树状图展示所有12种等可能的结果数,再找出抽取的两人恰好是甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)调查的总人数为8÷16%=50(人),喜欢乒乓球的人数为50﹣8﹣20﹣6﹣2=14(人),所以喜欢乒乓球的学生所占的百分比=×100%=28%,补全条形统计图如下:(2)500×12%=60,所以估计全校500名学生中最喜欢“排球”项目的有60名;(3),篮球”部分所对应的圆心角=360×40%=144°;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好是甲和乙的结果数为2,所以抽取的两人恰好是甲和乙的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.24.(8分)如图,已知⊙O是等边三角形ABC的外接圆,点D在圆上,在CD的延长线上有一点F,使DF=DA,AE∥BC交CF于E.(1)求证:EA是⊙O的切线;(2)求证:BD=CF.【分析】(1)根据等边三角形的性质可得:∠OAC=30°,∠BCA=60°,证明∠OAE=90°,可得:AE是⊙O的切线;(2)先根据等边三角形性质得:AB=AC,∠BAC=∠ABC=60°,由四点共圆的性质得:∠ADF=∠ABC=60°,得△ADF是等边三角形,证明△BAD≌△CAF,可得结论.【解答】证明:(1)连接OD,∵⊙O是等边三角形ABC的外接圆,∴∠OAC=30°,∠BCA=60°,∵AE∥BC,∴∠EAC=∠BCA=60°,∴∠OAE=∠OAC+∠EAC=30°+60°=90°,∴AE是⊙O的切线;(2)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,∵A、B、C、D四点共圆,∴∠ADF=∠ABC=60°,∵AD=DF,∴△ADF是等边三角形,∴AD=AF,∠DAF=60°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠BAF=∠CAF,在△BAD和△CAF中,∵,∴△BAD≌△CAF,∴BD=CF.【点评】本题考查了全等三角形的性质和判定,等边三角形及外接圆,四点共圆等知识点的综合运用,属于基础题,熟练掌握等边三角形的性质是关键.七、(本大题2个小题,每小题10分,满分20分)25.(10分)如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x ﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S △AMN =S △AOM ﹣S △NOM 得到S △AMN =•4•t ﹣•t•t ,然后根据二次函数的性质解决问题;(3)设Q (m ,m 2﹣m ),根据相似三角形的判定方法,当=时,△PQO ∽△COA ,则|m 2﹣m |=2|m |;当=时,△PQO ∽△CAO ,则|m 2﹣m |=|m |,然后分别解关于m 的绝对值方程可得到对应的P 点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B 点坐标为(6,0),设抛物线解析式为y=ax (x ﹣6),把A (8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x (x ﹣6),即y=x 2﹣x ;(2)设M (t ,0),易得直线OA 的解析式为y=x ,设直线AB 的解析式为y=kx +b ,把B (6,0),A (8,4)代入得,解得,∴直线AB 的解析式为y=2x ﹣12,∵MN ∥AB ,∴设直线MN 的解析式为y=2x +n ,把M (t ,0)代入得2t +n=0,解得n=﹣2t ,∴直线MN 的解析式为y=2x ﹣2t , 解方程组得,则N (t ,t ),∴S △AMN =S △AOM ﹣S △NOM =•4•t ﹣•t•t=﹣t 2+2t=﹣(t ﹣3)2+3,当t=3时,S有最大值3,此时M点坐标为(3,0);△AMN(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,28);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,4);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8(舍去),解方程m2﹣m=﹣m得m1=0(舍去),m2=2,此时P点坐标为(2,﹣1);综上所述,P点坐标为(14,28)或(﹣2,4)或(2,﹣1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;灵活运用相似比表示线段之间的关系;会运用分类讨论的思想解决数学问题.26.(10分)已知正方形ABCD中AC与BD交于O点,点M在线段BD上,作直线AM交直线DC于E,过D作DH⊥AE于H,设直线DH交AC于N.(1)如图1,当M在线段BO上时,求证:MO=NO;(2)如图2,当M在线段OD上,连接NE,当EN∥BD时,求证:BM=AB;(3)在图3,当M在线段OD上,连接NE,当NE⊥EC时,求证:AN2=NC•AC.【分析】(1)先判断出OD=OA,∠AOM=∠DON,再利用同角的余角相等判断出∠ODN=∠OAM,判断出△DON≌△AOM即可得出结论;(2)先判断出四边形DENM是菱形,进而判断出∠BDN=22.5°,即可判断出∠AMB=67.5°,即可得出结论;(3)设CE=a,进而表示出EN=CE=a,CN=a,设DE=b,进而表示AD=a+b,根据勾股定理得,AC=(a+b),同(1)的方法得,∠OAM=∠ODN,得出∠EDN=∠DAE,进而判断出△DEN∽△ADE,得出,进而得出a=b,即可表示出CN=b,AC=b,AN=AC﹣CN=b,即可得出结论.【解答】解:(1)∵正方形ABCD的对角线AC,BD相交于O,∴OD=OA,∠AOM=∠DON=90°,∴∠OND+∠ODN=90°,∵∠ANH=∠OND,∴∠ANH+∠ODN=90°,∵DH⊥AE,∴∠DHM=90°,∴∠ANH+∠OAM=90°,∴∠ODN=∠OAM,∴△DON≌△AOM,∴OM=ON;(2)连接MN,∵EN∥BD,∴∠ENC=∠DOC=90°,∠NEC=∠BDC=45°=∠ACD,∴EN=CN,同(1)的方法得,OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM是平行四边形,∵DN⊥AE,∴▱DENM是菱形,∴DE=EN,∴∠EDN=∠END,∵EN∥BD,∴∠END=∠BDN,∴∠EDN=∠BDN,∵∠BDC=45°,∴∠BDN=22.5°,∵∠AHD=90°,∴∠AMB=∠DME=90°﹣∠BDN=67.5°,∵∠ABM=45°,∴∠BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠CEN=90°,∵∠ACD=45°,∴∠CNE=45°=∠ACD,∴EN=CE=a,∴CN=a,设DE=b(b>0),∴AD=CD=DE+CE=a+b,根据勾股定理得,AC=AD=(a+b),同(1)的方法得,∠OAM=∠ODN,∵∠OAD=∠ODC=45°,∴∠EDN=∠DAE,∵∠DEN=∠ADE=90°,∴△DEN∽△ADE,∴,∴,∴a=b(已舍去不符合题意的)∴CN=a=b,AC=(a+b)=b,∴AN=AC﹣CN=b,∴AN2=2b2,AC•CN=b•b=2b2∴AN2=AC•CN.【点评】此题是相似形综合题,主要考查了正方形的性质,平行四边形,菱形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,判断出四边形DENM是菱形是解(2)的关键,判断出△DEN∽△ADE是解(3)的关键。
2018年湖南省常德市中考真题数学
2018 年湖南省常德市中考真题数学一、选择题 ( 本大题 8 个小题,每题 3 分,满分 24分 )1.-2 的相反数是 ( ) A.2 B.-2 C.2 -1 D.-12分析: -2 的相反数是: 2. 答案: A2. 已知三角形两边的长分别是3 和 7,则此三角形第三边的长可能是 ()A.1B.2C.8D.11分析:设三角形第三边的长为 x ,由题意得: 7-3 < x < 7+3,4< x < 10. 答案: C3. 已知实数 a , b 在数轴上的地点以下图,以下结论中正确的选项是 ( )A. a > bB.|a| < |b|C.ab > 0D.-a > b分析:由数轴可得,-2 < a < -1 < 0< b < 1, ∴a < b ,应选项 A 错误, |a| > |b| ,应选项 B 错误, ab < 0,应选项 C 错误, -a > b ,应选项 D 正确 . 答案: D4. 若一次函数 y=(k-2)x+1 的函数值 y 随 x 的增大而增大,则 ( ) A.k < 2B.k > 2C.k > 0D.k < 0分析:由题意,得 k-2 > 0, 解得 k > 2. 答案: B5. 从甲、乙、丙、丁四人中选一人参加诗词大会竞赛,经过三轮初赛,他们的均匀成绩都是86.5 分,方差分别是 2 2 2 2,你以为派谁去参赛更适合 S 甲 =1.5 ,S 乙 =2.6 ,S 丙 =3.5 , S 丁 =3.68 ( )A. 甲B.乙C.丙D.丁分析:∵ 1.5 < 2.6 <3.5 < 3.68 ,∴甲的成绩最稳固,∴派甲去参赛更好.答案: A6.如图,已知 BD 是△ ABC的角均分线, ED 是 BC 的垂直均分线,∠ BAC=90°, AD=3,则 CE 的长为( )A.6B.5C.4D.33分析:∵ ED 是 BC 的垂直均分线,∴DB=DC,∴∠ C=∠DBC,∵BD 是△ ABC 的角均分线,∴∠ ABD=∠DBC,∴∠ C=∠DBC=∠ABD=30°,∴B D=2AD=6,∴CE=CD×cos∠C= 33 .答案: D7. 把图1中的正方体的一角切下后摆在图 2 所示的地点,则图 2 中的几何体的主视图为()A.B.C.D.分析:从正面看是一个等腰三角形,高线是虚线.答案: D8. 阅读理解:a,b,c,d是实数,我们把符号a b a b称为 2×2阶队列式,而且规定:=a c d c d32a1 x b1 y= c1×d- b×c,比如:=3×(-2)- 2×(-1)=-6+2=-4.二元一次方程组的12 a 2 x b2 y= c2D xx=解能够利用2×2阶队列式表示为:D;其中D yy=Da1b1c1b1a1 c 1. D, D x, D ya 2b2c2b2 a 2c2问题:对于用上边的方法解二元一次方程组2 x y= 1()时,下边说法错误的选项是3 x 2 y= 1221A.D==-732B.D =-14xC.D y=27D.方程组的解为x= 2y=321分析: A、 D==-7 ,正确;32B、 D x= 11=-2- 1×12= -14 ,正确;12221C、D==2×12 - 1×3=21,不正确;y312D、方程组的解:D x=14 D y=21x==2, y==-3 ,正确 .答案: CD7D7二、填空题 ( 本大题 8个小题,每题3分,满分 24分 )9.-8 的立方根是.分析:∵(-2) 3=-8 ,∴-8 的立方根是 -2.答案: -21 3 x0 的解为x=.10. 分式方程x 2x 24分析:去分母得:x+2-3x=0 ,解得: x=1,经查验 x=1 是分式方程的解 .答案: 111. 已知太阳与地球之间的均匀距离约为150000000 千米,用科学记数法表示为千米 .分析: 1 5000 0000=1.5 ×108.答案: 1.5 ×10 812. 一组数据 3, -3 , 2, 4, 1, 0, -1的中位数是.分析:将数据从头摆列为-3 、 -1 、 0、1、 2、 3、 4,因此这组数据的中位数为 1.答案: 113. 若对于x的一元二次方程2x2+bx+3=0 有两个不相等的实数根,则 b 的值可能是( 只写一个 ).2分析:∵对于x的一元二次方程2x +bx+3=0 有两个不相等的实数根,解得: b< - 2 6或 b>2 6 .答案: 614. 某校正初一全体学生进行了一次视力普查,获得以下统计表,则视力在 4.9 ≤x< 5.5这个范围的频次为.视力 x频数4.0≤x< 4.3204.3≤x< 4.6404.6≤x< 4.9704.9≤x≤5.2605.2≤x< 5.510分析:视力在 4.9 ≤x< 5.5这个范围的频数为:60+10=70,则视力在 4.9 ≤x< 5.5 这个范围的频次为:70=0.35.答案: 0.35204070601015.如图,将矩形 ABCD沿 EF 折叠,使点 B 落在 AD 边上的点 G 处,点 C 落在点 H 处,已知∠DGH=30°,连结 BG,则∠ AGB=.分析:由折叠的性质可知:GE=BE,∠ EGH=∠ABC=90°,∴∠ EBG=∠EGB.∴∠ EGH- ∠EGB=∠EBC- ∠EBG,即:∠ GBC=∠BGH.又∵ AD∥BC,∴∠ AGB=∠GBC.∴∠ AGB=∠BGH.∵∠ DGH=30°,∴∠ AGH=150°,∴∠ AGB= 1∠AGH=75°.2答案: 75°16.5个人围成一个圆圈做游戏,游戏的规则是:每一个人内心都想好一个实数,并把自己想好的数照实地告诉他相邻的两个人,而后每一个人将他相邻的两个人告诉他的数的均匀数报出来,若报出来的数以下图,则报 4 的人内心想的数是 .分析:设报 4的人心想的数是 x ,报 1 的人心想的数是10-x ,报 3的人心想的数是 x-6 ,报5 的人心想的数是 14-x ,报 2的人心想的数是 x-12 ,因此有 x- 12+x=2×3,解得 x=9.答案: 9三、 ( 本大题2个小题,每题 5 分,满分10 分)1217. 计算:. 2123122分析:本题波及零指数幂、负指数幂、二次根式化简和绝对值 4 个考点 . 在计算时,需要针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果.答案:原式 =1-( 2 3 -1)+23-4=1- 2 3 +1+2 3 -4=-2.4 x7< 5x118. 求不等式组x x2的正整数解 .332分析:依据不等式组解集的表示方法:大小小大中间找,可得答案.4 x7< 5x 1①答案:x x 2 ②,33 2解不等式①,得 x > -2 ,解不等式②,得x≤24,5不等式组的解集是-2 <x≤24,5不等式组的正整数解是 1 ,2,3, 4.四、 ( 本大题 2个小题,每题6分,满分12分)19. 先化简,再求值:1 6 1,此中 x= 1 .x 3 x 2 9x 2 6 x 9 2分析:直接将括号里面通分运算,再利用分式混淆运算法例计算得出答案.x 3 6 2答案:原式x 3x3 x 3x 3x 3x 3 x23x 3x3=x-3 ,把 x= 1 代入得:原式 = 1 -3=- 5.22220. 如图,已知一次函数 y =k x+b(k≠0) 与反比率函数 yk 2(k ≠0) 的图象交于 A(4 , 1) ,11122xB(n , -2) 两点 .(1) 求一次函数与反比率函数的分析式;(2) 请依据图象直接写出 y 1< y 2 时 x 的取值范围 .分析: (1) 由点 A 的坐标利用反比率函数图象上点的坐标特点可求出 k 2 的值,从而可得出反 比例函数的分析式,由点 B 的纵坐标联合反比率函数图象上点的坐标特点可求出点 B 的坐标, 再由点 A 、 B 的坐标利用待定系数法,即可求出一次函数的分析式;(2) 依据两函数图象的上下地点关系,找出y < y 时 x 的取值范围 .k 2 (k12答案: (1 ) ∵反比率函数 y≠0) 的图象过点 A(4 , 1) ,2x 22∴k =4×1=4,∴反比率函数的分析式为y 24.x 4的图象上,∵点 B(n ,-2) 在反比率函数y 2x∴n=4÷(-2)=-2 ,∴点 B 的坐标为 (-2 , -2).将 A(4 , 1) 、 B(-2 ,-2) 代入 y 1=k 1x+b ,14 kb = 1k =1,解得:12 , 2 k 1b = 2b = 1∴一次函数的分析式为 y=1x-1.2(2) 察看函数图象,可知:当 x < -2 和 0 < x < 4 时,一次函数图象在反比率函数图象下方,∴y1<y2 时x的取值范围为x < -2 或 0 < x< 4.五、 ( 本大题 2个小题,每题7分,满分14分)21.某水果店 5 月份购进甲、乙两种水果共花销 1700 元,此中甲种水果 8 元/ 千克,乙种水果 18 元/ 千克 .6月份,这两种水果的进价上浮为:甲种水果10 元千克,乙种水果 20 元/ 千克.(1)若该店 6 月份购进这两种水果的数目与 5 月份都同样,将多支付货款 300 元,求该店 5 月份购进甲、乙两种水果分别是多少千克?(2) 若6月份将这两种水果进货总量减少到120千克,且甲种水果不超出乙种水果的3倍,则 6月份该店需要支付这两种水果的货款最少应是多少元?分析: (1) 设该店 5月份购进甲种水果x 千克,购进乙种水果 y 千克,依据总价 =单价×购进数目,即可得出对于x、 y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120-a) 千克,依据总价=单价×购进数目,即可得出 w 对于 a 的函数关系式,由甲种水果不超出乙种水果的 3 倍,即可得出对于 a 的一元一次不等式,解之即可得出 a 的取值范围,再利用一次函数的性质即可解决最值问题 .答案: (1) 设该店 5月份购进甲种水果x千克,购进乙种水果y千克,8 x 18 y= 1700依据题意得:,10 x 20 y= 1700300x= 190解得:.y= 10答:该店5月份购进甲种水果190千克,购进乙种水果10千克.(2) 设购进甲种水果 a 千克,需要支付的货款为w 元,则购进乙种水果(120-a) 千克,依据题意得: w=10a+20(120-a)=-10a+2400.∵甲种水果不超出乙种水果的3倍,∴a≤3(120 -a) ,解得: a≤90.∵k= -10 < 0,∴w 随 a 值的增大而减小,∴当 a=90时,w取最小值,最小值- 10×90+2400=1500.∴月份该店需要支付这两种水果的货款最少应是1500元.22.图1 是一商场的推拉门,已知门的宽度AD=2 米,且两扇门的大小同样( 即AB=CD),将左边的门 ABB1A1绕门轴 AA1向里面旋转 37 °,将右侧的门 CDD1C1绕门轴 DD1向外面旋转 45°,其表示图如图 2,求此时 B 与 C 之间的距离 ( 结果保存一位小数 ).( 参照数据: sin37 °≈ 0.6 ,cos37°≈ 0.8 , 2 ≈1.4)分析:作 BE⊥AD 于点 E,作 CF⊥AD 于点 F,延伸 FC 到点 M,使得 BE=CM,则 EM=BC,在 Rt △ABE、Rt△CDF 中可求出 AE、 BE、DF、 FC 的长度,从而可得出 EF 的长度,再在 Rt△MEF 中利用勾股定理即可求出 EM 的长,本题得解 .答案:作BE⊥AD 于点 E ,作CF⊥AD 于点 F,延伸 FC 到点 M,使得 BE=CM,以下图 .∵AB=CD, AB+CD=AD=2,∴A B=CD=1.在 Rt△ABE 中,AB=1,∠ A=37°,∴B E=AB·sin ∠A≈0.6 ,AE=AB·cos∠A≈0.8.在 Rt△CDF 中,CD=1,∠ D=45°,∴CF=CD·sin ∠D≈0.7 ,DF=CD·cos∠D≈0.7.∵BE⊥AD,CF⊥AD,∴BE∥CM,又∵ BE=CM,∴四边形BEMC 为平行四边形,∴BC=EM, CM=BE.在 Rt△MEF 中, EF=AD-AE-DF=0.5, FM=CF+CM=1.,3∴EM= EF2FM 2≈1.4,∴B 与 C 之间的距离约为 1.4米 .六、 ( 本大题 2个小题,每题8分,满分16分)23.某校体育组为认识全校学生“最喜爱的一项球类项目”,随机抽取了部分学生进行检查,下边是依据检查结果绘制的不完好的统计图 . 请你依据统计图回答以下问题:(1) 喜爱乒乓球的学生所占的百分比是多少?并请补全条形统计图( 图 2) ;(2)请你预计全校 500 名学生中最喜爱“排球”项目的有多少名?(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?(4)篮球教练在拟订训练计划前,将从最喜爱篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别会谈,请用列表法或树状图法求抽取的两人恰巧是甲和乙的概率.分析: (1) 先利用喜爱足球的人数和它所占的百分比计算出检查的总人数,再计算出喜爱乒乓球的人数,而后补全条形统计图;(2) 用500乘以样本中喜爱排球的百分比可依据预计全校500 名学生中最喜爱“排球”项目的写生数;(3)用 360°乘以喜爱篮球人数所占的百分比即可;(4)画树状图展现全部 12 种等可能的结果数,再找出抽取的两人恰巧是甲和乙的结果数,而后依据概率公式求解 .答案: (1) 检查的总人数为8÷16%=50(人 ) ,喜爱乒乓球的人数为50-8-20-6-2=14(因此喜爱乒乓球的学生所占的百分比人 ) ,= 14×100%=28%,50补全条形统计图以下:(2)500 ×12%=60,因此预计全校 500名学生中最喜爱“排球”项目的有60 名;(3)篮球”部分所对应的圆心角 =360×40%=144°;(4)画树状图为:共有 12种等可能的结果数,此中抽取的两人恰巧是甲和乙的结果数为 2 ,2 1因此抽取的两人恰巧是甲和乙的概率= = .12 624.如图,已知⊙O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延伸线上有一点 F ,使 DF=DA,AE∥BC 交 CF 于 E.(1)求证: EA 是⊙O 的切线;(2)求证: BD=CF.分析: (1) 依据等边三角形的性质可得:∠OAC=30°,∠ BCA=60°,证明∠ OAE=90°,可得:AE 是⊙O 的切线;(2)先依据等边三角形性质得: AB=AC,∠ BAC=∠ABC=60°,由四点共圆的性质得:∠ ADF=∠ABC=60°,得△ ADF 是等边三角形,证明△ BAD≌△ CAF,可得结论 .答案: (1) 连结 OD,∵⊙ O 是等边三角形ABC 的外接圆,∴∠ OAC=30°,∠ BCA=60°,∵AE∥BC,∴∠ EAC=∠BCA=60°,∴∠ OAE=∠OAC+∠EAC=30°+60°=90°,∴AE 是⊙ O 的切线;(2) ∵△ ABC 是等边三角形,∴ AB=AC ,∠ BAC=∠ABC=60°,∵A 、 B 、 C 、 D 四点共圆, ∴∠ ADF=∠ABC=60°,∵AD=DF ,∴△ ADF 是等边三角形,∴ A D=AF ,∠ DAF=60°,∴∠ BAC+∠CAD=∠DAF+∠CAD , 即∠ BAF=∠CAF ,在△ BAD 和△ CAF 中,AB =AC∵BAD = CAF , AD = AF∴△ BAD ≌△ CAF , ∴ B D=CF.七、 ( 本大题 2 个小题,每题 10 分,满分 20分 )25. 如图,已知二次函数的图象过点 O(0 , 0).A(8 ,4) ,与 x 轴交于另一点 B ,且对称轴是直线x=3.(1) 求该二次函数的分析式;(2) 若 M 是 OB 上的一点,作 MN ∥AB 交 OA 于 N ,当△ ANM 面积最大时,求 M 的坐标;(3) P 是 x 轴上的点,过 P 作 PQ ⊥x 轴与抛物线交于 Q. 过 A 作 AC ⊥x 轴于 C ,当以 O , P ,Q 为极点的三角形与以 O , A , C 为极点的三角形相像时,求 P 点的坐标 . 分析: (1) 先利用抛物线的对称性确立 B(6 , 0) ,而后设交点式求抛物线分析式;(2) 设 M(t , 0) ,先其求出直线 OA 的分析式为 y=1x ,直线 AB 的分析式为 y=2x-12 ,直线1 2x 42MN 的分析式为 y=2x-2t,再经过解方程组 y =2得 N( t , t ) ,接着利用三角形面积y = 2x 2 t 3 31公式,利用 S=S-S获得 S=1 t 24 t t ,而后依据二次函数的性质解决问题;△AMN △AOM △NOM△AMN2 23(3) 设 Q(m ,13PQ POm 2m ) ,依据相像三角形的判断方法,当 时,△ PQO ∽△ COA ,42 OCAC则| 1m23 m |=2|m| ;当 PQPO 时,△ PQO ∽△ CAO ,则 1m 23m 1 m ,而后分42AC OC4 2 2别解对于 m 的绝对值方程可获得对应的 P 点坐标 .答案: (1 ) ∵抛物线过原点,对称轴是直线 x=3 ,∴B 点坐标为 (6 , 0) ,设抛物线分析式为 y=ax(x-6) ,把 A(8 , 4) 代入得 a ·8·2=4,解得 a=1 ,4∴抛物线分析式为 y= 1x(x-6),即 y=1x 23x ; 442(2) 设 M(t ,0) ,易得直线 OA 的分析式为 y=1 x ,2设直线 AB 的分析式为 y=kx+b ,把 B(6 ,0),A(8,4)代入得6 k b = 0 k = 2 8kb = 4 ,解得,b =12∴直线 AB 的分析式为 y=2x-12 , ∵MN ∥AB ,∴设直线 MN 的分析式为 y=2x+n , 把 M(t , 0) 代入得 2t+n=0 ,解得 n=-2t ,∴直线 MN 的分析式为 y=2x-2t ,1 x4t解方程组y =x得3,则N(4 222t y23t , t ) ,y =2 xt 33∴S △AMN =S △AOM -S △NOM=14 t1 t2 t 2 2 312=-t +2t3=- 1(t-3)2+3,3当 t=3 时, S △AMN 有最大值 3,此时 M 点坐标为 (3 , 0) ;(3) 设 Q(m , 1m 23 m ) ,42∵∠ OPQ=∠ACO , ∴当PQPO时,△ PQO ∽△ COA ,即 PQ PO ,OC AC13 84∴PQ=2PO ,即 |m 2m |=2|m| ,解方程 13 4 2m2m =2m 得 m =0( 舍去 ) , m =14,此时 P 点坐标为 (14 ,28) ;1 242解方程 1m 23 m =-2m 得 m =0( 舍去 ) , m =-2,此时 P 点坐标为 (-2 , 4) ;1242PQ∴当PQPO时,△ PQO ∽△ CAO ,即 PO ,AC OC 481 1 m23 1m ,∴PQ= PO ,即 m2 4 2 2解方程1m 23m1m 得m =0(舍去),m =8(舍去),42212解方程1m 23m1m 得m =0(舍去),m =2,此时P点坐标为(2,-1);12422综上所述, P 点坐标为 (14 ,28) 或 (-2 , 4) 或 (2 ,-1).26.已知正方形 ABCD 中 AC 与 BD 交于 O 点,点 M 在线段 BD 上,作直线 AM 交直线 DC 于 E,过 D 作 DH⊥AE 于 H,设直线 DH 交 AC于 N.(1)如图 1 ,当 M 在线段 BO 上时,求证: MO=NO;(2)如图 2 ,当 M 在线段 OD 上,连结 NE,当 EN∥BD 时,求证: BM=AB; (3)2在图 3 ,当 M 在线段 OD 上,连结 NE,当 NE⊥EC 时,求证: AN=NC·AC.分析: (1) 先判断出 OD=OA,∠ AOM=∠DON,再利用同角的余角相等判断出∠ ODN=∠OAM,判断出△ DON≌△ AOM即可得出结论;(2)先判断出四边形 DENM 是菱形,从而判断出∠ BDN=22.5°,即可判断出∠ AMB=67.5°,即可得出结论;(3)设 CE=a,从而表示出 EN=CE=a,CN= 2 a,设 DE=b,从而表示 AD=a+b,依据勾股定理得,AC= 2(a+b) ,同 (1)的方法得,∠ OAM=∠ ODN,得出∠ EDN=∠ DAE ,从而判断出△ DEN∽△ ADE ,得出DE EN,进而得出51=,即可表示出a bAD DE2CN 102102CN2b ,即可得出结论.b, AC2b, AN AC2答案: (1) ∵正方形ABCD 的对角线 AC, BD 订交于 O,∴OD=OA,∠ AOM=∠DON=90°,∴∠ OND+∠ODN=90°,∵∠ ANH=∠OND,∴∠ ANH+∠ODN=90°,∵DH⊥AE,∴∠ DHM=90°,∴∠ ANH+∠OAM=90°,∴∠ ODN=∠OAM,∴△ DON≌△ AOM,∴OM=ON;(2)连结 MN,∵EN∥BD,∴∠ ENC=∠DOC=90°,∠ NEC=∠BDC=45°=∠ACD,∴EN=CN,同 (1) 的方法得, OM=ON,∵OD=OD,∴DM=CN=EN,∵EN∥DM,∴四边形DENM 是平行四边形,∵DN⊥AE,∴? DENM是菱形,∴D E=EN,∴∠ EDN=∠END,∵EN∥BD,∴∠ END=∠BDN,∴∠ EDN=∠BDN,∵∠ BDC=45°,∴∠ BDN=22.5°,∵∠ AHD=90°,∴∠ AMB=∠DME=90° - ∠BDN=67.5°,∵∠ ABM=45°,∴∠ BAM=67.5°=∠AMB,∴BM=AB;(3)设CE=a(a>0)∵EN⊥CD,∴∠ CEN=90°,∵∠ ACD=45°,∴∠ CNE=45°=∠ACD,∴EN=CE=a,∴CN= 2 a,设 DE=b(b > 0) ,∴AD=CD=DE+CE=a+b,依据勾股定理得,AC= 2 AD= 2 (a+b),同(1) 的方法得,∠ OAM=∠ODN,∵∠ OAD=∠ODC=45°,∴∠ EDN=∠DAE,∵∠ DEN=∠ADE=90°,∴△ DEN∽△ ADE,∴DE=EN,AD DE∴b=a,a b b5 1∴ab (已舍去不切合题意的)2∴ CN 2 a102b, AC 2 a b102 b,22∴AN=AC-CN= 2 b,22102b1022∴AN=2b,AC·CN=2b =2b 2∴AN2=AC·CN.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
24 5
不等式组的解集是-2<x≤
,
不等式组的正整数解是 1,2,3,4. 四、(本大题 2 个小题,每小题 6 分,满分 12 分)
19.先化简,
1 1 ,其中 x= . 2 2 x 9 x 6x 9
6
2
解析:直接将括号里面通分运算,再利用分式混合运算法则计算得出答案. 答案:原式
2018 年湖南省常德市中考真题数学
一、选择题(本大题 8 个小题,每小题 3 分,满分 24 分) 1.-2 的相反数是( ) A.2 B.-2 -1 C.2 D.1 2
解析:-2 的相反数是:2. 答案:A 2.已知三角形两边的长分别是 3 和 7,则此三角形第三边的长可能是( A.1 B.2 C.8 D.11 解析:设三角形第三边的长为 x,由题意得:7-3<x<7+3, 4<x<10. 答案:C 3.已知实数 a,b 在数轴上的位置如图所示,下列结论中正确的是( ) )
A.a>b B.|a|<|b| C.ab>0 D.-a>b 解析:由数轴可得, -2<a<-1<0<b<1, ∴a<b,故选项 A 错误, |a|>|b|,故选项 B 错误, ab<0,故选项 C 错误, -a>b,故选项 D 正确. 答案:D 4.若一次函数 y=(k-2)x+1 的函数值 y 随 x 的增大而增大,则( A.k<2 B.k>2 C.k>0 D.k<0 解析:由题意,得 k-2>0, 解得 k>2. 答案:B )
4 x k2 x
(k2≠0)的图象过点 A(4,1),
.
4 x
∵点 B(n,-2)在反比例函数 y 2
的图象上,
∴n=4÷(-2)=-2, ∴点 B 的坐标为(-2,-2). 将 A(4,1)、B(-2,-2)代入 y1=k1x+b,
1 4 k 1 b=1 k 1= ,解得: 2 , 2 k 1 b= 2 b= 1 1
1 2
∠AGH=75°.
答案:75° 16.5 个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想 好的数如实地告诉他相邻的两个人, 然后每个人将他相邻的两个人告诉他的数的平均数报出 来,若报出来的数如图所示,则报 4 的人心里想的数是____.
解析:设报 4 的人心想的数是 x,报 1 的人心想的数是 10-x,报 3 的人心想的数是 x-6,报 5 的人心想的数是 14-x,报 2 的人心想的数是 x-12, 所以有 x-12+x=2×3, 解得 x=9. 答案:9 三、(本大题 2 个小题,每小题 5 分,满分 10 分) 17.计算:
)
B.Dx=-14 C.Dy=27
x=2 D.方程组的解为 y= 3 2 1 解析:A、D= =-7,正确; 3 2
B、Dx= C、Dy=
1 12 2 3 1
1 2 12
=-2-1×12=-14,正确;
=2×12-1×3=21,不正确;
Dx D = 14 7
D、方程组的解:x= 答案:C
x3
x3 x 3 x 3 2 x 3 x 3 x 3 6
x 3 x 3
=x-3, 把 x=
1 2
x 3
2
代入得:原式=
1 2
-3=-
5 2
.
20.如图,已知一次函数 y1=k1x+b(k1≠0)与反比例函数 y 2 B(n,-2)两点.
4 x 7 <5 x 1 18.求不等式组 x 的正整数解. x2 3 2 3
解析:根据不等式组解集的表示方法:大小小大中间找,可得答案.
4 x 7 <5 x 1 ① 答案: x , x2 ② 3 2 3
解不等式①,得 x>-2, 解不等式②,得 x≤
70 20 40 70 60 10
2
=0.35.
解析:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°, ∴∠EBG=∠EGB. ∴∠EGH-∠EGB=∠EBC-∠EBG,即:∠GBC=∠BGH. 又∵AD∥BC, ∴∠AGB=∠GBC.
∴∠AGB=∠BGH. ∵∠DGH=30°, ∴∠AGH=150°, ∴∠AGB=
D x= x D D y= y D
解 可 以 利 用
2 × 2
阶 行 列 式 表 示 为 :
; 其 中
D
a1 a2
b1 b2
, Dx
c1 c2
b1 b2
,Dy
a1 a2
c1 c2
.
2 x y=1 问题:对于用上面的方法解二元一次方程组 时,下面说法错误的是( 3 x 2 y=12 2 1 A.D= =-7 3 2
A.
B.
C.
D. 解析:从正面看是一个等腰三角形,高线是虚线. 答案:D
a c a 称为 2×2 阶行列式, 并且规定: d c b b d
8.阅读理解: a, b, c, d 是实数, 我们把符号
3 1 2
=a
×d-b×c,例如:
a1 x b1 y= c1 =3×(-2)-2×(-1)=-6+2=-4.二元一次方程组 的 2 a 2 x b 2 y= c 2
2
0
1 2 3
1 12 2
2
.
解析:本题涉及零指数幂、负指数幂、二次根式化简和绝对值 4 个考点.在计算时,需要针 对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 答案:原式=1-( 2 3 -1)+ 2 3 -4 =1- 2 3 +1+ 2 3 -4 =-2.
=2,y=
Dy D
=
21 7
=-3,正确.
二、填空题(本大题 8 个小题,每小题 3 分,满分 24 分) 9.-8 的立方根是____. 3 解析:∵(-2) =-8, ∴-8 的立方根是-2. 答案:-2 10.分式方程
1 x2 3x x 4
2
0 的解为 x=____.
解析:去分母得:x+2-3x=0, 解得:x=1, 经检验 x=1 是分式方程的解. 答案:1 11.已知太阳与地球之间的平均距离约为 150000000 千米,用科学记数法表示为____千米. 8 解析:1 5000 0000=1.5×10 . 8 答案:1.5×10 12.一组数据 3,-3,2,4,1,0,-1 的中位数是____. 解析:将数据重新排列为-3、-1、0、1、2、3、4, 所以这组数据的中位数为 1. 答案:1 13.若关于 x 的一元二次方程 2x +bx+3=0 有两个不相等的实数根,则 b 的值可能是____(只 写一个). 2 解析:∵关于 x 的一元二次方程 2x +bx+3=0 有两个不相等的实数根, 2 ∴△=b -4×2×3>0, 解得:b<- 2 6 或 b> 2 6 . 答案:6 14.某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在 4.9≤x<5.5 这 个范围的频率为____. 视力 x 频数 4.0≤x<4.3 20 4.3≤x<4.6 40 4.6≤x<4.9 70 4.9≤x≤5.2 60 5.2≤x<5.5 10 解析:视力在 4.9≤x<5.5 这个范围的频数为:60+10=70, 则视力在 4.9≤x<5.5 这个范围的频率为: 答案:0.35 15.如图,将矩形 ABCD 沿 EF 折叠,使点 B 落在 AD 边上的点 G 处,点 C 落在点 H 处,已知∠ DGH=30°,连接 BG,则∠AGB=____.
5.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是 2 2 2 2 86.5 分,方差分别是 S 甲 =1.5,S 乙 =2.6,S 丙 =3.5,S 丁 =3.68,你认为派谁去参赛更合适 ( ) A.甲
B.乙 C.丙 D.丁 解析:∵1.5<2.6<3.5<3.68, ∴甲的成绩最稳定, ∴派甲去参赛更好. 答案:A 6.如图,已知 BD 是△ABC 的角平分线,ED 是 BC 的垂直平分线,∠BAC=90°,AD=3,则 CE 的长为( )
A.6 B.5 C.4 D. 3 3 解析:∵ED 是 BC 的垂直平分线, ∴DB=DC, ∴∠C=∠DBC, ∵BD 是△ABC 的角平分线, ∴∠ABD=∠DBC, ∴∠C=∠DBC=∠ABD=30°, ∴BD=2AD=6, ∴CE=CD×cos∠C= 3 3 . 答案:D 7.把图 1 中的正方体的一角切下后摆在图 2 所示的位置, 则图 2 中的几何体的主视图为( )
2
∴一次函数的解析式为 y=
x-1.
(2)观察函数图象,可知:当 x<-2 和 0<x<4 时,一次函数图象在反比例函数图象下方,
∴y1<y2 时 x 的取值范围为 x<-2 或 0<x<4. 五、(本大题 2 个小题,每小题 7 分,满分 14 分) 21.某水果店 5 月份购进甲、乙两种水果共花费 1700 元,其中甲种水果 8 元/千克,乙种水 果 18 元/千克.6 月份,这两种水果的进价上调为:甲种水果 10 元千克,乙种水果 20 元/千 克. (1)若该店 6 月份购进这两种水果的数量与 5 月份都相同,将多支付货款 300 元,求该店 5 月份购进甲、乙两种水果分别是多少千克? (2)若 6 月份将这两种水果进货总量减少到 120 千克,且甲种水果不超过乙种水果的 3 倍, 则 6 月份该店需要支付这两种水果的货款最少应是多少元? 解析:(1)设该店 5 月份购进甲种水果 x 千克,购进乙种水果 y 千克,根据总价=单价×购进 数量,即可得出关于 x、y 的二元一次方程组,解之即可得出结论; (2)设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果(120-a)千克,根据总 价=单价×购进数量, 即可得出 w 关于 a 的函数关系式, 由甲种水果不超过乙种水果的 3 倍, 即可得出关于 a 的一元一次不等式, 解之即可得出 a 的取值范围, 再利用一次函数的性质即 可解决最值问题. 答案:(1)设该店 5 月份购进甲种水果 x 千克,购进乙种水果 y 千克, 8 x 18 y=1700 根据题意得: , 10 x 20 y=1700 300 x=190 解得: . y=10 答:该店 5 月份购进甲种水果 190 千克,购进乙种水果 10 千克. (2)设购进甲种水果 a 千克,需要支付的货款为 w 元,则购进乙种水果(120-a)千克, 根据题意得:w=10a+20(120-a)=-10a+2400. ∵甲种水果不超过乙种水果的 3 倍, ∴a≤3(120-a), 解得:a≤90. ∵k=-10<0, ∴w 随 a 值的增大而减小, ∴当 a=90 时,w 取最小值,最小值-10×90+2400=1500. ∴月份该店需要支付这两种水果的货款最少应是 1500 元. 22.图 1 是一商场的推拉门,已知门的宽度 AD=2 米,且两扇门的大小相同(即 AB=CD),将左 边的门 ABB1A1 绕门轴 AA1 向里面旋转 37°,将右边的门 CDD1C1 绕门轴 DD1 向外面旋转 45°, 其示意图如图 2, 求此时 B 与 C 之间的距离(结果保留一位小数).(参考数据: sin37°≈0.6, cos37°≈0.8, 2 ≈1.4)