3.2.2解一元一次方程--移项--教案
3.2解一元一次方程(一)——合并同类项与移项(第1课时)教案 2021-2022学年人教版数学七
3.2解一元一次方程(一)——合并同类项与移项(第1课时)【学习目标】1. 能够根据题意找出实际问题中的相等关系,列出一元一次方程;2. 运用合并同类项解形如ax+bx=c的一元一次方程.【教学重难点】重点:运用合并同类项解形如ax+bx=c的一元一次方程.难点:列方程解决实际问题.【教学方法】自主探究法、活动探究法、小组合作法.【教学过程】第一环节:导入新课约公元825年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?第二环节:自主学习1、认真阅读课本86---87页,思考:(1)解方程:2x+5x=10+4并说清每一步恒等变形的理论依据.______________________(化成ax=b的形式即合并同类项)_________________________(化成x=c的形式即系数化1)(2)完成课本第88页的练习1.2、例题讲解.出示教材第86页问题1:①引导学生分析题中的等量关系式,学生发言设未知数②教师让学生独立完成解答,指名板演解题过程.(3)回顾解方程的过程,思考“合并同类项”起了什么样的作用?合并同类项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程x=a的形式转化.第三环节:精讲例题2x -25x =6-8 7x -2.5x +3x -1.5x =-15×4-6×3(教师板书例题的解答过程,为学生提供示范.)第四环节:合作探究例2 有一列数,按一定规律排成1,-3,9,-27,81,-243,…其中某三个相邻数想和是-1701,这三个数各是多少?分析:1.知道三个数中的某个,就能知道另两个吗?2.我们需要分析这组数的规律.第五环节:课堂检测1.解“问题2”的另两个方程.2.教科书第92页习题3.2第1、7题.第六环节:课堂小结1.你今天学习的解方程有哪些步骤?2.合并同类项在解方程的过程中起到了什么作用?第七环节:作业布置课本第99页习题19.2第7、9题.1.三个连续整数之和为36,求:这三个整数分别是多少?2.做这一课时的基础训练.【板书设计】3.2解一元一次方程(一)---合并同类项与移项(第1课时)1.解一元一次方程的步骤:(1)合并同类项(2)系数化为1【课后反思】本节课首先请学生独立思考,然后互相交流解题思路.集体讲评,理清每一步恒等变形的理论依据,会分析实际问题中的等量关系式,规范解题过程.纠正自身存在的错误.对于例2的处理先让学生独立思考然后合作交流,最后书写过程.。
解一元一次方程--移项教学方案及对策
3)判断改错: 下面的移项对不对?如果不对,错 在哪里?应当怎样改正? (1)、从 7+ x = 13.得到 x=13 +7 (2)、从 5x=4x +8,得到 5x-4x=8 (3)、从 3x +5= -2x -8,得到 3x +2x=8-5
学生分小组 讨论。
分析:解程 的目的是什么? 如向目的前进?
二、教学目标(知识,技能,情感态度、价值观)
知识与技能:(1)、找相等关系列一元一次程;
(2)、用移项解一元一次程。 (3)、掌握移项变号的基本原则 过程与法:经历运用程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识 用程解决实际问题的关键是建立相等关系。
情感、态度:通过学习“合并同类项”和“移项”,体会古老的代数书中的“对消”和“还原”
3x +2x = -8 (3)、5x – 2 = 3x + 7,移项,得
5x + 3x = 7 + 2 2)、抢答:
将含有未知数的项放在程的一 边,常数项放在程的另一边,对程 进行移项变形。 (1)、2x -3 = 6 (2)、5x = 3x -1 (3)、2.4y +2 = -2y (4)、8 – 5x = x + 2
(2)、改变的项有什么变化?
教师引导学生观察, 学生讨论、交流后, 教师说明:像这样把 等式一边的某项改变 符号后移到另一边, 叫移项。
3、归纳:把等式一边的某项改变 符号后移到另一边,叫移项。 4、应用新知: 1)、慧眼找错: (1)、6 + x = 8,移项,得
x = 8+ 6 (2)、3x = 8- 2x,移项,得
(_3x+20_)_本。
3.2.2解一元一次方程(一)导学案(移项)
3.2.2解一元一次方程(一)----移项学习目标:1、通过观察,独立归纳出移项法则;2、利用移项法则解形如“ax+b=cx+d”类型的一元一次方程;3、通过分析实际问题中的数量关系,体会建模思想在一元一次方程中的作用重点难点:运用移项法则解一元一次方程。
学习过程:问题1:把一些图书分给某班同学阅读,如果每人3本,则剩余20本;若每人4本,则还缺少25本,这个班的学生有多少人?分析:设这个班有x名学生,这批书共有本,这批书总数还可表示成本等量关系:列得方程:如何解这个方程呢?1、使方程右边不含x的项,方程两边同时减,得:2、使方程左边不含常数项,方程两边同时减,得:观察方程:把某项从等式一边移到另一边时有什么变化?上面方程的变形,相当于把原方程左边的变为移到右边,把右边的变为移到左边.归纳:把等式一边的某项变号后移到另一边,叫做移项。
思考:解方程中“移项”起了什么作用?通过移项,含与分别放在方程的左右两边,使方程更接近于x=a的形式.问题1的解答过程:解:设这个班有x名学生,依题意得3x+20=4x-25移项,得合并同类项,得系数化为1,得答:这个班的学生有人.d cx b ax +=+巩固练习:1、解下列方程2、王芳和李丽同时采摘樱桃,王芳平均每小时采摘8kg,李丽平均每小时采摘7kg.采摘结束后王芳从她采摘的樱桃中取出0.25kg 给了李丽,这时两人的樱桃一样多.她们采摘用了多少时间?小结:1、今天学习解形如方程有哪些步骤?2、列方程解应用题分哪些步骤?作业:课本P91页习题3.2第 3(3)(4)、4、6题课后反思: (1)6745;x x -=-13(2)624x x -=(3)5278;x x -=+35(4)13;22x x -=+。
《3.2.2解一元一次方程—移项》教学设计
3.2.2解一元一次方程——移项一、教学目标:1.理解移项的概念;2.会用移项法解一元一次方程;3.经历用方程解决实际问题的过程。
二、教学重点、难点:重点:用移项法解方程;难点:移项是难点。
三、学法与教学用具:学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
教学用具:投影仪四、教学过程:(一)创设情景,揭示课题问题导入上节课学习的一元一次方程都有这样的特点:一边是含有未知数的项,一边是常数项。
这样的方程我们可以用合并同类项来解,那么像3x+7=32-2x这样的方程怎么解呢?(二)研探新知我们来看下面的问题。
问题:把一些图书分给某班学生阅读,如果每人3本,则剩余20本;如果每人4本,则还缺25本,这个班有多少学生?设这个班有x人,那么这批书有多少本?还可以怎么表示?这批书共有(3x+20)本,还可表示为(4x-25)本。
因为3x+20与4x-25都表示这批书,所以3x+20=4x-25由上节课的学习,你能猜想怎么解这个方程吗?把未知项移一到边,把常数项移到一边。
怎样才能做到这一点呢?由等式的性质,把等式两边同时减去4x,加上20。
4x从右边移到了左边,并且改变了符号,20从左边移到了右边,并且改变了符号。
像这样,把等式一边的某项变号后移到另一边,叫做移项。
-x=-45∴x=45所以这个班有45名学生。
注意:表示同一个量的两个不同的式子相等,这是一个基本的等量关系。
思考:上面解方程中“移项”有什么作用?通过移项,使含未知数的项在等号的一边,常数项在另一边,从而把方程转化为我们熟悉的类型,这就是化归思想的运用。
解方程经常要合并与移项。
前面提到的古老代数书中的“对消”和“还原”,指的就是“合并”与“移项”。
现在我们来解前面提到的方程。
例1 3x+7=32-2x解:移项,得3x+2x=32-7合并同类项,得5x=25∴x=5注意:移项要变号。
(三)巩固深化,反馈矫正1.下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1)从3x+6=0得到3x=6;(2)从2x=x-1得到2x= 1-x(3)从2+x-3=2x+1得到2-3-1=2x-x。
一元一次方程移项(教案)
一元一次方程-移项(教案)教学目标:1. 理解移项的概念和意义。
2. 学会正确运用移项的方法解一元一次方程。
教学内容:1. 移项的概念和意义。
2. 移项的方法和步骤。
教学过程:一、导入(5分钟)1. 引入移项的概念,通过实际例子让学生感受移项的作用。
二、知识讲解(15分钟)1. 讲解移项的概念和意义,解释移项在解方程中的重要性。
2. 引导学生理解移项的本质是将方程中的项移到等号另一边。
3. 讲解移项的方法和步骤,例如:将含有未知数的项移到等号左边,将常数项移到等号右边。
三、实例演示(10分钟)1. 通过具体的一元一次方程,演示移项的过程和步骤。
2. 让学生跟随老师的演示,一起解题,加深对移项方法的理解。
四、练习与讨论(10分钟)1. 给学生发放练习题,让学生独立完成移项操作。
2. 鼓励学生相互讨论,共同解决问题,加深对移项方法的应用。
五、总结与反思(5分钟)1. 总结本节课所学的移项方法和步骤。
2. 引导学生反思在解题过程中遇到的问题,思考如何更好地运用移项方法。
教学评价:1. 通过课堂讲解和练习,评价学生对移项概念的理解程度。
2. 通过学生的练习题和讨论,评价学生对移项方法的掌握情况。
教学资源:1. 教案、PPT等教学资料。
2. 练习题。
教学建议:1. 在实例演示环节,可以邀请学生上台演示,增加互动性。
2. 在练习与讨论环节,可以设置不同难度级别的练习题,满足不同学生的学习需求。
3. 在总结与反思环节,可以引导学生思考移项方法在实际问题中的应用。
六、练习与巩固(10分钟)1. 分发练习题,让学生独立完成,巩固移项技巧。
2. 选取部分学生的作业进行讲解,指出其中的错误和不足。
七、拓展与应用(10分钟)1. 引导学生思考:移项技巧在其他数学领域中的应用。
2. 举例说明移项在其他领域的应用,如物理学中的力的平衡、经济学中的成本分析等。
八、课堂小结(5分钟)1. 回顾本节课所学内容,强调移项的重要性。
3.2 第2课时 用移项的方法解一元一次方程教案
第三章一元一次方程2.若代数式y-7与2y-1的值相等,则y 的值是 .3.利用移项的方法解下列方程:(1) 3x =2x +2; (2) 4x =-x +25.探究点2:列方程解决问题例2 我区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?针对训练下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?二、课堂小结 1. 移项(1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做 移项.(2) 移项的依据是等式的性质1.2. 解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1.通过移项将下列方程变形,正确的是 ( ) A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+9 2. 已知 2m -3=3n +1,则 2m -3n = . 3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ; (3) x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?。
3.2.2解一元一次方程
课件使用说明 课件第四张有链接,点击每种设法,可 以进入解题过程页,再点击箭头可以回到第 三张.
(一)创设情境,探究规律 例2 有一列数,按一定规律排列成 1,-3,9,-27,81,-243,·, · · 其中某三个相邻数的和是-1 701, 这三个数各是多少?
(二)巩固方法,学以致用
类比上个问题的解决方法,完成下题: 1.一个数列,按一定规律排列如下形式: ,
(
根据这三个数的和是-1 701,得
x 9 + (- x 3 )+ x = - 1 7 0 1 .
解得 x= - 2 1 8 7 .
1, 4,1 6, 6 4,2 5 6, 1 0 2 4, …,
其中某三个相邻的数的和为 1 3 3 1 2 , 求这三个数各是多少?
解:设三个相邻数中第一个数为x,则第二个数 为-4x,第三个数为16x. 由题意,得
x+ (- 4 x )+ 1 6 x= - 1 3 3 1 2 .
解得 x= - 1 0 2 4
解:设三次活动的时间分别为:x-7,x,x+7. 根据题意,得
x-7+x+x+7=27.
解得 x=9.
所以这三天为2,9,16.
本月的四次活动的时间为2,9,16,23.四次的和为50.
(三)课堂小结,布置作业
1.根据前面的例题以及练习谈谈你是怎样 分析数列的规律的? 2.谈谈用一元一次方程分析和解决实际问题 的一般过程.
解:设这三个相邻数中的中间的一个数为 则第一个数为
x 3
x
, .
,第三个数为 3 x
根据这三个数的和是-1 701,得
x 3 x (3 x ) 1 701.
x= 7 2 9 .
解得
人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》教案
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。
本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。
教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。
二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。
但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。
三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。
2.能够运用移项法解一元一次方程。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。
2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。
2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。
示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。
4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。
教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。
5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。
一元一次方程移项(教案)
一元一次方程-移项(教案)第一章:引言1.1 目的引导学生回顾一元一次方程的基本概念,为新学期的学习打下基础。
1.2 内容(1) 复习一元一次方程的定义及解法。
(2) 介绍移项的概念及其在解方程中的应用。
1.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
1.4 教学步骤(1) 复习一元一次方程的定义及解法。
(2) 引入移项的概念,解释其在解方程中的作用。
(3) 示例演示移项操作,让学生理解并掌握移项技巧。
(4) 练习题巩固所学知识。
第二章:移项的基本原则2.1 目的让学生掌握移项的基本原则,能够正确进行移项操作。
2.2 内容(1) 介绍移项的基本原则。
(2) 解释为什么移项时需要改变变量的符号。
2.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
(1) 讲解移项的基本原则。
(2) 通过示例演示移项操作,让学生理解并掌握移项技巧。
(3) 练习题巩固所学知识。
第三章:移项在解方程中的应用3.1 目的让学生学会运用移项技巧解一元一次方程。
3.2 内容(1) 介绍移项在解方程中的应用。
(2) 演示解方程的过程,让学生理解并掌握解题思路。
3.3 教学方法采用讲解、示例、练习相结合的方式进行教学。
3.4 教学步骤(1) 讲解移项在解方程中的应用。
(2) 通过示例演示解方程的过程,让学生理解并掌握解题思路。
(3) 练习题巩固所学知识。
第四章:移项的拓展应用4.1 目的让学生能够将移项技巧应用到更广泛的问题中。
4.2 内容(1) 介绍移项的拓展应用。
(2) 演示如何将移项技巧应用到实际问题中。
采用讲解、示例、练习相结合的方式进行教学。
4.4 教学步骤(1) 讲解移项的拓展应用。
(2) 通过示例演示如何将移项技巧应用到实际问题中。
(3) 练习题巩固所学知识。
第五章:总结与评价5.1 目的总结本章节所学内容,检查学生的学习效果。
5.2 内容(1) 总结移项的基本概念、原则及其在解方程中的应用。
(2) 评价学生的学习情况。
人教版七年级数学上册:3.2《解一元一次方程(一) ——移项》说课稿
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》说课稿一. 教材分析《解一元一次方程(一)——移项》是人教版七年级数学上册第三章第二节的内容。
本节内容是在学生已经掌握了方程的定义和一元一次方程的解法的基础上进行授课的。
通过本节课的学习,使学生掌握一元一次方程的移项法则,进一步理解和掌握方程的解法,培养学生解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于方程的概念和解法已经有了一定的理解。
但是,学生在解方程的过程中,对于移项的操作还不够熟练,对于移项的法则的理解还不够深入。
因此,在教学过程中,需要教师耐心引导,让学生充分理解和掌握移项的法则,提高解方程的技能。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一元一次方程的移项法则,能够熟练地进行移项操作。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:一元一次方程的移项法则。
2.教学难点:移项的法则的应用,特别是对于含字母的方程的移项。
五. 说教学方法与手段1.教学方法:采用问题驱动法,引导学生自主探究和合作交流。
2.教学手段:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。
六. 说教学过程1.导入新课:通过复习一元一次方程的解法,引导学生进入新课。
2.自主探究:让学生自主探究一元一次方程的移项法则,教师进行适当的引导和点拨。
3.合作交流:学生分组进行合作交流,分享各自的解题心得和方法。
4.动画演示:利用多媒体课件,进行动画演示,帮助学生直观地理解移项的过程。
5.巩固练习:布置一些练习题,让学生进行巩固练习。
6.总结反思:让学生总结本节课的收获,教师进行总结和点评。
七. 说板书设计板书设计如下:一元一次方程的移项法则八. 说教学评价教学评价主要通过学生的课堂表现、练习题的完成情况和学生的学习反馈来进行。
3.2解一元一次方程-移项(教案)
2.教学难点
-理解移项的数学原理,特别是为何移项时要改变符号,这是学生容易混淆的地方。
-在含有多个项的方程中,正确区分哪些项需要移项,哪些项保持不变。
-对于一些特殊类型的方程,如含有绝对值、分数等,如何应用移项法则。
3.2解一元一次方程-移项(教案)
一、教学内容
本节课选自教材第三章第二节“解一元一次方程-移项”。教学内容主要包括以下两个方面:
1.理解移项的概念及其实质,掌握移项的法则,即同号相加、异号相减。
2.学会运用移项法解一元一次方程,包括简单方程和含有多项式的方程,如ax+b=c、ax+b=cx+d等类型。
三、教学难点与重点
1.教学重点
-理解并掌握移项的概念及实质:即改变等式两边同类项的符号,从等式一边移到另一边。
-学会运用移项法则,包括同号相加、异号相减,解决一元一次方程。
-能够正确识别方程中的未知数、已知数和常数项,并应用移项法求解。
-通过实际例题,强化移项步骤的顺序和规范操作,如先确定移项的方向,再改变符号等。
-设计不同难度的习题,从简单到复杂,逐步引导学生掌握移项的规律。
-通过小组讨论和同伴互助,让学生在交流中澄清疑惑,加深理解。
-结合生活实例,让学生感受数学的实用价值,激发学习兴趣,降低应用题的难度感知。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2解一元一次方程-移项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要平衡收支、调整物品数量等情况?”这个问题与我们将要学习的移项法密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索移项法的奥秘。
2023-2024学年人教部编版七年级数学上册第三章教案解一元一次方程----移项
3.2.2 解一元一次方程—移项教学设计教材分析1.本节课是数学人教版七年级上册第三章第二节第二小节的内容。
2.本节课是在学生学习了一元一次方程的有关概念、等式的基本性质及合并同类项的基础上归纳出来的用移项法解一元一次方程,它可为解决更复杂的一元一次方程、一元一次不等式做铺垫。
因此,本节课的学习是今后进一步学习的重要知识基础。
学情分析七年级学生学习热情高,但观察、分析、概括能力比较弱,学生已经学习了等式的基本性质,解方程中的合并同类项和系数化为1,掌握了一些简单的一元一次方程的解法。
教学目标1.知道移项解方程的理论依据。
2.能熟练运用移项法则解方程。
3.进一步认识解方程的基本变形,感悟解方程过程中的转化思想。
教学重点通过移项解“ax b cx d+=+”类型的一元一次方程教学难点移项法则的依据教学方法启发式、探究式教学准备教师:课件、投影仪学生:预习教学过程教学环节师生主要活动设计意图出示学习目标1、知道移项解方程的理论依据。
2、能熟练运用移项法则解方程。
学生明确本节课目标,使学生的学习有目的性创设情境引入新课把一些图书分给七(3)班同学阅读,如果每人分3本,则剩余20本;若每人分4本,则还缺25本,这个班的有多少名学生?以学生身边的实际问题展开讨论,营造一种轻松的学习氛围,激发学生继续学习的愿望.活提问题1;我们应该怎样设未知数较好呢?自主探究学习新知动一出问题学生回答:设这个班有x名学生.:追问1:本题中含有怎样的相等关系?学生回答:图书的本数都是固定的.师生活动:学生列出方程,教师板书.追问2:它与上节课遇到的方程有何不同,怎样解这个方程?学生回答:方程的两边都含有x的项和不含字母的常数项.教师活动:怎么样才能使它向x a=转化?它的依据是什么?这就是我们这节课要研究的问题.根据学生的情况,逐步放手,培养学生独立解决问题的能力.活动二探究问题2:为了使方程的右边没有含x的项,我们应该怎么办呢?学生回答:根据等式的性质1,等号两边同时减去4x追问1:我们要如何使方程的左边没有常数项呢?学生回答:还是根据等式的性质1,等号两边同时减去20.教师活动:教师根据学生的回答板书追问2:利用等式性质1前后的方程320425x x+=-和342520x x-=--有什么变化?学生活动:学生观察、独立思考、小组交流讨论,得出结论.教师及时评价学生的回答,师生共同总结,师板书:移项的概念:把等式一边的某项变号后移到另一边,叫做移项。
《解一元一次方程:移项》
分析:因为 与 是同类项,所以可得方程 和 .解 可得m=2;解 可得n=-1.故答案为A.
3x+20=4x-25
(4)根据题意可列方程为________________________
因为这批书的总数是一个定值,表示它的两个式子应相等
等式左右两边都有未知数,如何求得方程的解呢?
思 考
如何求方程3x+20=4x-25的解?
把它变成x=a(常数)的形式
3x+20 = 4x-25
等式两边都含有x的项和不含字母的常数项。
ቤተ መጻሕፍቲ ባይዱ
课堂测试
4.解下列方程:(1) 16x-40=9x-16(2) xx-3(3) 3x+1=0.9x+7(4) 3y+9-2y+2=10-4y
(1) 16x-40=9x-16解:移项:16x-9x=-16+40合并同类项: 7x=24系数化为1 : x=.(2) xx-3解:移项:x- x=-3-2合并同类项: x=-5系数化为1 :x=-10.
解方程
1.小亮在计算 41-N 时,误将“ -”看成“ +”,结果得13,则41-N的值应为( )A.-28 B.54 C.69 D.-54
【分析】根据题意,41+N=13,移项后解得N=-28,∴41-N=41-(-28)=69.故选C.
课堂测试
2.(1)当x取何值时,2x+3与-5x+6相等?
探索提高
第三章 一元一次方程
解一元一次方程 ——(移项)
主讲人:
感谢各位的仔细聆听
课堂测试
(3)当x取何值时,2x+3的值比-5x+6的值小10?
2x+3+10=-5x+6移项得, 2x+5x= 6-13合并同类项得, 7x=-7系数化为1得, x=1
《解一元一次方程--移项》教学设计方案讲课讲稿
每人分3本,共分出了3x_本,加上剩余的20本,这批书共(_3x+20_)_本。
每人分4本,需要4x本,减去缺少的25本,这批书共(4x-25 )_本。
这批书的总数有几种表示方法?
它们之间有什么关系?
教师提问。
教师展示问题,
教师和学生一起分析问题,找出相等关系,合理地设未知数、列式子。
(2)、3x + 1 = -2
(3)、10x–3 =7x +3
(4)、8–5x = x + 2
4、思考:
移项的根据是什么?
上面解方程中“移项”起了什么作用?
5、数学小史
解方程时经常要“合并同类项”和“移项”,前面提到的古老的代数书中的“对消”和“还原”,指的就是“合并同类项”和“移项”,早在一千多年前,数学家阿尔—花拉子米就已经对“合并同类项”和“移项”非常重视了。
说明基本事实:表示同一个量的两个式子具有相等关系,这是列方程的依据。
二、合作交流,解读探究:
(一)、移项
1、思考:方程3x +20 = 4x -25的两边都有含x的项(3x与4x)和不含字母的常数项(20与- 25),怎样才能使它向x= a(常数)的形式转化呢
2、观察:
(1)、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?
与前面解方程的程序化操作相比,现在又多了一道程序(移项),并写出完整的解题过程
教师巡视、辅导。
引导学生回答:解方程时,应使含未知数的项集中于方程一边,常数项集中于另一边。解方程就是要使方程不断向x = a的形式转化。
教师讲解
学生练习
学生思考回答
使学生熟练掌握用移项解一元一次方程,培养学生规范的书写格式
数学上册《解一元一次方程-移项》教案(高效课堂)2022年人教版数学精品
||k15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab- 〔3〕3五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习D CA BD CABDC A B〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
七年级数学解一元一次方程—移项教学设计
七年级数学《解一元一次方程—移项》教学设计李玉慰课题名称 3.2解一元一次方程—移项(北师大版)科目数学教学对象初一主讲李玉慰课时一课时一、教材内容分析1、本节课是数学北师大版七年级上册第三章第二节第二小节的内容。
2、本节课主要内容是解一元一次方程的重要步骤移项。
是学生学习解一元一次方程的基础,这一部分内容在方程中占有很重要的地位,在解方程、解一元一次不等式、解一元二次不等式中都要用到。
二、教学目标(知识,技能,情感态度、价值观)知识与技能:(1)、找相等关系列一元一次方程;(2)、用移项解一元一次方程。
(3)、掌握移项变号的基本原则过程与方法:经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
情感态度与价值观:通过学习“合并同类项”和“移项”,体会古老的代数书中的“对消”和“还原”的思想,激发学生学习数学的热情。
三、学习者特征分析针对七年级学生学习热情高,但观察、分析、概括能力较弱的特点,本节从实际问题入手,让学生通过自己思考、动手,激发学生的求知欲,提高学生学习的兴趣与积极性。
在课堂教学中,学生主要采取讨论、思考、观察的学习方式,使学生真正成为课堂的主人,逐步培养学生观察、概括、归纳的能力。
四、重点,难点1.重点:运用方程解决实际问题会用移项法则解一元一次方程。
2.难点:理解移项法则的依据,以及寻找问题中的等量关系。
五、教学策略,教学资源(1)、自主探索策略:通过分组讨论,学生通过观察、分析发现结论,归纳概括。
(2)、师生交流:通过教师引导,让学生学会学习数学的方法和数学思想。
生生交流:学生分组讨论问题,在讨论的过程中相互交流,发表个人的见解,对问题进行探讨,互相学习。
六、教学过程教学过程教师活动学生活动设计意图及资源准备一、复习回顾,创设情境,导入新课:(一)、回顾:什么是一元一次方程?等式的基本性质?1.等式的两边都加上(或减去)同一个数(或式子),结果仍相等.2.等式的两边都乘以同一个数,或除以同一个不为零的数,结果仍相等.(二)、创设情境二、合作交流,解读探究:(一)、移项1、思考:方程5x -2 =8的左边有不含字母的常数项2,怎样才能使它向x= a(常数)的形式转化呢2、观察:(1)、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?(2)、改变的项有什么变化?3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2.2解一元一次方程--移项
【学习目标】
1、掌握用移项法则解一元一次方程的方法。
(重点)
2、理解“移项法则”的依据。
(难点)
3、寻找问题中的等量关系,运用方程解决实际问题。
(难点)【导学过程】
一、温故知新
课本88页练习第1题。
二、问题引入
1、观察思考。
2、引出用《移项法解一元一次方程》的课题。
三、呈现目标
四、探究新知
1、移项的依据—等式的性质1。
2、移项的概念与移项法则。
3、用移项法解该方程。
五、课堂训练
1、下列移项对不对?如果不对,错在哪里?应当怎样改正?
(1)从3x+6=0得3x=6;
(2)从2x=x-1得到2x-x=1;
(3)从2+x-3=2x+1得到2- 3 -1=2x-x;
2、课本90页练习第一题。
六、解决问题
1、课本88页问题2
2、审题分析已知量与未知量找等量关系,列方程。
3、解答实际问题。
七、拓展升华
问题2中可不可以设另一个未知量(图书总数)为未知数?如
果可以,该怎么设?那学生人数怎么表示?等量关系是什么?怎么
列方程?(为下节课学习埋下伏笔)
八、课堂小结:
本节课你有什么收获?
九、作业布置:
1、必做题:课本91页习题第3-7题。
2、选做题:课本92页习题第12题。