用字母表示数和单项式
七年级数学上册第三章用字母表示数3.2代数式知识拓展单项式系数次数
单项式、系数、次数由数与字母的乘积组成的代数式叫做单项式(monomial).单独一个数或一个字母也是单项式.单项式中的数字因数叫做这个单项式的系数(coefficient).例:单项式x 、-a 2b 和mn 8 的系数分别是1、-1和18 . 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree ).例:单项式-k 、2xy 2和0.7a 2b 3c 的次数分别是1、3和6.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .2.如图,菱形ABCD 中,E. F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .243.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙)。
那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )A .()222a b a b -=-B .()2222a b a ab b +=++C .()2222a b a ab b -=-+D .()()22a b a b a b -=+- 4.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.在同一坐标系中,反比例函数y =k x与二次函数y =kx 2+k(k≠0)的图象可能为( ) A . B .C.D.6.﹣3的绝对值是()A.﹣3 B.3 C.-13D.137.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB 与CD1交于点O,则线段AD1的长度为()A13B5C.2D.48.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3)B.(1,﹣3)C.(2,2)D.(5,﹣1)9.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-310.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,C.现有下面四个推断:①抛物线开口向下;②当x=-2时,y取最大值;③当m<4时,关于x的一元二次方程ax2+bx+c=m必有两个不相等的实数根;④直线y=kx+c(k≠0)经过点A,C,当kx+c> ax2+bx +c时,x的取值范围是-4<x<0;其中推断正确的是()A.①②B.①③C.①③④D.②③④11.如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( )A.2R B.3R C.2R D.3R12.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.14.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于__________.CD=,15.如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得8 BC=米,CD与地面成30°角,且此时测得1米的影长为2米,则电线杆的高度为20=__________米.16.如图,AG∥BC,如果AF:FB=3:5,BC:CD=3:2,那么AE:EC=_____.17.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是 .18.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)重百江津商场销售AB两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A商品和5件B种商品所得利润为1100元.求每件A种商品和每件B 种商品售出后所得利润分别为多少元?由于需求量大A、B两种商品很快售完,重百商场决定再次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么重百商场至少购进多少件A种商品?20.(6分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出45时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)21.(6分)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?22.(8分)计算532224mmm m-⎛⎫+-÷⎪--⎝⎭.23.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为一边的矩形ABCD(不是正方形),且点C和点D均在小正方形的顶点上;在图中画出以线段AB为一腰,底边长为22的等腰三角形ABE,点E 在小正方形的顶点上,连接CE,请直接写出线段CE的长.24.(10分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为件,扇形统计图中D厂家对应的圆心角为;抽查C厂家的合格零件为件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.25.(10分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.26.(12分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.27.(12分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.2.D【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【详解】Q E、F分别是AC、DC的中点,∴EF是ADCV的中位线,∴2236==⨯=,AD EF∴菱形ABCD的周长44624==⨯=.AD故选:D.【点睛】本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.3.D【解析】【分析】分别根据正方形及平行四边形的面积公式求得甲、乙中阴影部分的面积,从而得到可以验证成立的公式.阴影部分的面积相等,即甲的面积=a2﹣b2,乙的面积=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).故选:D.【点睛】考点:等腰梯形的性质;平方差公式的几何背景;平行四边形的性质.4.A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.5.D【解析】【分析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=kx,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=kx,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.6.B【解析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 7.A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.8.C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣45<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=32>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.9.B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a、b即可.详解:(x+1)(x-3)=x2-3x+x-3=x2-2x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.10.B【解析】【分析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案.【详解】解:①由图象可知,抛物线开口向下,所以①正确;②若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以②错误,从而排除掉A和D;剩下的选项中都有③,所以③是正确的;易知直线y=kx+c(k≠0)经过点A,C,当kx+c>ax2+bx+c时,x的取值范围是x<-4或x>0,从而④错误.故选:B.【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题.11.D【解析】【分析】延长BO 交圆于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°;又BD=2R ,根据锐角三角函数的定义得BC=3R.【详解】解:延长BO 交⊙O 于D ,连接CD ,则∠BCD=90°,∠D=∠A=60°,∴∠CBD=30°,∵BD=2R,∴DC=R,3,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30°角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键.12.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD 为等边三角形,即 AD =AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=.故答案为2π.14.1 2【解析】【分析】根据同弧或等弧所对的圆周角相等来求解.【详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【点睛】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.15.()米【解析】【分析】过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F,根据直角三角形30°角所对的直角边等于斜边的一半求出DE,再根据勾股定理求出CE,然后根据同时同地物高与影长成正比列式求出EF,再求出BF,再次利用同时同地物高与影长成正比列式求解即可.【详解】如图,过D作DE⊥BC的延长线于E,连接AD并延长交BC的延长线于F.∵CD=8,CD与地面成30°角,∴DE=12CD=12×8=4,根据勾股定理得:.∵1m杆的影长为2m,∴DEEF=12,∴EF=2DE=2×4=8,().∵ABBF=12,∴AB=12(28+43)=14+23.故答案为(14+23).【点睛】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比的性质,作辅助线求出AB的影长若全在水平地面上的长BF是解题的关键.16.3:2;【解析】【分析】由AG//BC可得△AFG与△BFD相似,△AEG与△CED相似,根据相似比求解.【详解】假设:AF=3x,BF=5x ,∵△AFG与△BFD相似∴AG=3y,BD=5y由题意BC:CD=3:2则CD=2y∵△AEG与△CED相似∴AE:EC= AG:DC=3:2.【点睛】本题考查的是相似三角形,熟练掌握相似三角形的性质是解题的关键.17.y3>y1>y2.【解析】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2. 考点:二次函数的函数值比较大小.18.2,0≤x≤2或43≤x≤2.【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:202k bk b=+⎧⎨=+⎩,解得2020kb=⎧⎨=-⎩,∴乙的函数解析式为:y=20x﹣20 ②由①②得52020y xy x=⎧⎨=-⎩,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)200元和100元(2)至少6件【解析】【分析】(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A 种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.根据获得的利润不低于4000元,建立不等式求出其解即可.【详解】解:(1)设A 种商品售出后所得利润为x 元,B 种商品售出后所得利润为y 元.由题意, 得4600351100x y x y +=⎧⎨+=⎩,解得:200100x y =⎧⎨=⎩, 答:A 种商品售出后所得利润为200元,B 种商品售出后所得利润为100元.(2)设购进A 种商品a 件,则购进B 种商品(34﹣a )件.由题意,得200a+100(34﹣a )≥4000,解得:a≥6答:威丽商场至少需购进6件A 种商品.20.(1)第一批T 恤衫每件的进价是90元;(2)剩余的T 恤衫每件售价至少要80元.【解析】【分析】(1)设第一批T 恤衫每件进价是x 元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;(2)设剩余的T 恤衫每件售价y 元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.【详解】解:(1)设第一批T 恤衫每件进价是x 元,由题意,得45004950x x 9=+, 解得x=90经检验x=90是分式方程的解,符合题意.答:第一批T 恤衫每件的进价是90元.(2)设剩余的T 恤衫每件售价y 元.由(1)知,第二批购进495099=50件. 由题意,得120×50×45+y×50×15﹣4950≥650, 解得y≥80.答:剩余的T 恤衫每件售价至少要80元.21.(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x ,根据“2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x ,根据题意,得:1280(1+x )2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a 户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a ﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.22.26m +【解析】 分析:先计算522m m +--,再做除法,结果化为整式或最简分式. 详解: 532224m m m m -⎛⎫+-÷ ⎪--⎝⎭()()()2252423m m m m m +---=⋅-- ()222923m m m m --=⋅-- ()()()332223m m m m m -+-=⋅--26m=+.点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.23.作图见解析;CE=4.【解析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.24.(1)500,90°;(2)380;(3)合格率排在前两名的是C、D两个厂家;(4)P(选中C、D)=16.【解析】试题分析:(1)计算出D厂的零件比例,则D厂的零件数=总数×所占比例,D厂家对应的圆心角为360°×所占比例;(2)C厂的零件数=总数×所占比例;(3)计算出各厂的合格率后,进一步比较得出答案即可;(4)利用树状图法列举出所有可能的结果,然后利用概率公式即可求解.试题解析:(1)D厂的零件比例=1-20%-20%-35%=25%,D厂的零件数=2000×25%=500件;D厂家对应的圆心角为360°×25%=90°;(2)C厂的零件数=2000×20%=400件,C厂的合格零件数=400×95%=380件,如图:(3)A厂家合格率=630÷(2000×35%)=90%,B厂家合格率=370÷(2000×20%)=92.5%,C厂家合格率=95%,D厂家合格率470÷500=94%,合格率排在前两名的是C、D两个厂家;(4)根据题意画树形图如下:共有12种情况,选中C、D的有2种,则P(选中C、D)=212=16.考点:1.条形统计图;2.扇形统计图;3. 树状图法.25.(1)答案见解析;(2)220cm【解析】【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D 作DE⊥AB 于E,∵AD 平分∠BAC,∴DE=CD=4,∴S △ABD =12AB·DE=20cm 2. 【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.26.(1)证明见解析;(2)2933()22cm p -. 【解析】【分析】(1)连接OD ,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP 、DP 长,分别求出扇形DOB 和△ODP 面积,即可求出答案.【详解】解:(1)证明:连接OD ,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD 为半径,∴DP 是⊙O 切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm ,∴OP=6cm,由勾股定理得:3.∴图中阴影部分的面积22160333()23602ODP DOB S S S cm p p 创=-=创=V 扇形 27.(1)购进A 种树苗1棵,B 种树苗2棵(2)购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元【解析】【分析】(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,利用购进A 、B 两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B 种树苗的数量少于A 种树苗的数量,可找出方案.【详解】解:(1)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得: 80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.答:购进A 种树苗1棵,B 种树苗2棵.(2)设购进A 种树苗x 棵,则购进B 种树苗(12﹣x )棵,根据题意得:12﹣x <x ,解得:x >8.3.∵购进A 、B 两种树苗所需费用为80x+60(12﹣x )=20x+120,是x 的增函数,∴费用最省需x 取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元). 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵,这时所需费用为1200元.。
七年级上册数学整式的基本概念单项式与多项式
注:单独的一个数或字母也是代数式
单项式
整式 多项式
π是常数
代数式
x
分式 (关键分母里有字母)
π
八年级下
✔
式
等式
根式 (关键有根号) (关键有“=”) x=2
例2(利用系数、次数的概念求参数的值)(1)若-2ax3y|n-3|是关于x,y的单项式且系数是8,次数是4求a, n的值 (2)多项式(a-4)x3-xb+x-b是二次三项式求a与b的差
解析(1)关于x,y的单项式说明只把x,y视作字母其他作为常数处理所以在进行单项式次 数运算时,只需将x,y次数相加 由题意 -2a=8,3+|n-3|=4 a=-4,n=2或4 (2)a-4=0,b=2, a=4,b=2 a-b=2
4和7易混淆
拓展那一个三位数可表示为什么呢?
例1(基本知识的考察)(1)单项式-5xmy与-2a2b2次数相同则m= 。
(2)-3π3ab的系数为 ,次数为
。
(3)多项式-3x2y+2x2-1是 次 项式其中常数项是 ,二次项系数为
。
答案:(1)m+1=2+2⇒m=3 (2)-3π3,2
(3)三,三,-1,2
4.a与b的平方和
。
5.a与b和的平方
。
6.a的平方与b的和
。
7.a与b的平方的和
。
8.5除以m与1的和的商表示为
方法与技巧看最后一个字 。
9.有一个两位数十位数字为a个位数字为b这个两位数可表示为
【特色训练】整式的概念
整式的概念一、目标认知学习目标:理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
能按要求列出代数式,会求代数式的值。
会识别单项式系数与次数、多项式的项与系数。
重点:单项式的概念,系数和次数。
基本理解多项式的概念和正确确定多项式的次数和项数。
难点:系数是负数或分数时的情形;多项式的次数和项的次数的异同点。
二、知识要点梳理知识点一:用字母表示数要点诠释:用字母表示数之后,有些数量之间的关系用含有字母的式子表示,看上去更加简明,更具有普遍意义了.举例:如果用a、b表示任意两个有理数,那么加法交换律可以用字母表示为:a+b=b+a.乘法交换律可以用字母表示为:ab=ba知识点二:代数式要点诠释:诸如:16n ;2a+3b ;34 ;;等式子,叫做代数式。
(1)代数式中出现的乘号,通常写作“·”或省略不写,如6×b常写作6·b或6b;(2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6;(3)除法运算写成分数形式,如1÷a通常写作(4)带等号的式子(等式)不是代数式,如就不是代数式。
用字母来表示数.在解决实际问题时,常常先把问题中与数量有关的词语用代数式表示出来,即列出代数式,使问题变得简洁,更具一般性.知识点四:代数式的值要点诠释:一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值。
知识点五:单项式要点诠释:1.代数式都是由数与字母的乘积组成的,这样的代数式叫做单项式。
例如,、、abc、-m都是单项式.但不是单项式,因它分母中含有字母,相当于含有字母与字母的除法运算。
,,a,b都是单项式。
在a2b, ,2x2+3x+5中,只有a2b是单项式.2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.例如,的系数是,的系数是,abc的系数是1,-m的系数是-1.注:特别地,单独一个数或一个字母也是单项式.3. 单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数.如: x3y2的次数是x的指数3与y的指数2的和5,即x3y2的次数是5;ab的次数是2; 4abc的次数是3;2a的次数是1;4的次数是0。
人教版七年级上册2.1.1 用字母表示数 教学设计
人教版七年级上册 2.1.1 用字母表示数教学设计2.1.1用字母表示数教学设计教材分析实数第一课时属于数与式的领域,是在学习用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究用含有字母的式子表示实际问题中的数量关系,它是初中数学的重要概念,是以后学习其他知识的基础。
用含有字母的式子表示数量关系,经历有数到式的过程,体现从特殊到一般的数学思想,对发展符号意识有重要意义。
本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示。
由于字母表示数,因而可以和数一样参与运算,这是理解整式表示数量关系的核心,还需要结合具体情境,对于如何分析问题,寻找相关数量之间的关系,并依据数量关系用运算符号把数和字母联系起来。
一、学习目标知识与技能1.理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
情感态度与价值观1.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
2.以青藏铁路为引例,对学生进行爱国主义教育的德育渗透。
二、重点难点重点进一步理解字母表示数的意义,正确分析实际问题中的数量的关系,并用含字母的式子表示数量关系感受其中“抽象”的数学思想。
难点正确分析实际问题中的数量关系,用式子表示数量关系三、学情分析本节课是研究整式的第一节课,它是进一步学习单项式和多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。
要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
四、设计思路设计学生容易出错的问题让学生先尝试解决,教师根据学生尝试的结果进行校正,重点关注:(1)学生在具体问题中,对不同单项式特点的认识。
初一上 第一讲 整式的概念(一)
第一讲整式的概念【知识要点】1.字母表示数:字母表示数具有简明、普遍的优越性。
从具体的数过渡到用字母表示数,渗透了从特殊到一般的抽象概括的思维方式。
2.列代数式:即用字母把数字和数量关系简明地表示出来。
3.代数式的值:列代数式解决问题时,往往要根据代数式里的字母的取值来确定代数式的值,因此求代数式的值是运用列代数式解决问题的一个重要方面。
4.整式: 最简单、最基本的代数式(1)单项式:由数与字母的积或字母与字母的积组成的代数式叫单项式。
单独的一个数或一个字母也是单项式。
(2)多项式:几个单项式的和组成的代数式叫做多项式。
把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列,反之按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
如:多项式34322--+-按y的降幂排列为x y y xy x y532743223x y x y xy y7523-++--。
--++-,按y的升幂排列为32234 3257y xy x y x y【学习目标】1.正确理解单项式、单项式系数、单项式的次数、多项式、多项式系数、多项式的次数、整式等含义;2.会用抽象的数学语言描述实际问题;【典型例题】1.用字母表示数【例1】黑板的长为2.5米,宽为b米,则他的面积和周长分别是多少?【分析】本题是根据长方形的性质求解的,要熟记长方形的面积公式,周长公式。
【解答】面积22.5 2.5()b b =⨯=米 周长()()2.522 2.5()b b =+⨯=+米【点评】数字与字母或数字与括号相乘时,通常省略乘号,但要把数字写在字母或括号前面。
【例2】 请用字母表示已学过的四则运算律,如加法结合律等。
【解答】加法交换律:a b b a +=+加法结合律:)()(c b a c b a ++=++乘法交换律:a b b a ⨯=⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯乘法分配律:bc ac c b a +=⨯+)(【点评】这里的“×”号,只是为了使表达清晰,实际做题时要注意书写规范。
初一数学 单项式 多项式
整式的加减用字母表示数学习内容:整式:单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。
5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。
单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、判断下列各代数式是否是单项式。
如不是,请说明理由;如是,请指出它的系数和次数。
①x +1; ②x 1; ③πr 2; ④-23a 2b 。
3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。
①圆周率π是常数;②当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;③单项式次数只与字母指数有关。
用字母表示数
字母表示什么1、字母可以表示任何数,用字母表示数的运算律和公式法则;○1加法交换律a +b =b +a 加法结合律a +b +c =a +(b +c ) ○2乘法交换律ab =ba 乘法结合律(ab )c =a (bc ) 乘法分配律a (b +c )=ab +ac用字母表示计算公式:○1长方形的周长2(a +b ),面积ab (a 、b 分别为长、宽) ○2正方形的周长4a ,面积a 2(a 表示边长) ○3长方体的体积abc ,表面积2ab +2bc +2ac (a 、b 、c 分别为长、宽、高) ○4正方体的体积a 3,表面积6a 2(a 表示棱长) ○5圆的周长2πr ,面积πr 2(r 为半径) ○6三角形的面积21×ah (a 表示底边长,h 表示底边上的高) 2、在同一问题中,同一字母只能表示同一数量,不同的数量要用不同的字母表示。
3、用字母表示实际问题中某一数量时,字母的取值必须使这个问题有意义,并且符合实际。
4、注意书写格式的规范:(1) 表示数与字母或字母与字母相乘时乘号,乘号可以写成“·”,但通常省略不写;数字与数字相乘必须写乘号;(2) 数和字母相乘时,数字应写在字母前面;(3) 带分数与字母相乘时,应把带分数化成假分数;(4) 除法运算写成分数形式 ,分数线具 “÷ ”号和“括号”的双重作用。
(5)在代数式的运算结果中,如有单位时,结果是积或商直接写单位;结果是和差加括号后再写单位。
代数式1、代数式:用基本运算符号把数和字母连接而成的式子叫代数式。
如: n-2 、 0.8a 、2n +500、abc 、2ab+2bc +2ac (单独一个数或一个字母也是代数式)注意:列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。
2、单项式:表示数与字母的积的代数式叫单项式。
用字母表示数总结讲解学习
用字母表示数总结用字母表示数济宁学院附中李涛一.用字母表示数1.字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明的将数量关系表示出来02.用字母表示数的意义:有助于揭示概念的本质特征,能使数量之间的关系更加简明,更具有普遍意义。
使思维过程简约化,易于形成概念系统。
二•代数式1代数式:用基本运算符号(6种)把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
单独的一个数或一个字母也是代数式。
2代数式书写规范:①数与字母、字母与字母中的乘号可以省略不写或用“ •”表示,并把数字放到字母前;②出现除式时,用分数线表示;③带分数与字母相乘时,带分数要化成假分数;④若运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
3.列代数式顺序,先读先写;找数量关系4.读代数式一般按意义去读,总之没歧义即可•三.三式四数1.单项式:表示数与字母的乘积的代数式叫单项式(数字与字母的积)。
单独的一个数或一个字母也是代数式。
单项式的系数:单项式中的前面数字•包括前面符号单项式的次数:一个单项式中,所有字母的指数和2.多项式:几个单项式的和(代数和)的形式叫做多项式。
多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项。
每一项包括前面符号.多项式的次数:多项式里次数最高项(单项式)的次数,叫做这个多项式的次数。
常数项的次数为0o3.整式:单项式和多项式统称为整式。
注意:分母上含有字母的不是整式。
说明:①根据分母上是否有字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的前面数字叫做单项式的系数。
包括符号3、单项式中所有字母的指数和叫做单项式的次数。
七年级上数学《整式的加减》作业设计
C.30%a 元
D. 7 a 元 10
3.天眼区门票的价格为成人票每张80元,儿童票每张50元.若购买m张
成人票和n张儿童票,则共需花费
元。
4.公共汽车上原有x名乘客,中途下车一半,后来又上来10名乘客,这时
公共汽车上共有乘客
名。
(二)时间要求(10分钟)
(三)评价设计
作业评价表
等级 评价指标 A B C
《整式的加减》单元作业设计
一、单元信息 学科
基本信息 数学
年级 七年级
学期 第一学期
教材版本 人教版
单元名称 整式的加减
单元组织 方式
自然单元 □重组单元
序号
课时名称
对应教材内容
1 整式——用字母表示数
2.1(P54-55)
课时信息
2 整式——单项式 3 整式——多项式
2.1(P56-57) 2.1(P58-59)
(1)直接写出第8个单项式:
.
(2)第10个单项式的系数和次数分别是多少?
(3)第2023个单项式是
(二)时间要求(10分钟)
(三)评价设计
作业评价表
等级 评价指标 A B C
备注
A等:答案正确、过程正确。
答题的准确 性
B等:答案正确、过程有问题。 C等:答案不正确,有过程不完整;答案不准 确,过程错误或无过程。
评价指标
等级 ABC
作业评价表
备注
答题的准确 性
A等:答案正确、过程正确。 B等:答案正确、过程有问题。 C等:答案不正确,有过程不完整;答案不准 确,过程错误或无过程。
答题的规范 性
A等:过程规范,答案正确。 B等:过程不够规范、完整,答案正确。 C等:过程不规范或无过程,答案错误。
用字母表示数 知识点
字母表示数1、用字母表示数的意义用字母可以表示我们已经学过的与今后要学到的任何一个数,用字母表示数可以简明地表达数学运算律,用字母表示数可以简明地表达公式,用字母表示数可以简明地表达问题中的数量关系,还可以用字母表示未知数。
一、等量关系式s=vt二、运算律加法的交换律:a+b=b+a加法的结合律:〔a+b〕+c= a+〔b+c 〕乘法的交换律: a×b =b×a乘法的结合律:〔a×b〕×c= a×〔b×c 〕乘法的分配律:〔a+b〕×c= a×c + b×c三、公式1、长方形的周长=〔长+宽〕×2 C=(a+b)×22、正方形的周长=边长×4 C= 4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a·a= a 25、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=〔上底+下底〕×高÷2 S=〔a+b〕h÷28、直径=半径×2 半径=直径÷2 d=2r r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、10、圆的面积=圆周率×半径×半径S=πr 211、长方体的外表积=〔长×宽+长×高+宽×高〕×212、长方体的体积 =长×宽×高 V =abh13、正方体的外表积=棱长×棱长×6 S =6a214、正方体的体积=棱长×棱长×棱长 V=a·a·a= a315、圆柱的侧面积=底面圆的周长×高S=ch16、圆柱的外表积=上下底面面积+侧面积S=2πr2 +2πrh=2π(d÷2)2 +2π(d÷2)h=2π(C÷2÷π)2 +Ch 17、圆柱的体积=底面积×高V=ShV=πr2h=π(d÷2)2 h=π(C÷2÷π)2 h18、圆锥的体积=底面积×高÷3V=Sh÷3=πr2 h÷3=π(d÷2)2 h÷3=π(C÷2÷π) 2 h÷3四、注意1、a ²表示两个a相乘,而2a表示两个a相加。
整式的概念
一、用字母表示数的意义和作用用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果二、用字母表示数的要求:1.省略上的要求字母和数,字母和字母相乘时,可不写“× ”号,用“• ”表示,也可以什么符号都不写,直接把数或字母写在一起。
例如, a ×b ×c 可写成 a •b •c 或 abc7x y ⨯⨯可写成7x y ⋅⋅或7xy 。
字母和1相乘时,可不写1。
例如, 1×a 就写成a , 1×b 就写成b 。
2.顺序上的要求字母和数相乘时,省略乘号,必须把数写在字母的前面。
例如,5a ⨯要写成5a ⋅或5a ,不能写成a5 。
字母和字母相乘时,习惯上按英文字母顺序写(不是必须这样写)。
例如:x a ⨯一般写成ax ,3b a ⨯⨯一般写成3ab 。
3.写法上的要求相同的字母相乘,要写成乘方的形式。
例如,a a ⨯ 写成 2a ,x x x ⨯⨯写成3x ,()()a b a b -⨯-写成()2a b -。
带分数与字母相乘,省略乘号后,要将带分数化为假分数。
例如,112a ⨯写成32a ,而不能写成112a 。
4.单位名称上的要求用含有字母的代数式表示一个数量时,要在最后写上单位名称,如果代数式是数与字母相乘的形式,不必用括号把代数式括起来;如果代数式有加减关系,要把代数式用括号括起来,再在括号外边写上单位名称。
例如,每千克苹果 a 元,买8千克应付8a 元。
这里的8a 不用括号。
一大箱苹果 a 千克,一小箱苹果 b 千克,4大箱苹果比3小箱苹果多()43a b - 千克。
这里的43a b -必须用括号。
一. 填空。
(1)一筐橘子重x千克,26筐重()千克。
(2)n是大于1的自然数,与n相邻的两个自然数是()和()。
(3)幸福小学共有m名学生,其中男生230名,女生()名。
(4)运送了a千克苹果,比李叔叔多运12.5千克。
李叔叔运了()千克苹果,两人共运了()千克。
整式加减
例6
⑴求(4x2-3x)+(2+4x-x2)-(2x2+x+1)的值,
其中x=-2. 解:原式=4x2-3x+2+4x-x2-2x2-x-1 = x2 + 1 当x=-2时,原式=(-2)2+1=5 . ⑵求3k2-(2k-1)-(2k2-3k+1)的值,其中k=5. 解:原式=3k2-2k+1-2k2+3k-1 = k2 + k 当k=5时,原式=52+5=30 .
30a 系数 次数
-x3
y
ab2c3
3 xy 3 4
r 2
例1、写出下列单项式的系数和次数
30a 系数 次数 30 1
-x3 -1 3
y 1 1
ab2c3 1 6
3 xy 3 4
r 2
3 4
4
2
2 2 , x 1 2a b 这样的式子叫多项式. 5 那么什么叫多项式呢?
像 多项式:几个单项式的和叫多项式. 其中,每个单项式叫做多项式的项, 不含字母的项叫做常数项.
括号前面是“-”时,把括号和它前面的“-”号去 掉,原来括号里各项的符号都改变. a+(b-c)=a+b-c; a-(b+c)=a-b-c .
例4
1、对于题目:“化简 3x - 2(2 x - 4) ”,三位同学的做法各不相 同. 小明的做法是:3x-2(2x-4)=3x-4x+4=-x+4; 小亮的做法是:3x-2(2x-4)=3x-4x-8=-x-8; 小英的做法是:3x-2(2x-4)=3x-4x+8=-x+8. 他们中哪位同学做得对?其他同学错在哪里呢? 2、下列去括号正确的是 【 】 A.a2-(2a-b+c)=a2-2a-b+c B.3x-[5x-(2x-1)]=3x-5x-2x+1 C.a+(-3x+2y-1)=a-3x+2y-1 D.-(2x-y)+(z-1)=-2x-y-z-1
2024年秋新人教版七年级上册数学课件 4.1整式(第1课时)单项式
的面积为
.
(2)一个长方体包装盒的长、宽、高分别为x cm,y cm,z cm,
则这个长方体包装盒的体积为
cm3.
(3)有理数n的相反数是
.
(4)《北京2022年冬奥会——冰上运动》是为了纪念北京2022年
冬奥会冰上运动发行的邮票.邮票1套共5枚,价格为6元,其中一种
版式为一张10枚(2套),如图所示.某中学举行冬奥会有奖问答活
的条件.
x,y的指数的和为5
解:因为(a+3)xby2是关于x,y的五次单项式, 所以a+3≠0,b+2=5, 解得a≠-3,b=3.
2.同时含有a,b,c且系数为1的七次单项式共有( C )
A.4个
B.12个
C.15个
D.25个
解析:设次数分别为正整数x,y,z,且x+y+z=7. 当x=1时,y可取1,2,3,4,5,此时z的值依次对应为5,4,3,2,1; 当x=2时,y可取1,2,3,4,此时z的值依次对应为4,3,2,1; …… 以此类推,可知共15个.
观察下面的式子有什么特点? 4m,m2,2.5x,vt,2πr,πr2.
表示圆周率,是数字,不是字母.
各式的运算中数字与字母之间,字母与字母之间的运算 都是乘法运算(都是表示数字与字母、字母与字母的积).
知识点1 单项式的定义
这些代数式都是数或字母的积,像这样的代数 式叫作单项式.
单独的一个数或一个字母也是单项式.
小结 判断单项式的方法
(1)单独一个数或一个字母也是单项式. (2)不含加减运算,单项式只含有乘积运算. (3)单项式数字因数与字母可能一个或多个. (4)可以含有除以数的运算,不能含有除以字母的运算.
人教版(2024)数学七年级上册 4.1 第1课时 单项式
(5)单项式可以如何命名?
可以根据单项式的次数来命名,比如-5a2b3叫作五次单项式
2.判断下列式子哪些是单项式:
-15,2x2y, 1 xy,3a+2b,0,m, 2bc
3a
π
-15,2x2y,
1 xy,0,m是单项式
π
3.请同学们完成下表:
(3)网购一种图书,每册定价为a元,另加价10%作为邮费,那么
购书一册需要费用多少元?
5
5
解:(1)8m,系数是8,次数是 1.
(2)xy,系数是1,次数是2.
(3)1.1a,系数是1.1,次数是1.
例4:观察一组单项式:-x,3x2,-5x3,7x4,-9x5……解答下列问题:
(1)这组单项式的系数的符号的规律是什么?
单项式 -xy 32m πr2h
5
系数
-1
9
π
5
次数
2
1
3
0
5
- 3 πxy
-5π
3
2
小组讨论
1.通过刚才的练习,你觉得在找单项式的系数和次数时应该注意什么?
①单项式的系数包含它前面的符号,当系数为1或-1时,这个“1”省略
不写,但不要误认为是0;
②圆周率π是常数;③单独一个非0数字的次数是0;④单项式的系数可
vt
2.
(4)半径为r cm的圆的周长是_____cm,面积为_______cm
2πr
πr2
请同学们观察列出的式子有什么共同特点呢?
注意:π是圆周率
的代号,不是字母.视频来自入请同学们观看一段视频:
活动导入
同学们,数学世界举办了一场研讨会,邀请的成员都是“单项式”,
单项式的定义(微课教案)
单项式的定义(微课教案)
单项式是由数与字母或字母与字母的乘积组成的式子。
在本节课中,我们通过用字母表示简单的数量关系引出单项式及有关的概念,为进一步研究多项式、整式的加减做充分的准备。
在小学,学生已经研究过用字母表示数,这对于学生进一步研究用字母表示简单的数量关系是有帮助的。
因此,在教学过程中,除了引导学生正确地用字母表示数量关系外,应把重点放在他们对单项式有关概念的理解和运用上,为整式的加减做准备。
本节课的教学目标是使学生能够理解单项式的概念,判断一个代数式是否为单项式,并通过引导学生观察、发现、归纳及变式训练掌握单项式。
通过观察、体验、运用,让学生经历探索数量关系和变化规律的过程,感受到用字母表示数的优越性。
在进一步理解用字母表示数量关系的过程中,建立符号意识,激发学生研究数学的积极性。
本节课的重难点在于用字母表示数量关系及理解单项式有关的概念。
教学准备包括多媒体课件。
在课前复中,我们可以引导学生回顾用字母表示数的概念。
通过创设情境,引入新课,例如用含有字母的式子填空,让学生观察所列出的代数式,引出单项式的定义。
在练中,学生可以判断哪些代数式是单项式。
在小结中,我们可以再次强调单项式的定义,即由数与字母或字母与字母的乘积组成的式子。
同时,还可以举例说明单项式的形式,例如2x、-5ab等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
2n 2 ×n
n 4n ×4
n只青蛙n张嘴,2n只眼睛4n条腿, n声扑通跳下水.
利用字母表示数,能把数和数量关系一般化 地、简明地表示出来。
(1)练习簿的单价为a元,100本练习簿的总价 是 100a 元。
①数和字母相乘,可省略乘号,并把数字写在 字母的前面 。
(2)练习簿的单价为a元,b本练习簿的总价是 元。 ab ②字母和字母相乘,乘号可以省略不写或 用“
5 2 m 1 m 3 3
⑤带分数与字母相乘时,带分数要写成假分数的形式。
6:姚明个字高,经测量他通常跨一步的 距离1米,若取向前为正,向后为负,那 么姚明向前跨a步为 a 为 -a 米。
1×a=a ; (-1)×a=-a 当“1”与任何字母相乘时,“1”省略不写 当"-1"乘以字母时,只要在那个字母前加上“-”号。
2、数或字母的积, 叫做单项式. (单独的一个数或一个字母也是单项式.)
单项式中的数字因数叫做这个单项式的系数。 一个单项式中的所有字母的指数的和叫做这个单项式的次数。 注 意
注 意
当单项式的系数为1或 –1时,这个“1”应省略不 写
圆周率是常数
* 单独的一个数或一个字母也是单项式; **单独一个非零数 (常数项) 的次数是 0 。
(5)单项式24的次数是4。
·”
表示。一般情况下,按26个字母
的顺序从左到右来写
(3)练习簿的单价为0.5元,圆珠笔的单价是3.2元,
(0.5a+3.2b) 元。 买a本练习簿和b支笔的总价是
③后面带单位的相加或相减的式子要用括号括起来。
(4)小明的家离学校s千米,小明骑车上学.
s 若每小时行10千米,则需 10
时。
④除法运算写成分数形式,即除号改为分数线。
观察这些式子有哪 些运算关系 4x 与 的 乘积
6 a2
与
的 乘积
1 1 sh 3 3
-5 a
与 、 的乘积
与 的 乘积
单项式
有关概念:
1、数或字母的积, 叫做单项式. (单独的一个数或一个字母也是单项式.)
快速抢答:是真是假!
1、x是单项式。
2、
(真 )
)
a 假 不是单项式。( 2
3、π不是单项式。( 假 )
米,向后跨a步
代数式
用基本的运算符号把数或表示数的字母连接 而成的式子叫做代数式。
100a ab 0.5a+3.2b
s 10
5 m 3
下面的式子,省略乘号应如何写?
问题2
用数学式子表示 1、边长为x的正方形的 周长 2、边长为a的正方体 的表面积 3、底面积为s,高为h 的圆锥的体积 4、拉萨市最近平均每 天都是零下5℃,连续a 天的温度和 都是数或字母的乘积的式子
x3-y2
2.判断题(对的打“√”,错的打“×”) (1)字母a和数字1都不是单项式。( × )
3 1 3 (2) x 可以看作 x 与3的乘积,所以式子 x
是单项式。( × )
(3)单项式xyz的次数是3。
2x3 y (4 ) 3
( √ )
这个单项式系数是2,次数是4。 ( × ) ( × )
4、
2 a是单项式
。 ( 假)
我思,我进步1
解剖单项 式
指数和称次数
-3x2y3 系数
单项式中的数字因数叫做这个单项式的系数。
-3 ,-ab的系数是_____ 如-3x的系数是_____ -1 3 3ab 如 的系数是_____ 2,
2
一个单项式中的所有字母的指数的和叫做这个单项式的次 数。
1 ,ab的次数是_____ 2 如-3x的次数是_____
随堂练习
1.用含有字母的式子填空 (1)某商店前一个月盈利a元,这个月盈利是前一 个月盈利的75%,则这个月盈利 75%a元 (2)三角形的底是高的2倍,若高是xcm,则这个 三角形的面积是 x²cm²
(3)1kg橘子a元,1kg苹果6元,购买10kg橘子和 mkg苹果共 10a+6m元 (4)x的立方与y的平方差是
* 单独的一个数或一个字母也是单项式; 系数: 次数: 3 **单独一个非零数 (常数项) 的次数是 0 。
系数:
圆周率 是常数 系数: 1
次数:
5
2
次数:
5
3
√
系数:
3
次数:
0
上面式子是单项式吗?如果是,指出它的系数和次数
小结
1、用基本的运算符号把数或表示数的字母 连接而成的式子叫做代数式。
Байду номын сангаас 练练手
a3 -n √ √ √ √ × 系数: 系数: 系数: 系数: 1 -1 次数: 次数: 次数: 次数: 3 1 2 2
5x 2 6
vt X+1
5 6
1
注 意
xy3z
当单项式的系数为1或 –1时,这个“1”应省略不 写
√ 注 意 √ × √
R 2 h
3 x 2m 2 n 3