高中奥林匹克物理竞赛解题方法-四-等效法

合集下载

奥林匹克物理竞赛之力学解题方法

奥林匹克物理竞赛之力学解题方法

潘爱国panaiguopanqi@
高中物理竞赛辅导
例3.如图所示,物体系由A、B、C三个物体构成,质量分别为 mA、mB、mC。用一水平力F作用在小车C上,小车C在F的作用 下运动时能使物体A和B相对于小车C处于静止状态。求连接A和 B的不可伸长的线的张力T和力F的大小。(一切摩擦和绳、滑轮 的质量都不计)
T cos N sin ma
T sin N cos mg
解析:
对整体
F 3ma F T ma
求极值得?
600
3mg sin F 2 cos
对B
Fmax 3mg
潘爱国panaiguopanqi@
高中物理竞赛辅导
1.方法简介:从整体或全过程去把握物理现象的本质和规律 的方法。 层次深、理论性强,运用价值高。变繁为简、变 难为易。 2.赛题精讲 例1.如图所示,人和车的质量分别为m和M,人用水平力F拉 绳子,图中两端绳子均处于水平方向,不计滑轮质量及摩擦, 若人和车保持相对静止,且水平地面是光滑的,则车的加速度 为多少?
对M
对M-m
F kMg
对m kmg kma2
2 v0 2a2 x2
关闭油门前 kMg k (M m) g (M m)a1 1 2 x L x1 x2 L v0t a1t 2 v v0 a1t M x L 关闭油门后 k (M m) g (M m)a2 M m
a1 g (sin 1 cos1 ) a2 g (sin 2 cos2 )
Fx MaM m1a1x m2a2 x
aM 0
答案:劈块受到地面的摩擦力的大小为2.3N,方向水平向右。

高中物理解题方法之等效法

高中物理解题方法之等效法

v0 cos θ t 2d 2d cos θ v0 2d θ arccos v0
如图所示,小球的质量为m,带电量为q,整个区 域加一个场强为E的水平方向的匀强电场,小球 系在长为L的绳子的一段,与竖直方向成45°角 的P点处平衡。则(1)小球所受电场力多大? (2)如果小球被拉直与O点在同一水平面的C点 自由释放,则小球到达A点的速度是多大?此时 绳上的拉力又为多大?(3)在竖直平面内,如果 小球以P点为中心做微小的摆动,其振动周期为 多少?(4)若使小球在竖直平面内恰好做圆周运 动时,最小速度为多少? (1) qE m g
高中物理解题方法之 ——等效法
等效法
• 等效法,就是在保证效果相同的前提下, 将一个复杂的物理问题转换成较简单问题 的思 维方法。其基本特征为等效替代。
物理学中等效法的应用较多: • 合力与分力; • 合运动与分运动; • 总电阻与分电阻; • 交流电的有效值等。 • 除这些等效等效概念之外,还有等效电路、 等效电源、等效模型、等效过程等。
C O P

A
(2)如果小球被拉直与O点在同一水平面的 C点自由释放,则小球到达A点的速度是多 大?此时绳上的拉力又为多大?
C O
P
A
(3)在竖直平面内,如果小球以P点为中心 做微小的摆动,其振动周期为多少?
C
O
P
A
(4)若使小球在竖直平面内恰好做圆周运动 时,最小速度为多少?
C O
P
A
• 如图所示,一半径为R的光滑圆弧槽 ∠POM<5°,P为圆弧槽的最低点,且OP 在竖直方向上,以小球B从N点由静止开始 释放,另一小球A同时从O点由静止开始释 放,问哪个球先到达P点。
• 如图2所示,水平面上,有两个竖直的光滑墙壁A 和B,相距为d,一个小球以初速度 v0 从两墙之间 的O点斜向上抛出,与A和B各发生一次弹性碰撞 后,正好落回抛出点,求小球的抛射角θ。

高中物理等效法

高中物理等效法

一、力的等效
合力与分力具有等效性。关于这一点在力的合成和分解中得到充分的体现。除此之外,在另一类题目中,如果也能够充分应用等效的观点,将物体所受的多个恒力等效为一个力,就可以将较复杂的模型转化为较简单的物理模型,然后再去应用我们熟知的规律去列方程,这样将大大降低
理现象、物理过程转化为简单的物理规律、物理过程来研究和处理的一种重要的科学的思维方法。这种物理学研究的重要方法,也是解决物理问题的常用方法之一。在中学物理中,合力与分力、合运动与分运动、平均速度、重心、热功当量、总电阻与分电阻、交流电的平均值、有效值等。都是根据等效概念引入的。
在教学和学习过程中,若能经此法渗透到对过程的分析中去,不仅可以使我们对物理问题的分析和解答变得简捷,而且对灵活运用知识、促使知识、技能和能力的迁移,都会有很大的帮助。
等效方法,它是通过对问题中的某些因素进行变换或直接利用相似性,移用某一规律进行分析而得到相等效果,利用等效法不仅可以使问题变得简单易解,而且活跃了学生的学中的应用:⑴力的等效;⑵运动的等效;⑶过程的等效;⑷模型的等效;⑸实验原理的等效。当然等效的思想是物理学中的重要的思想之一,有关等效的观点在物理学其他领域的应用将在以后的文章中逐渐一一阐明。

奥林匹克物理竞赛之力学解题方法

奥林匹克物理竞赛之力学解题方法

(
s
2 2

s12 )
t (s22 s12 ) 22 12 7.5s 2s1v1 2 1 0.2
例4.如图所示,小球从长为L的光滑斜面顶端自由下滑,滑到
底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大
小为碰撞前速度大小的4/5,求小球从开始下滑到最终停止于斜
面下端时,小球总共通过的路程。
奥林匹克物理竞赛之力学解题方法
三.等效法 1.方法简介
2.赛题精讲
将一个情境等效为另一个情境 将一个过程等效为另一过程 将一个模型等效为另一个模型 将一个物理量的计算等效为另一个物理量的计算
例1.如图所示,水平面上,有两个竖直的光滑墙壁A和B,相距
为d,一个小球以初速度v0从两墙之间的O点斜向上抛出,与A和 B各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ。
六、类比法
1.方法简介:根据两个研究对象或两个系统在某些属性上类似 而推出其他属性也类似的思维方法,是一种由个别到个别的推 理形式。
2.赛题精讲 例1.如图所示,AOB是一内表面光滑的楔形槽,固定在水平 桌面(图中纸面)上,夹角α=10。现将一质点在BOA面内从A 处以速度v=5m/s射出,其方向与AO间的夹角θ=600,OA=10m。 设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的碰 撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求: (1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时 包括在A处的碰撞) (2)共用多少时间?
解析:设在一个极短的时间Δt内,猎犬 做直线运动,正三角形边长依次变为a1、 a2、a3、…、an。
a1

a

AA1

BB1
cos60

物理解题方法(四)-等效法

物理解题方法(四)-等效法
物理解题方法(四)-等效法
目录
• 等效法概述 • 等效法的原理 • 等效法在解题中的应用 • 等效法的实例分析 • 等效法的总结与思考
01 等效法概述
等效法的定义
等效法是一种常用的物理解题方法,它是指根据物理现象或 过程的等价性,将复杂的物理问题转化为简单、直观或易于 处理的问题,从而简化解题过程。
在等效运动原理的应用中,需要找到一个与原系统等效的替代系统,使得替代系统 与原系统在相同的外部作用下具有相同的运动状态和性质。
等效运动原理在物理解题中常用于解决振动、波动和流体动力学等领域的问题。
03 等效法在解题中的应用
力的等效法
等效力的判断
判断等效力时,应从力的三要素(大小、方向、作用点) 上考虑,只有当两力在作用效果上相同,才可认为这两力 是等效的。
等效法的优点与局限性
• 增强理解:通过等效法,学生可以更深入地理解物理概念 和规律,加深对物理本质的认识。
等效法的优点与局限性
01
02
03
适用范围有限
等效法并非适用于所有类 型的物理问题,主要适用 于具有对称性或等效条件 的问题。
对学生能力要求高
运用等效法需要学生具备 扎实的物理基础、较强的 思维能力和分析能力。
等效场的合成与分解
在分析复合场问题时,常采用等效场替代的方法,将复合场问题转化为单一场问题。
等效场在解题中的应用
等效场常用于解决涉及复合场的问题,通过等效替代,简化问题。
04 等效法的实例分析
力的等效法实例
两个力等效
在分析物体受力情况时,如果两个力的大小、方向和作用点都相同,则这两个力 是等效的。例如,在分析滑轮组的机械效率时,可以将滑轮组简化成等效的简单 机械,从而简化问题。

高中物理竞赛—曲线运动科学方法计划

高中物理竞赛—曲线运动科学方法计划

.高中物理比赛—办理曲线运动的科学方法一、微元法例 1:一质量为 M 、平均散布的圆环,其半径为 r ,几何轴与水平面垂直,若它能经受的最鼎力为 T ,求此圆环能够绕几何轴旋转的最大角速度。

分析 :因为向心力 F = mr ω 2 ,当ω一准时, r 越大,向心力越大, 所以要想求最鼎力 T 所对应的角速度ω,r 应取最大值。

如图 3— 6 所示,在圆环上取一小段L ,对应的圆心角为Δθ ,其质量可表示为m =M ,受圆环对它的力为 T ,2则同上例剖析可得:2Tsin=mr ω 22因为Δθ很小,所以: sin≈,即: 2T2=M r ω 2222解得最大角速度:ω=2 TMr例 2:如图 3— 11 所示,小环 O 和 O ′分别套在不动的竖直杆AB 和 A ′B ′上,一根不可伸长的绳索穿过环O ′,绳的两头分别系在A ′点和 O 环上,设环 O ′以恒定速度v 向下运动,求当∠ AOO ′ = α时,环 O 的速度。

分析 :O 、 O ′之间的速度关系与O 、 O ′的地点相关,即与α角相关,所以要用微元法找它们之间的速度关系。

设经历一段极短时间t , O ′环移到 C ′, O 环移到 C ,自 C ′与 C 分别作为 O ′ O 的垂线 C ′ D ′和 CD ,从图中看出。

OC=OD,O ′C ′=OD,所以:coscosOC + O ′C ′=OD O D①cos因Δα极小,所以 EC ′≈ ED ′, EC ≈ ED ,进而:OD + O ′ D ′ ≈OO ′- CC ′②因为绳索总长度不变,故:OO ′- CC ′ = O ′ C ′ ③由以上三式可得: OC+O ′C ′=OC,cos即: OC = O ′ C ′(1 -1)cos等式两边同除以t 得环 O 的速度为: v 0 = v(1 - 1)cos等效法.在一些物理问题中,一个过程的发展、一个状态确实定, 常常是由多个要素决定的, 在这一决定中,若某些要素所起的作用和另一些要素所起的作用同样,则前一些要素与后一些要素是等效的,它们便能够相互取代,而对过程的发展或状态确实定,最后结果其实不影响,这类以等效为前提而使某些要素相互取代来研究问题的方法就是等效法。

高中物理竞赛辅导 等效电阻方法

高中物理竞赛辅导 等效电阻方法

等效电阻方法班级 姓名1、 如图所示,12个阻值都是R 的电阻,组成一立方体框架,试求AC 间的电阻R AC 、AB 间的电阻R AB 与AG 间的电阻R AG .2、如图所示的正方形网格由24个电阻r 0=8 的电阻丝构成,电池电动势ε=6.0 V ,内电阻不计,求通过电池的电流.3、 如图所示,7个电阻均为R 的电阻连接而成,求A 、B 两点间的电阻。

A B CD E FG H4、 如图所示的一个无限的平面方格导线网,连接两个结点的导线的电阻为r 0,如果将A和B 接入电路,求此导线网的等效电阻R AB .5、 有一无限大平面导体网络,它有大小相同的正六边形网眼组成,如图所示,所有六边形每边的电阻均为R 0,求间位结点a 、b 间的等效电阻.6、如图是一个无限大导体网络,它由无数个大小相同的正三角形网眼构成,小三角形每边的电阻均为r ,求把该网络中相邻的A 、B 两点接入电路中时,AB 间的电阻R AB .7、证明如图所示的Y 形电阻网络与1c a c a b b c AB R R R R R R R R =++,1b ac a b b c ACR R R R R R R R =++ 1a a c ab bc BCR R R R R R R R =++.,,AB AC ABBC AC BC a b c R R R R R RR R R ===∆∆∆,其中AB BC AC R R R ∆=++.8、试求框架上A 、B 两点间的电阻R AB .此框架是用同种细金属制作的,单位长度的电阻为ρ.一连串内接等边三角形的数目可认为趋向无穷,如图所示.取AB 边长为a ,以下每个三角形的边长依次减少一半.c9、如图所示是由电阻丝连接成的无限电阻网络,已知每一段电阻丝的电阻均为r,试求A、B两点之间的总电阻.AB。

《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法

《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法

《高中物理思维方法集解》参考系列——高中物理解题常用的几种思维方法高中物理解题常用的几种思维方法中学物理解题中涉及到许多科学思维方法,由此而产生的解题方法和解题技巧很多,这里将高中物理解题中经常要用到的几种科学思维方法作一些介绍。

1.等效法等效法是从效果的等同的角度出发把复杂的物理现象、物理过程转化为理想的、简单的、等效的物理现象和过程来研究和处理问题的一种科学思维方法。

中学物理中,等效的思想应用很广泛,如力的合成与分解、运动的合成与分解、单摆的等效摆长和等效重力加速度等都是等效法的具体应用。

在学习物理的过程中,若能将等效法渗透到对物理过程的分析中去,不仅可以使我们对物理问题的分析和解答变得简捷,而且对灵活运用知识,促进知识、技能和能力的迁移,都会有很大的帮助。

①力的等效。

合力与分力具有等效性,利用这种等效性,可将物体所受的多个恒力等效为一个力,也可将一个力按力的效果等效分解为多个力,从而降低解题的复杂性和难度,使问题得到快速、简捷的解答。

②运动的等效。

建立等效运动的方法是多样的。

利用合运动与分运动的等效性,可将一个复杂的运动分解为几个简单的、熟知的运动。

通过发散思维将间断的匀加速运动等效为一个完整的、连续的匀加速运动。

通过逆向思维将匀减速运动等效为一个相反方向的匀加速运动等。

③电路的等效。

有关电路分析和计算的题目,虽然涉及到的物理过程和能量的转化情况较为单一,但是在元器件确定的情况下,线路的连接方式却是千变万化的。

多数电路中电子元件的串并联关系一目了然,不需要对电路进行等效转换,但有些电路图中的元件的连接方式并非一下就能看明白,这就需要在计算之前对电路的连接方式进行分析,并进一步画出其等效电路图。

学会画等效电路图是中学阶段必须具备的能力之一。

④物理模型的等效。

物理模型的等效就是对不熟悉的物理模型与熟悉的物理模型作分析比较,找出二者在某方面的等效性,从而将熟悉模型的已知结论应用到不熟悉的物理模型上去的过程。

高中奥林匹克高三物理竞赛解题方法——隔离法、等效法

高中奥林匹克高三物理竞赛解题方法——隔离法、等效法

《高中奥林匹克物理竞赛解题方法》一、隔离法方法简介隔离法就是从整个系统中将某一局部物体隔离出来,然后单独分析被隔离局部的受力情况和运动情况,从而把复杂的问题转化为简单的一个个小问题求解。

隔离法在求解物理问题时,是一种非常重要的方法,学好隔离法,对分析物理现象、物理规律大有益处。

赛题精讲例1:两个质量一样的物体1和2紧靠在一起放在光滑水平桌面上,如图2—1所示,如果它们分别受到水平推力F 1和F 2作用,且F 1>F 2, 如此物体1施于物体2的作用力的大小为〔 〕A .F 1B .F 2C .12F F 2+D .12F F 2- 解析:要求物体1和2之间的作用力,必须把其中一个隔离出来分析。

先以整体为研究对象,根据牛顿第二定律:F 1-F 2=2ma ①再以物体2为研究对象,有N -F 2=ma ②解①、②两式可得N =12F F 2+,所以应选C 例2:如图2—2在光滑的水平桌面上放一物体A ,A 上再放一物体B ,A 、B 间有摩擦。

施加一水平力F 于B ,使它相对于桌面向右运动,这时物体A 相对于桌面〔 〕A .向左动B .向右动C .不动D .运动,但运动方向不能判断解析:A 的运动有两种可能,可根据隔离法分析设AB 一起运动,如此:a =A BF m m + AB 之间的最大静摩擦力:f m = μm B g以A 为研究对象:假设f m ≥m A a ,即:μ≥A B B A m m (m m )g +F 时,AB 一起向右运动。

假设μ<A B B A m m (m m )g+ F ,如此A 向右运动,但比B 要慢,所以应选B例3:如图2—3所示,物块A 、B 的质量分别为m 1、m 2,A 、B 间的摩擦因数为μ1,A 与地面之间的摩擦因数为μ2,在水平力F 的推动下,要使A 、B 一起运动而B 不至下滑,力F 至少为多大?解析: B 受到A 向前的压力N ,要想B 不下滑,需满足的临界条件是:μ1N=m 2g 。

高中物理竞赛解题思路方法

高中物理竞赛解题思路方法

高中物理竞赛解题思路方法一、引言高中物理竞赛是许多学生展示自己物理知识和技能的平台,同时也是一个提升自己解决问题能力的好机会。

在物理竞赛中,解题思路和方法是非常重要的,因为它们直接关系到解题的速度和准确性。

本文将介绍一些高中物理竞赛解题的思路和方法,帮助学生们更好地应对物理竞赛。

二、解题思路1. 理解题目:在解题之前,首先要认真阅读题目,理解题目的要求和内容,明确题目所涉及的物理现象和物理过程。

2. 建立模型:根据题目所描述的现象和过程,建立相应的物理模型,如力学、电学、光学等。

3. 推导公式:根据物理规律和原理,推导所需的公式,并注意公式的适用条件。

4. 考虑特殊情况:在解题过程中,需要注意一些特殊情况,如临界状态、极值等,需要特别关注。

5. 画图辅助:画图可以帮助我们更好地理解物理过程和现象,同时也方便我们进行计算和推理。

三、解题方法1. 代入法:将已知量代入公式中,求解未知量。

这种方法适用于简单明了的问题。

2. 综合分析法:通过对题目中的各个因素进行分析,综合运用各种物理规律和原理,求解问题。

这种方法适用于复杂的问题。

3. 排除法:根据题目中的某些条件,排除不正确的选项,缩小答案范围,最后得到正确答案。

这种方法适用于选择题。

4. 假设法:在解题过程中,可以先假设一个答案,然后根据题目中的条件进行验证或推导,最终得到正确答案。

这种方法适用于一些不确定的问题。

四、例题解析【例题】一物体在水平地面上做匀速直线运动,其速度为v。

现在给物体施加一个水平向右的拉力F,使其速度变为原来的两倍。

求拉力F的大小。

【解析】1. 理解题目:题目描述了一个物体在水平地面上做匀速直线运动,现在施加一个拉力F使其速度变为原来的两倍。

需要求出拉力F 的大小。

2. 建立模型:本题涉及的是物体的运动问题,可以建立力学模型。

3. 推导公式:根据牛顿第二定律,可以推导出拉力F与物体加速度之间的关系公式。

4. 考虑特殊情况:本题中需要求出拉力的大小,因此需要考虑到物体做匀加速直线运动的情况。

高中物理奥林匹克竞赛解题方法解物理竞赛题的数学技巧

高中物理奥林匹克竞赛解题方法解物理竞赛题的数学技巧

解物理竞赛题的数学技巧在生物理竞赛中,不难发现这样一类试题:题目描述的物理情境并不陌生,所涉及的物理知识也并不复杂,若能恰当地运用数学技巧求解,问题就可顺利得到解决.然而,选手在处理这类问题时,往往由于不能灵活运用数学技巧而前功尽弃.辅导教师在对参赛选手进行物理知识传授、物理方法渗透的同时,利用某些典型的物理问题去传授和强化他们的数学技巧,提高他们运用数学解决物理问题的能力是十分必要的.笔者通过实例剖析,就解物理竞赛题中的数学技巧作一简要探讨.一、引入参数方程,简解未知量多于方程数的问题例1(第15届全国生物理竞赛试题) 1mol理想气体缓慢的经历了一个循环过程,在p-V图中这一过程是一个椭圆,如图1所示.已知此气体若处在与椭圆中心O′点所对应的状态时,其温度为T0=300K,求在整个循环过程中气体的最高温度T1和最低温度T2各是多少.图1分析与解由题给条件,可列出两个相对独立的方程.即气体循环过程的椭圆方程和理想气体的状态方程,即,①pV=RT.②①、②两方程中含三个未知量p、V、T,直接对①、②两式进行演算,要求出循环过程中的最高温度T1或最低温度T2,是较为困难的.现根据①式引入含参数定义的方程为②式则转化为T=(1/R)(p0+(p0/2)sinα)(V0+(V0/2)cosα即T=[1+(1/2)(sinα+cosα)+(1/4)sinαcosα]T0,③(上式中T0=p0V0/R,为O′点对应的温度)因为sinα+cosα=sin((π/4)+αsinαcosα=((sinα+cosα)2-1)/2,④而-1≤sin((π/4)+α)≤1,所以-≤sinα+cosα≤,当sinα+cosα≤,取sinα+cosα=时,由④式知sinαcosα=1/2,将上式代入③式得T≤[1+(1/2)×+(1/4)×(1/2)]T0,即最高温度T1=549K.当sinα+cosα≥-,取sinα+cosα=-时,由④式知sinαcosα=1/2,代入③式,得T≥[1+(1/2)(-+(1/4)·(1/2))]T0,即最低温度T2=125K.二、实施近似处理,解决物理规律不明显的问题例2如图2所示,两个带电量均为Q的正点电荷,固定放置在x轴上的A、B两处,点A、B到原点的距离都等于r,若在原点O放置另一带正电的点电荷,其带电量为q.当限制点电荷q在哪些方向上运动时,它在原点O处才是稳定的?图2分析与解设限制点电荷q在与x轴成θ角的y轴上运动.当它受扰动移动到P点,即沿y轴有微小的位移y(=y)时,A、B两处的点电荷对q的库仑力分别为fA、fB.则q在y轴上的合力为fy=k(Qq/)cosα-k(Qq/)cosβ,由余弦定理知=r2+y2+2rycosθ,=r2+y2-2rycosθ.又由三角形知,cosα=(rcosθ+y)/,cosβ=(rcosθ-y)/,故fy=kQq(rcosθ+y)/(r2+y2-2rycosθ)3/2-(kQq(rcosθ-y)/(r2+y2-2rycosθ)3/2).上式已表示出fy与θ、y间的定量关系.可它们满足的规律并不明显.怎样将合力fy与方向角θ、位移y之间的物理规律显现出来?由于y很小,故y的二次项可略去,得fy=k(Qq/r3即fy=k(Qq/r3)[(rcosθ+y)(1+(2y/r)cosθ)-3/2-(rcosθ-y)(1-(2y/r)cosθ)-3/2],根据二项式展开式(1+t)S=1+St+(S(S-1)/2!)t2+…+((S(S-1)…(S-n+1))/n!)tn+……,(其中S为任意实数)有(1+(2y/r)cosθ)-3/2=1+(-3/2)((2y/r)cosθ)+((-3/2)((-3/2)-1)/2!)((2y/r)cosθ)2+……,(1-(2y/r)cosθ)-3/2=1+(-3/2)((-2y/r)cosθ)+((-3/2)((-3/2)-1)/2!)((-2y/r)cosθ)2+……,又由于y<<r,或(2y/r)cosθ<<1,故((2y/r)cosθ)的二次项及二次项以上高次项可略去,得fy=k(Qq/r3)[(rcosθ+y)(1-(3y/r)cosθ)-(rcosθ-y)(1+(3y/r)cosθ)],=-k(2Qq/r3)(3cos2θ-1)y.由此可见,当(3cos2θ-1)>0时,fy<0,即合力方向指向原点,与位移方向相反,即fy具有回复力的特征.因而点电荷q是稳定的.图3根据3cos2θ-1>0,即cosθ>/3时,得-arccos(/3)<θ<arccos(/3或当cosθ<-/3时,得π-arcos(/3)<θ<π+arccos(/3).故当限制点电荷q在如图3的阴影区域运动时,它在原点O处才是稳定的.三、利用特殊值,求解一般性问题特殊值是指物理量在某一特殊情况下的取值.物理量在一般情况下的量值之间必然与特殊值之间存在一定的联系.我们若能确定某一特殊值,则往往可以借助数学技巧来求出一般情况下该物理量的量值.例3 一个空心的环形圆管沿一条直径截成两部分,一半竖立在铅垂平面内,如图4所示,管口连线在一水平线上.今向管内装入与管壁相切的2m个小滚珠,左、右侧顶部的滚珠都与圆管截面相切.已知单个滚珠重G,并设系统中处处无摩擦.求从左边起第n个和第(n+1)个滚珠之间的相互压力Qn.图4分析与解研究一般性问题——分析第n个滚珠的受力情况,此滚珠受四个力的作用:重力G,管壁对它的弹力Tn,第(n-1)个滚珠对它的压力Qn-1及第(n+1)个滚珠对它的压力Qn.由于Tn的量值未知,且不为本题所求,故选取如图5所示的与Tn方向共线的轴作为y轴建立直角坐标系.图5 图6由平衡条件知x轴方向的合力为零,得Qn-1cosα+Gcosβ-Qncosα=0,由几何知识,得α=θ/2(其中θ=π/2mβ=((n-1)π/2m)+α,故Qn-Qn-1=.①根据①式,如何求得Qn?对第1个滚珠进行受力分析,如图6所示,得到一特殊值,即Q1=,②故可对①式进行递推,得Q2-Q1=,Q3-Q2=,……Qn-Qn-1=.将上面所列等式左、右两边分别相加,得Qn-Q1=[cos(3π/4m)+cos(5π/4m)+…+cos((2n-1)π/4m)]·G/cos(π/4m把②式代入,得Qn=[cos((2k-1)π/4 m)]·G/cos(π/4m).而cos((2k-1)π/4m)=(1/2sin(π/4m))2cos((kπ/2m)-(π/4m))sin(π/4m)=(1/2sin(π/4m))[sin(kπ/2m)-sin((k-1)π/2m)],又[sin(kπ/2m)-sin((k-1)π/2m)]=[sin(π/2m)-0]+[sin(2π/2m)-sin(π/2m)]+[sin(3π/2m)-sin(2π/2m)]+…+[sin(nπ/2m)-sin((n-1)π/2m)]=sin(nπ/2m故Qn=(sin(nπ/2m)/sin(π/2m))·G。

物理解题方法四--等效法-精选文档

物理解题方法四--等效法-精选文档


2019/3/3
新思考物理课程网phys.cersp
6

5、通过参照系的等效变换来解题 [例5]某物块m,自车内倾角为θ的光滑斜面顶点滑到底 部,在车保持静止和水平向右匀速运动两情况下的下 滑时间分别为t1和t2,则有t1 t2(填>、<、=)。
2019/3/3
新思考物理课程网phys.cersp
2019/3/3
新思考物理课程网phys.cersp
10


9、利用相似性,辅以某种变换,以简获问题的解 [例9]如图,当车向右加速且a=10m/s2时,问车上杯 中的水面与水平向右的方向夹成几度角?(g=10)
a
2019/3/3
新思考物理课程网phys.cersp
11

思考题:根据你见过的题目或根据等效的思路,给 上述九类型各补上 1----3道题,以增强对等效法的理 解。


7、按物理规律实质,寻找等效物理模型 [例7]边长为a的正方形导线框放在按空间均匀分 布的磁场中,磁场B的方向与导线框平面垂直,B的 大小随时间按正弦规律变化,如图所示,则线框 内最大感应电动势εm= 。
B
t

t
2019/3/3
新思考物理课程网phys.cersp
9

8、利用物理规律的类同性进行等效迁移 [ 例 ] 试解释在平缓海滩上,不论海中的波向什 么方向传播,当到达岸边时总是大约沿着垂直 于岸的方向传来。(提示:波在水中传播时, 水越浅波速越小)
2019/3/3
新思考物理课程网phys.cersp
3


2、通过对电路的等效变换来解题
[例2]图中,A1、A2的读数是 。
2019/3/3

高中物理解题方法专题指导等效法

高中物理解题方法专题指导等效法

高中物理解题方法专题指导方法专题二:等效法解题一.方法介绍等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等. 二.典例分析1.物理量等效在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷. 例l .如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。

(g=10m/s 2)求:(1)它到达C 点时的速度是多大? (2)它到达C 点时对轨道压力是多大? (3)小球所能获得的最大动能是多少? 2.物理过程等效对于有些复杂的物理过程,我们可以用一种或几种简单的物理过程来替代,这样能够简化、转换、分解复杂问题,能够更加明确研究对象的物理本质,以利于问题的顺利解决.高中物理中我们经常遇到此类问题,如运动学中的逆向思维、电荷在电场和磁场中的匀速圆周运动、平均值和有效值等.例2.如图所示,在竖直平面内,放置一个半径R 很大的圆形光滑轨道,0为其最低点.在0点附近P 处放一质量为m 的滑块,求由静止开始滑至0点时所需的最短时间.例3.矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有阻值为R 的电阻,其余部分电阻均不计.导线框的位置如图所示,线框内的磁场方向及分布情况如图,大小为0cos 2x B B l π⎛⎫= ⎪⎝⎭.一电阻为R 的光滑导体棒AB 与短边平行且与长边始终接触良好.起初导体棒处于x =0处,从t =0时刻起,导体棒AB 在沿x 方向的外力F 的作用下做速度为v 的匀速运动.试求:(1)导体棒AB 从x =0运动到x =2l 的过程中外力F 随时间t变化的规律;(2)导体棒AB 从x =0运动到x =2l 的过程中整个回路产生的热量. 3.物理模型等效物理模型等效在物理学习中应用十分广泛,特别是力学中的很多模型可以直接应用到电磁学中去,如卫星模型、人船模型、子弹射木块模型、碰撞模型、弹簧振子模型等.实际上,我们在学习新知识时,经常将新的问题与熟知的物理模型进行等效处理.例4.如图所示,R 1、R 2、R 3为定值电阻,但阻值未知,R x 为电阻箱.当R x 为R x1=10 Ω时,通过它的电流I x1=l A ;当R x 为R x2=18 Ω时,通过它的电流I x2=0.6A .则当I x3=0.l A 时,求电阻R x3.例5.如图所示,倾角为θ=300,宽度L =1 m 的足够长的U 形平行光滑金属导轨固定在磁感应强度B =1 T 、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上,用平行于导轨且功率恒为6 w 的牵引力牵引一根质量m =0.2 kg ,电阻R =1 Ω放在导轨上的金属棒ab 由静止沿导轨向上移动,当金属棒ab 移动2.8 m 时获得稳定速度,在此过程中金属棒产生的热量为5.8 J(不计导轨电阻及一切摩擦,g 取10 m /s 2),求:(1)金属棒达到的稳定速度是多大?(2)金属棒从静止达到稳定速度所需时间是多少?三.强化训练( ) 1. 如图所示,一面积为S 的单匝矩形线圈处于一个交变的磁场中,磁感应强度的变化规律为t B B ωsin 0=。

高中物理解题方法:等效法技巧及典型例题归纳大全(学习)

高中物理解题方法:等效法技巧及典型例题归纳大全(学习)

高中物理解题方法:等效法技巧及典型例题归纳大全(学习)
Hello,大家好,洪老师今天给大家推荐这个高中物理解题方法之:等效法技巧及典型例题归纳大全!
其实曹冲称象用的方法就是等效法。

这种思维方法的实质,就是在效果相同的前提下,利用等效法将一个陌生复杂的物理问题变换成熟悉简单的理想物理问题,建立研究问题的简化模型来揭示问题的本质特征和规律。

使问题化繁为简,由难变易,从而达到解决问题的目的。

常用的等效法有状态的等效、过程的等效、条件的等效和对象的等效,下面分别举例说明。

高中物理常用解题方法总共有21种,均有一套word版,如需word版的资料来打印,请发送085给洪老师。

不会私信的很简单的方式:点洪老师的头像,然后会看到底下有个“洪粉必看”的菜单按钮,里面会有个内容提示的。

等效法!。

高中物理解题方法专题指导等效法

高中物理解题方法专题指导等效法

高中物理解题方法专题指导方法专题二:等效法解题一.方法介绍等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等. 二.典例分析1.物理量等效在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷. 例l .如图所示,ABCD 为表示竖立放在场强为E=104V/m 的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD 部分是半径为R 的半圆环,轨道的水平部分与半圆环相切A 为水平轨道的一点,而且.2.0m R AB ==把一质量m=100g 、带电q=10-4C 的小球,放在水平轨道的A 点上面由静止开始被释放后,在轨道的内侧运动。

(g=10m/s 2)求:(1)它到达C 点时的速度是多大? (2)它到达C 点时对轨道压力是多大? (3)小球所能获得的最大动能是多少? 2.物理过程等效对于有些复杂的物理过程,我们可以用一种或几种简单的物理过程来替代,这样能够简化、转换、分解复杂问题,能够更加明确研究对象的物理本质,以利于问题的顺利解决.高中物理中我们经常遇到此类问题,如运动学中的逆向思维、电荷在电场和磁场中的匀速圆周运动、平均值和有效值等.例2.如图所示,在竖直平面内,放置一个半径R 很大的圆形光滑轨道,0为其最低点.在0点附近P 处放一质量为m 的滑块,求由静止开始滑至0点时所需的最短时间.例3.矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有阻值为R 的电阻,其余部分电阻均不计.导线框的位置如图所示,线框内的磁场方向及分布情况如图,大小为0cos 2x B B l π⎛⎫= ⎪⎝⎭.一电阻为R 的光滑导体棒AB 与短边平行且与长边始终接触良好.起初导体棒处于x =0处,从t =0时刻起,导体棒AB 在沿x 方向的外力F 的作用下做速度为v 的匀速运动.试求:(1)导体棒AB 从x =0运动到x =2l 的过程中外力F 随时间t变化的规律;(2)导体棒AB 从x =0运动到x =2l 的过程中整个回路产生的热量. 3.物理模型等效物理模型等效在物理学习中应用十分广泛,特别是力学中的很多模型可以直接应用到电磁学中去,如卫星模型、人船模型、子弹射木块模型、碰撞模型、弹簧振子模型等.实际上,我们在学习新知识时,经常将新的问题与熟知的物理模型进行等效处理.例4.如图所示,R 1、R 2、R 3为定值电阻,但阻值未知,R x 为电阻箱.当R x 为R x1=10 Ω时,通过它的电流I x1=l A ;当R x 为R x2=18 Ω时,通过它的电流I x2=0.6A .则当I x3=0.l A 时,求电阻R x3.例5.如图所示,倾角为θ=300,宽度L =1 m 的足够长的U 形平行光滑金属导轨固定在磁感应强度B =1 T 、范围足够大的匀强磁场中,磁场方向垂直导轨平面斜向上,用平行于导轨且功率恒为6 w 的牵引力牵引一根质量m =0.2 kg ,电阻R =1 Ω放在导轨上的金属棒ab 由静止沿导轨向上移动,当金属棒ab 移动2.8 m 时获得稳定速度,在此过程中金属棒产生的热量为5.8 J(不计导轨电阻及一切摩擦,g 取10 m /s 2),求:(1)金属棒达到的稳定速度是多大?(2)金属棒从静止达到稳定速度所需时间是多少?三.强化训练( ) 1. 如图所示,一面积为S 的单匝矩形线圈处于一个交变的磁场中,磁感应强度的变化规律为t B B ωsin 0=。

高中奥林匹克物理竞赛解题方法2

高中奥林匹克物理竞赛解题方法2

答案:1.F=100N 2.T=5.16N 3.0min max =+=f m M mkx f 4.A 5.B 6.C 7.C 8.3/)2(mg F + 9.(1)θμtan B A A m m M +< (2)F )(tan )(μθ-⋅+<BA B A m g m m m 10.AB AC B A B A C m m m m m m g m m a -+++=))(( 11.αα22132122sin )(cos m m m m m m lm v A +++=方向沿AB 方向 12.P=α2sin 214+mv E=)sin 21(222α+mv 13.(1)22/64.0/5.0s m a s m a ='= (2) 3.78cm14.0.2m 15.8cm 16.000000T Sp f mg S p T T S p f mg S p ++≤≤-+ 17.摩擦力足够大时00)1(2T S p kl T += 摩擦力不是足够大时00)1(2T S p mg T μ+= 18.221,2mv d 19.)4/(B D Q επ= 20.证明略 三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四、等效法方法简介在一些物理问题中,一个过程的发展、一个状态的确定,往往是由多个因素决定的,在这一决定中,若某些因素所起的作用和另一些因素所起的作用相同,则前一些因素与后一些因素是等效的,它们便可以互相代替,而对过程的发展或状态的确定,最后结果并不影响,这种以等效为前提而使某些因素互相代替来研究问题的方法就是等效法.等效思维的实质是在效果相同的情况下,将较为复杂的实际问题变换为简单的熟悉问题,以便突出主要因素,抓住它的本质,找出其中规律.因此应用等效法时往往是用较简单的因素代替较复杂的因素,以使问题得到简化而便于求解.赛题精讲例1:如图4—1所示,水平面上,有两个竖直的光滑 墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙 之间的O 点斜向上抛出,与A 和B 各发生一次弹性 碰撞后,正好落回抛出点,求小球的抛射角θ. 解析:将弹性小球在两墙之间的反弹运动,可等效为 一个完整的斜抛运动(见图).所以可用解斜抛运动的 方法求解.由题意得:gv v t v d θθθsin 2cos cos 2000⋅=⋅= 可解得抛射角 202arcsin 21v gd =θ 例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0,加速度为a ,如果将L 分成相等的n 段,质点每通过L/n 的距离加速度均增加a /n ,求质点到达B 时的速度.解析 从A 到B 的整个运动过程中,由于加速度均匀增加,故此运动是非匀变速直线运动,而非匀变速直线运动,不能用匀变速直线运动公式求解,但若能将此运动用匀变速直线运动等效代替,则此运动就可以求解.因加速度随通过的距离均匀增加,则此运动中的平均加速度为na n n a an n an a a a a a 2)13(232)1(2-=-=-++=+=末初平 由匀变速运动的导出公式得2022v v L a B -=平解得 naLn v v B )13(20-+=例3一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 的大小与距老鼠洞中心的距离s成反比,当老鼠到达距老鼠洞中心距离s 1=1m 的A 点时,速度大小为s cm v /201=,问当老鼠到达距老鼠洞中心s 2=2m 的B 点时,其速度大小?2=v 老鼠从A 点到达B 点所用的时间t=?解析 我们知道当汽车以恒定功率行驶时,其速度v 与牵引力F 成反比,即,v =P/F ,由此可把老鼠的运动等效为在外力以恒定的功率牵引下的弹簧的运动.由此分析,可写出kxPF P v == 当11,v v s x ==时 将其代入上式求解,得2211s v P s v P k ==所以老鼠到达B 点时的速度s cm v s s v /1020211212=⨯==再根据外力做的功等于此等效弹簧弹性势能的增加,21222121ks ks Pt -= 代入有关量可得)(21212211s s s v P Pt -⋅=由此可解得s v s s s t 5.72.012122)(22112122=⨯⨯-=-=此题也可以用图像法、类比法求解.例4 如图4—2所示,半径为r 的铅球内有一半径为2r的 球形空腔,其表面与球面相切,铅球的质量为M.在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球(可以看成质点),求铅球对小球的引力.解析 因为铅球内部有一空腔,不能把它等效成位于球心的质点. 我们设想在铅球的空腔内填充一个密度与铅球相同的小铅球△M ,然后在对于小球m 对称的另一侧位置放另一个相同的小铅球△M ,这样加入的两个小铅球对小球m 的引力可以抵消,就这样将空腔铅球变成实心铅球,而结果是等效的.带空腔的铅球对m 的引力等效于实心铅球与另一侧△M 对m 的引力之和. 设空腔铅球对m 的引力为F ,实心铅球与△M 对m 的引力分别为F 1、F 2. 则F=F 1-F 2 ①经计算可知:M M 71=∆,所以 22178)(L GmM L M M m G F =∆+= ②图4—2222)2(7)2(r L GmMr L M m GF -=-∆= ③ 将②、③代入①式,解得空腔铅球对小球的引力为])2(7178[2221r L LGmM F F F --=-=例5 如图4-3所示,小球长为L 的光滑斜面顶端自由下滑,滑到底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大小为碰撞前速度大小的54,求小球从开始下滑到最终停止于斜面下端时,小球总共通过的路程. 解析 小球与挡板碰撞后的速度小于碰撞前的速度,说明碰撞过程中损失能量,每次反弹距离都不及上次大,小球一步一步接近挡板,最终停在挡板处. 我们可以分别计算每次碰撞垢上升的距离L 1、L 2、……、L n ,则小球总共通过的路程为L L L L s n ++++=)(221 ,然后用等比数列求和公式求出结果,但是这种解法很麻烦.我们假设小球与挡板碰撞不损失能量,其原来损失的能量看做小球运动过程中克服阻力做功而消耗掉,最终结果是相同的,而阻力在整个运动过程中都有,就可以利用摩擦力做功求出路程.设第一次碰撞前后小球的速度分别为v 、1v ,碰撞后反弹的距离为L 1,则θθsin 21sin 211212mgL mv mgL mv == 其中222111)54(,54===v v L L v v 所以碰撞中损失的动能为)25161(2121212212-=-=∆mv mv mv E k 根据等效性有k E L L f ∆=+)(1 解得等效摩擦力θsin 419mg f =通过这个结果可以看出等效摩擦力与下滑的长度无关,所以在以后的运动过程中,等效摩擦力都相同. 以整个运动为研究过程,有θsin ⋅=⋅mgL s f解出小球总共通过的总路程为.941L s =此题也可以通过递推法求解,读者可试试.例6 如图4—4所示,用两根等长的轻质细线悬挂一个小球,设L 和α已知,当小球垂直于纸面做简谐运动时,其周期为 . 解析 此题是一个双线摆,而我们知道单摆的周期,若将又线摆摆长等效为单摆摆长,则双线摆的周期就可以求出来了.将双线摆摆长等效为单摆摆长αsin L L =',则此双线摆的周期为g l g L T /sin 2/2αππ='='例8 如图4—5所示,由一根长为L的刚性轻杆和杆端的小球组成的单摆做振幅很小图4—3图4—4的自由振动. 如果杆上的中点固定另一个相同的小球,使单摆变成一个异形复摆,求该复摆的振动周期.解析 复摆这一物理模型属于大学普通物理学的内容,中学阶段限于知识的局限,不能直接求解. 如能进行等效操作,将其转化成中学生熟悉的单摆模型,则求解周期将变得简捷易行.设想有一摆长为L 0的辅助单摆,与原复摆等周期,两摆分别从摆角α处从静止开始摆动,摆动到与竖直方向夹角为β时,具有相同的角速度ω,对两摆分别应用机械能守恒定律,于是得22)2(21)(21)cos (cos 21)cos (cos l m l m mg mgl ωωαβαβ+=-+- 对单摆,得 200)(21)cos (cos l m mgl ωαβ=-联立两式求解,得l l 650=故原复摆的周期为.65220gl g l T ππ== 例9 粗细均匀的U 形管内装有某种液体,开始静止在水平面上,如图4—6所示,已知:L=10cm ,当此U 形管以4m/s 2的 加速度水平向右运动时,求两竖直管内液面的高度差.(g=10m/s 2)解析 当U 形管向右加速运动时,可把液体当做放在等效重力场中,g '的方向是等效重力场的竖直方向,这时两边的液面应与等效重力场的水平方向平行,即与g '方向垂直.设g '的方向与g 的方向之间夹角为α,则4.0tan ==gaα 由图4—6可知液面与水平方向的夹角为α, 所以,.04.044.010tan m cm L h ==⨯=⋅=∆α例10 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为mg 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若小球刚好能做完整的圆周运动,求0v .解析 小球同时受到重力和电场力作用,这时也可以认为小球处在等效重力场中. 小球受到的等效重力为mg mg mg G 332)33()(22=+=' 等效重力加速度g m G g 332='='图4—6图4—7与竖直方向的夹角︒=30θ,如图4—7甲所示.所以B 点为等效重力场中轨道的最高点,如图4—7,由题意,小球刚好能做完整的圆周运动,小球运动到B 点时的速度R g v B '=在等效重力场中应用机械能守恒定律22021)cos (21Bmv R R g m mv ++'=θ 将g '、B v 分别代入上式,解得给小球的初速度为gR v )13(20+=例11 空间某一体积为V 的区域内的平均电场强度(E )的定义为∑∑==∆=∆++∆+∆∆++∆+∆=ni ini ii nn n VVE V V V V E V E V E E 11212211如图4—8所示,今有一半径为a 原来不带电的金属球,现 使它处于电量为q 的点电荷的电场中,点电荷位于金属球外, 与球心的距离为R ,试计算金属球表面的感应电荷所产生的电 场在此球内的平均电场强度.解析 金属球表面的感应电荷产生的球内电场,由静电平衡知识可知等于电量为q 的点电荷在金属球内产生的电场,其大小相等,方向相反,因此求金属球表面的感应电荷产生的电场,相当于求点电荷q 在金属球内产生的电场.由平均电场强度公式得∑∑∑∑∑=====∆=∆=∆=∆∆=ni ni ii i ni i i i ni ini ii V V r kq V V E V E VVVE E 1121111 设金属球均匀带电,带电量为q ,其密度为Vq=ρ,则有 ∑∑==∆=∆=ni ni iii i r q k r V k E 11221ρ ∑=∆ni ii r q k 12为带电球体在q 所在点产生的场强,因而有2R kqE =,方向从O 指向q. 例11 质量为m 的小球带电量为Q ,在场强为E 的水平匀强电场中获得竖直向上的初速度为0v . 若忽略空气阻力和重力加速度g 随高度的变化,求小球在运动过程中的最小速度.图4—7甲图4—8解析 若把电场力E q 和重力mg 合成一个力,则小球相当于只受一个力的作用,由于小球运动的初速度与其所受的合外力之间成一钝角,因此可以把小球的运动看成在等效重力G '(即为合外力)作用下的斜抛运动,而做斜抛运动的物体在其速度方向与G '垂直时的速度为最小,也就是斜抛运动的最高点,由此可见用这种等效法可以较快求得结果.电场力和重力的合力方向如图4—9所示, 由图所示的几何关系可知Eqmg=θtan 小球从O 点抛出时,在y 方向上做匀减速直线运动,在x 轴方向上做匀速直线运动. 当在y 轴方向上的速度为零时,小球只具有x 轴方向上的速度,此时小球的速度为最小值,所以2200min )()(cos Eq mg Eqv v v +==θ此题也可以用矢量三角形求极值的方法求解,读者可自行解决. 例12 如图4—10所示,R 1、R 2、R 3为定值电阻,但阻值未 知,R x 为电阻箱.当R x 为Ω=101x R 时,通过它的电流Ω==18;121x x x R R A I 为当时,通过它的电流.6.02A I x =则当A I x 1.03=时,求电阻.3x R解析 电源电动势ε、内电阻r 、电阻R 1、R 2、R 3均未知, 按题目给的电路模型列式求解,显然方程数少于未知量数,于 是可采取变换电路结构的方法.将图4—10所示的虚线框内电路看成新的电源,则等效电 路如图4—10甲所示,电源的电动势为ε',内电阻为r '. 根据 电学知识,新电路不改变R x 和I x 的对应关系,有),(11r R I x x '+='ε ①),(22r R I x x '+=='ε ② )(33r R I x x '+='ε ③由①、②两式,得Ω='='2,12r V ε, 代入③式,可得Ω=1183x R例13 如图4—11所示的甲、乙两个电阻电路具有这样的特性:对于任意阻值的R AB 、图4—9图4—10图4—10甲R BC 和R CA ,相应的电阻R a 、R b 和R c 可确定. 因此在对应点A 和a ,B 和b 、C 和c 的电位是相同的,并且,流入对应点(例如A 和a )的电流也相同,利用这些条件 证明:CABC ABCAAB a R R R R R R ++=,并证明对R b 和R c 也有类似的结果,利用上面的结果求图4—11甲中P 和Q 两点之间的电阻.解析 图4—11中甲、乙两种电路的接法分别叫三角形接法和星形接法,只有这两种电路任意两对应点之间的总电阻部分都相等,两个电路可以互相等效,对应点A 、a 、B 、b 和C 、c 将具有相同的电势.由R a b =R AB ,R ac =R AC ,R bc =R BC ,对a b 间,有CABC AB BC AB CA AB BC AC AB b a R R R R R R R R R R R R +++=++=+-1)11(① 同样,a c 间和bc 间,也有CA BC AB CA BC CA AB BC AB CA c a R R R R R R R R R R R R +++=++=+-1)11(② CABC AB CA BC BC AB CA AB BC c b R R R R R R R R R R R R +++=++=+-1)11(③ 将①+②-③得:CABC ABCAAB a R R R R R R ++=再通过①-②+③和③+②-①,并整理,就得到R b 和R C 的表达式.CABC ABACBC c CABC ABBCAB b R R R R R R R R R R R R ++=++=下面利用以上结果求图4—12乙中P 和Q 两点之间的电阻. 用星形接法代替三角形接法,可得图4—12乙所示电路,PRQS 回路是一个平衡的惠斯登电桥,所以在RS 之间无电流,因此它与图4—12丙所示电路是等效的. 因此PQ 之间的总电阻R PQ 可通过这三个并联电阻求和得到.图4—114—12甲4—12乙4—12丙Ω=++=-4)61181361(1PQ R 例14 如图4—13所示,放在磁感应强度B=0.6T 的匀强磁场中的长方形金属线框a bcd ,框平面与磁感应强度方向垂直,其中a b 和bc 各是一段粗细均匀的电阻丝R ab =5Ω,R bc =3Ω,线框其余部分电阻忽略不计.现让导体EF 搁置在a b 、cd 边上,其有效长度L=0.5m ,且与a b 垂直,阻值R EF =1Ω,并使其从金属框ad 端以恒定的速度V=10m/s 向右滑动,当EF 滑过ab 长的4/5距离时,问流过a E 端的电流多大?解析 EF 向右运动时,产生感应电动势ε,当EF 滑过a b 长的54时,电路图可等效为如图4—13甲所示的电路.根据题设可以求出EF 产生的感应电动势ε,V BLV 3)105.06.0(=⨯⨯==εΩ=Ω=Ω=3,1,4bc Eb aE R R R此时电源内阻为导体EF 的电阻,Ω==1EF R r ,则电路中的总电阻为Ω=+++⋅+=3)()(bc Eb aE bc Eb aE R R R R R R r R电路中的总电流为.1A RI ==ε∴通过a E 的电流为A I aE 5.0=例15 有一薄平凹透镜,凹面半径为0.5m ,玻璃的折射率为1.5,且在平面上镀一层反射层,如图4—14所示,在此 系统的左侧主轴上放一物S ,S 距系统1.5m ,问S 成像于何处?解析 本题可等效为物点S 先经薄平凹透镜成像,其像为平面镜的物,平面镜对物成像又为薄平凹透镜成像的物,根据 成像规律,逐次求出最终像的位置.图4—13图4—13甲根据以上分析,首先考虑物S 经平凹透镜的成像S ', 根据公式11111f P P =+' 其中)(1)15.01)(15.1()11)(1(1121--=∞---=--=m R R n f 故有m P P 6.015.11111-='-=+'成像在左侧,为虚像,该虚像再经平凹透镜成像S ''后,其像距为m P P P 6.0122='-=-='成像在右侧,为虚像,该虚像再经平凹透镜成像S ''',有)(11,6.0,11112333--=='=='+m fm P P f P P 其中故m P P 375.016.01133-='-=+'成虚像于系统右侧0.375m 处此题还可用假设法求解.。

相关文档
最新文档