【聚焦课堂】2014七年级数学下册 5.3.2 命题、定理、证明(2同步教学课件 (新版)新人教版

合集下载

人教版七年级数学下册 5-3-2 命题、定理、证明 教案

人教版七年级数学下册 5-3-2  命题、定理、证明 教案

教学反思5.3平行线的性质5.3.2命题、定理、证明教学目标1. 了解命题的概念以及命题的构成.2. 知道什么是真命题和假命题,并会判断命题的真假.3. 理解什么是定理和证明.4. 初步体会命题在数学中的应用,感受数学语言的严谨性,培养学生的语言表达能力和归纳能力. 教学重难点重点:区分命题的题设和结论.难点:找出题设和结论不明显的命题的题设和结论;举反例判断一个简单命题是假命题.课前准备多媒体课件教学过程导入新课导入模式教师:在我们日常讲话中,经常会遇到这样的语句(多媒体展示),如:(1) 中华人民共和国的首都是北京;(2) 我们班的同学多么聪明;(3) 浪费是可耻的;(4)春天万物更新.在几何里,我们同样会有这样的语句,如:(1) 平行于同一条直线的两条直线平行;(2)对顶角相等.观察一下,它们有什么共同点,在语文学习当中,我们把这样的句子叫做什么语句呢?师生活动先让学生交流,然后学生代表回答.设计意图在教学过程中,将创设的问题情境和语文联系起来,不仅容易激发学生的好奇心,引起学生的学习兴趣,而且渗透了“学科间的整合”,提升了学生的核心素养.教师:像这样的判断句,在数学当中经常遇到,如(多媒体展示):板书(1) 如果两条直线都与第三条直线平行,那么这两条直线也互相平行;(2) 等式两边都加上同一个数,结果仍是等式;(3) 对顶角相等;(4)如果两条直线不平行,那么同位角不相等.教师提问:你们能说一说这4个语句有什么共同点吗?学生在教师的引导下分析每个语句的特点,并能总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某一件事作出判断的.探究新知探究点一:命题的概念教师:像这些语句一样,判断一件事情的语句,叫做命题.现在同学们判断下列语句是不是命题.(1)两点之间,线段最短.(2)画出两条互相平行的直线.(3)过直线外一点,作已知直线的垂线.(4)a,b两条直线平行吗?(5)玫瑰花是动物.(6)若a2=b2,则a=b.一名学生判断回答,不对的题目,其他同学补充纠正.请同学们再举出“命题”的例子.师生共同判断,给予评价.教师归纳:判断语句是否为命题要紧扣两条:(1)命题必须是一个完整的句子,通常是陈述句,疑问句和命令性语句都不是命题;(2)必须对某一件事件作出肯定或否定的判断.这两条缺一不可.设计意图通过具体的实例,让学生了解命题.探究点二:命题的组成教师:观察黑板上的命题,思考:命题由哪几个部分组成?师生活动学生在明确命题概念的基础上分小组讨论命题的结构,让学生总结出命题的结构.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.教师:你们是怎样寻找题设和结论的.学生代表回答,教师引导得出结论:任何一个命题,都可以写成“如果……那么……”的形式.“如果”后面的是题设,“那么”后面的是结论.请大家指出“对顶角相等”这一命题的题设,结论,并写成“如果……,那么……”的形式.师生活动结合我们学习的这一章内容,找出命题(本章中学到的结论),并指出命题的题设、结论.设计意图充分发挥小组讨论的优势,让学生积极参与到学习过程中,让学生总结出命题的结构.探究点三:真命题与假命题教师:判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否正确.(1)如果两条直线相交,那么它们只有一个交点;(2)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(3)相等的角是对顶角;(4)任意两个直角都相等.学生独立思考,学生代表回答,其他同学纠正补充,最后总结结果:四个语句都是命题.命题(1)的题设是“两直线相交”,结论是“只有一个交点”;命题(2)的题设是“两条直线被第三条直线所截形成的同旁内角互补”,结论是“这两条直线平行”;命题(3)的题设是“两个角相等”,结论是“它们是对顶角”;命题(4)的题设是“两个角是直角”,结论是“它们相等”.其中(1)(2)(4)是正确命题,(3)是错误命题.教师总结:如果命题的题设成立,那么结论一定成立,像这样的命题称为真命题;如果命题的题设成立时,不能保证结论一定成立,像这样的命题称为假命题.判断一个命题是真命题,必须经过推理证实;判断一个命题是假命题,只需举出一个反例即可.设计意图通过分析语句,练习了找命题的题设和结论,更容易回答出命题的正确与否.探究点四:定理教师:请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果丨a l=lbl,那么a=b;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.师生活动学生代表回答,如果出现错误或不完整,请其他学生修正或补充,教师点评.教师归纳:上述问题中(1)(4)(5)的正确性是经过推理证实的,这样得到的真命题叫做定理.定理也可以作为继续推理的依据.前面学过的一些图形的性质,都是真命题,例如“两条直线平行,同旁内角互补”等.教师追问:经过推理证明得到的真命题叫做定理.同学们能说出我们学过的定理有哪些吗?学生独立思考,然后回答,师生共同补充学过的定理.设计意图学生积极思考教师所提出的问题,练习怎样判断真、假命题.以上面问题中的真命题为切入点引出定理的概念.让学生回顾学过的定理,进一步加深对定理概念的理解.探究点五:证明教师:请同学们判断下列两个命题的真假,并思考如何判断命题的真假.命题1:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.教师:命题1是真命题还是假命题?学生抢答:真命题.教师:你能将命题1所叙述的内容用图形语言表达出来吗?学生画出图1:教师:这个命题的题设和结论分别是什么呢?学生回答:题设:在同一平面内,一条直线垂直于两条平行线中的一条;结论:这条直线也垂直于两条平行线中的另一条.教师:你能结合图形用几何语言表述命题的题设和结论吗?学生回答:在同一平面内,若b〃c,a丄b,则a丄c.教师:请同学们思考如何利用已经学过的定义、定理来证明这个结论呢?已知:在同一平面内,b〃c,a丄b.求证:a丄c.证明:如图1,T a丄b(已知),・•・Z1=90°(垂直的定义).又b〃c(已知),・•・Z1=Z2(两直线平行,同位角相等).・•・—1=90°(等量代换).・•・a丄c(垂直的定义).教师:在很多情况下,一个命题的正确性需要经过一系列推理,才能做出判断,这个推理的过程叫做证明.刚才我们对命题1作出了判断,经过一系列的过程对命题1进行了证明,回顾一下,证明一个命题的正确性要分为几个步骤.学生思考交流,学生代表回答,其他同学补充,教师引导得出结论.要证明一个命题的正确性要分为三步:第一步,分析命题的题设和结论;第二步,根据命题画出图形,结合图形,根据题设写出已知,根据结论写出求证;第三步书写证明过程.教师:对于命题1这个真命题,经过了三步,我们证明了它的正确性,大命题2:相等的角是对顶角.教师:判断这个命题的真假.学生回答:假命题.教师:这个命题的题设和结论分别是什么?学生回答:题设:两个角相等;结论:这两个角互为对顶角.教师:我们知道假命题是在题设成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系?学生画图回答:如图2所示,OC是Z AOB的平分线,Z1=Z2,但它们不是对顶角.教师总结:要证明一个命题是假命题,只要举一个反例即可.设计意图通过分析两个命题,让学生学会如何判断命题的真假,怎样来证明命题的真假.通过对命题1正确性的推理,来说明什么是证明.证明一个命题为真命题的步骤又有哪些?渗透了“推理”与“证明”的联系、区别•判断一个命题是假命题,只要举出一个反例就可以了.新知应用例1把命题“同位角相等”改写成“如果……那么……”的形式,并分别指出命题的题设和结论.学生代表回答,其他同学补充纠正,教师引导,得出结论.解:可以写成“如果两个角是同位角,那么这两个角相等”•题设是“两个角是同位角”,结论是“这两个角相等”.设计意图练习命题的改写以及分清命题的题设和结论.例2下列命题哪些是正确的,哪些是错误的?(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加上同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.师生活动学生独立完成,并回答.解:(1)(4)错误,(2)(3)(5)正确.设计意图练习判断命题的正确与错误.例3完成下面的证明过程:Z1=Z2,Z C=Z D,求证:Z A=Z F.证明:TZ1=Z2(已知),Z2=Z3(),・•・Z1=(等量代换),・•・〃(),・•・Z C=Z4().又•・•Z C=Z D(已知),・•・Z D=Z4(),・•・DF〃AC(),・•・Z A=Z F().学生独立完成,并回答.如果错误,其他同学补充.答案:对顶角相等Z3BDCE同位角相等两直线平行两直线平行,同位角相等等量代换内错角相等,两直线平行两直线平行,内错角相等教师:除以上证明方法以外,还有其他的方法吗?请同学们独立思考,再交流相法.设计意图让学生熟悉证明的过程,会填写出一些证明的关键步骤和理由.通过不同方法的引导,拓展学生思维,逐步提高推理能力.课堂练习(见导学案“当堂达标”)参考答案l.A2.C3.若Za=50°,ZB=60°,则Za+ZB>90。

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计1

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计1

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计1一. 教材分析本节课的内容是“命题、定理、证明2”,这是人教版数学七年级下册的教学内容。

这部分内容主要介绍了命题、定理和证明的概念,以及它们之间的关系。

通过这部分内容的学习,学生可以更好地理解数学的概念和逻辑推理,为后续的数学学习打下坚实的基础。

二. 学情分析面对的是七年级的学生,他们已经具备了一定的数学基础,对数学概念和逻辑推理有一定的了解。

但是,他们对命题、定理和证明的概念可能还不是很清晰,需要通过本节课的学习来进一步理解和掌握。

三. 教学目标1.了解命题、定理和证明的概念,理解它们之间的关系。

2.能够正确判断一个命题是真命题还是假命题。

3.能够运用证明的方法,证明一个命题的正确性。

四. 教学重难点1.命题、定理和证明的概念。

2.判断一个命题的真假。

3.运用证明的方法,证明一个命题的正确性。

五. 教学方法采用讲授法、案例分析法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握命题、定理和证明的概念,以及它们之间的关系。

六. 教学准备2.教学PPT。

3.相关案例和练习题。

七. 教学过程1.导入(5分钟)通过一个具体的案例,引导学生思考什么是命题,什么是定理,什么是证明,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT,详细讲解命题、定理和证明的概念,以及它们之间的关系。

让学生清晰地了解这些概念,并能够正确地区分它们。

3.操练(10分钟)给出一些具体的案例,让学生判断其真假,并说明理由。

通过这个环节,让学生进一步理解命题的真假判断,以及证明的方法。

4.巩固(10分钟)让学生分组讨论,每组选择一个命题,运用证明的方法,证明其正确性。

通过这个环节,让学生掌握证明的方法,并能够运用到实际问题中。

5.拓展(10分钟)给出一些相关的练习题,让学生进行练习,进一步巩固所学知识。

6.小结(5分钟)对本节课的内容进行总结,让学生明确所学知识的重要性和应用。

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明 》教案

人教版数学七年级下册《5-3-2命题、定理、证明》教案一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的一章内容。

本章主要介绍命题、定理和证明的概念,要求学生理解命题的真假判断,了解定理的定义和证明过程,能够运用证明方法解决一些简单的数学问题。

二. 学情分析学生在学习本章内容前,已经掌握了整数、分数、代数等基础知识,具备一定的逻辑思维能力。

但部分学生对于抽象的概念理解起来可能存在一定的困难,需要通过具体的例题和实践活动来加深理解。

三. 教学目标1.了解命题、定理的概念,理解命题的真假判断,掌握定理的定义和证明过程。

2.培养学生运用证明方法解决数学问题的能力。

3.培养学生的逻辑思维能力和团队合作能力。

四. 教学重难点1.命题、定理的概念及命题的真假判断。

2.证明方法的应用。

五. 教学方法1.讲授法:讲解命题、定理的概念,演示证明过程。

2.案例分析法:分析具体例题,引导学生运用证明方法解决问题。

3.小组合作法:分组讨论,共同完成证明任务。

六. 教学准备1.教材、PPT课件。

2.相关例题和练习题。

3.教学工具:黑板、粉笔。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些日常生活中的命题,如“明天会下雨”、“今天是星期天”等,引导学生思考这些命题的真假判断。

2.呈现(10分钟)讲解命题、定理的概念,解释命题的真假判断,通过PPT课件展示定理的定义和证明过程。

3.操练(10分钟)给出几个简单的例题,让学生尝试运用证明方法解决问题。

引导学生思考证明过程中的关键步骤,培养学生的逻辑思维能力。

4.巩固(10分钟)学生分组讨论,共同完成一个证明任务。

教师巡回指导,解答学生疑问。

5.拓展(10分钟)给出一个较复杂的证明题目,让学生独立完成。

鼓励学生运用所学知识,解决问题。

6.小结(5分钟)教师总结本节课的主要内容,强调命题、定理和证明的概念,以及证明方法的应用。

7.家庭作业(5分钟)布置一些有关命题、定理和证明的练习题,要求学生回家后独立完成。

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-理解并运用定理证明过程中,如何从已知条件出发,逐步推理到结论。
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教案2

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教案2

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教案2一. 教材分析本节课的内容是命题、定理、证明2。

这部分内容是中学数学中的重要组成部分,主要让学生了解命题、定理、证明的概念,学会如何阅读和理解数学证明,并能进行简单的证明。

教材中给出了丰富的例子,帮助学生理解和掌握相关概念。

二. 学情分析学生在小学阶段已经接触过一些简单的命题和定理,但对证明的理解和掌握还不够深入。

因此,在教学过程中,需要引导学生从实际问题出发,理解命题、定理、证明的含义,并通过大量的练习,提高学生的证明能力。

三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。

2.学会阅读和理解数学证明,能进行简单的证明。

3.提高学生的逻辑思维能力和证明能力。

四. 教学重难点1.重点:命题、定理、证明的概念及它们之间的关系。

2.难点:如何理解和阅读数学证明,进行简单的证明。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过实际问题引导学生理解命题、定理、证明的含义,通过案例分析让学生学会阅读和理解数学证明,通过小组合作学习,提高学生的证明能力。

六. 教学准备1.准备相关案例和练习题。

2.准备多媒体教学设备。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考什么是命题,什么是定理,什么是证明。

例如:在平面上有三个点A、B、C,判断三角形ABC的性质。

2.呈现(10分钟)通过PPT呈现命题、定理、证明的概念,并用具体的例子进行解释。

命题:判断某个性质的真假。

定理:经过证明,得到正确的命题。

证明:用已知的事实和定义,推导出结论的过程。

3.操练(10分钟)让学生阅读和理解一些简单的数学证明,并尝试自己进行证明。

例如:证明勾股定理。

4.巩固(10分钟)让学生分成小组,讨论并完成一些证明题目。

例如:证明三角形的内角和为180度。

5.拓展(10分钟)引导学生思考如何阅读和理解复杂的数学证明,如何找到证明的漏洞。

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例

人教版数学七年级下册5.3.2命题、定理、证明优秀教学案例
2. 引入定理的概念,通过讲解定理的定义和定理的证明过程,使学生理解定理的意义。
3. 详细讲解证明的方法和步骤,包括直接证明、反证法和归纳法等,让学生掌握证明的基本方法。
4. 通过示例题目,演示如何运用命题、定理和证明的知识解决问题,让学生理解学习的实际意义。
(三)学生小组讨论
1. 将学生分成小组,每组选择一个定理进行证明,并用自己的语言解释证明的每一步。
这些亮点体现了本节课在教学设计、教学方法和教学评价等方面的优秀之处,有助于提高学生的学习兴趣、培养学生的思维能力和团队合作能力,促进学生的全面发展。同时,这些亮点也是我作为特级教师在教学实践中不断探索和尝试的结果,希望能够为其他教师提供一定的借鉴和参考。
4. 总结归纳环节:在课程结束时,引导学生回顾和总结所学内容,帮助学生巩固知识,提高学生的记忆和理解能力。总结归纳环节能够使学生对学习内容有一个清晰的认识,增强学生对知识的系统性和整体性的理解。
5. 作业小结环节:布置与课程内容相关的作业,要求学生运用所学知识解决问题,培养学生的应用能力和实践能力。作业小结环节能够及时巩固所学知识,帮助学生检验自己的学习效果,同时也为教师提供了了解学生学习情况的机会,为下一步的教学提供参考。
3. 设计一些评估题目,检验学生对命题、定理和证明的掌握程度,及时发现和纠正学生的错误。
4. 注重对学生的形成性评价,关注学生的进步和努力,激发学生的学习动力和自信心。
四、教学内容与过程
(一)导入新课
1. 利用生活实例引入命题的概念,例如:“如果今天是星期五,那么学校放假。”引导学生理解命题由题设和结论两部分组成。
2. 强调定理证明的重要性,以及定理证明在数学中的应用,使学生认识到学习定理证明的意义。
3. 总结学生在小组讨论中的表现,对学生的学习成果进行肯定和鼓励,激发学生的学习动力。

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1

人教版数学七年级下册5.3.2《命题、定理、证明》教学设计1一. 教材分析本节课的主题是“命题、定理、证明”,这是人教版数学七年级下册第五章第三节的内容。

在这一部分中,学生将学习到什么是命题,如何判断命题的真假,以及如何用定理来证明一个命题的正确性。

这是学生初步接触逻辑推理和数学证明的重要阶段,也是培养学生数学思维能力的关键环节。

二. 学情分析学生在之前的学习中已经接触过一些基本的数学概念和运算规则,具备一定的数学基础。

但是,对于命题、定理、证明这些较为抽象的数学概念,可能还存在一定的理解和应用困难。

因此,在教学过程中,需要注重引导学生理解这些概念的内涵和外延,以及如何运用这些概念来解决问题。

三. 教学目标1.了解命题、定理的概念,理解命题与定理之间的关系。

2.学会判断命题的真假,并能运用定理进行证明。

3.培养学生的逻辑思维能力和数学证明能力。

四. 教学重难点1.重点:命题、定理的概念,命题真假的判断,定理的证明。

2.难点:命题、定理之间的逻辑关系,证明方法的灵活运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来获取知识。

2.利用实例和反例,让学生直观地理解命题的真假判断。

3.通过证明实例,让学生掌握定理的证明方法,并能够灵活运用。

六. 教学准备1.准备相关的教学PPT,内容包括命题、定理的定义,命题真假的判断,定理的证明等。

2.准备一些实际的数学问题,用于引导学生进行思考和讨论。

3.准备一些证明实例,用于让学生进行模仿和练习。

七. 教学过程1.导入(5分钟)通过一个简单的数学问题,引发学生对命题、定理、证明的思考。

例如:已知勾股定理,判断以下命题的真假:“所有的直角三角形都满足勾股定理”。

2.呈现(10分钟)介绍命题、定理的概念,以及命题真假的判断方法。

通过PPT展示相关的定义和判断方法,让学生理解和掌握。

3.操练(10分钟)让学生通过实际的例子来判断命题的真假。

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计2

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计2

人教版数学七年级下册5.3.2-2《命题、定理、证明2》教学设计2一. 教材分析人教版数学七年级下册5.3.2-2《命题、定理、证明2》是学生在学习了命题与定理的基本概念之后,进一步探究命题与定理的证明过程。

本节课的内容包括了解证明的方法,如直接证明、反证法、归纳法等,并学会运用这些方法对给定的命题进行证明。

教材通过丰富的例题和练习题,帮助学生掌握证明的方法和技巧,培养学生的逻辑思维能力和推理能力。

二. 学情分析学生在之前的学习中已经掌握了命题与定理的基本概念,对命题的定义、定理的证明过程有一定的了解。

但在实际运用中,学生可能对证明的方法和技巧还不够熟练,对一些复杂的证明题目还缺乏分析问题和解决问题的能力。

因此,在教学过程中,教师需要针对学生的实际情况,通过例题和练习题的讲解,引导学生掌握证明的方法,并培养学生的逻辑思维能力和推理能力。

三. 教学目标1.了解证明的方法,如直接证明、反证法、归纳法等。

2.学会运用证明方法对给定的命题进行证明。

3.培养学生的逻辑思维能力和推理能力。

四. 教学重难点1.教学重点:证明的方法,如直接证明、反证法、归纳法等。

2.教学难点:如何运用证明方法对给定的命题进行证明,以及证明过程的逻辑性和严密性。

五. 教学方法采用讲授法、案例分析法、讨论法、练习法等教学方法。

通过丰富的例题和练习题,引导学生掌握证明的方法,培养学生的逻辑思维能力和推理能力。

六. 教学准备1.教学课件:制作涵盖命题、定理、证明方法的课件。

2.练习题:准备一些有关命题与定理证明的练习题,用于巩固所学知识。

3.教学素材:准备一些与本节课内容相关的案例、图片等素材,用于引导学生思考和讨论。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾命题与定理的基本概念,激发学生的学习兴趣。

例如:“同学们,我们已经学习了命题与定理的基本概念,那么,什么是命题?什么是定理?它们之间有什么关系呢?”2.呈现(15分钟)教师通过课件呈现本节课的主要内容,包括证明的方法,如直接证明、反证法、归纳法等。

人教版数学七年级下册 命题、定理、证明(第2课时) 教学设计教案

人教版数学七年级下册 命题、定理、证明(第2课时) 教学设计教案

5.3.2 命题、定理、证明(第2课时)教学目标:(1)理解什么是定理和证明.(2)知道如何判断一个命题的真假.教学重点:理解证明要步步有据.教学过程问题1 请同学们判断下列命题哪些是真命题?哪些是假命题?(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;(2)如果两个角互补,那么它们是邻补角;(3)如果 ,那么a =b ;(4)经过直线外一点有且只有一条直线与这条直线平行;(5)两点确定一条直线.定理问题1中的(1)(4)(5)它们的正确性是经过推理证实的,这样得到的真命题叫做定理(theorem ).定理也可以作为继续推理的依据问题2 你能写出几个学过的定理吗?问题3 请同学们判断下列两个命题的真假,并思考如何判断命题的真假. 命题1: 在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条.(1)命题1是真命题还是假命题?(2)你能将命题1所叙述的内容用图形语言来表达吗?(3)这个命题的题设和结论分别是什么呢?(4)你能结合图形用几何语言表述命题的题设和结论吗?b a(5)请同学们思考如何利用已经学过的定义定理来证明这个结论呢?命题2相等的角是对顶角.(1)判断这个命题的真假.(2)这个命题题设和结论分别是什么?(3)我们知道假命题是在条件成立的前提下,结论不一定成立,你能否利用图形举例说明当两个角相等时它们不一定是对顶角的关系.归纳小结1.如何判断一个命题的真假?2.谈谈你对证明的理解。

检测填空已知:如图1,∠1=∠2,∠3=∠4,求证:EG∥FH.证明:∵∠1=∠2(已知)∠AEF=∠1 ();∴∠AEF=∠2 ().∴AB∥CD().∴∠BEF=∠CFE ().∵∠3=∠4(已知);∴∠BEF-∠4=∠CFE-∠3.即∠GEF=∠HFE().∴EG∥FH().作业:P23 5、6题。

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。

通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。

教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。

二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。

但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。

因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。

三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。

2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。

四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。

2.难点:对命题、定理和证明的理解,证明方法的运用。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。

2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。

3.小组讨论,让学生在合作交流中提高逻辑思维能力。

4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。

六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。

2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。

3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。

4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。

人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计

人教版数学七年级下册《5-3-2命题、定理、证明 》教学设计

人教版数学七年级下册《5-3-2命题、定理、证明》教学设计一. 教材分析《5-3-2命题、定理、证明》是人教版数学七年级下册的教学内容,主要包括命题、定理和证明的概念及其关系。

本节课的内容是学生学习数学证明的基础,对于培养学生的逻辑思维和论证能力具有重要意义。

二. 学情分析学生在七年级上学期已经学习了基本的数学概念和运算,对于问题的解决有一定的基础。

但是,学生对于抽象的逻辑推理和证明过程可能存在理解上的困难,需要通过具体的事例和实践活动来帮助他们理解和掌握。

三. 教学目标1.了解命题、定理和证明的概念及其关系。

2.能够识别和判断一个数学命题是真还是假。

3.学会使用简单的逻辑推理和归纳推理写出简单的证明过程。

四. 教学重难点1.重点:命题、定理和证明的概念及其关系。

2.难点:证明过程的写法和逻辑推理的运用。

五. 教学方法采用问题驱动的教学方法,通过引导学生观察、思考和推理,激发学生的学习兴趣,培养学生的逻辑思维和论证能力。

同时,结合小组合作和讨论,促进学生之间的交流和合作。

六. 教学准备1.教学PPT:包括命题、定理和证明的概念及其关系的图片和示例。

2.练习题:包括判断命题真假和写证明过程的练习题。

3.小组合作的学习材料:包括相关的数学故事和案例。

七. 教学过程1.导入(5分钟)通过一个有趣的数学故事引入命题、定理和证明的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解命题、定理和证明的概念及其关系,通过示例让学生理解命题是陈述性语句,定理是经过证明的命题,证明是用来证实命题真假的过程。

3.操练(10分钟)让学生独立完成一些判断命题真假的练习题,并简要说明判断的依据。

通过小组讨论和分享,让学生理解不同的人可能会有不同的判断方法,但正确的判断应该基于逻辑推理和证明过程。

4.巩固(10分钟)让学生分组合作完成一些写证明过程的练习题。

在学生完成练习后,让各小组展示他们的证明过程,并解释他们的推理思路。

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例

人教版七年级数学(下)—教案:5.3.2命题、定理、证明优秀教学案例
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.针对学生的学习情况,调整教学策略,为下一节课的教学做好准备。
五、案例亮点
1.情境创设:本节课通过生活实例和多媒体展示,有效地激发了学生的学习兴趣,使他们能够主动参与到课堂学习中。情境创设不仅增强了学生对数学知识的理解,还提高了他们的学习积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发他们学习数学的内在动力。
2.培养学生的自信心和自尊心,让他们感受到自己在数学学习中的进步和成就。
3.引导学生认识到数学的严谨性和逻辑性,培养他们的思维品质和道德素养。
4.通过对命题、定理和证明的学习,使学生感受到数学的美丽和力量,提高他们对数学价值观的认识。
2.问题导向:教师在教学中提出了具有挑战性和引导性的问题,引导学生进行深入思考和探索。问题导向的教学策略使得学生在解决问题的过程中,能够不断提高自己的数学思维水平和解决问题的能力。
3.小组合作:教师组织学生进行小组讨论和合作,培养了他们的团队协作能力和沟通能力。小组合作使得每个学生都能在课堂上发挥自己的特长,提高了他们的自主学习能力和合作意识。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,培养他们的自我评价和自我调节能力。
2.组织学生进行互评和小组评价,让他们学会倾听他人的意见,提高他们的批判性思维。
3.教师对学生的学习成果进行肯定和鼓励,增强他们的自信心和自尊心。
4.结合学生的学习情况,调整教学策略,为下一节课的教学做好准备。
四、教学内容与过程
(二)问题导向
1.提出具有挑战性和引导性的问题,激发学生的思维活力,培养他们的解决问题的能力。
2.引导学生通过讨论和思考,逐步解决问题,让他们体验到解决问题的过程和成就感。

人教版七年级数学下册5.3.2命题、定理、证明优秀教学案例

人教版七年级数学下册5.3.2命题、定理、证明优秀教学案例
4.培养学生团结协作、互相帮助的品质,提高他们的人际沟通和团队协作能力。
5.引导学生树立正确的价值观,认识到学习数学不仅是为了考试,更是为了提升自己的综合素质,为未来的发展打下坚实基础。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握命题、定理、证明的知识,我将采用生活化的情景创设方法。通过引入学生熟悉的生活实例,如地图上的最短路径、圆桌上的饼等,让学生感受到数学与现实生活的紧密联系。同时,结合课本中的例题,设计具有趣味性和挑战性的问题,激发学生的学习兴趣和探究欲望。
3.反馈:针对学生的表现,及时给予反馈,鼓励优点,指出不足,并提出改进建议。让学生在反思和评价中不断成长,提高他们的自我认知和自我调节能力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示生活中的一些现象,如:为什么两点之间的直线距离最短?为什么圆形的轮子可以平稳滚动?通过这些现象,引发学生对命题、定理、证明的兴趣。
3.各小组代表汇报讨论成果,其他小组给予评价和反馈。
(四)总结归纳
1.教师引导学生总结本节课所学的知识点,如命题、定理、证明方法等。
2.帮助学生梳理知识体系,明确各个知识点之间的联系。
3.强调本节课的重点和难点,提醒学生注意掌握。
(五)作业小结
1.布置作业:结合本节课内容,设计不同难度的习题,让学生巩固所学知识。
2.提问学生:“在生活中,你们还遇到过哪些类似的问题?”让学生意识到数学知识与生活的紧密联系。
3.引导学生回顾已学的相关知识点,为新课的学习做好铺垫。
(二)讲授新知
1.讲解命题的概念,举例说明命题的表述方法,让学生理解命题的内涵和外延。
2.介绍基本的几何定理,如线段的性质、角的性质等,并结合课本中的例题,让学生理解定理的含义和应用。

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计

人教版七年级数学下册5.3.2《命题、定理、证明》教学设计一. 教材分析《命题、定理、证明》是人教版七年级数学下册第五章第三节的内容,主要介绍了命题、定理和证明的概念。

这部分内容是学生学习几何证明的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。

本节课的内容主要包括命题的定义、分类及定理的概念,以及证明的方法。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于基本的几何概念和性质有一定的了解。

但是,学生在证明方面的知识和能力还有待提高,因此,在教学过程中需要注重引导学生理解和掌握证明的方法和技巧。

三. 教学目标1.理解命题、定理和证明的概念,能够区分它们之间的联系和区别。

2.学会用几何语言表达命题和定理。

3.掌握证明的方法和技巧,能够运用所学的知识解决一些简单的几何问题。

四. 教学重难点1.重点:命题、定理和证明的概念及它们之间的联系和区别。

2.难点:证明的方法和技巧,以及如何运用所学的知识解决实际问题。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主学习、合作探究的方式掌握命题、定理和证明的概念。

2.利用几何图形和实例,帮助学生直观地理解命题、定理和证明的联系和区别。

3.通过练习和案例分析,培养学生的证明能力和解决实际问题的能力。

六. 教学准备1.准备相关的几何图形和实例,用于讲解和展示。

2.准备一些练习题和案例,用于巩固和拓展所学知识。

七. 教学过程1.导入(5分钟)利用一个简单的几何问题引入命题、定理和证明的概念,激发学生的兴趣。

2.呈现(10分钟)讲解命题、定理和证明的定义及它们之间的联系和区别。

通过几何图形和实例,让学生直观地理解这些概念。

3.操练(10分钟)让学生分组讨论,分析一些给定的几何问题,尝试运用所学的命题、定理和证明方法解决问题。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)让学生独立完成一些相关的练习题,巩固对命题、定理和证明的理解。

人教版七年级下册 第五章 5.3.2 命题、定理、证明 教案设计

人教版七年级下册 第五章 5.3.2 命题、定理、证明 教案设计
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
问题6请同学们说出一个命题,并说出此命题的题设和结论.
问题7问题5中哪些命题是正确的,哪些命题是错误的?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
问题2判断下列语句是不是命题?
(1)两点之间,线段最短;()
(2)请画出两条互相平行的直线;()
(3)过直线外一点作已知直线的垂线;()
(4)如果两个角的和是90º,那么这两个角互余.()
问题3你能举出一些命题的例子吗?
问题4观察一组命题,并思考命题是由几部分组成的?
(1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
课题
5.3.2命题、定理、证明






知识点:(1)了解命题的概念以及命题的构成(如果……那么……的形式).
(2)知道什么是真命题和假命题.
能力点:能判断命题的真假,能够综合运用平行线性质和判定解题
非智力因素:培养学生的判断能力及逻辑思维能力。
重点
对命题结构的认识
难点
能用如果、那么的形式表述一个命题及平行线性质和判定灵活运用
(5)对顶角相等.
(二)命题的真假
真命题:如果题设,那么结论一定,这样的命题叫做真命题.
假命题:如果题设时,不能保证结论一定,这样的命题叫做假命题.
问题8请同学们举例说出一些真命题和假命题
问题9请同学们判断下列命题哪些是真命题?哪些是假命题?
(1)在同一平面内,如果一条直线垂直于两条平行线中的一条,那么也垂直于另一条;

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《 命题、定理、证明》

人教版数学七年级下册教案5.3.2《命题、定理、证明》一. 教材分析《命题、定理、证明》是人教版数学七年级下册的教学内容,这部分内容是学生学习几何初步知识的重要环节。

通过学习命题、定理和证明,使学生了解几何学的基本概念和逻辑推理方法,培养学生空间想象能力和思维能力。

本节课的内容在教材中起到了承前启后的作用,为后续几何知识的学习打下基础。

二. 学情分析学生在学习本节课之前,已经掌握了平面几何的基本概念,具备了一定的逻辑推理能力。

但部分学生对抽象的命题、定理和证明的概念理解起来较为困难,需要通过具体例子来帮助学生理解和掌握。

三. 教学目标1.了解命题、定理、证明的概念,理解它们之间的关系。

2.学会用逻辑推理的方法证明几何命题。

3.培养学生的空间想象能力和思维能力。

四. 教学重难点1.教学重点:命题、定理、证明的概念及逻辑推理方法。

2.教学难点:理解命题、定理、证明之间的关系,运用逻辑推理证明几何命题。

五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。

通过具体例子引入概念,引导学生主动探究、合作交流,培养学生的逻辑推理能力。

六. 教学准备1.教学PPT课件。

2.相关例题及练习题。

3.几何画图工具。

七. 教学过程1.导入(5分钟)利用PPT课件展示生活中的一些几何现象,引导学生思考这些现象背后的几何规律。

通过观察和讨论,让学生感受到几何学的魅力,激发学生的学习兴趣。

2.呈现(10分钟)介绍命题、定理、证明的概念,并通过PPT课件展示相关例题。

让学生直观地了解命题、定理、证明之间的关系,帮助学生建立基本概念。

3.操练(15分钟)让学生分组讨论,选取一些简单的几何命题,尝试用逻辑推理的方法进行证明。

教师巡回指导,解答学生疑问,帮助学生掌握证明的方法。

4.巩固(10分钟)出示一些有关命题、定理、证明的练习题,让学生独立完成。

教师及时批改、讲解,巩固学生所学知识。

5.拓展(10分钟)引导学生思考:如何判断一个命题是真命题还是假命题?让学生通过举例、分析,掌握判断命题真假的方法。

人教版七年级数学下册教案:5.3.2 命题、定理、证明

人教版七年级数学下册教案:5.3.2 命题、定理、证明

课题 5.3.2命题、定理、证明授课人教学目标知识技能掌握命题、定理的概念,并能分清命题的题设和结论,判定真命题和假命题;能根据已知条件对简单问题进行证明.数学思考通过讨论、探究、交流等形式,使学生在辩论中获得知识体验.问题解决用类比的方法,经历自主学习、合作探究,领悟命题的有关概念.情感态度在学习过程中培养学生敢于怀疑、大胆探究的品质,培养合作、交流的能力,从活动中体会学习的快乐.教学重点掌握命题、定理的概念,并能分清命题的组成.教学难点分清命题的组成,并能把一个命题改写成“如果……那么……”的形式.授课类型新授课课时教具教学活动教学步骤师生活动设计意图活动一:创设情境导入新课【课堂引入】以下6个句子,有什么不同?你能对它们进行分类吗?如果你能分类,分类的依据是什么?(1)熊猫没有翅膀;(2)对顶角相等;(3)如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(4)你喜欢数学吗?(5)作线段AB=CD;(6)清新的空气;(7)不许讲话.指出像这样判断一件事情的语句,叫做命题.既复习了已学知识,又让学生认识了命题的多种表现形式.活动二:实践探究交流新知【探究1】命题的概念下列句子中,哪些是命题?①直角三角形中的两个锐角互余;②正数都大于0;③如果∠1+∠2=180°,那么∠1与∠2互补;④太阳不是行星;⑤对顶角相等吗?⑥作一个角等于已知角.分析:①②③是命题,它们都对事情作出了肯定回1.通过各类型的语句探究命题的概念.答;④是命题,它对事情作出了否定回答;⑤不是命题,只表示疑问,并未作出判断;⑥不是命题,只是描述了一个作图的过程,设有做出判断.解:①②③④是命题,⑤⑥不是命题.师生共同总结判断命题的依据:对事件做出了肯定或否定的判断的句子为命题,否则不是命题.【探究2】命题的题设和结论命题由题设和结论两部分组成,其中“题设”是已知事项,即命题中的已知条件;“结论”是由已知事项推出的事项,即结论是在已知条件的前提下可得到的结果.命题的表述形式有标准形式:“如果……那么……”,另外还有“若……则……”等,一般地,“如果……”和“若……”是题设部分,“那么……”和“则……”是结论部分.一些命题前面的“附加部分”属题设.要准确找出一个命题的题设和结论,特别是一些没有关联词语、题设和结论不明显的命题.(续表)活动二:实践探究交流新知例2判断下列语句是不是命题,是命题的指出命题的题设和结论,并判断此命题是否是真命题.(1)画射线AC;(2)同位角相等吗?(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;(4)任意两个直角都相等;(5)如果两条直线相交,那么它们只有一个交点;(6)若|x|=|y|,则x=y.解:(1)(2)不是命题;(3)题设是两条直线被第三条直线所截,同旁内角互补,结论是这两条直线平行,是真命题;(4)题设是两个角是直角,结论是这两个角相等,2.师生通过例题共同探究命题的题设和结论的确定方法.3.引导学生区分命题与定理的关系,且体会数学命题证明的必要性.是真命题;(5)题设是两条直线相交,结论是它们只有一个交点,是真命题;(6)题设是|x|=|y|,结论是x=y,是假命题;有些数学命题,如“对顶角相等”,没有写成标准形式,条件和结论不明显,要认真分析是由什么来推断什么,把它恢复成标准形式,这样就容易找到它的条件和结论.如“对顶角相等”恢复成标准形式是“如果两个角是对顶角,那么这两个角相等”.有些命题的条件之前还有条件,那么这两个条件合起来作为命题的条件,如“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”,条件是两条直线被第三条直线所截,同位角相等;结论是这两条直线平行.【探究3】定理与证明我们已经知道下列各命题都是正确的,即都是公认的真命题:(1)两点确定一条直线;(2)两点之间线段最短;(3)过一点有且只有一条直线与已知直线垂直;(4)过直线外一点有且只有一条直线与这条直线平行.有些命题可以从基本事实出发或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.归纳:定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.探究证明:根据条件、定义以及基本事实、定理等,经过演绎推理,来判断一个命题是否正确,这样的推理过程叫做证明.图5-3-63如图5-3-63,有下列三个条件:①DE∥BC:②∠1=∠2;③∠B=∠C.(1)若从这三个条件中任选两个作为题设,另一个作为结论,组成一个命题,一共能组成几个命题,请你把它们写出来;(2)请你就其中的一个真命题给出推理过程.(续表)活动二:实践探究交流新知解:(1)一共能组成3个命题,它们是:题设:①②,结论:③;题设:①③,结论:②;题设:②③,结论:①.(2)情况一题设:①②,结论:③;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠1=∠2,∴∠B=∠C;情况二题设:①③,结论:②;证明:∵DE∥BC,∴∠1=∠B,∠2=∠C.又∵∠B=∠C,∴∠1=∠2.归纳总结:证明的一般步骤:第一步:根据题意画出图形;第二步:根据命题的题设和结论,结合图形,写出已知、求证;第三步:通过分析,找出证明的方法,写出证明过程.在证明几何命题时,须注意以下几点:1.明确题目的题设和结论;2.证明过程中引用的根据(理由)与“定理的证明相同”;3.证明过程中每一步结果所用的根据必须是得到这一结果的充分理由;4.要防止利用未学过的定理来证明学过的命题,避免循环论证.4.归纳证明的过程有助于培养学生严密的逻辑推理能力,为后续的学习打好基础.活动三:【应用举例】1.利用新知解决问题,根据相开放训练体现应用图5-3-64例1如图5-3-64,已知直线b∥c,a⊥b.求证:a⊥c.证明:∵a⊥b(已知),∴∠1=90°(垂直的定义).又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义).变式图5-3-65在下面的括号内填上推理的根据.如图5-3-65,AB和CD相交于点O,∠A=∠B.求证:∠C=∠D.证明:∵∠A=∠B,∴AC∥BD(__内错角相等,两直线平行__),∴∠C=∠D(__两直线平行,内错角相等__).分析:根据已知的条件及图形证明某个数学结论是常见的数学题目,本题以“∵”“∴”的形式将完整的说理过程展现出来,需要同学们根据图形条件及已知条件填上原因.也就是在我们推理过程的每一步必须要有理有据,不关性质进行演绎推理.2.通过变式练习巩固证明过程,训练学生推理证明的能力.能乱写.本题既利用了平行线的判定方法,又运用了平行线的性质.(续表)活动三:开放训练体现应用【拓展提升】例2如图5-3-66,直线DE经过点A,DE∥BC,∠B=44°,∠C=85°.(1)求∠DAB的度数;(2)求∠EAC的度数;(3)求∠BAC的度数;(4)通过这道题你能说明为什么三角形的内角和是180°吗?图5-3-66知识的综合与拓展提高应考能力.活动四:课堂总结反思【当堂训练】课本第21页练习第1,2题;课本第22页练习第1,2题.课后作业:课本第23页习题5.3第7(2),8,9,12,13题.通过练习进一步巩固所学知识,使教师及时了解学生对本课所学知识的掌握情况.【板书设计】5.3命题、定理、证明命题⎩⎪⎨⎪⎧概念:构成分类⎩⎪⎨⎪⎧题设:已知事项结论:由已知事项推出的事项真命题:假命题:定理:证明:通过知识框图浓缩本节知识,易于学生理解.【教学反思】①[授课流程反思]既复习了已学知识,又让学生认识了命题的多种表现形式,从而使学生明白命题我们都学过,只是没有从概念上加以澄清,从而消除学生对新知识的恐惧感,增加亲切感.回顾反思,找出差距与不足,形成知识及教学体系,更进②[讲授效果反思]本节课的教学内容较简单,通过本节课的教学,学生在区分命题的题设和结论的基础上知道命题有真假之分,其中有的真命题又叫做定理.对于假命题只要举出反例加以说明即可,其中推理过程叫做证明.③[师生互动反思]学生小组合作学习的积极性较高,体现出学生愿学乐学的心态,教师要及时性地给予鼓励和表扬.一步提升教师教学能力.。

人教版七年级数学下册第五章《5.3.2 命题、定理、证明(2)》优质课课件 (2)

人教版七年级数学下册第五章《5.3.2 命题、定理、证明(2)》优质课课件 (2)

协作探究 掌握新知
例2
命题“相等的角是对顶角”是真命题 吗?如果是,说出理由;如果不是,请 举出反例.
答:
原命题是假命题.
反例:
如图2,OC是∠AOB的平分线,
∠1= ∠2,但它们不是对顶角.
图2
注:判定一个命题是假命题,只要举出一个例子 (反例),它符合命题的题设,但不满足结论就 可以了.
巩固训练 应用新知
(2)∠ABC,∠DCB, 垂直定义,
∠EBC,∠FCB, 内错角相等,两直线平行.
布置作业
作业: 教材习题5.3综合运用第13题.
).
∴∠C=∠D(
).
图5
课堂检测
在下面括号内,填上推理的根据.
(2)已知:如图6,AB⊥BC,BC⊥CD,且∠1=∠2.
求证:BE∥CF.
证明: ∵AB⊥BC,BC⊥CD(已知),
∴ = =90°( ).
∵∠1=∠2(已知),
∴ = (等式性质).
∴BE∥CF(
).
图6
课堂检测
答案:
(1)内错角相等,两直线平行; 两直线平行,内错角平行.
问题: 你能再举出一些基本事实或定理的例子吗?
归纳新知 形成概念
—定理
zX.x.K
二、定理的作用
定理可以作为推理的依据.
基本事实和定入新知
问题情境二:
命题“在同一平面内,如果一条直 线垂直于两条平行线中的一条,那么它 也垂直于另一条”是真命题吗?如果是, 说明理由,如果不是,请举出反例.
命题
证明
真命题
归纳新知 形成概念
—证明
zX.x.K
证明的概念
一个命题的正确性需要经过推理,才能 作出判断,这个推理过程叫做证明.

人教版七年级数学下册课程教学设计:5.3.2命题、定理、证明

人教版七年级数学下册课程教学设计:5.3.2命题、定理、证明
先引导学生审题,了解题意,尝试根据题意画出图形。提醒学生两条平行直线被第三条直线所截时角之间的关系、直线和角都要用字母或数字进行合理标注。引导学生发现命题中蕴含的题设和结论。学生自主探究,教师恰当引导,教师进一步讲解证明的思路和格式。
例2证明:直角三角形两锐角互余。
思考下列问题:
1、怎样画出图形?
2、题设和结论分别是什么?
3、根据题设和结论并结合图形如何写出已知,求证?
4、说说你的证明思路
5、书写证明过程时我们要注意些什么?
三、总结归纳
分组讨论,合作交流,证明命题的步骤有哪些,证明的过程中我们要注意什么?
教法说明:学生按就近位置分成若干小组,结合两个例题的学习,讨论上述问题。学生在归纳结论时表述的可能不太规范,教师鼓励学生互相交流、补充,不代替学生学习的过程。命题证明的步骤




5.3.2. 命题.定理.证明
一、明确目标
二、向学生布置学习内容 三、合作交流: 四、 巩固练习




本堂课教学设计按照创设情境——自主探究——总结归纳——反馈运用,四个环节,环环相扣、层层递进,符合学生的认知规律。教学中教师始终关注对学生探索结论和证明思路、方法等过程的评价,始终关注评价学生对证明的思路和方法的掌握和推理论证能力的提高。始终关注学生能否运用规范的数学语言表述论证过程。始终坚持以学生为主体,教师为主导,致力启用学生已掌握的知识,充分调动学生的兴趣和积极性,使他们最大限度地参与到课堂的活动中
学校教师备课笔记
年级
七年级
学科
数学
主备教师
复备教师
课题
5.3.2命题、定理、证明
课型
新授
教材分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
D
B
CБайду номын сангаас
点拨精讲:注意证明题的书写格式与逻辑性。
【预习导学】
• 二、自学检测:学生自主完成,小组内展示、点评,教师 巡视。10分钟 • 1、判断下列语句是命题的有 ①③④⑦ : • ①两条直线相交,只有一交点;②画线段AB的中点;③ 若=9,则x=3;④角平分线是一条射线;⑤过直线AB外一 点P,作AB的平行线;⑥过直线AB外一点P,可以作一条 直线与AB平行吗?⑦过直线AB外一点P,可以作一条直线 与AB平行。
【学前准备】
• 1、什么是命题?如何确定命题的题设与结论?什
么是真命题、假命题? • 2、指出下列命题的题设和结论。 • ①两条平行线被第三条直线所截,同旁内角互 补.
• ②两个角的和等于直角,这两个角互为余角.
• ③对项角相等.
• ④同角或等角的余角相等.
【预习导学】
• 一、自学指导 • 1、自学 1:自学课本 P21页,掌握定理与证明的相关概念, 完成下列填空。3分钟 • 归纳总结:定理:经过推理证实的真命题 。 • 证明:推理命题真假性的过程 。 • 2、自学2:自学教材P21-22页两个例题。2分钟
点拨精讲:证明中的每一步都要有根据,这些根据可以是已知条件,或是学过
的定义、基本事实、定理。假命题的证明只需要举出一个反例(即满足命题的 条件,却跟结论不同)
【预习导学】
• 二、自学检测:学生自主完成,小组内展示、点评,教师巡视。5分 钟1、在下面的括号里,填上推理的根据。 • 如图,∠A+∠B=1800 ,求证:∠D=∠1 • 证明:∵∠A+∠B=1800 • ∴_AD_∥_BC_(_同旁内角互补,两直线平行_) • ∴∠D=∠1(_两直线平行,内错角相等_) A
• 而要证得此结论,需证得∠AEF=∠EFD,要此结论可由
• AB∥CD证得,把这个分析过程倒过来推理即可解决这个 • 问题。这种由结论向条件推理的方法是解决证明题的常用方法。

E A H G F D B
C
跟踪练习
• • • • • • 解:∵AB∥CD ∴∠AEF=∠DFE ∵EH、FG分别平分∠AEF与∠EFD ∴∠HEF=∠AEF,∠EFG=∠EFD ∴∠HEF=∠EFG ∴EH∥FG(内错角相等,两直线平行)
自学检测
• 2、命题“内错角相等”是真命题吗?如果 是,说出理由,如果不是,请举出反例。
点拨精讲:判定一个命题是假命题,只要举出一个反例即
可,也就是说你所举命题符合命题的题设,但不满足结论。
【合作探究】
• 一、小组合作:小组讨论交流解题思路, 小组活动后,小组代表展示活动成果。7分 钟 • 1、证明:邻补角的平分线互相垂直。

• • •
②等角的补角相等;
③两点之间,线段最短; ④垂线段最短; ⑤内错角相等。 点拨精讲:关键分清楚条件与结论。
【点拨精讲】
①画出命题的图 ②结合图形写出已知、求证; ③分析由已知推得求证途径,写出推理过程。
1、命题证明的一般步骤 2、命题的证明 3、判断命题是假命题的方法:举反例,找出满足命题题设 但不满足结论的例子。
第五章 相交线与平行线
5.3.2 命题、定理、证明(2)
【学习目标】
• 1、理解定理、证明的概念,明确定理、推 论是推理证明的依据; • 2、掌握推理证明的基本格式,会证明命题 的真、假; • 3、初步培养严谨的逻辑思维能力。
【学习重、难点】
• 重点:会根据已学定理、推论作简单的推 理证明,学会用举反例来证明假命题。 • 难点:掌握推理证明的基本格式。
【合作探究】
• 2、画图,写出已知,求证(不证明)。 • ①同垂直于一条直线的两条直线平行。 • ②两条平行直线被第三条直线所截,同位 角的平分线互相平行。
点拨精讲:此题训练学生把命题转化为几何语言、几何图形
的能力。
【合作探究】
• • 2、分别把下列命题写成“如果……,那么……”的形 式。 ①两点确定一条直线;
• ∴∠1+∠2=∠AFC+∠BFC=(∠AFC+∠BFC)=×180°=90°
• ∴∠EFD=90°
• ∴EF⊥DF
跟踪练习
• 学生独立确定解题思路,小组内交流,上台展示并讲解思路。10分钟 • 1、已知:如图,AB∥CD,EH、 • FG分别平分∠AEF与∠EFD,求证:EH∥FG。 • 点拨精讲:要证明EH∥FG,可先证得∠HEF=∠EFG,
【合作探究】
• • 已知:如图∠AFC与∠BFC互为邻补角,EF、DF分别是∠AFC与 ∠BFC的角平分线;求证:EF⊥DF. 证明:∵∠AFC与∠BFC互为邻补角
E 1 A F 2 B C D
• ∴∠AFC+∠BFC=1800
• ∵EF、DF分别是∠AFC与∠BFC的角平分线
• ∴∠1=∠AFC,∠2=∠BFC
点拨精讲:要证明的是一个简单叙述的命题,题设和结论不明显,可以
先根据题意画出图形。在写已知、求证的内容时,要将文字语言转化为 符号语言来表示。
自学检测
• 3、把下列命题改写成“如果……,那 么……”的形式: • ①两直线平行,同旁内角的角平分线互相 垂直。 • ②垂直于同一条直线的两条直线平行。 • ③对顶角相等。
相关文档
最新文档