高中奥林匹克物理竞赛之力学解题方法

合集下载

奥林匹克物理竞赛之力学解题方法 (共138张PPT)

奥林匹克物理竞赛之力学解题方法 (共138张PPT)

a1 g (sin 1 cos1 ) a2 g (sin 2 cos2 )
Fx MaM m1a1x m2a2 x
aM 0
答案:劈块受到地面的摩擦力的大小为2.3N,方向水平向右。
例5.如图所示,质量为M的平板小车放在倾角为θ的光滑斜面 上(斜面固定),一质量为m的人在车上沿平板向下运动时, 车恰好静止,求人的加速度。
A B tan
由绳的弹力的特点得 A B 绳上才有弹力。
f B B N B B mB g cos
变形练习 1.其他条件不变,将轻质绳换成轻质杆。
2.将A、B“匀速下滑”改为“下滑”,再分轻质绳和轻质 杆两种情况讨论。
例3.如图所示,物体系由A、B、C三个物体构成,质量分别为 mA、mB、mC。用一水平力F作用在小车C上,小车C在F的作用 下运动时能使物体A和B相对于小车C处于静止状态。求连接A和 B的不可伸长的线的张力T和力F的大小。(一切摩擦和绳、滑轮 的质量都不计)
例8.质量为1.0kg的小球从高20m处自由下落到软垫上,反弹 后上升的最大高度为5.0m,小球与软垫接触的时间为1.0s,在 接触时间内小球受合力的冲量大小为(空气阻力不计,取 g=10m/s2) ( ) A.10N· s B.20N· s C.30N· s D.40N· s 点评:
将三个阶段作为一个整体来研究
三.等效法 1.方法简介
将一个情境等效为另一个情境
2d v0 cos t
2v0 sin gt
2F a M m
点评:五说题意
例2.用轻质细线把两个质量未知的小球悬挂起来,如图所示, 今对小球a持续施加一个向左偏下30°的恒力,并对小球b持续 施加一个向右偏上30°的同样大小的恒力,最后达到平衡,表 示平衡状态的图可能是

高中物理竞赛(力学)试题解

高中物理竞赛(力学)试题解

高中物理竞赛(力学)试题解————————————————————————————————作者:————————————————————————————————日期:1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。

当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。

因α很小,所以飞船新轨道不会与火星表面交会。

飞船喷气质量可以不计。

(1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。

2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x处(x<l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma和m b. 杆可绕距a球为L/4处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过 角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aOb AB CDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a 和b 隔开.将管竖立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.11如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。

奥林匹克物理竞赛之力学解题方法

奥林匹克物理竞赛之力学解题方法

(
s
2 2

s12 )
t (s22 s12 ) 22 12 7.5s 2s1v1 2 1 0.2
例4.如图所示,小球从长为L的光滑斜面顶端自由下滑,滑到
底端时与挡板碰撞并反向弹回,若每次与挡板碰撞后的速度大
小为碰撞前速度大小的4/5,求小球从开始下滑到最终停止于斜
面下端时,小球总共通过的路程。
奥林匹克物理竞赛之力学解题方法
三.等效法 1.方法简介
2.赛题精讲
将一个情境等效为另一个情境 将一个过程等效为另一过程 将一个模型等效为另一个模型 将一个物理量的计算等效为另一个物理量的计算
例1.如图所示,水平面上,有两个竖直的光滑墙壁A和B,相距
为d,一个小球以初速度v0从两墙之间的O点斜向上抛出,与A和 B各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ。
六、类比法
1.方法简介:根据两个研究对象或两个系统在某些属性上类似 而推出其他属性也类似的思维方法,是一种由个别到个别的推 理形式。
2.赛题精讲 例1.如图所示,AOB是一内表面光滑的楔形槽,固定在水平 桌面(图中纸面)上,夹角α=10。现将一质点在BOA面内从A 处以速度v=5m/s射出,其方向与AO间的夹角θ=600,OA=10m。 设质点与桌面间的摩擦可忽略不计,质点与OB面及OA面的碰 撞都是弹性碰撞,且每次碰撞时间极短,可忽略不计,试求: (1)经过几次碰撞质点又回到A处与OA相碰?(计算次数时 包括在A处的碰撞) (2)共用多少时间?
解析:设在一个极短的时间Δt内,猎犬 做直线运动,正三角形边长依次变为a1、 a2、a3、…、an。
a1

a

AA1

BB1
cos60

高中物理竞赛题库力学实验

高中物理竞赛题库力学实验

力学实验竞赛试题一、用手枪发射金属子弹,请你设计测子弹初速度的实验方法。

至少设计三种不同的方法,要求用简洁的文字和图示说明物理过程,并写出相应的公式。

二、在考虑弹簧本身的质量情况下,测出弹簧的有效质量。

(仪器和器材)弹簧(最大拉力不超过6克)、砝码托盘、悬挂弹簧支架、毫米刻度尺附支架、秒表、天平。

(说明)在忽略弹簧本身质量情况下,弹簧振子振动系统的质量就是振子的质量M,当弹簧质量跟振子相比大到不能忽略时,振动系统的质量应是振子质量和弹簧有效质量之和.(要求)1,推导出m0的计算式;2,简要写出实验步骤并记录和整理数据。

三、用天平称衡的方法,测定一个试管有标尺部分的平均内横截面积。

1,可选用的器材:物理天平、试管(内贴有毫米格子纸并带有底座)、杯子、水(密度为1.00克/厘米3)、煤油(密度为0.8克/厘米3)、擦拭用纸、搅拌棒,滴管。

2,要求:正确使用天平,写出测量公式,记录测量值及得出测量结果。

四、测定A、B两种材料组成的混合物中,两种材料的体积比。

(仪器和用具)物理天平、比重瓶、烧杯、细绳、待测混合物、微粒状纯材料B、蒸馏水。

已知:材料A的密度为0.880克/厘米3,蒸馏水的密度为1.00克/厘米3五、测定液体的密度。

1,器材:两种液体密度已知、玻璃管一支(如图所示)其带刻度部分直径均匀、小重物(保险丝)若干、细铜丝少许、待测液体,其密度介于两种液体密度之间。

2,用具:清水一杯、毛巾一块、剪刀一把、坐标纸一张。

3,要求:(1)用上述器材制作一只测定液体密度的仪器;(2)用已知密度给该仪器定标,在直角坐标纸上作出呈线性关系的定标曲线。

(3)测出待测液体的密度。

六、研究“倾斜摆”振动周期。

(仪器用具)装置如图所示、卷尺、秒表、游标卡尺、重垂线、线、坐标纸、倾斜摆(摆锤的质量远大于摆杆的质量)(要求)1,试猜测在摆角很小的情况下,摆的振动周期与哪些因素有关(摆杆的质量略去不计);2,用实验的方法探索摆的周期与可控变量的关系,将周期与相应变量的关系通过变量替换,用直线图象来表达,归纳出周期公式,说明实验误差的主要来源。

高中物理力学中的几种实用的简捷解题方法

高中物理力学中的几种实用的简捷解题方法

高中物理力学中的几种实用的简捷解题方法
高中物理力学是学生在学习物理课程中很重要的部分,对于许多学生来说,力学中的问题往往是比较困难的。

通过一些简捷的解题方法,我们可以更加轻松地解决这些问题。

本文将介绍几种高中物理力学中的实用的简捷解题方法,希望对广大学生有所帮助。

一、图像法
物理力学中的一些问题往往可以通过绘制图像来更好地理解和解决。

当遇到关于物体的运动问题时,可以尝试分析物体在不同时间点的位置,速度和加速度,然后把这些信息用图像表示出来,这样可以更清晰地看到问题的本质。

通过图像法,我们可以更轻松地找到问题的关键点,然后给出相应的解答,这对于许多学生来说是一个很好的解题方法。

二、分析法
在解决物理力学中的问题时,我们可以尝试对问题进行深入的分析,找出问题的关键点,并且建立一个适当的模型来描述问题的本质。

当遇到问题涉及到力的平衡时,我们可以采用平衡力的分析方法,把物体所受的所有力都分析出来,然后根据力的平衡条件来求解未知量。

通过分析法,我们可以更加深入地了解问题,找出其中的规律,并给出相应的解答。

三、数学方法
四、实验方法
在解决物理力学中的问题时,实验方法是一个很好的工具,通过实验,我们可以更好地验证理论,理解规律,并且找出问题的解决办法。

当遇到问题关于轨迹,速度,加速度等时,我们可以通过实验的方法,测量物体在不同条件下的运动情况,然后利用实验数据来解决问题。

通过实验方法,我们可以更加直观地了解问题,找出其中的规律,并给出相应的解答。

五、综合方法。

高中物理竞赛辅导习题力学部分

高中物理竞赛辅导习题力学部分

力、物体的平衡补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。

一、力学中常见的三种力 1.重力、重心①重心的定义:++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。

②重心与质心不一定重合。

如很长的、竖直放置的杆,重心和质心不重合。

如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。

以重心为转轴,两边的重力力矩平衡(不是重力相等):(0.5-x )2G =(x +0.25)2G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5⨯2G +(1+0.5)2G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m.2.巴普斯定理:①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积乘平面薄板重心通过的路程。

如质量分布均匀的半圆盘的质心离圆心的距离为x ,绕直径旋转一周,2321234R x R πππ⋅=,得π34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度乘曲线的重心通过路程。

如质量分布均匀的半圆形金属丝的质心离圆心的距离为x ,绕直径旋转一周,R x R πππ⋅=242,得πR x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内切圆板,如图a 所示,求剩下部分的重心。

(2)如图b 所示是一个均匀三角形割去一个小三角形AB 'C ',而B 'C '//BC ,且∆AB 'C '的面积为原三角形面积的41,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。

[答案:(1) 离圆心的距离6R ;(2)离底边中点的距离92L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x .有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6R x ==5cm. 填补法:在没挖去的圆上填上一块受”重力”方向向上的圆,相当于挖去部分的重力被抵消,其重心与挖去后的重心相同,同理可得6R x =. 能量守恒法:原圆板的重力势能等于留下部分的重力势能和挖去部分的重力势能之和,可得6R x =. (2) ∆AB 'C '的面积为原三角形面积的1/4,质量为原三角形质量的41,中线长度应为原三角形中线长度的21。

2023年高中奥林匹克物理竞赛解题方法图像法

2023年高中奥林匹克物理竞赛解题方法图像法

高中奥林匹克物理竞赛解题措施十一、图像法措施简介图像法是根据题意把抽象复杂旳物理过程有针对性地表到达物理图像,将物理量间旳代数关系转变为几何关系,运用图像直观、形象、简要旳特点,来分析处理物理问题,由此到达化难为易,化繁为简旳目旳,图像法在处理某些运动问题,变力做功问题时是一种非常有效旳措施。

赛题精讲例1:一火车沿直线轨道从静止发出由A 地驶向B 地,并停止在B 地。

AB 两地相距s ,火车做加速运动时,其加速度最大为a 1,做减速运动时,其加速度旳绝对值最大为a 2,由此可可以判断出该火车由A 到B 所需旳最短时间为 。

解析:整个过程中火车先做匀加速运动,后做匀减速运动,加速度最大时,所用时间最短,分段运动可用图像法来解。

根据题意作v —t 图,如图11—1所示。

由图可得11t v a =vt t t v s t v a 21)(212122=+==由①、②、③解得2121)(2a a a a s t +=例2:两辆完全相似旳汽车,沿水平直路一前一后匀速行驶,速度为v 0,若前车忽然以恒定旳加速度刹车,在它刚停住时,后车此前车刹车时旳加速度开始刹车。

已知前车在刹① ②车过程中所行旳距离为s ,若要保证两辆车在上述状况中不相碰,则两车在做匀速行驶时保持旳距离至少为 ( )A .sB .2sC .3sD .4s解析:物体做直线运动时,其位移可用速度——时间图像中旳面积来表达,故可用图像法做。

作两物体运动旳v —t 图像如图11—2所示,前车发生旳位移s 为三角形v 0Ot 旳面积,由于前后两车旳刹车加速度相似,根据对称性,后车发生旳位移为梯形旳面积S ′=3S ,两车旳位移之差应为不相碰时,两车匀速行驶时保持旳最小车距2s.因此应选B 。

例3:一只老鼠从老鼠洞沿直线爬出,已知爬出速度v 旳大小与距老鼠洞中心旳距离s 成反比,当老鼠抵达距老鼠洞中心距离s 1=1m 旳A 点时,速度大小为v 1=20cm/s ,问当老鼠抵达距老鼠洞中心s 2=2m 旳B 点时,其速度大小v 2=?老鼠从A 点抵达B 点所用旳时间t=?解析:由于老鼠从老鼠洞沿直线爬出,已知爬出旳速度与通过旳距离成反比,则不能通过匀速运动、匀变速运动公式直接求解,但可以通过图像法求解,由于在s v1图像中,所围面积即为所求旳时间。

物理竞赛专题训练(力学提高)

物理竞赛专题训练(力学提高)

物理竞赛复赛讲座(力学部分) 一、竞赛解题技巧浅谈例题1、如图所示为探究老鼠出洞时的运动情况。

一只老鼠离开洞穴沿直线前进,它跑的速度与它到洞穴的距离成反比。

当它跑到距离洞穴d1的甲处时的瞬时速度为v1,如何测出它从甲处跑到离开洞穴距离为d2的乙处时经历的时间?例题2、某空心球,球体积为V ,球腔的容积为球体积的一半。

当它漂浮在水面上时,有一半露出水面。

如果在球腔内注满水,那么( )A.球仍漂浮在水面上,但露出水面的部分将减少。

B.球仍漂浮在水面上,露出水面部分仍为球体积的一半。

C.球可以停留在水中任何深度的位置。

D.球将下沉,直至容器底。

例三、有一水果店,所用的秤是吊盘式杆秤,量程为10kg 。

现有一较大的西瓜,超过此秤的量程。

店员A 找到另一秤砣,与此秤砣完全相同,把它与原秤砣结在一起作为秤砣进行称量。

平衡时,双秤砣位于6.5kg 刻度处。

他将此读数乘以2得13kg ,作为此西瓜的质量,卖给顾客。

店员B 对这种称量结果表示怀疑。

为了检验,他取另一西瓜,用单秤砣正常称量得8kg ,用店员A 的双秤砣法称量,得读数为3kg ,乘以2后得6kg 。

这证明了店员A 的办法使不可靠的。

试问,店员A 卖给顾客的那个西瓜的实际质量是多大?例四、如图,某装有水的容器中漂浮着一块冰,在水的表面上又覆盖着一层油.已知水面高度h 1,油面高度为h 2,则当冰熔化之后( )水面高度h 1升高,油面高度h 2升高; 水面高度h 1升高,油面高度h 2降低; 水面高度h 1降低,油面高度h 2升高; 水面高度h 1降低,油面高度h 2降低。

洞穴甲乙例四、密封的圆台形容器如图放置,装满不能混合的两种液体,它们的密度分别为ρρρρ1212、()<,此时液体对容器底的压强为P A ;若将容器倒置,液体对容器底的压强为P B ;比较P P A B 、的大小,正确的是( ) A. P P A B > B. P P A B = C. P P A B < D. 无法比较。

高中物理竞赛专题一力物体的平衡(含习题及答案)

高中物理竞赛专题一力物体的平衡(含习题及答案)

专题一力物体的平衡第一讲力的处理矢量的运算1、加法表达:a + b = c o名词:c为“和矢量”。

法则:平行四边形法则。

如图1所示和矢量大小:c = a2b22abco^ ,其中a为a和b的夹角。

和矢量方向:c在a、b之间,和a夹角B = arcs in ------2 2.a b 2abcos:-2、减法表:达:a = c — b o名词:c为“被减数矢量”,b为“减数矢量”,a为“差矢量”法则:三角形法则。

如图2所示。

将被减数矢量和减数矢量的起始端平移到一点,然后连接两时量末端,指向被减数时量的时量,即是差矢量。

差矢量大小:a = ;b2• c2- 2bccosr,其中B为c和b的夹角。

差矢量的方向可以用正弦定理求得。

一条直线上的矢量运算是平行四边形和三角形法则的特例。

例题:已知质点做匀速率圆周运动,半径为R,周期为T,求它在-T内和4 1在-T内的平均加速度大小。

21解说:如图3所示,A到B点对应-T的过程,A4到C点对应1T的过程。

这三点的速度矢量分别设为2v A、v B和 v C。

图3_v t —V 。

/曰 __V B —V A . _v c —V A a =得:a AB = , a Ac =-tt ABt AC由于有两处涉及矢量减法,设两个差矢量.:V 1= V B — V A ,厶v 2= v c — V A ,根据三角形法则,它们在图3中的大小、方向已绘出(:V2的“三角形”已被拉 伸成一条直线)。

本题只关心各矢量的大小,显然:V A = V B = V c = 2JI R且.T■:v 1 = . 2 v A =2 2二 RTL V2 = :2 V A =4 二 R 'T2 2 二R4二 R所以: a AB =v 1 _ T =8 2 二Ra■ A V 2T - 8二 Rt ABT T 2ACt ACT T 242观察与思考:这两个加速度是否相等,匀速率圆周运动是不是匀变速运动? 答:否;不是。

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)

高中物理竞赛辅导教程(新大纲版)一、力学部分1. 运动学- 基本概念:位移、速度、加速度。

位移是矢量,表示位置的变化;速度是描述物体运动快慢和方向的物理量,加速度则反映速度变化的快慢。

- 匀变速直线运动公式:v = v_0+at,x=v_0t+(1)/(2)at^2,v^2-v_{0}^2 = 2ax。

这些公式在解决直线运动问题时非常关键,要注意各物理量的正负取值。

- 相对运动:要理解相对速度的概念,例如v_{AB}=v_{A}-v_{B},在处理多个物体相对运动的问题时很有用。

- 曲线运动:重点掌握平抛运动和圆周运动。

平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动;圆周运动中要理解向心加速度a =frac{v^2}{r}=ω^2r,向心力F = ma的来源和计算。

2. 牛顿运动定律- 牛顿第二定律F = ma是核心。

要学会对物体进行受力分析,正确画出受力图。

- 整体法和隔离法:在处理多个物体组成的系统时,整体法可以简化问题,求出系统的加速度;隔离法用于分析系统内单个物体的受力情况。

- 超重和失重:当物体具有向上的加速度时超重,具有向下的加速度时失重,加速度为g时完全失重。

3. 动量与能量- 动量定理I=Δ p,其中I是合外力的冲量,Δ p是动量的变化量。

- 动量守恒定律:对于一个系统,如果合外力为零,则系统的总动量守恒。

在碰撞、爆炸等问题中经常用到。

- 动能定理W=Δ E_{k},要明确功是能量转化的量度。

- 机械能守恒定律:在只有重力或弹力做功的系统内,机械能守恒。

要熟练掌握机械能守恒定律的表达式E_{k1}+E_{p1}=E_{k2}+E_{p2}。

二、电磁学部分1. 电场- 库仑定律F = kfrac{q_{1}q_{2}}{r^2},描述真空中两个静止点电荷之间的相互作用力。

- 电场强度E=(F)/(q),电场线可以形象地描述电场的分布情况。

- 电势、电势差:U_{AB}=φ_{A}-φ_{B},电场力做功与电势差的关系W = qU。

高中物理奥林匹克竞赛解题方法 电场公式

高中物理奥林匹克竞赛解题方法 电场公式

高中奥林匹克物理竞赛解题方法 电场公式(1)无限大均匀带电平面两侧的场强为02εσ=E ,这个公式对于靠近有限大小带电面的地方也适用,这就是说,根据这个结果,导体表面元S ∆上的电荷在紧靠它的地方产生的场强也应是2εσ,但是,我们知道,在静电平衡状态下,导体表面之处附近空间的场强E 与该处导体表面面电荷密度σ的关系为0εσ=E ,前者比后者小半,这是为什么 该题涉及下列知识点:无限大带电板产生的场强公式,导体静电平衡条件,场强叠加原 理等。

(2)若一带电导体表面上某点附近电荷面密度为e σ这时该点外侧附近场强为0εσ=E , 如果将另一带电体移近,该点场强是否改变公式0εσ=E 是否仍成立 该题涉及下列知识点:静电平衡时导体表面外附近的场强分布,静电感应,场强叠加原理,导体表面电荷分布等。

(3)把一个带电体移近一个导体壳,带电体单独在导体空腔内产生的电场是否等于零静电屏蔽效应是怎样体现的该题涉及下列知识点:场强叠加原理,导体静电平衡条件,静电屏蔽等。

(4)将一个带正电的导体A 移近一个不带电的绝缘导体B 时,导体B 的电位升高还是降低为什么该题涉及下列知识点:静电感应,静电平衡时导体的电位分布,电位零点的选择等。

(5)将一个带正电的导体移近一个接地的导体B 时,导体B 是否维持零电位其上是否带电该题涉及下列知识点:静电感应,导体静电平衡时的电位分布,电位零点的选择等。

(6)一个封闭的金属壳内有一个电量为q 的金属物体,试证明:要想使这金属物体的电位与金属壳的电位相等,唯一的办法是使q =0这个结论与金属壳是否带电有没有关系该题涉及下列知识点:静电感应,静电平衡时导体的电势分布,静电屏蔽,静电平衡条件等。

(7)两导体上分别带有电量-Q 和2Q ,都放在同一个封闭的金属壳内。

证明:电荷为2Q 的导体的电位等于金属壳的电位。

该题涉及的知识点为:导体静电平衡条件,静电平衡时导体的电位分布,高斯定理,电力线性质等。

高中物理竞赛辅导力学部分专用讲义

高中物理竞赛辅导力学部分专用讲义

高中物理《竞赛辅导》力学部分目录第一讲:力学中的三种力第二讲:共点力作用下物体的平衡第三讲:力矩、定轴转动物体的平衡条件、重心第四讲:一般物体的平衡、稳度第五讲:运动的基本概念、运动的合成与分解第六讲:相对运动与相关速度第七讲:匀变速直线运动第八讲:抛物的运动第九讲:牛顿运动定律(动力学)第十讲:力和直线运动第十一讲:质点的圆周运动、刚体的定轴转动第十二讲:力和曲线运动第十三讲:功和功率第十四讲:动能定理第十五讲:机械能、功能关系第十六讲:动量和冲量第十七讲:动量守恒《动量守恒》练习题第十八讲:碰撞《碰撞》专题练习题第十九讲:动量和能量《动量与能量》专题练习题第二十讲:机械振动《机械振动》专题练习第二十一:讲机械波第二十二讲:驻波和多普勒效应第一讲: 力学中的三种力【知识要点】(一)重力重力大小G=mg ,方向竖直向下。

一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。

(二)弹力1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定.3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x 为弹簧的拉伸或压缩量)来计算 .在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k 1,k 2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:nk k k 1...111+=,即弹簧变软;反之.若以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为0L 的弹簧的劲度系数为k ,则剪去一半后,剩余2L 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。

高中物理竞赛—静力学知识要点分析

高中物理竞赛—静力学知识要点分析

高中物理竞赛—静力学知识要点分析一、力的效应1.内、外效应:力的作用效果有两种:一是受力物发生形变;二是使受力物的运动状态发生变化。

前者表现为受力物各部分的相对位置发生变化,故称为力的内效应;后者表现为受力物的运动方向或快慢发生变化,故称为力的外效应。

众所周知,当物体同时受到两个或多个力作用时,它的运动状态也可能保持不变,这说明力对同一物体的外效应可能相互抵消。

2.合力与分力合力与它的那组分力之间,在力学效果上必须具有“等效代换”的关系。

二、力的作用方式力是物体间的一种相互作用,又是一并具有大小、方向和作用点的一种矢量。

根据研究和解决实际问题的需要,可以从不同的角度对力进行区分。

1.体力、面力和点力按照力的作用点在受力物上的分布情况,可将力可将力分为体力、面力和点力三种。

外力的作用点连续分布在物体表面和内部的一定(或全部)区域,这种力就是体力。

重力就是一种广泛存在的体力。

作用点连续分布在物体某一面(或全部表面)上,这种力就是面力。

压力和摩擦力就是一种广泛存在的面力。

当面力和体力作用的区域远比受力物小,或可以不考虑作用点的分布情况时,就可以把相应的体力或面力当成是集中在物体的某一点上作用的,这种情况下的体力和面力就叫做点力。

例如,在通常情况下,我们就是把重力、摩擦力和压力当成点力看待。

具体而言,常用物体各部分所受重力的合力来代替该物体受到的总重力;用摩擦面上各部分所受摩擦力之合力来代替这个面上的总摩擦力;对压力也是按照这种方式处理的。

当不涉及转动的时候,我们甚至把面力的合力作用点标出在物体的重心上,这就使问题的解决更加便当。

但若涉及到物体的转动,就绝对不能把体力和面力(如磁力)的作用点随便地集中到物体的重心上。

点力只是在一定条件下对体力和面力的一种适当的简化而已,对此切勿掉以轻心。

2.内力和外力按照施力物与被研究物体的所属关系,又常将力分为内力和外力两大类若被研究对象是某一物体,则该物体内部各部分间的作用力叫内力;若被研究对象是两个或多个物体组成的系统,则系统内部各物体间的作用力都叫该系统的内力。

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)

高中物理竞赛之力学部分:刚体力学大解析(可编辑精品)
延伸:物体系的角动量守恒
内容:若选一系统,此系统中,有质点(多个)和刚体,此系统对于某一转动轴的合力矩为零,则整个系统对该转动轴的角动量守恒。即 =恒量
例题分析
例1:一长为l,质量为M的杆,可绕支点O自由转动,另一质量为m,速度为v的子弹射入距支点为a的棒内。问子弹刚穿进棒内时,棒的角速度为多少?(设棒穿进棒的时间很短)
分析:
则a=5m/s2, =2.5mT=40N
练习:1—78答案加速度为5.79m/s2,绳子的张力分别为69.9N,和75.8N。
(4)定轴转动的功能原理
转动动能:定轴转动的刚体中,所有的质元作圆周运动的动能之和即刚体的转动动能,
力矩的功:力矩作用下,使刚体发生转动,转动过程中转动动能发生变化,则力矩对刚体做了功,即力矩的功。
定轴转动的动能定理:
合外力矩对刚体做的功等于刚体转动动能的增加量

例题分析:
例:一质量为M,半径为R的圆盘,盘上绕有绳子,一端挂一质量为m的物体。问物体由静止开始下落高度h时,其速度为多大呢?
又因
解得:
练习:匀质杆的质量为m,长为l,一端为光滑的支点,最初处于水平位置,释放后杆向下摆动,求杆在铅垂直位置时,其下端点的线速度v。( )
利用上述定理分析细圆环对任意切线的转动惯量:J=3mR2/2
※定轴转动定律
刚体在做定轴转动时,刚体的角加速度与刚体所受到的合外力距成正比,与刚体的转动惯量成反比。
即M=J (类比与牛二定律F=ma)
例题分析:
例2.质量为M=16kg的实心滑轮,半径R为0.15m。一根细绳绕在滑轮上,一端挂一质量为m=8kg的物体。求(1)静止开始1秒钟后,物体下降的距离。(2)绳子的张力。
分析:左右两部分对中心转轴的转动惯量是一样的,则只要算出其中一部分的转动惯量就可以了,则将左边部分分成n等份,每分的质量为m/2n,

高中物理力学解答题解题技巧

高中物理力学解答题解题技巧

高中物理力学解答题解题技巧在高中物理学习中,力学是一个重要的分支,也是学生们常常遇到的难题之一。

解答力学题需要一定的技巧和方法,下面我将为大家分享一些解题技巧,希望对高中学生和他们的父母有所帮助。

一、力学题的基本解题步骤解答力学题的基本步骤可以概括为:分析题目,确定已知量和未知量,选择适当的物理定律和公式,建立方程,求解未知量。

例如,有一道关于力的平衡问题的题目:一个质量为2kg的物体悬挂在一根绳子上,绳子与竖直方向成30°角,求绳子的张力。

首先,我们要分析题目,确定已知量和未知量。

已知量是物体的质量为2kg,绳子与竖直方向成30°角;未知量是绳子的张力。

接下来,我们选择适当的物理定律和公式。

根据力的平衡条件,我们可以得到以下关系式:ΣF = 0,即物体所受合力为零。

在这道题中,合力即为绳子的张力。

然后,我们建立方程。

根据力的平衡条件,我们可以得到以下方程:Tsin30° - mg = 0,其中T为绳子的张力,m为物体的质量,g为重力加速度。

最后,我们求解未知量。

将已知量代入方程,解得绳子的张力T = mg/sin30°。

通过以上步骤,我们可以得到绳子的张力为2kg * 9.8m/s^2 / sin30° = 39.2N。

二、力学题的常见考点在解答力学题时,我们需要注意一些常见的考点,掌握解题技巧。

1. 斜面问题:当题目中涉及到斜面时,我们需要将斜面分解成竖直方向和平行于斜面方向的两个分力。

这样可以简化问题,使得计算更加方便。

例如,有一道关于斜面问题的题目:一个质量为2kg的物体沿着摩擦系数为0.2的斜面下滑,斜面的倾角为30°,求物体受到的摩擦力。

首先,我们将斜面分解成竖直方向和平行于斜面方向的两个分力。

竖直方向的分力为mgcos30°,平行于斜面方向的分力为mgsin30°。

接下来,我们选择适当的物理定律和公式。

高中奥林匹克物理竞赛解题方法+微元法

高中奥林匹克物理竞赛解题方法+微元法

高中奥林匹克物理竞赛解题方法三三、微元法方法简介微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。

用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。

在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。

赛题精讲例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。

设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

解析:该题不能用速度分解求解,考虑采用“微元法”。

设某一时间人经过AB 处,再经过一微小过程△t (△t →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度hH Hv t S h H H t S v A A t C C t C -=∆∆-=∆∆='→∆'→∆00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶端C 点做匀速直线运动.例2:如图3—2所示,一个半径为R 的四分之一光滑球面放在水平桌面上,球面上放置一光滑均匀铁链,其A端固定在球面的顶点,B 端恰与桌面不接触,铁链单位长度的质量为ρ.试求铁链A 端受的拉力T.解析:以铁链为研究对象,由由于整条铁链的长度不能忽略不计,所以整条铁链不能看成质点,要分析铁链的受力情况,须考虑将铁链分割,使每一小段铁链可以看成质点,分析每一小段铁边的受力,根据物体的平衡条件得出整条铁链的受力情况.在铁链上任取长为△L 的一小段(微元)为研究对象,其受力分析如图3—2—甲所示.由于该元处于静止状态,所以受力平衡,在切线方向上应满足:θθθθT G T T +∆=∆+cos θρθθcos cos Lg G T ∆=∆=∆由于每段铁链沿切线向上的拉力比沿切线向下的拉力大△T θ,所以整个铁链对A 端的拉力是各段上△T θ的和,即 ∑∑∑∆=∆=∆=θρθρθcos cos L g Lg T T观察 θcos L ∆的意义,见图3—2—乙,由于△θ很小,所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R ,所以 ∑=∆R L θcos 可得铁链A 端受的拉力 ∑=∆=gR L g T ρθρcos例3:某行星围绕太阳C 沿圆弧轨道运行,它的近日点A 离太阳的距离为a ,行星经过近日点A 时的速度为A v ,行星的远日点B 离开太阳的距离为b ,如图3—3所示,求它经过远日点B 时的速度B v 的大小.解析:此题可根据万有引力提供行星的向心力求解.也可根据开普勒第二定律,用微元法求解.设行星在近日点A 时又向前运动了极短的时间△t ,由于时间极短可以认为行星在△t 时间内做匀速圆周运动,线速度为A v ,半径为a ,可以得到行星在△t 时间内扫过的面积 a t v S A a ⋅∆=21 同理,设行星在经过远日点B 时也运动了相同的极短时间△t , 则也有 b t v S B b ⋅∆=21 由开普勒第二定律可知:S a =S b 即得 A B v b a v = 此题也可用对称法求解. 例4:如图3—4所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大?解析:取人和船整体作为研究系统,人在走动过程中,系统所受合外力为零,可知系统动量守恒.设人在走动过程中的△t 时间内为匀速运动,则可计算出船的位移.设v 1、v 2分别是人和船在任何一时刻的速率,则有21Mv mv = ① 两边同时乘以一个极短的时间△t , 有 t Mv t mv ∆=∆21 ②由于时间极短,可以认为在这极短的时间内人和船的速率是不变的,所以人和船位移大小分别为t v s ∆=∆11,t v s ∆=∆22由此将②式化为 21s M s m ∆=∆ ③把所有的元位移分别相加有 ∑∑∆=∆21s M s m④ 即 ms 1=Ms 2 ⑤ 此式即为质心不变原理. 其中s 1、s 2分别为全过程中人和船对地位移的大小, 又因为 L=s 1+s 2 ⑥由⑤、⑥两式得船的位移 L mM m s +=2 例5:半径为R 的光滑球固定在水平桌面上,有一质量为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上,使弹性绳圈水平停留在平衡位置上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k.解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙. 先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角是△θ,则每一小段的质量 M m πθ2∆=∆ △m 在该平面上受拉力F 的作用,合力为 2sin 2)2cos(2θθπ∆=∆-=F F T 因为当θ很小时,θθ≈sin 所以θθ∆=∆=F F T 22再看正视图3—5—乙,△m 受重力△mg ,支持力N ,二力的合力与T 平衡.即 θtan ⋅∆=mg T现在弹性绳圈的半径为 R R r 2222==ππ 所以 ︒===4522sin θθR r 1tan =θ因此T=Mg mg πθ2∆=∆ ①、②联立,θπθ∆=∆F Mg 2, 解得弹性绳圈的张力为: π2Mg F = 设弹性绳圈的伸长量为x 则 R R R x πππ)12(2-=-=所以绳圈的劲度系数为:RMg R Mg x F k 222)12()12(2ππ+=-== 例6:一质量为M 、均匀分布的圆环,其半径为r ,几何轴与水平面垂直,若它能经受的最大张力为T ,求此圆环可以绕几何轴旋转的最大角速度.解析:因为向心力F=mr ω2,当ω一定时,r 越大,向心力越大,所以要想求最大张力T 所对应的角速度ω,r 应取最大值.如图3—6所示,在圆环上取一小段△L ,对应的圆心角为△θ,其质量可表示为M m πθ2∆=∆,受圆环对它的张 力为T ,则同上例分析可得 22sin 2ωθmr T ∆=∆ 因为△θ很小,所以22sin θθ∆≈∆,即 2222ωπθθMr T ∆=∆⋅ 解得最大角速度 MrT πω2= 例7:一根质量为M ,长度为L 的铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图3—7所示,求链条下落了长度x 时,链条对地面的压力为多大?解析:在下落过程中链条作用于地面的压力实质就是链条对地面的“冲力”加上落在地面上那部分链条的重力.根据牛顿第三定律,这个冲力也就等于同一时刻地面对链条的反作用力,这个力的冲量,使得链条落至地面时的动量发生变化.由于各质元原来的高度不同,落到地面的速度不同,动量改变也不相同.我们取某一时刻一小段链条(微元)作为研究对象,就可以将变速冲击变为恒速冲击.设开始下落的时刻t=0,在t 时刻落在地面上的链条长为x ,未到达地面部分链条的速度为v ,并设链条的线密度为ρ.由题意可知,链条落至地面后,速度立即变为零.从t 时刻起取很小一段时间△t ,在△t 内又有△M=ρ△x 落到地面上静止.地面对△M 作用的冲量为I t Mg F ∆=∆∆-)( 因为 0≈∆⋅∆t Mg所以 x v v M t F ∆=-⋅∆=∆ρ0 解得冲力:t x v F ∆∆=ρ,其中tx ∆∆就是t 时刻链条的速度v , 故 2v F ρ= 链条在t 时刻的速度v 即为链条下落长为x 时的即时速度,即v 2=2g x ,代入F 的表达式中,得 gx F ρ2=此即t 时刻链对地面的作用力,也就是t 时刻链条对地面的冲力.所以在t 时刻链条对地面的总压力为 .332LMgx gx gx gx N ==+=ρρρ 例8:一根均匀柔软的绳长为L ,质量为m ,对折后两端固定在一个钉子上,其中一端突然从钉子上滑落,试求滑落的绳端点离钉子的距离为x 时,钉子对绳子另一端的作用力是多大? 解析:钉子对绳子另一端的作用力随滑落绳的长短而变化,由此可用微元法求解.如图3—8所示,当左边绳端离钉子的距离为x 时,左边绳长为)(21x l -,速度 gx v 2=, 右边绳长为).(21x l + 又经过一段很短的时间△t 以后, 左边绳子又有长度t V ∆21的一小段转移到右边去了,我们就分 析这一小段绳子,这一小段绳子受到两力:上面绳子对它的拉 力T 和它本身的重力l m g t v /(21=∆λλ为绳子的线密度), 根据动量定理,设向上方向为正 )21(0)21(v t v t g t v T ⋅∆--=∆∆-λλ由于△t 取得很小,因此这一小段绳子的重力相对于T 来说是很小的,可以忽略,所以有 λλgx v T ==221 因此钉子对右边绳端的作用力为 )31(21)(21lx mg T g x l F +=++=λ 例9:图3—9中,半径为R 的圆盘固定不可转动,细绳不可伸长但质量可忽略,绳下悬挂的两物体质量分别为M 、m.设圆盘与绳间光滑接触,试求盘对绳的法向支持力线密度.解析:求盘对绳的法向支持力线密度也就是求盘对绳的法向单位长度所受的支持力.因为盘与绳间光滑接触,则任取一小段绳,其两端受的张力大小相等,又因为绳上各点受的支持力方向不同,故不能以整条绳为研究对象,只能以一小段绳为研究对象分析求解.在与圆盘接触的半圆形中取一小段绳元△L ,△L 所对应的圆心角为△θ,如图3—9—甲所示,绳元△L 两端的张力均为T ,绳元所受圆盘法向支持力为△N ,因细绳质量可忽略,法向合力为零,则由平衡条件得: 2sin 22sin 2sinθθθ∆=∆+∆=∆T T T N 当△θ很小时,22sin θθ∆≈∆ ∴△N=T △θ 又因为 △L=R △θ则绳所受法向支持力线密度为 RT R T L N n =∆∆=∆∆=θθ ① 以M 、m 分别为研究对象,根据牛顿定律有 Mg -T=Ma ② T -mg=m a ③ 由②、③解得: m M Mmg T +=2 将④式代入①式得:Rm M Mmg n )(2+= 例10:粗细均匀质量分布也均匀的半径为分别为R 和r 的两圆环相切.若在切点放一质点m ,恰使两边圆环对m 的万有引力的合力为零,则大小圆环的线密度必须满足什么条件?解析:若要直接求整个圆对质点m 的万有引力比较难,当若要用到圆的对称性及要求所受合力为零的条件,考虑大、小圆环上关于切点对称的微元与质量m 的相互作用,然后推及整个圆环即可求解.如图3—10所示,过切点作直线交大小圆分别于P 、Q 两点,并设与水平线夹角为α,当α有微小增量时,则大小圆环上对应微小线元αα∆⋅=∆∆⋅=∆2221r L R L其对应的质量分别为 αρρ∆⋅=∆=∆21111R l mαρρ∆⋅=∆=∆22222r l m 由于△α很小,故△m 1、△m 2与m 的距离可以认为分别是 ααcos 2cos 221r r R r ==所以△m 1、△m 2与m 的万有引力分别为 222222212111)cos 2(2,)cos 2(2ααρααρr m R G r m Gm F R m R G r m Gm F ∆⋅=∆=∆∆⋅=∆=∆ 由于α具有任意性,若△F 1与△F 2的合力为零, 则两圆环对m 的引力的合力也为零, 即2221)cos 2(2)cos 2(2ααρααρr m r G R m R G ∆⋅=∆⋅ 解得大小圆环的线密度之比为:rR =21ρρ 例11:一枚质量为M 的火箭,依靠向正下方喷气在空中保持静止,如果喷出气体的速度为v ,那么火箭发动机的功率是多少?解析:火箭喷气时,要对气体做功,取一个很短的时间,求出此时间内,火箭对气体做的功,再代入功率的定义式即可求出火箭发动机的功率.选取在△t 时间内喷出的气体为研究对象,设火箭推气体的力为F ,根据动量定理,有F △t=△m ·v 因为火箭静止在空中,所以根据牛顿第三定律和平衡条件有F=Mg即 Mg ·△t=△m ·v △t=△m ·v/Mg对同样这一部分气体用动能定理,火箭对它做的功为: 221mv W ∆= 所以发动机的功率 MgV Mg mV mv t W P 21)/(212=∆∆=∆= 例12:如图3—11所示,小环O 和O ′分别套在不动的竖直杆AB 和A ′B ′上,一根不可伸长的绳子穿过环O ′,绳的两端分别系在A ′点和O 环上,设环O ′以恒定速度v 向下运动,求当∠AOO ′=α时,环O 的速度.解析:O 、O ′之间的速度关系与O 、O ′的位置有关,即与α角有关,因此要用微元法找它们之间的速度关系.设经历一段极短时间△t ,O ′环移到C ′,O 环移到C ,自C ′与C 分别作为O ′O 的垂线C ′D ′和CD ,从图中看出.ααcos ,cos D O C O OD OC ''=''= 因此OC+O ′C ′=αcos D O OD ''+ ① 因△α极小,所以EC ′≈ED ′,EC ≈ED ,从而OD+O ′D ′≈OO ′-CC ′ ②由于绳子总长度不变,故 OO ′-CC ′=O ′C ′ ③由以上三式可得:OC+O ′C ′=αcos C O '' 即)1cos 1(-''=αC O OC 等式两边同除以△t 得环O 的速度为 )1cos 1(0-=αv v 例13: 在水平位置的洁净的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈现圆饼形状(侧面向外凸出),过圆饼轴线的竖直截面如图3—12所示,为了计算方便,水银和玻璃的接触角可按180°计算.已知水银密度33/106.13m kg ⨯=ρ,水 银的表面张力系数./49.0m N =σ当圆饼的半径很大时,试估算其厚度h 的数值大约为多少?(取1位有效数字即可)解析:若以整个圆饼状水银为研究对象,只受重力和玻璃板的支持力,在平衡方程中,液体的体积不是h 的简单函数,而且支持力N 和重力mg 都是未知量,方程中又不可能出现表面张力系数,因此不可能用整体分析列方程求解h.现用微元法求解.在圆饼的侧面取一个宽度为△x ,高为h 的体积元,,如图3—12—甲所示,该体积元受重力G 、液体内部作用在面积△x ·h 上的压力F ,x gh xh hg S P F ∆⋅=∆⋅==22121ρρ, 还有上表面分界线上的张力F 1=σ△x 和下表面分界线上的 张力F 2=σ△x .作用在前、后两个侧面上的液体压力互相平衡,作用在体积元表面两个弯曲 分界上的表面张力的合力,当体积元的宽度较小时,这两个力也是平衡的,图中都未画出. 由力的平衡条件有:0cos 21=--F F F θ即 0cos 212=∆-∆-∆x x x gh σθσρ由于 ,2cos 11,20<+<<<θπθ所以 故2.7×10-3m<h<3.8×10-3m题目要求只取1位有效数字,所以水银层厚度h 的估算值为3×10-3m 或4×10-3m.例14:把一个容器内的空气抽出一些,压强降为p ,容器上有一小孔,上有塞子,现把塞子拔掉,如图3—13所示.问空气最初以多大初速度冲进容器?(外界空气压强为p 0、密度为ρ)解析:该题由于不知开始时进入容器内分有多少,不知它们在容器外如何分布,也不知空气分子进入容器后压强如何变化,使我们难以找到解题途径.注意到题目中“最初”二字,可以这样考虑:设小孔的面积为S ,取开始时位于小孔外一薄层气体为研究对象,令薄层厚度为△L ,因△L 很小,所以其质量△m 进入容器过程中,不改变容器压强,故此薄层所受外力是恒力,该问题就可以解决了.由以上分析,得:F=(p 0-p)S ① 对进入的△m 气体,由动能定理得:221mv L F ∆=∆ ② 而 △m=ρS △L 联立①、②、③式可得:最初中进容器的空气速度 ρ)(20p p v -=例15:电量Q 均匀分布在半径为R 的圆环上(如图3—14所示),求在圆环轴线上距圆心O 点为x 处的P 点的电场强度.解析:带电圆环产生的电场不能看做点电荷产生的电场,故采用微元法,用点电荷形成的电场结合对称性求解.选电荷元 ,2R Q R q πθ∆=∆它在P 点产生的电场的场强的x 分量为: 22222)(2cos x R x x R R Q R k r q k E x ++∆=∆=∆πθα 根据对称性 322322322)(2)(2)(2x R kQx x R kQxx R kQxE E x +=+=∆+=∆=∑∑ππθπ由此可见,此带电圆环在轴线P 点产生的场强大小相当于带电圆环带电量集中在圆环的某一点时在轴线P 点产生的场强大小,方向是沿轴线的方向.例16:如图3—15所示,一质量均匀分布的细圆环,其半径为R ,质量为m.令此环均匀带正电,总电量为Q.现将此环平放在绝缘的光滑水平桌面上,并处于磁感应强度为B 的均匀磁场中,磁场方向竖直向下.当此环绕通过其中心的竖直轴以匀角速度ω沿图示方向旋转时,环中的张力等于多少?(设圆环的带电量不减少,不考虑环上电荷之间的作用)解析:当环静止时,因环上没有电流,在磁场中不受力,则环中也就没有因磁场力引起的张力.当环匀速转动时,环上电荷也随环一起转动,形成电流,电流在磁场中受力导致环中存在张力,显然此张力一定与电流在磁场中受到的安培力有关.由题意可知环上各点所受安培力方向均不同,张力方向也不同,因而只能在环上取一小段作为研究对象,从而求出环中张力的大小.在圆环上取△L=R △θ圆弧元,受力情况如图3—15—甲所示.因转动角速度ω而形成的电流 πω2Q I =,电流元I △L 所受的安培力θπω∆=∆=∆QB R LB I F 2 因圆环法线方向合力为圆弧元做匀速圆周运动所需的向心力,R m F T 22sin 2ωθ∆=∆-∆ 当△θ很小时,R m QB R T 2222sin ωθπωθθθ∆=∆-∆∆≈∆ θπωθπωθθπ∆=∆-∆∴∆=∆2222R m QB R T m m 解得圆环中张力为 )(2ωπωm QB R T +=例17:如图3—16所示,一水平放置的光滑平行导轨上放一质量为m 的金属杆,导轨间距为L ,导轨的一端连接一阻值为R 的电阻,其他电阻不计,磁感应强度为B 的匀强磁场垂直于导轨平面.现给金属杆一个水平向右的初速度v 0,然后任其运动,导轨足够长,试求金属杆在导轨上向右移动的最大距离是多少?解析:水平地从a 向b 看,杆在运动过程中的受力分析如图3—16—甲所示,这是一个典型的在变力作用下求位移的题,用我们已学过的知识好像无法解决,其实只要采用的方法得当仍然可以求解.设杆在减速中的某一时刻速度为v ,取一极短时间△t ,发生了一段极小的位移△x ,在△t 时间内,磁通量的变化为△φ △φ=BL △x tRx BL tR R I ∆∆=∆∆Φ==ε金属杆受到安培力为tRx L B ILB F ∆∆==22安 由于时间极短,可以认为F 安为恒力,选向右为正方向,在△t 时间内,安培力F 安的冲量为:Rx L B t F I ∆-=∆⋅-=∆22安 对所有的位移求和,可得安培力的总冲量为x RL B R x L B I 2222)(-=∆-=∑ ① 其中x 为杆运动的最大距离, 对金属杆用动量定理可得 I=0-mV 0 ② 由①、②两式得:220LB R mV x = 例18:如图3—17所示,电源的电动热为E ,电容器的电容为C ,S 是单刀双掷开关,MN 、PQ 是两根位于同一水平面上的平行光滑长导轨,它们的电阻可以忽略不计,两导轨间距为L ,导轨处在磁感应强度为B 的均匀磁场中,磁场方向垂直于两导轨所在的平面并指向图中纸面向里的方向.L 1和L 2是两根横放在导轨上的导体小棒,质量分别为m 1和m 2,且21m m <.它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦,两小棒的电阻相同,开始时两根小棒均静止在导轨上.现将开关S 先合向1,然后合向2.求:(1)两根小棒最终速度的大小;(2)在整个过程中的焦耳热损耗.(当回路中有电流时,该电流所产生的磁场可忽略不计) 解析:当开关S 先合上1时,电源给电容器充电,当开关S 再合上2时,电容器通过导体小棒放电,在放电过程中,导体小棒受到安培力作用,在安培力作用下,两小棒开始运动,运动速度最后均达到最大.(1)设两小棒最终的速度的大小为v ,则分别为L 1、L 2为研究对象得:1111v m v m t F i i -'=∆ ∑=∆v m t F i i 111 ① 同理得: ∑=∆v m t F i i 222 ② 由①、②得:v m m t F t F i i i i )(212211+=∆+∆∑∑又因为 11Bli F i = 21i i t t ∆=∆ 22Bli F i = i i i =+21所以 ∑∑∑∑∆=∆+=∆+∆i i i i t i BL t i i BL t BLi t BLi )(212211v m m q Q BL )()(21+=-=而Q=CE q=CU ′=CBL v所以解得小棒的最终速度 2221)(LCB m m BLCE v ++= (2)因为总能量守恒,所以热Q v m m C q CE +++=22122)(212121 即产生的热量 22122)(212121v m m C q CE Q +--=热 )(2)()()]([2121)(21)(12121222122122212122222122C L B m m CE m m L CB m m BLCE m m L CB CE v m m CBLv C CE +++=+++--=+--=针对训练1.某地强风的风速为v ,设空气的密度为ρ,如果将通过横截面积为S 的风的动能全部转化为电能,则其电功率为多少?2.如图3—19所示,山高为H ,山顶A 和水平面上B 点的水平距离为s.现在修一条冰道ACB ,其中AC 为斜面,冰道光滑,物体从A 点由静止释放,用最短时间经C 到B ,不计过C 点的能量损失.问AC 和水平方向的夹角θ多大?最短时间为多少?3.如图3—21所示,在绳的C 端以速度v 匀速收绳从而拉动低处的物体M 水平前进,当绳AO 段也水平恰成α角时,物体M 的速度多大?4,如图3—22所示,质量相等的两个小球A 和B 通过轻绳绕过两个光滑的定滑轮带动C 球上升,某时刻连接C 球的两绳的夹角为θ,设A 、B 两球此时下落的速度为v ,则C 球上升的速度多大?5.质量为M 的平板小车在光滑的水平面上以v 0向左匀速运动,一质量为m 的小球从高h处自由下落,与小车碰撞后反弹上升的高度仍为h.设M>>m ,碰撞弹力N>>g ,球与车之间的动摩擦因数为μ,则小球弹起后的水平速度可能是( ) A .gh 2 B .0 C .gh 22 D .v 0 6.半径为R 的刚性球固定在水平桌面上.有一质量为M 的圆环状均匀弹性细绳圈,原长 2πa ,a =R/2,绳圈的弹性系数为k (绳伸长s 时,绳中弹性张力为ks ).将绳圈从球的正 上方轻放到球上,并用手扶着绳圈使其保持水平,并最后停留在某个静力平衡位置.考 虑重力,忽略摩擦.(1)设平衡时弹性绳圈长2πb ,b=a 2,求弹性系数k ;(用M 、R 、g 表示,g 为重力加速度)(2)设k=Mg/2π2R ,求绳圈的最后平衡位置及长度.7.一截面呈圆形的细管被弯成大圆环,并固定在竖直平面内,在环内的环底A 处有一质量为m 、直径比管径略小的小球,小球上连有一根穿过环顶B 处管口的轻绳,在外力F 作用下小球以恒定速度v 沿管壁做半径为R 的匀速圆周运动,如图3—23所示.已知小球与管内壁中位于大环外侧部分的动摩擦因数为μ,而大环内侧部分的管内壁是光滑的.忽略大环内、外侧半径的差别,认为均为R.试求小球从A 点运动到B 点过程中F 做的功W F .8.如图3—24,来自质子源的质子(初速度为零),经一加速电压为800kV 的直线加速器加速,形成电流为1.0mA的细柱形质子流.已知质子电荷e=1.60×10-19C.这束质子流每秒打到靶上的质子数为.假设分布在质子源到靶之间的加速电场是均匀的,在质子束中与质子源相距l 和4l的两处,各取一段极短的相等长度的质子流,其中质子数分别为n1和n2,则n1: n2.9.如图3—25所示,电量Q均匀分布在一个半径为R的细圆环上,求圆环轴上与环心相距为x的点电荷q所受的力的大小.10.如图3—26所示,一根均匀带电细线,总电量为Q,弯成半径为R的缺口圆环,在细线的两端处留有很小的长为△L的空隙,求圆环中心处的场强.11.如图3—27所示,两根均匀带电的半无穷长平行直导线(它们的电荷线密度为η),端点联线LN垂直于这两直导线,如图所示.LN的长度为2R.试求在LN的中点O处的电场强度.12.如图3—28所示,有一均匀带电的无穷长直导线,其电荷线密度为η.试求空间任意一点的电场强度.该点与直导线间垂直距离为r.13.如图3—29所示,半径为R的均匀带电半球面,电荷面密度为δ,求球心O处的电场强度.14.如图3—30所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a<L),质量为m的正方形闭合线框以初速v0垂直磁场边界滑过磁场后,速度变为v(v<v0),求:(1)线框在这过程中产生的热量Q;(2)线框完全进入磁场后的速度v ′.15.如图3—31所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置.16.如图3—32所示,空间有一水平方向的匀强磁场,大小为B ,一光滑导轨竖直放置,导轨上接有一电容为C 的电容器,并套一可自由滑动的金属棒,质量为m ,释放后,求金属棒的加速度a .答案:1.321v S ρ 2.θ=60°)223(2hs g h + 3.)cos 1/(x v + 4.2cos /θv 5.CD 6.(1)R Mg 22)12(π+ (2)绳圈掉地上,长度为原长 7.22v m mgR πμ+ 8.6.25×1015,2:1 9.2322)(x R QqxK + 10.32Rl Q K ρ∆ 11.R k λ2 12.r k λ2 13.σπR 2 14.2),(210220v v v v v m +='- 15.gh m u u CBL 2)(21- 16.22L CB m mg a +=。

物理竞赛方法1.整体法

物理竞赛方法1.整体法
小的恒力,最后达到平衡,表示平衡状态的图可能是 ( )
解析 表示平衡状态的图是哪一个,关键是要求出两条轻质细绳对小 球a和小球b的拉力的方向,只要拉力方向求出后,。图就确定了。
先以小球a、b及连线组成的系统为研究对象,系统共受五个力的作 用,即两个重力(ma+mb)g,作用在两个小球上的恒力Fa、Fb和上端细 线对系统的拉力T1.因为系统处于平衡状态,所受合力必为零,由于 Fa、Fb大小相等,方向相反,可以抵消,而(ma+mb)g的方向竖直向 下,所以悬线对系统的拉力T1的方向必然竖直向上.再以b球为研究对 象,b球在重力mbg、恒力Fb和连线拉力T2三个力的作用下处于平衡状
相应的牵引力对机车多做了FL的功,这就要求机车相对于末节车厢多走 一段距离△S,依靠摩擦力做功,将因牵引力多做功而增加的动能消耗 掉,使机车与末节车厢最后达到相同的静止状态。所以有:
FL=f·△S 其中F=μMg, f=μ(M-m)g 代入上式得两部分都静止时,它们之间的距离:△S=ML/(M-m) 例11 如图1—10所示,细绳绕过两个定滑轮A和B,在两端各挂 个 重为P的物体,现在A、B的中点C处挂一个重为Q的小球,Q<2P,求小 球可能下降的最大距离h.已知AB的长为2L,不讲滑轮和绳之间的摩擦 力及绳的质量.
重均为G,木板与墙的夹角为θ,如图1—8所示,不计一切摩擦,求BC 绳上的张力。
解析 以木板为研究对象,木板处于力矩平衡状态,若分别以圆柱 体A、B、C为研究对象,求A、B、C对木板的压力,非常麻烦,且容易 出错。若将A、B、C整体作为研究对象,则会使问题简单化。
以A、B、C整体为研究对象,整体受 到重力3G、木板的支持力F和墙对整体的 支持力FN,其中重力的方向竖直向下,如 图1—8—甲所示。合重力经过圆柱B的轴 心,墙的支持力FN垂直于墙面,并经过圆 柱C的轴心,木板给的支持力F垂直于木 板。由于整体处于平衡状态,此三力不平 行必共点,即木板给的支持力F必然过合 重力墙的支持力FN的交点.

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法

高中奥林匹克物理竞赛解题方法五、极限法方法简介极限法是把某个物理量推向极端,即极大和极小或极左和极右,并依此做出科学的推理分析,从而给出判断或导出一般结论.极限法在进行某些物理过程的分析时,具有独特作用,恰当应用极限法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确.因此要求解题者,不仅具有严谨的逻辑推理能力,而且具有丰富的想象能力,从而得到事半功倍的效果.赛题精讲例1:如图5—1所示, 一个质量为m 的小球位于一质量可忽略的直立弹簧上方h 高度处,该小球从静止开始落向弹簧,设弹簧的劲度系数为k,则物块可能获得的最大动能为 .解析:球跟弹簧接触后,先做变加速运动,后做变减速运动,据此推理,小球所受合力为零的位置速度、动能最大.所以速最大时有mg =kx ①图5—1 由机械能守恒有 221)(kx E x h mg k +=+ ②联立①②式解得 k g m mgh E k 2221⋅-=例2:如图5—2所示,倾角为α的斜面上方有一点O,在O 点放一至斜面的光滑直轨道,要求一质点从O 点沿直轨道到达斜面P 点的时间最短.求该直轨道与竖直方向的夹角β.解析:质点沿OP 做匀加速直线运动,运动的时间t 应该与β角有关,求时间t 对于β角的函数的极值即可.由牛顿运动定律可知,质点沿光滑轨道下滑的加速度为βcos g a =该质点沿轨道由静止滑到斜面所用的时间为t,则OP at =221图5—2所以βcos 2g OP t = ① 由图可知,在△OPC 中有)90sin()90sin(βαα-+=- OC OP 所以)cos(cos βαα-=OC OP ② 将②式代入①式得 g OC g OC t )]2cos([cos cos 4)cos(cos cos 2βαααβαβα-+=-=显然,当2,1)2cos(αββα==-即时,上式有最小值. 所以当2αβ=时,质点沿直轨道滑到斜面所用的时间最短.此题也可以用作图法求解.例3:从底角为θ的斜面顶端,以初速度0υ水平抛出一小球,不计空气阻力,若斜面足够长,如图5—3所示,则小球抛出后,离开斜面的最大距离H 为多少?解析:当物体的速度方向与斜面平行时,物体离斜面最远.以水平向右为x 轴正方向,竖直向下为y 轴正方向,则由:gt v v y ==θtan 0,解得运动时间为θtan 0g v t =该点的坐标为 θθ2202200tan 221tan gv gt y g v t v x ==== 由几何关系得:θθtan cos /x y H =+解得小球离开斜面的最大距离为 θθsin tan 220⋅=gv H . 这道题若以沿斜面方向和垂直于斜面方向建立坐标轴,求解则更加简便.例4:如图5—4所示,一水枪需将水射到离喷口的水平距离为3.0m的墙外, 从喷口算起, 墙高为4.0m. 若不计空气阻力,取2/10s m g =,求所需的最小初速及对应的发射仰角.图5—3解析:水流做斜上抛运动,以喷口O 为原点建立如图所示的直角坐标,本题的任务就是水流能通过点A (d 、h )的最小初速度和发射仰角.根据平抛运动的规律,水流的运动方程为⎪⎩⎪⎨⎧-⋅=⋅=20021sin cos gt t v y t v x αα 把A 点坐标(d 、h )代入以上两式,消去t,得:hh d h h d dh d gd h d gd d h gd v -⋅+-⋅++=+-=-⋅-=]2cos 2sin [/)]12(cos 2sin /[)tan (cos 2/222222222220αααααα 令 ,sin /,cos /,tan /2222θθθ=+=+=h d h h d d d h 则上式可变为,,6.7134arctan 45arctan 2145245902,1)2sin(,,)2sin(/022220最小时亦即发射角即当显然v d h h h d gd v=+=+=+==-=---+=θαθαθαθα 且最小初速0v =./5.9/103)(22s m s m h h d g ==++例5:如图5—5所示,一质量为m 的人,从长为l 、质量为M 的铁板的一端匀加速跑向另一端,并在另一端骤然停止.铁板和水平面间摩擦因数为μ,人和铁板间摩擦因数为μ',且μ'>>μ.这样,人能使铁板朝其跑动方向移动 的最大距离L 是多少?解析:人骤然停止奔跑后,其原有动量转化为与铁板一起向前冲的动量,此后,地面对载人铁板的阻力是地面对铁板的摩擦力f ,其加速度g mM g m M m M f a μμ=++=+=)(1. 由于铁板移动的距离v a v L ''=故,212越大,L 越大.v '是人与铁板一起开始地运动的速度,因此人应以不会引起铁板运动的最大加速度奔跑.人在铁板上奔跑但铁板没有移动时,人若达到最大加速度,则地面与铁板之间的摩擦力达到最大静摩擦g m M )(+μ,根据系统的牛顿第二定律得: 02⋅+=M ma F所以 g m m M m F a +==μ2 ①哈 图5—5设v 、v '分别是人奔跑结束及人和铁板一起运动时的速度因为 v m M mv '+=)( ②且L a v l a v 12222,2='=并将1a 、2a 代入②式解得铁板移动的最大距离 l m M m L += 例6:设地球的质量为M,人造卫星的质量为m,地球的半径为R 0,人造卫星环绕地球做圆周运动的半径为r.试证明:从地面上将卫星发射至运行轨道,发射速度)2(00rR g R v -=,并用该式求出这个发射速度的最小值和最大值.(取R 0=6.4×106m ),设大气层对卫星的阻力忽略不计,地面的重力加速度为g )解析:由能量守恒定律,卫星在地球的引力场中运动时总机械能为一常量.设卫星从地面发射的速度为发v ,卫星发射时具有的机械能为2121R Mm G mv E -=发 ① 进入轨道后卫星的机械能为r Mm G mv E -=2221轨 ② 由E 1=E 2,并代入,rGM v =轨解得发射速度为 )2(00r R R GM v -=发 ③ 又因为在地面上万有引力等于重力,即:g R R GM mg R Mm G 0020==所以④把④式代入③式即得:)2(00r R g R v -=发 (1)如果r=R 0,即当卫星贴近地球表面做匀速圆周运动时,所需发射速度最小为s m gR v /109.730min ⨯==.(2)如果∞→r ,所需发射速度最大(称为第二宇宙速度或脱离速度)为s m g R v /102.11230max ⨯==例7:如图5—6所示,半径为R 的匀质半球体,其重心在球心O 点正下方C 点处,OC=3R/8, 半球重为G,半球放在水平面上,在半球的平面上放一重为G/8的物体,它与半球平在间的动摩擦因数2.0=μ, 求无滑动时物体离球心 图5—6O 点最大距离是多少?解析:物体离O 点放得越远,根据力矩的平衡,半球体转过的角度θ越大,但物体在球体斜面上保持相对静止时,θ有限度.设物体距球心为x 时恰好无滑动,对整体以半球体和地面接触点为轴,根据平衡条件有:θθcos 8sin 83x G R G =⋅得 θtan 3R x =可见,x 随θ增大而增大.临界情况对应物体所受摩擦力为最大静摩擦力,则: R R x Nf m m 6.03,,2.0tan =====μμθ所以. 例8:有一质量为m=50kg 的直杆,竖立在水平地面上,杆与地面间静摩擦因数3.0=μ,杆的上端固定在地面上的绳索拉住,绳与杆的夹角30=θ,如图5—7所示. (1)若以水平力F 作用在杆上,作用点到地面的距离L L h (5/21=为杆长),要使杆不滑倒,力F 最大不能越过多少?(2)若将作用点移到5/42L h =处时,情况又如何?解析:杆不滑倒应从两方面考虑,杆与地面间的静摩擦力达到极限的前提下,力的大小还与h 有关,讨论力与h 的关系是关键.杆的受力如图5—7—甲所示,由平衡条件得0)(0cos 0sin =--=--=--fL h L F mg T N f T F θθ另由上式可知,F 增大时,f 相应也增大,故当f 增大到最大静摩擦力时,杆刚要滑倒,此时满足:N f μ=解得:hh L mgL F mas --=μθθ/tan )(tan 由上式又可知,当L h h h L 66.0,/tan )(0=∞→--即当μθ时对F 就没有限制了.图5—7图5—7—甲(1)当0152h L h <=,将有关数据代入max F 的表达式得 N F 385max =(2)当,5402h L h >=无论F 为何值,都不可能使杆滑倒,这种现象即称为自锁. 例9:放在光滑水平面上的木板质量为M,如图5—8所示,板上有质量为m 的小狗以与木板成θ角的初速度0v (相对于地面)由A 点跳到B 点,已知AB 间距离为s.求初速度的最小值. 图5—8解析:小狗跳起后,做斜上抛运动,水平位移向右,由于水平方向动量守恒,木板向左运动.小狗落到板上的B 点时,小狗和木板对地位移的大小之和,是小狗对木板的水平位移.由于水平方向动量守恒,有Mmv v Mv mv θθsin cos 00==即 ① 小狗在空中做斜抛运动的时间为 gv t θsin 20= ② 又vt t v s =⋅+θcos 0 ③将①、②代入③式得 θ2sin )(0m M Mgs v += 当0,4,12sin v 时即πθθ==有最小值,m M Mgs v +=min 0. 例10:一小物块以速度s m v /100=沿光滑地面滑行,然后沿光滑曲面上升到顶部水平的高台上,并由高台上飞出,如图5—9 所示, 当高台的高度h 多大时,小物块飞行的水平距离s 最大?这个距离是多少?(g 取10m/s 2)解析:依题意,小物块经历两个过程.在脱离曲面顶部之前,小物块受重力和支持力,由于支持力不做功,物块的机械能守恒,物块从高台上飞出后,做平抛运动,其水平距离s 是高度h 的函数.设小物块刚脱离曲面顶部的速度为v ,根据机械能守恒定律,mgh mv mv +=2202121 ①小物块做平抛运动的水平距离s 和高度h 分别为:221gt h = ② 图5—9vt s = ③ 以上三式联立解得:22022020)4()4(222g v h g v g h gh v s --=-= 当m g v h 5.2420==时,飞行距离最大,为m gv s 5220max ==. 例11:军训中,战士距墙s,以速度0v 起跳,如图5—10所示,再用脚蹬墙面一次,使身体变为竖直向上的运动以继续升高,墙面与鞋底之间的静摩擦因数为μ.求能使人体重心有最大总升高的起跳角θ. 图5—10解析:人体重心最大总升高分为两部分,一部分是人做斜上抛运动上升的高度,另一部分是人蹬墙所能上升的高度.如图5—10—甲,人做斜抛运动θcos 0v v x =,gt v v y -=θsin 0重心升高为 2001)cos (21tan θθv s g s H -=脚蹬墙面,利用最大静摩擦力的冲量可使人向上的动量增加,即∑∑∑∑=∆∆=∆==∆=∆,)(,)()()()(x y y mv t t N t t N t t N t f v m mv 而μμ x y v v μ=∆∴,所以人蹬墙后,其重心在竖直方向向上的速度为x y y y y v v v v v μ+=∆+=',继续升高g v H y 222'=,人的重心总升高H=H 1+H 2=μθμθθμ1tan ,)sin cos (210220-=-+当s g v 时,重心升高最大. 例12:如图5—11所示,一质量为M 的平顶小车,以速度0v 沿水平的光滑轨道做匀速直线运动.现将一质量为m 的小物块无初速地放置在车顶前缘.已知物块和车顶之间的滑动摩擦因数为μ. (1)若要求物块不会从车顶后缘掉下,则该车顶最少要多长?(2)若车顶长度符合(1)问中的要求,整个过程中摩擦力共做多少功?解析:当两物体具有共同速度时,相对位移最大,这个相对位移的大小即为车顶的最小长 图5—10—甲图5—11度.设车长至少为l ,则根据动量守恒v m M Mv )(0+= 根据功能关系 220)(2121v m M Mv l mg +-=μ 解得 μg m M Mv l )(220+=,摩擦力共做功 )(220m M Mmv l mg W +-=-=μ 例13:一质量m=200kg,高2.00m 的薄底大金属桶倒扣在宽广的水池底部,如图5—12所示.桶的内横截面积S=0.500m 2,桶壁加桶底的体积为V 0=2.50×10-2m 3.桶内封有高度为l =0.200m 的空气.池深H 0=20.0m,大气压强p 0=10.00m 水柱高,水的密度33/10000.1m kg ⨯=ρ,重力加速度取g=10.00m/s 2.若用图中所示吊绳将桶上提,使桶底到达水面处,求绳子拉力对桶所需何等的最小功为多少焦耳?(结果要保留三位有效数字).不计水的阻力,设水温很低,不计其饱和蒸汽压的影响.并设水温上下均匀且保持不变.解析:当桶沉到池底时,桶自身重力大于浮力.在绳子的作用下桶被缓慢提高过程中,桶内气体体积逐步增加,排开水的体积也逐步增加,桶受到的浮力也逐渐增加,绳子的拉力逐渐减小,当桶受到的浮力等于重力时,即绳子拉力恰好减为零时,桶将处于不稳定平衡的状态,因为若有一扰动 使桶略有上升,则浮力大于重力,无需绳的拉力,桶就会 图5—12—甲 自动浮起,而不需再拉绳.因此绳对桶的拉力所需做的最小功等于将桶从池底缓慢地提高到浮力等于重力的位置时绳子拉桶所做的功. 设浮力等于重力的不稳定平衡位置到池底的距离为H,桶内气体的厚度为l ',如图5—12—甲所示.因为总的浮力等于桶的重力mg,因而有mg g V S l =+')(0ρ有l '=0.350m ① 在桶由池底上升高度H 到达不稳定平衡位置的过程中,桶内气体做等温变化,由玻意耳定律得lS l l H p S l l l H H p )]([)]([000000--+=''---+ ②由①、②两式可得H=12.240m图5—12由③式可知H<(H 0-l '),所以桶由池底到达不稳定平衡位置时,整个桶仍浸在水中.由上分析可知,绳子的拉力在整个过程中是一个变力.对于变力做功,可以通过分析水和桶组成的系统的能量变化的关系来求解:先求出桶内池底缓慢地提高了H 高度后的总机械能量△E ·△E 由三部分组成: (1)桶的重力势能增量mgH E =∆1 ④(2)由于桶本身体积在不同高度处排开水的势能不同所产生的机械能的改变量△E 2,可认为在H 高度时桶本身体积所排开的水是去填充桶在池底时桶所占有的空间,这时水的重力势能减少了.所以gH V E 02ρ-=∆ ⑤(3)由于桶内气体在不同高度处所排开水的势能不同所产生的机械能的改变△E 3,由于桶内气体体积膨胀,因而桶在H 高度时桶本身空气所排开的水可分为两部分:一部分可看为填充桶在池底时空气所占空间,体积为lS 的水,这部分水增加的重力势能为SgH l E ρ-=∆31 ⑥另一部分体积为S l l )(-'的水上升到水池表面,这部分水上升的平均高度为]2/)([00l l l l H H -'++--,增加的重力势能为]2/)([)(0032l l l l H H Sg l l E -'++---'=∆ρ ⑦由整个系统的功能关系得,绳子拉力所需做的最小功为W T =△E ⑧将④、⑤、⑥、⑦式代入⑧式得]2/)())([(220l l l H l l Sg W T -'+--'=ρ ⑨将有关数据代入⑨式计算,并取三位有效数字,可得W T =1.37×104J例14:如图5—13所示,劲度系数为k 的水平轻质弹簧,左端固定,右端系一质量为m 的物体,物体可在有摩擦的水平桌面上滑动,弹簧为原长时位于O 点,现把物体拉到距O 为A 0的P点按住,放手后弹簧把物体拉动,设物体在第二次经过O 点前,在O 点左方停住,求:(1)物体与桌面间的动摩擦因数μ的大小应在什么范围内?(2)物体停住点离O 点的距离的最大值,并回答这是不是物体在运动过程中所能图5—13达到的左方最远值?为什么?(认为动摩擦因数与静摩擦因数相等)解析:要想物体在第二次经过O 点前,在O 点左方停住,则需克服摩擦力做功消耗掉全部弹性势能,同时还需合外力为零即满足平衡条件.(1)物体在距离O 点为l 处停住不动的条件是:a .物体的速度为零,弹性势能的减小等于物体克服滑动摩擦力所做的功.b .弹簧弹力≤最大静摩擦力对物体运动做如下分析:①物体向左运动并正好停在O 点的条件是:02021mgA kA μ= 得:μ021kA mg= ②若μ021kA m g <,则物体将滑过O 点,设它到O 点左方B 处(设OB=L 1)时速度为零,则有:)(2121102120L A mg kL kA +=-μ ② 若物体能停住,则0131,kA mgmg kL ≥≤μμ故得 ③ ③如果②能满足,但μ031kA m g<,则物体不会停在B 处而要向右运动.μ值越小,则往右滑动的距离越远.设物体正好停在O 处,则有:12121mgL kL μ= 得:μ041kA mg =.要求物体停在O 点左方,则相应地要求μ041kA mg>. 综合以上分析结果,物体停在O 点左方而不是第二次经过O 点时,μ的取值范围为041kA m g <μ<021kA m g(2)当μ在031kA m g ≤μ<021kA m g 范围内时,物体向左滑动直至停止而不返回,由②式可求出最远停住点(设为B 1点)到O 点的距离为.3)3)(2(20000A mg kA k mg A k mg A L =-=-=μ当μ<031kA m g 时,物体在B 1点(301A OB =)的速度大于零,因此物体将继续 向左运动,但它不可能停在B 1点的左方.因为与B 1点相对应的μ=031kA m g, L 1=A 0/3,如果停留在B 1点的左方,则物体在B 1点的弹力大于30kA ,而摩擦力umg 30kA ,小于弹力大于摩 擦力,所以物体不可能停住而一定返回,最后停留在O 与B 1之间.所以无论μ值如何,物体停住与O 点的最大距离为30A ,但这不是物体在运 动过程中所能达到的左方最远值.例15:使一原来不带电的导体小球与一带电量为Q 的导体大球接触,分开之后,小球获得电量q.今让小球与大球反复接触,在每次分开后,都给大球补充电荷,使其带电量恢复到原来的值Q.求小球可能获得的最大电量.解析:两球接触后电荷的分配比例是由两球的半径决定的,这个比例是恒定的. 根据两球带电比例恒定,第一次接触,电荷量之比为qq Q - 最后接触电荷之比为qQ Qq q q Q q q Q q Q m m m -=∴=-有, 此题也可以用递推法求解.例16:一系列相同的电阻R,如图5—14所示连接,求AB 间的等效电阻R AB .解析:无穷网络,增加或减小网络的格数,其等效电阻不变,所以R AB 跟从CD 往右看的电阻是相等的.因此,有R R RR R R R R AB AB AB AB )13(2+=++=解得 例17:如图5—15所示,一个U 形导体框架,宽度L=1m,其所在平面与水平面的夹角 30=α,其电阻可以忽略不计,设匀强磁场为U 形框架的平面垂直,磁感应强度B=1T,质量0.2kg 的导体棒电阻R=0.1Ω,跨 图5—14 图5—14放在U 形框上,并且能无摩擦地滑动.求:(1)导体棒ab 下滑的最大速度m v ; (2)在最大速度m v 时,ab 上释放出来的电功率.解析:导体棒做变加速下滑,当合力为零时速度最大,以后保持匀速运动(1)棒ab 匀速下滑时,有R Blv I BIl mg ==而,sin α 解得最大速度 s m l B R mg v m /1.0sin 22=⋅=α (2)速度最大时,ab 释放的电功率1.0sin =⋅=m v mg P αW针对训练1.如图5—16所示,原长L 0为100厘米的轻质弹簧放置在一光滑的直槽内,弹簧的一端固定在槽的O 端,另一端连接一小球,这一装置可以从水平位置开始绕O 点缓缓地转到竖直位置.设弹簧的形变总是在其弹性限度内.试在下述(a )、(b )两种情况下,分别求出这种装置从原来的水平位置开始缓缓地绕O 点转到竖直位置时小球离开原水平面的高度h 0.(a )在转动过程中,发现小球距原水平面的高度变化出现极大值,且极大值h m为40厘米,(b )在转动的过程中,发现小球离原水平面的高度不断增大.2.如图5—17所示,一滑雪运动员自H 为50米高处滑至O 点,由于运动员的技巧(阻力不计),运动员在O 点保持速率0v 不变, 并以仰角θ起跳,落至B 点,令OB 为L,试问α为30°时,L的最大值是多大?当L 取极值时,θ角为多大?3.如图5—18所示,质量为M 的长滑块静止放在光滑水平面上,左侧固定一劲度系数为K 且足够长的水平轻质弹簧,右侧用一不可伸长的细轻绳连接于竖直墙上,细线所能承受的最大拉力为T.使一质量为m,初速度为0v 的小物体,在滑块上无摩擦地向左运 动,而后压缩弹簧.(1)求出细线被拉断的条件;(2)滑块在细线拉断后被加速的过程中,所能获得的最大的左向加速度为多大?(3)物体最后离开滑块时相对于地面速度恰为零的条件是什么?4.质量m=2.0kg 的小铁块静止于水平导轨AB 的A 端,导轨及支架ABCD 形状及尺寸如图5—19所示,它只能绕通过支架D 点的垂直于纸面的水平轴转动,其重心在图中的图5—16 图5—17 图5—18O 点,质量M=4.0kg,现用一细线沿轨拉铁块,拉力F=12N,铁块和导轨之间的摩擦系数50.0=μ,重力加速度g=10m/s 2,从铁块运动时起,导轨(及支架)能保持静止的最长时间t 是多少?5.如图5—20所示,在水平桌面上放一质量为M 、截面为直角三角形的物体ABC.AB 与AC 间的夹角为θ,B 点到桌面的高度为h.在斜面AB 上的底部A 处放一质量为m 的小物体.开始时两者皆静止.现给小物体一沿斜面AB 方向的初速度0v ,如果小物体与斜面间以及ABC 与水平桌面间的摩擦都不考虑,则0v 至少要大于何值才能使小物体经B 点滑出?6.如图5—21所示,长为L 的光滑平台固定在地面上,平台中央放有一小物体A 和B,两者彼此接触.物体A 的上表面是半径为R (R<<L )的半圆形轨道,轨道顶端距台面的高度为h 处,有一小物体C,A 、B 、C 的质量均为m.现物体C 从静止状态沿轨道下滑,已知在运动过程中,A 、C 始终保持接触,试求:(1)物体A 和B 刚分离时,物体B 的速度;(2)物体A 和B 分离后,物体C 所能达到距台面的最大高度;(3)判断物体A 从平台的左边还是右边落地,并粗略估算物体A 从B 分离后到离开台面所经历的时间.7.电容器C 1、C 2和可变电阻器R 1、R 2以及电源ε连接成如图5—22所示的电路.当R 1的滑动触头在图示位置时,C 1、C 2的电量相等.要使C 1的电量 大于C 2的电量,应 ( ) A .增大R 2 B .减小R 2C .将R 1的滑动触头向A 端移动D .将R 1的滑动触头向B 端滑动8.如图5—23所示的电路中,电源的电动势恒定,要想使灯泡变亮,可以 ( )A .增大R 1B .减小R 2C .增大R 2D .减小R 2图5—19 图5—20 图5—21图5—22图5—23 图5—24 图5—259.电路如图5—24所示,求当R ′为何值时,R AB 的阻值与“网格”的数目无关?此时R AB的阻值等于什么?10.如图5—25所示,A 、B 两块不带电的金属板,长为5d,相距为d,水平放置,B 板接地,两板间有垂直纸面向里的匀强磁场,现有宽度为d 的电子束从两板左侧水平方向入射,每个电子的质量为m,电量为e,速度为v ,要使电子不会从两板间射出,求两板间的磁感应强度应为多大?11.图5—26中 abcd 是一个固定的U 形金属框架, ad 和cd 边都很长, bc 边长为L,框架的电阻可不计, ef 是放置在框架上与 bc 平行的导体杆,它可在框架上自由滑动(摩擦可忽略),它的电阻R, 现沿垂直于框架的方向加一恒定的匀 强磁场,磁感应强度为B,方向垂直于纸面向里,已知当以恒定力F 向右拉导体杆ef 时,导体杆最后匀速滑动,求匀速滑动,求匀速滑动时的速度?12.如图5—27所示,导线框abcd 固定在竖直平面内,bc 段的电阻为R,其他电阻均可忽略.ef 是一电阻可忽略的水平放置的导体杆,杆长为L,质量为m,杆的两端分别与ab 和cd 保持良好接触,又能沿它们无摩擦地滑动.整个装置放在磁感应强度为B 的匀强磁场中,磁场方向与框面垂直.现用一恒力F 竖直向上拉ef,当ef 匀速上升时,其速度的大小为多大? 图5—2713.在倾角为 的足够长的两光滑平行金属导轨上,放一质量为m,电阻为R 的金属棒ab,所在空间有磁感应强度为B 的匀强磁场,方向垂直轨道平面向上,导轨宽度为L,如图5—28所示,电源电动势为ε,电源内阻和导轨电阻均不计,电容器的电容为C.求:(1)当开关S 接1时,棒ab 的稳定速度是多大?(2)当开关S 接2时,达到稳定状态时,棒ab 将做何运动?14.如图5—29所示,有上下两层水平放置的平行光滑导轨,间距是L,上层导轨上搁置一根质量为m 、电阻是R 的金属杆 ST,下层导轨末端紧接着两根竖直在竖直平面内的半径为R的光滑绝缘半圆形轨道,在靠近半圆形轨道处搁置一根质量也是m 、电阻也是R 的金属杆AB.上下两层平行导轨所在区域里有一个竖直向下的匀强磁场.当闭合开关S 后,有电量q 通过金属杆AB,杆AB 滑过下层导轨后进入半圆形轨道并且刚好能通过轨道最高点D ′F ′后滑上上层导轨.设上下两层导轨都足够长,电阻不计.(1)求磁场的磁感应强度.(2)求金属杆AB 刚滑到上层导轨瞬间,上层导轨和金属杆组成的回路里的电流.(3)求两金属杆在上层导轨滑动的最终速度.(4)问从AB 滑到上层导轨到具有最终速度这段时间里上层导轨回路中有多少能量 图5—26 图5—28 图5—29转变为内能? 15.位于竖直平面内的矩形平面导线框abcd,ab 长为l 1,是 水平的,bc 长l 2, 线框的质量为m, 电阻为R, 其下 方有一匀强磁场区域,该区域的上、下边界PP ′和QQ ′ 均与ab 平行,两边界间的距离为H,H>l 2,磁场的磁感强度为B,方向与线框平面垂直,如图5—30所示,令 线框的dc 边从离磁场区域上边界PP ′的距离为h 处自由 下落,已知在线框的dc 边进入磁场以后,ab 边到达边界PP ′之前的某一时刻线框的速度已达到这一阶段的最大值.问从线框开始下落到dc 边刚刚到达磁场区域下边界QQ ′的过程中,磁场作用于线框的安培力做的总功为多少?答案:1.(a)37.5cm (b)50cm<h<100cm 2.︒==30200max θmL 3.K M m T v T KMv M m m M a mK T v )()(1,02200-=++=> 4.1.41s 5.θ2)(2mL M gh m M ++ 6.(1)3gh (2)R h 41- (3)ghL 3 7.D 8.B 、C 9.R R)15()15(+- 10.de mv B de mv 213≤≤ 11.22L B FR 12.22)(L B R mg F - 13.(1)22sin L B mgR BI αε- (2)加速度22sin LCB m mg +α 14.(1)gR qL m 5 (2)R gR BL 2 (3)RgR 2 (4)mgR 41 15.)(2244223h l mg lB R g m W +-=P Q ′ Q P ′a b d c h l 1 l 2 图5—30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档