2020届高考文数复习常考题型大通关(全国卷): 概率与统计 考点三 变量间的相关关系与独立性检验
2020年全国卷(3)文科数学
2020年全国卷(3)文科数学2020年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学适用地区:云南、贵州、四川、广西、西藏等一、选择题:1.已知集合 $A=\{1,2,3,5,7,11\}$,$B=\{x|3<x<15\}$,则$A \cap B$ 中元素的个数为 A。
2 B。
3 C。
4 D。
52.复数 $z\cdot(1+i)=1-i$,则 $z=$ A。
$1-i$ B。
$1+i$ C。
$-i$ D。
$i$3.设一组样本数据 $x_1,x_2,\dots,x_n$ 的方差为 0.01,则数据 $10x_1,10x_2,\dots,10x_n$ 的方差为 A。
0.01 B。
1 C。
100 D。
4.Logistic 模型是常用数学模型之一,可应用于流行病学领域。
有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 $I(t)$($t$ 的单位:天)的 Logistic 模型$I(t)=\frac{K}{1+e^{-0.23(t-53)}}$,其中 $K$ 为最大确诊病例数。
当 $I(t^*)=0.95K$ 时,标志着已初步遏制疫情,则$t^*$ 约为($\ln 19 \approx 3$) A。
60 B。
63 C。
66 D。
695.若 $\sin\theta+\sin(\theta+\frac{\pi}{3})=1$,则$\sin(\theta+\frac{\pi}{3})=$ A。
$\frac{3}{4}$ B。
$\frac{1}{4}$ C。
$-\frac{1}{4}$ D。
$-\frac{3}{4}$6.在平面内,$A,B$ 是两个定点,$C$ 是动点,$AC\cdot BC=1$,则点 $C$ 的轨迹是 A。
圆 B。
椭圆 C。
抛物线 D。
直线7.设 $O$ 为坐标原点,直线 $x=2$ 与抛物线$C:y^2=2px(p>0)$ 交于 $D,E$ 两点,若 $OD\perp OE$,则$C$ 的焦点坐标为 A。
高考数学中的概率统计基础知识点
高考数学中的概率统计基础知识点概率统计是高考数学的其中一项重要内容,包括了概率、统计和随机变量等知识点。
学好这些基础知识点,不仅能够在高考中获得更高的分数,还可以为未来的学习和工作打下坚实的基础。
本文将对高考中的概率统计基础知识点进行详细介绍。
1. 概率概率指某件事情发生的可能性大小,通常用分数表示。
在高考中,概率通常分为两种:基本概率和条件概率。
基本概率是指一个事件在所有可能事件中发生的概率大小,通常用 P(A) 表示。
例如,掷一枚硬币,正反面概率相等,所以 P(正面)=1/2,P(反面)=1/2。
条件概率是指在已知某件事情发生的条件下,另一件事情发生的概率大小。
通常用 P(A|B) 表示,其中 B 是已知条件。
例如,从一副扑克牌中抽出一张黑桃牌的概率为 P(黑桃)=13/52。
如果已知这张牌是红色的,那么从已知条件来看,这张牌不能为黑桃,因此抽到黑桃的概率为 0。
所以 P(黑桃|红色)=0。
除了基本概率和条件概率,还有加法原理和乘法原理等概率计算方法。
2. 统计统计是一种描述和分析数据的方法。
在高考中,统计通常包括频率分布、中心位置和离散程度这三个方面。
频率分布是指给定一组数据之后,统计其分布的情况。
例如,统计某班同学的身高分布,可以把身高分为 140 厘米及以下、141-150 厘米、151-160 厘米、161-170 厘米、171 厘米及以上等几个组别,然后统计每个组别的人数。
中心位置是指一个数据集合中的“平均数”。
常用的中心位置有平均数、中位数和众数。
平均数是指所有数据之和除以数据个数得到的数值,中位数是指把数据集合分为两个部分,中间的数即为中位数,众数是指出现最频繁的数。
离散程度是指一组数据中的变化程度。
常用的离散程度有极差、方差和标准差等。
极差是指数据中的最大值减去最小值,方差是指每个数据与平均数的差的平方和的平均数,标准差是指方差的算术平方根。
3. 随机变量随机变量是指能够采取多个值的变量。
2020高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结
6.其他离散型随机变量分布列问题(频率估计概率,方案选择,随机变量取值意义,与其他知识结合)
解题思路及步骤
注意事项
写出随机变量可能取值
这类题重点考查是否理解随机变量取每一个值的意义
求出随机变量取每个值的概率 注意对随机变量所取的值表示多种的情况,多数情况由频率估计估计概率
写出分布列 求数学期望
检验所有概率之和是否等于 1 通过数学期望进行决策
PX
k
C2k
C 2k 8
C120
, (k
0,1,2) EX
,
3 2 10
0.6
(2)Y 的可能取值为 0,1,2,3,根据题意 Y~B(3,0.2),所以 Y 分布列为:
PY k C3k 0.2k 1 0.23k , (k 0,1,2,3) , EY 3 0.2 0.6
3
(3)Z 的可能取值为 0,1,2,3,根据题意 Z~B(3,0.2),所以 Z 分布列为:
,且各件产品是否为不合格品相互独立. (1)记 20 件产品中恰有 2 件不合格品的概率为 ,求 的最大值点 . (2)现对一箱产品检验了 20 件,结果恰有 2 件不合格品,以(1)中确定的 作为 的值.已知每件产品 的检验费用为 2 元,若有不合格品进入用户手中,则工厂要对每件不合格品支付 25 元的赔偿费用. (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为 ,求 ; (ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
法,故概率为
,选 C.
典例 3: (2014 全国 2 卷理科 5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是 0.75,连续
两天为优良的概率是 0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( )
2020年普通高等学校招生全国统一考试全国卷3文科数学试题解析(word版)
C.
D.
,
,
即
,
时,标志着已初步遏 ,
得
,
即
,
得
.
故选:B.
6.在平面内, , 是两个定点, 是动点,若
A. 圆
B. 椭圆
C. 抛物线
【答案】A
【解析】在平面内, , 是两个定点, 是动点,
不妨设
,
,设
,
因为
,
,则点 的轨迹为( ) D. 直线
所以
,
解得
,
所以点 的轨迹为圆.
故选:A.
7.设 为坐标原点,直线 与抛物线 :
则
.
故选:C.
12.已知函数
,则( )
A.
的最小值为
B.
的图象关于 轴对称
C.
的图象关于直线 对称
D.
的图象关于直线
对称
【答案】D 【解析】由
可得函数的定义域为
,故定义域关于原点对称;
设
,则
,
,由双勾函数的图象和性质得,
或
,故 A 错误;
又有
,故
义域关于原点对称,故图象关于原点中心对称;故 B 错误;
所以
平面
,
而
平面
,
. 是长方体,
所以
,
因为
是长方体,且
,
所以
是正方形,
所以
,
又
.
所以 平面
,
又因为点 , 分别在棱 , 上,
所以
平面
,
所以
.
(2)点 在平面 内.
【答案】见解析
【解析】取 上靠近 的三等分点 ,连接 , , .
高考数学概率考点及知识点总结解析(文科)
2.(教材习题改编)如果从不包括大、小王的 52 张扑克牌中 随机抽取一张,那么取到红心的概率是14,取到方块的概 率是14,则取到黑色牌的概率是________. 答案:12
3.(教材习题改编)给出下列三个命题,其中正确命题有______个. ①有一大批产品,已知次品率为 10%,从中任取 100 件,必有 10 件是次品; ②做 7 次抛硬币的试验,结果 3 次出现正面,因此正面出现的 概率是37; ③随机事件发生的频率就是这个随机事件发生的概率. 解析:①错,不一定是 10 件次品;②错,37是频率而非概率; ③错,频率不等于概率,这是两个不同的概念. 答案:0
第二节
随机事件的概率 结 束
古典概型
1.基本事件的特点 (1)任何两个基本事件是互斥 的.
(2)任何事件(除不可能事件)都可以表示成 基本事件的和.
课 前 ·双 基 落 实 课 堂 ·考 点 突 破
课 后 ·三 维 演 练
2.古典概型 (1)
随机事件的概率 结 束
(2)概率计算公式:P(A)= A包含的基本事件的个数 . 基本事件的总数
(1)记“至多 2 人排队等候”为事件 G,则 G=A∪B∪C, 所以 P(G)=P(A∪B∪C)=P(A)+P(B)+P(C) =0.1+0.16+0.3=0.56. (2)法一:记“至少 3 人排队等候”为事件 H,则 H=D∪E∪F, 所以 P(H)=P(D∪E∪F)=P(D)+P(E)+P(F) =0.3+0.1+0.04=0.44. 法二:记“至少 3 人排队等候”为事件 H, 则其对立事件为事件 G, 所以 P(H)=1-P(G)=0.44.
A.至多有一张移动卡
B.恰有一张移动卡
()
C.都不是移动卡
2020版高考数学二轮复习第2部分专题3概率与统计解密高考3概率与统计问题重在“辨”——辨析、辨型课件理
参考公式: 对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线^v =
n
a^+β^u的斜率和截距的最小二乘估计公式分别为:β^=∑ i=1nuivi-n u v , ∑ i=1u2i -n u 2
a^= v -β^u^.
[解](1)根据散点图判断,y=c·dx适宜作为扫码支付的人次y关于
的分布列、数列的递推 的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只
关系及等比数列的证明 数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以
等知识,学生的信息提 甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1
取、转化化归等能力, 分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,
第二部分 讲练篇
专题三 概率与统计 解密高考③ 概率与统计问题重在
“辨”——辨析、辨型
————[思维导图]————
————[技法指津]————
概率与统计问题辨析、辨型的策略 (1)准确弄清问题所涉及的事件有什么特点,事件之间有什么关 系,如互斥、对立、相互独立等; (2)理清事件以什么形式发生,如同时发生、至少有几个发生、 至多有几个发生、恰有几个发生等;
————[技法指津]———— (3)明确抽取方式,如放回还是不放回、抽取有无顺序等; (4)准确选择排列组合的方法来计算基本事件发生数和事件总 数,或根据概率计算公式和性质来计算事件的概率; (5)确定随机变量取值并求其对应的概率,写出分布列后再求期 望、方差; (6)会套用求b^、K2 的公式,再作进一步求值与分析.
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表 2所示
表2 支付方式 比例
现金 10%
概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)
其中恰有 2只做过测试的取法有{a,b, A},{a,b,B},{a,c, A},{a,c,B}, {b,c, A},{b,c,B},共 6种, 所以恰有 2只做过测试的概率为 6 3,故选 B.
10 5
【名师点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用 列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度
1 【答案】 9 【解析】根据题意可得基本事件数总为66 36个.
5
点数和为 5的基本事件有1,4,4,1,2,3,3,2共
4个.
∴出现向上的点数和为
5的概率为
P
4 36
1求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.
12.【2020年高考天津】从一批零件中抽取 80个,测量其直径(单位:mm),将所得数据分为 9组:
则n 61,符合题意;若815 610n,则n 80.9,不合题意.故选 C.
7.【2019年高考全国Ⅱ卷文数】生物实验室有 5只兔子,其中只有 3只测量过某项指标,若从这 5只兔子
中随机取出 3只,则恰有 2只测量过该指标的概率为
2 A. 3
3 B. 5
3
2 C. 5
【答案】B
1 D. 5
【分析】首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式
即可求解.
【解析】设其中做过测试的 3只兔子为a,b,c,剩余的 2只为 A,B, 则从这 5只中任取 3只的所有取法有{a,b,c},{a,b, A},{a,b,B},{a,c, A},{a,c,B},{a, A,B},{b,c, A},
{b,c,B},{b, A,B},{c, A,B},共 10种.
2020年高考数学(文)热点专练10 概率与统计(解析版)
热点10 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2018·黑龙江哈尔滨三中高考模拟(文))从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图所示.根据茎叶图,下列描述正确的是( )A.甲种树苗的高度的中位数大于乙种树苗高度的中位数,且甲种树苗比乙种树苗长得整齐B.甲种树苗的高度的中位数大于乙种树苗高度的中位数,但乙种树苗比甲种树苗长得整齐C.乙种树苗的高度的中位数大于甲种树苗高度的中位数,且乙种树苗比甲种树苗长得整齐D.乙种树苗的高度的中位数大于甲种树苗高度的中位数,但甲种树苗比乙种树苗长得整齐【答案】D【解析】从茎叶图的数据可以看出甲种树苗的平均高度为27,乙种树苗的平均高度为30,因此乙种树苗的平均高度大于甲种树苗的平均高度.又从茎叶图分析知道,甲种树苗的高度集中在20到30之间,因此长势更集中.2.(2019·辽宁高考模拟(文))《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A .215π B .320π C .2115π-D .3120π-【答案】C 【解析】 【分析】本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案. 【详解】13=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=,所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C.【名师点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 3.(2019·安徽合肥一中高考模拟(文))甲、乙两名同学在 6 次数学考试中,所得成绩 用茎叶图表示如下,若甲、乙两人这 6 次考试的平均成绩分别用,x x 乙甲 表示,则下列结论正确的是( )A .x x >乙甲 ,且甲成绩比乙成绩稳定B .x x >乙甲 ,且乙成绩比甲成绩稳定C .x x <乙甲 ,且甲成绩比乙成绩稳定D .x x <乙甲,且乙成绩比甲成绩稳定【答案】C 【解析】 【分析】从茎叶图提取两个人的成绩,分别求出两个人的平均分,得到甲的平均数比乙的平均数要低,但甲数据比较集中,所以成绩比较稳定. 【详解】757782838590826x +++++==甲,727681869192836x +++++==乙,所以x x <乙甲,因为甲数据比较集中,所以成绩比较稳定. 【名师点睛】茎叶图保留了原始数据,所以可通过计算平均数来比较大小,再通过数据的集中与离散程度判断稳定性.4.(2018·天津南开中学高考模拟(文))在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于20cm 2的概率为 A .16B .13C .23D .45【答案】C 【解析】试题分析:设AC=x ,则BC=12-x (0<x <12) 矩形的面积S=x (12-x )>20 ∴x 2-12x+20<0 ∴2<x <10由几何概率的求解公式可得,矩形面积大于20cm 2的概率10221203p -==-考点:几何概型5.(2019·新疆高考模拟(文))《史记》中讲述了田忌与齐王赛马的故事.“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”双方从各自的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为A .31 B .41 C .51 D .61 【答案】A 【解析】分析:由题意结合古典概型计算公式即可求得最终结果.详解:记田忌的上等马、中等马、下等马分别为a ,b ,c ,齐王的上等马、中等马、下等马分别为A ,B ,C ,由题意可知,可能的比赛为:Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共有9种,其中田忌可以获胜的事件为:Ba ,Ca ,Cb ,共有3种,则田忌马获胜的概率为p =39=13.本题选择A 选项.【名师点睛】:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.6.(2017·天津耀华中学高考模拟(文))某工厂甲,乙,丙三个车间生产了同一种产品,数量分别为600件,400件,300件,用分层抽样方法抽取容量为n 的样本,若从丙车间抽取6件,则n 的值为( ) A .18 B .20C .24D .26【答案】D 【解析】由分层抽样的定义可得:6300600400300n =++,解得:26n =. 本题选择D 选项.7.(2017·辽宁高考模拟(文))设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +【答案】A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.8.(2017·陕西高考模拟(文))已知函数2()log ,[1,8]f x x x =∈,则不等式1()2f x ≤≤ 成立的概率是( ) A .17B .27C .37D .47【答案】B 【解析】由()12f x ≤≤,可知21log 2x ≤≤,解得24x ≤≤,由几何概型可知27P =,选B 二、填空题9.(2017·河南高考模拟(文))已知()0,0O ,()2,1A ,()1,2B -,31,55C ⎛⎫- ⎪⎝⎭,动点(),P x y 满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r≤⋅≤,则点P 到点C 的距离大于14的概率为______.【答案】5164π- 【解析】由题意得,因为()()()310,0,2,1,1,2,,55O A B C ⎛⎫-- ⎪⎝⎭,所以动点(,)P x y 满足02OP OA ≤⋅≤u u u r u u u r 且02OP OB u u u r u u u r≤⋅≤,所以022{022x y x y ≤+≤≤-≤ ,则点P 到点C 的距离为22311()()5516z x y =-++≥ ,作出不等式组对应的平面区域,如图所示, 因为点P 到点C 的距离大于14,所以14PC >,则对应的部分为阴影部分,由2042,2055x y x y x y -==⎧⇒=+=⎨⎩ ,即点42(,)55E,则OE ==,所以正方形OEFG 的面积为45, 则阴影部分的面积为41516π- ,所以根据几何概型的概率公式可知所求的概率为41551614645ππ-=-.【名师点睛】:本题主要考查了几何概型及其概率的计算问题,其中解答中涉及到向量的数量积的运算,二元一次不等式组所表示的平面区域,简单的线性规划的应用,几何概型及其概率的计算公式等知识点的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用向量的数量积的运算,转化为简单的线性规划求解是解答的关键.9.(2018·河南高考模拟(文))某班共有56名学生,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知12号、26号、54号同学在样本中,则样本中还 有一名同学的编号是__________. 【答案】40【解析】【分析】先求出组距,然后根据已知的第二个样本的编号,求得第三个样本的编号.【详解】从56名学生中抽取4名,组距为56414÷=,由于抽取到第二个编号为26号,故第三个样本的编号为261440+=号.【名师点睛】本小题主要考查系统抽样的知识,先求得系统抽样的组距,然后根据已知来求得未知的样本编号,属于基础题.11.(2019·浠水县实验高级中学高三月考(文))设AB=6,在线段AB上任取两点(端点A,B除外),将线段AB分成了三条线段,若分成的三条线段长度均为正整数,则这三条线段可以构成三角形的概率是____________;若分成的三条线段的长度均为正实数,则这三条线段可以构成三角形的概率是_________.【答案】11014【解析】【分析】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;2,2,2共3种情况,其中只有三条线段为2,2,2时能构成三角形,由古典概型的概念,得到概率.三条线段的长度均为正实数时,则是几何概型,设出变量,写出全部结果所构成的区域,和满足条件的事件对应的区域,注意整理三条线段能组成三角形的条件,求出面积,作比值得到概率.【详解】若分成的三条线段的长度均为正整数,则三条线段的长度的所有可能为:1,1,4;1,2,3;1,3,2;1,4,1;2,1,3;2,2,2;2,3,1;3,1,2;3,2,1;4,1,1共10种情况,其中只有三条线段为2,2,2时能构成三角形则构成三角形的概率p1 10 =.(2)由题意知本题是一个几何概型设其中两条线段长度分别为x,y,则第三条线段长度为6﹣x﹣y,则全部结果所构成的区域为:0<x<6,0<y<6,0<6﹣x﹣y<6,即为0<x<6,0<y<6,0<x+y<6所表示的平面区域为三角形OAB;若三条线段x,y,6﹣x﹣y,能构成三角形,则还要满足666x y x yx x y yy x y x+--⎧⎪+--⎨⎪+--⎩>>>,即为333x yyx+⎧⎪⎨⎪⎩><<,所表示的平面区域为三角形DEF,由几何概型知所求的概率为:P14DEFAOBSS==VV【名师点睛】本题考查古典概型,考查几何概型,对于几何概型的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果. 三、解答题12.(2019·天津高考模拟(文))为预防H 1N 1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33. (∴)求x 的值;(∴)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C 组抽取多少个? (∴)已知y ≥465,z ≥30,求不能通过测试的概率.【答案】(1)660;(2)90;(3)112.【解析】 【分析】(1)由古典概型概率公式列方程求解即可;(2)先求出C 组样本个数,再根据分层抽样方法可得结果;(3)利用列举法可得基本事件空间包含的基本事件有11个,测试不能通过事件包含基本事件2个,利用古典概型概率公式可得结果. 【详解】(1)∵在全体样本中随机抽取1个,抽到B 组疫苗有效的概率约为其频率 即x 2000=0.33, ∴ x =660;(2)C 组样本个数为y +z =2000-(673+77+660+90)=500,现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取个数为3602000×500=90;(3)设测试不能通过事件为A,C 组疫苗有效与无效的可能的情况记为(y,z )由(2)知500=y+z ,且y,z ∈N ,基本事件空间包含的基本事件有:(465,35)、(466,34)、(467,33)、……(475,25)共11个 若测试不能通过,则77+90+z>200,即z>33事件A 包含的基本事件有:(465,35)、(466,34)共2个 ∴ P(A)=211故不能通过测试的概率为211.【名师点睛】本题主要考查分层抽样以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先(A 1,B 1),(A 1,B 2)….(A1,B n),再(A2,B1),(A2,B2)…..(A2,B n)依次(A3,B1)(A3,B2)….(A3,B n)… 这样才能避免多写、漏写现象的发生.13.(2019·山东高考模拟(文))2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X(单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数x和中位数a(a的值精确到0.01);(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7.5),[7.5,8.5)的学生中抽取9名参加座谈会.(i)你认为9个名额应该怎么分配?并说明理由;(ii)座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:【答案】(1)平均数9,中位数8.99;(2)(i )按照1:2进行名额分配;理由见详解; (ii )有. 【解析】 【分析】(1)根据平均数,中位数的定义进行求解即可(2)完成列联表,计算2K 的观测值,结合独立性检验的性质进行判断即可. 【详解】(1)该组数据的平均数60.0370.180.290.35100.19x =⨯+⨯+⨯+⨯+⨯110.09120.049+⨯+⨯=,因为0.030.10.20.350.680.5+++=>,所以中位数[8.5,9.5)a ∈,由0.030.10.2(8.5)0.350.5a +++-⨯=,解得0.50.338.58.990.35a -=+≈;(2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6.5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配.(ii)由频率分布直方图可知,阅读时间不足8.5小时的学生共有200(0.030.10.2)66⨯++=人,超过8.5小时的共有20066134-=人.于是列联表为:2K的观测值2200(40742660)4.432 3.84166134100100k⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【名师点睛】本题主要考查独立性检验的应用,根据数据计算出K2的观测值是解决本题的关键.考查学生的计算能力.14.(2019·江西高考模拟(文))某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额y(万元)的数据如下:(1)求单店日平均营业额y(万元)与所在地区加盟店个数x(个)的线性回归方程;(2)根据试点调研结果,为保证规模和效益,在其他5个地区,该公司要求同一地区所有加盟店的日平均营业额预计值总和不低于35万元,求一个地区开设加盟店个数m 的所有可能取值;(3)小赵与小王都准备加入该公司的加盟店,根据公司规定,他们只能分别从其他五个地区(加盟店都不少于2个)中随机选一个地区加入,求他们选取的地区相同的概率.(参考数据及公式:51125i ii x y==∑,52155i i x ==∑,线性回归方程ˆybx a =+,其中1221ni ii nii x y nxyb xnx ==-=-∑∑,a y bx =-.)【答案】(1) ˆ12yx =-+ (2) 5,6,7 (3) 15P = 【解析】 【分析】(1)利用最小二乘法求线性回归方程;(2)解不等式()1235m m -≥得一个地区开设加盟店个数m 的所有可能取值;(3)利用古典概型的概率求选取的地区相同的概率. 【详解】(1)由题可得,3x =,9y =,设所求线性回归方程为ˆybx a =+, 则5152215125135155455i i i ii x y xy b x x ==--===---∑∑,将3x =,9y =代入,得()9312a =--=,故所求线性回归方程为ˆ12yx =-+. (2)根据题意,()1235m m -≥,解得:57m ≤≤,又m Z +∈,所以m 的所有可能取值为5,6,7.(3)设其他5个地区分别为,,,,A B C D E ,他们选择结果共有25种,具体如下:AA ,AB ,AC ,AD ,AE ,BA ,BB ,BC ,BD ,BE ,CA ,CB ,CC ,CD ,CE ,DA ,DB ,DC ,DD ,DE ,EA ,EB ,EC ,ED ,EE ,其中他们在同一个地区的有5种,所以他们选取的地区相同的概率51255P ==. 【名师点睛】本题主要考查线性回归方程的求法,考查古典概型的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15.(2018·天津南开中学高考模拟(文))某校从高一年级学生中随机抽取40名学生,将 他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,后得到如图的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生640人,试估计该校高一年级 期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生,求这两名学生的数学成绩之差的绝对值不大于10的概率.【答案】(1)0.03a =. (2)544人. (3)()715P M =. 【解析】试题分析:(1)由于图中所有小矩形的面积之和等于1, 所以10(0.0050.010.02⨯++0.0250.01)1a +++=. ……2分解得0.03a =. ……3分(2)根据频率分布直方图,成绩不低于60分的频率 为110(0.0050.01)-⨯+0.85=. ……5分由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级数学成绩不低于60分的人数约为6400.85544⨯=人. ……6分 (3)成绩在[)40,50分数段内的人数为400.052⨯=人,分别记为A ,B . ……7分成绩在[]90,100分数段内的人数为400.14⨯=人,分别记为C ,D ,E ,F . ……8分若从数学成绩在[)40,50与[]90,100两个分数段内的学生中随机选取两名学生, 则所有的基本事件有:(),A B ,(),A C ,(),A D ,(),A E ,(),A F ,(),B C ,(),B D ,(),B E ,(),B F ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F , (),E F 共15种. ……10分如果两名学生的数学成绩都在[)40,50分数段内或都在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[)40,50分数段内,另一个成绩在[]90,100分数段内,那么这两名学生的数学成绩之差的绝对值一定大于10. 记“这两名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有:(),A B ,(),C D ,(),C E ,(),C F ,(),D E ,(),D F ,(),E F 共7种. ……11分所以所求概率为()715P M =. ……12分 考点:本小题主要考查频率分布直方图的应用和古典概型概率的求解,考查学生识图、用图的能力和运算求解能力.【名师点睛】:解决与频率分布直方图有关的题目时,要注意到频率分布直方图中纵轴表示的是频率/组距,不是频率,图中小矩形的面积才表示频率.16.(2019·江西高考模拟(文))某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:万元)对年销售量y (单位:吨)和年利润z (单位:万元)的影响.对近六年的年宣传费i x 和年销售量i y (1,2,3,4,5,6i =)的数据作了初步统计,得到如下数据:经电脑模拟,发现年宣传费x (万元)与年销售量y (吨)之间近似满足关系式b y a x =⋅(,0a b >).对上述数据作了初步处理,得到相关的值如表:(1)根据所给数据,求y 关于x 的回归方程; (2)已知这种产品的年利润z 与x ,y 的关系为e14zx =-若想在2019年达到年利润最大,请预测2019年的宣传费用是多少万元?附:对于一组数据()1,l u v ,()22,u v ,…,(),n n u v ,其回归直线v u a β=⋅+中的斜率和截距的最小二乘估计分别为()1221()()ni i i nii u v n uv un u β==-=-∑∑,v u αβ=-⋅【答案】(1)y e =(2)当2018年的宣传费用为98万元时,年利润有最大值. 【解析】 【分析】(1)转化方程by a x =⋅,结合线性回归方程参数计算公式,计算,即可.(2)将z 函数转化为二次函数,计算最值,即可. 【详解】(1)对by a x =⋅,(0a >,0b >),两边取对数得ln ln ln y a b x =+,令ln i i u x =,ln i i v y =,得ln v a b u =+⋅,由题目中的数据,计算24.6 4.16u ==,18.33.056v ==, 且()()6611ln ln i iiii i u v x y ====∑∑ 75.3,()6622111n 101.4ii i i u x ====∑∑; 则()6162216ˆ6i i i i i u v u v b u u ==-⋅=-⋅∑∑ 275.36 4.1 3.05101.46 4.1-⨯⨯=-⨯ 0.2710.542==, 1ln ln 3.05 4.112a v u =-=-⨯=, 得出ˆae =, 所以y 关于x的回归方程是ˆye = (2)由题意知这种产品的年利润z 的预测值为14ˆe z x e =-=1414e e x -=-(14e x -=-27e +,=98x =时,ˆz 取得最大值,即当2019年的年宣传费用是98万元时,年利润有最大值.【名师点睛】考查了线性回归方程求解,考查了二次函数计算最值问题,关键结合题意,得到回归方程,第二问关键转化为二次函数问题,难度中等.。
2020高考数学(文)专项复习《概率统计》含答案解析
概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型等内容,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§10-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.【例题分析】例1 国家射击队的某队员射击一次,命中7-10环的概率如下表:求该队员射击一次,(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P (Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例4 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.练习10-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题4.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.5.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.三、解答题6.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.§10-2 统 计【知识要点】1.随机抽样总体、个体、样本:把所考察对象的某一个数值指标的全体构成的集合看成总体,构成总体的每一个元素称为个体,从总体中抽出若干个体所组成的集合叫做样本.随机抽样:抽样时,保证每一个个体都可能被抽到,且每个个体被抽到的机会均等,满足这样条件的抽样为随机抽样.简单随机抽样:从元素个数为N 的总体中,不放回的抽取容量为n 的样本,如果每一次抽样时,总体中的各个个体有相同的可能性被抽到,这种抽样方法叫简单随机抽样.系统抽样:当总体个数很大时,可将总体分成均匀的若干部分,然后按照预先制定的规则从每一部分抽取一个个体得到所需要的样本,这种抽样的方式叫做系统抽样.分层抽样:当总体由有明显差异的几部分组成时,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样.三种抽样方法的比较常用频率分布表、频率分布直方图、频率分布折线图、茎叶图等统计图表来表示样本数据,观察样本数据的特征,从而估计总体的分布情况.频率分布(表)直方图的画法步骤:(1)计算极差(用样本数据的最大值减去最小值)(2)决定组数与组距(组数×组距=极差)(3)决定分点(4)列频率分布表(5)绘制频率分布直方图易见直方图中各个小长方形面积等于相应各组的频率,所有小长方形面积之和等于1. 频率分布折线图:连结频率分布直方图各个长方形上边的中点,就得到频率分布折线图. 总体密度曲线:随着样本容量的增加,分组的组距不断缩小,相应的频率分布折线图就会越来越接近于一条光滑曲线,这条光滑曲线就叫做总体密度曲线.总体密度曲线精确地反映了一个总体在各个区域内取值的规律.茎叶图:茎指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少时,茎叶图表示数据的效果较好.它的突出优点是:统计图中没有原始数据的损失,所有的数据信息都可以从茎叶图中得到;茎叶图可随时记录,方便表示.3.用样本的数字特征估计总体的数字特征样本数据的平均数:如果有n 个数x 1,x 2,…,x n ,那么nx x x x n +++=Λ21叫做这n 个数的平均数.标准差:样本数据到平均数的一种平均距离,一般用s 表示,其中nx x x x x x s n 22221)()()(-++-+-=Λ.方差:标准差的平方s 2叫做方差.⋅-++-+-=n x x xx x x s Zn )()()(22212¬Λ 4.两个变量间的关系散点图:两个变量的关系可通过它们所对应的点在平面上表现出来,这些点对应的图形叫做散点图.线性相关:若两个变量的散点图中所有点看上去都在一条直线附近波动,则这两个变量可近似看成具有线性相关关系.回归直线方程:从散点图上看,如果这些点从整体上看大致分布在通过散点图中心一条直线附近,则这条直线叫做这些数据点的回归直线方程,记作yˆ=bx +a ,其中b 叫回归系数.最小二乘法:假设我们已经得到两个具有线性相关关系的变量的一组数组),(11y x ,),(22y x ,…,),(33y x ,求得,)()()(ˆ2211211x n x y x n y x x x y y x x b in i i i n i ini i in i --=---=∑∑∑∑====⋅⋅⋅ x b y a ˆˆ-=,这时离差211)(2i i bx a y n Q --==最小,所求回归直线方程是a x b y ˆˆˆ+=.这种求回归直线的方法称为最小二乘法.【复习要求】1.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样方法.2.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.3.理解样本数据标准差的意义和作用,会计算样本数据平均数、标准差,并给出合理解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.【例题分析】例1 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是______,若用分层抽样方法,则40岁以下年龄段应抽取______人.【分析】由已知系统抽样的组距为5,所以相邻组间的号码相差5;由饼形图可知200名职工中,50岁以上人数:40-50岁人数:40岁以下人数=2∶3∶5,总样本为40人,分层抽样抽取每层人数比例为2∶3∶5.解:37;20【评析】系统抽样的特征是等距,也就是只要在一组内选定号码,其余各组的号码随之选定,所选相邻号码的间隔为组距.分层抽样的特征是按比例抽取,也就是每一层所选人数占总选出人数的比例与每层人数占总人数的比例相等.抽样是统计分析的重要部分,最常用的抽样方法是简单随机抽样、系统抽样和分层抽样,抽样时每个个体被抽到的可能性相等.简单随机抽样常用抽签法和随机数表法.例2 对某电子元件进行寿命追踪调查,情况如下:寿命(h) [100,200) [200,300) [300,400) [400,500) [500,600)个数(个) 20 30 80 40 30(2)画出频率分布直方图;(3)估计电子元件寿命在[100,400)以内的概率;(4)估计电子元件寿命在400h以上的概率.【分析】按要求列表、绘图,并用样本的分布估计总体的分布.解:(1)频率分布表(2)(画图);(3)P=0.10+0.15+0.40=0.65;(4)P=1-0.65=0.35.寿命(h) 频数频率[100,200) 20 0.10[200,300) 30 0.15[300,400) 80 0.40[400,500) 40 0.20[500,600) 30 0.15合计200 1.00【评析】频率分布表和频率分布直方图是用统计的方法对样本数据加以概括和总结.列频数分布表时,要区分频数和频率的意义,画频率分布直方图时要注意横、纵坐标代表的意义和单位.频率分布指的是一个样本数据在各拿小范围内所占比例的大小,常用样本数据落在某个范围的频率估计总体落在这个范围的概率.频率分布直方图中众数是最高矩形中点的横坐标,中位数为平分频率分布直方图面积且垂直于横轴的直线与横轴交点的横坐标.例3 (海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352 乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①___________________________________________________________________________________________________________________________________________________;②___________________________________________________________________________________________________________________________________________________.【分析】抽样数据比较分散,很难观察数据的分布特征,通过茎叶图展现了样本数据的分布.通过茎叶图可观察出平均数、众数、中位数,数据分布的对称性等等,由于茎叶图保留了原始数据,还可计算平均数、方差、标准差.解:(可任选两个作答)(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散(或乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中);(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm;(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近),甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀;【评析】茎叶图是统计图表的一种,它具有统计图表的一般功能:通过样本的数据分布推断总体的分布,通过样本的数字特征估计总体的数字特征.本题中的统计结论,是指用样本的特征估计总体特征得到的结论.例4图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为A1、A2、…、A m(如A2表示身高(单位:cm)在[150,155)内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是______.图1 图2【分析】条形图的横坐标是身高,纵坐标为每个身高区间内的人数.条形图没有提供具体的数据信息.程序框图的算法含义是统计[160,180)内学生人数,即求A 4+A 5+A 6+A 7的和.解:i <8或i ≤7.【评析】设计算法利用计算机完成数据的统计工作,是实际统计工作中经常应用的.除了可以完成计数工作外,还可排序、求最值,利用公式进行各种计算等等.将算法和统计一起考查是新课程的一个特色.例5 甲乙两位运动员在相同的条件下分别射击10次,记录各次命中环数如下: 甲:8,8,6,8,6,5,9,10,7,4乙:9,5,7,8,7,6,8,6,8,7(1)分别计算他们射击环数的平均数及标准差;(2)判断他们设计水平谁高,谁的射击情况更稳定?【分析】平均数、标准差分别反映了两个选手的射击水平和稳定程度,平均数越高说明选手射击水平越高,标准差越小说明选手发挥越稳定.解:(1)甲的平均数为7.1,标准差为1.758;乙的平均数为7.1,标准差为1.136;(2)从平均值上看,两人的水平相当;从标准差上看,乙的情况更稳定.【评析】平均数反映的是平均水平的高低,方差和标准差反映的是数据的离散程度.如果样本数据中每个数都增加数a ,则它的平均数也增加a ,但是它的标准差不变,因为数据的离散程度没有变化.由于方差与原始数据的单位不同,而且可能夸大了偏离程度,实际解决问题中常采用标准差.例6 假定关于某设备的使用年限x 和所支出费用y (万元),有如下的统计资料 使用年限x2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0(1)请画出上表数据的散点图;(2)根据上表数据,用最小二乘法求出线性回归方程a x by ˆˆ+=; (3)估计使用10年时,维修费用是多少?【分析】利用描点法画出散点图,用公式x by axn x yx n yx bi n i ii ni ˆˆ,ˆ2211=-=--=∑∑=⋅⋅求得回归直线方程,取x =10求得结果. 解:(1)散点图如图(2)y =0.08+1.23x (3)12.38【评析】判断两个变量有无相关关系时,散点图直观简便,这是一道应用问题,通过回归直线方程分析使用年限和维修费用的关系.例7 某工厂有工人1000名,其中250名工人参加过短期培训(称为A 类工人),另外750名工人参加过长期培训(称为B 类工人),现用分层抽样方法(按A 类、B 类分二层)从该工厂的工人中共抽查100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).(Ⅰ)求甲、乙两工人都被抽到的概率,其中甲为A 类工人,乙为B 类工人; (Ⅱ)从A 类工人中的抽查结果和从B 类工人中的抽查结果分别如下表1和表2. 生产能力分组 [100,110) [110,120) [120,130) [130,140) [140,150)人数 48x 5 3表2生产能力分组[110,120)[120,130)[130,140)[140,150)人数6y3618(i )先确定x ,y ,再在答题纸上完成下列频率分布直方图.就生产能力而言,A 类工人中个体间的差异程度与B 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图(ii )分别估计A 类工人和B 类工人生产能力的平均数,并估计该工厂工人的生产能力的平均数(同一组中的数据用该组区间的中点值作代表).【分析】(1)相互独立事件同时发生的概率用乘法公式(2)画出直方图,从图中分析数据信息.解:(Ⅰ)甲乙被抽到的概率都是101,而且事件“甲工人被抽到”与“乙工人被抽到”相互独立,所以甲、乙两工人都被抽到的概率⋅=⨯=1001101101pA 类工人中和B 类工人中分别抽查25名和75名.(Ⅱ)(i)由4+8+x +5+3=25,得x =5;6+y +36+18=75,得y =15.频率分布直方图如下图1 A 类工人生产能力的频率分布直方图图2 B 类工人生产能力的频率分布直方图从直方图可以判断:B 类工人中个体间的差异程度更小.,123145253135255125255115258105254)ii (=⨯+⨯+⨯⋅+⨯+⨯=A x ,8.133145751813575361257515115756=⨯+⨯+⨯+⨯=B x1.1318.1331007512310025=⨯+⨯=x . A 类工人生产能力的平均数,B 类工人生产能力的平均数以及全厂工人生产能力的平均数的估计值分别为123,133.8和131.1.【评析】本题是一道综合应用题,通过语言叙述和图表给出信息.频率分布直方图反映了数据分布的情况,数据的差异大小及数据的方差大小.练习10-3一、选择题1.(08重庆)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A .简单随机抽样法 B .抽签法 C .随机数表法 D .分层抽样法2.从容量为N 的总体中抽取容量为n 的样本,若采用系统抽样法,则抽样间隔为( ) A .nN B .n C .][nN D .1][+nN3.(08山东)下图是根据《山东统计年整2007》中的资料做成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 4.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩乙的成绩丙的成绩环数 7 8 9 10 环数 7 8 9 10 环数 7 8 9 10 频数 55 5 5频数 6446频数 46641,2,3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A .s 3>s 1>s 2 B .s 2>s 1>s 3 C .s 1>s 2>s 3 D .s 2>s 3>s 1二、填空题 5.要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,将它们编号为001,002,……800,利用随机数表抽取样本,从第7行第1个数开始,依次向右,再到下一行,继续从左到右.请问选出的第七袋牛奶的标号是______. (为了便于说明,下面摘取了随机数表的第6行至第10行).16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28。
2020届高考文数复习常考题型大通关(全国卷): 统计概率
常考题型大通关:第19题统计概率1、2018年10月17日是我国第5个扶贫日,也是第26个国际消除贫困日。
射洪某企业员工共500人参加“精准扶贫”活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)下表是年龄的频数分布表,求正整数a,b的值;(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.2、某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下左图所示.(1)请先求出频率分布表中①、②、③、④位置相应的数据,再在答题纸上完成下列频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?3、随着生活水平的提高,人们对空气质量的要求越来越高,某机构为了解公众对“车辆限行”的态度,随机抽查40人,并将调查情况进行整理后制成下表:年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,60]频数 5 10 10 5 10赞成人数 4 6 8 4 91.完成被调查人员年龄的频率分布直方图,并求被调查人员中持赞成态度人员的平均年龄约为多少岁?15,25,45,55的被调查人员中各随机选取1人进行调查.请写出所有的基2.若从年龄在[)[)本亊件,并求选取2人中恰有1人持不赞成态度的概率.4、某中学为弘扬优良传统,展示80年来的办学成果,特举办“建校80周年教育成果展示月”活动。
现在需要招募活动开幕式的志愿者,在众多候选人中选取100名志愿者,为了在志愿者.组号分组频数频率160,165 5 0.05第1组[)第2组[165,170)0.35第3组[170,175)第4组[175,180)20 0.20第5组[180,185)10合计100 1.001.请补充频率分布表中空白位置相应数据,再完成下列频率分布直方图;2.为选拔出主持人,决定在第3、4、5组中用分层抽样抽取6人上台,求第3、4、5组每组各抽取多少人?3.在2的前提下,主持人会在上台的6人中随机抽取2人表演诗歌朗诵,求第3组至少有一人被抽取的概率?5、某中学组织了一次高三学生数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.1.若所得分数大于等于80分认定为优秀,求男、女生优秀人数各有多少人?2.在1中的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.6、某乡镇根据中央文件精神,在2014年通过精准识别确定建档立卡的贫困户共有473户,结合当地实际情况采取多项精准扶贫措施,从2015年至2018年该乡镇每年脱贫户数见下表:年份2015 2016 2017 2018 年份代码x 1 2 3 4脱贫户数y55 69 71 85(1)根据2015-2018年的数据,求出y关于x的线性回归方程$$y bx a=+$;(2)利用(1)中求出的线性回归方程,试判断到2020年底该乡镇的473户贫困户能否全部脱贫.附:$$1221,ni iiniix y nxyb a y bxx nx==-==--∑∑$$7、某农科所对冬季昼夜温差大小与某反季节大豆新品种种子发芽数之间的关系进行分析研究,他们分别记录了12月1日至12月5日每天昼夜温差大小与实验室每天每100颗种子中的发芽数,得到如下数据:该农科所确定的研究方案是:先从这5组数据中随机选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验。
2020高考数学高考大题专项六 高考中的概率与统计
2016年的数据(时间变量t的值依次为1,2,…,7)建立模型
②:y=99+17.5t.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额 的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
学生序号 i
1234567
数学成绩 xi 物理成绩 yi
60 65 70 75 85 87 90 70 77 80 85 90 86 93
随堂巩固
-5-
题型一
题型二
题型三
题型四
①若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同
学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列
随堂巩固
-4-
题型一
题型二
题型三
题型四
相关关系的判断及回归分析 例1(2018黑龙江模拟,19)班主任为了对本班学生的考试成绩进行 分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7 的样本进行分析. (1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写 出算式即可,不必计算出结果) (2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如 下表:
=
1.
35
∴ξ 的分布列为
ξ
0
1
2
3
P
4 35
18 35
12 35
1 35
题型一
题二
题型三
题型四
随堂巩固
-7-
∴Eξ=0×
345+1×
1385+2×
1325+3×
2020年高考数学解答题核心:概率与统计综合问题(答题指导)(学生版)
专题11 概率与统计综合问题(答题指导)【题型解读】几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件、互斥事件常作为解答题的一问考查,也是进一步求分布列、期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】(2018·天津卷)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16,现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.①用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;②设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【素养解读】本题考查分层抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式,考查分析问题和解决问题的能力,体现了数学运算和数据分析等核心素养.试题难度:中.【突破训练1】 (2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.▶▶题型二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,常有解答题的考查,属于中档题.复习中应强化应用类习题的理解与掌握,弄清随机变量的所有取值,它是正确求随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中应强化解答题的规范性训练.【例2】(2018·北京卷)电影公司随机收集了电影的有关数据,经分类整理得到下表:假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk=1”表示第k类电影得到人们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.【素养解读】本题考查统计中的概率计算、随机变量的方差计算,考查运算求解能力,体现了数据分析、数学运算等核心素养.试题难度:中.【突破训练2】(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列.(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?▶▶题型三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下.(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;(2)填写下面的列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;附:K2=.(a+b)(c+d)(a+c)(b+d)【素养解读】本题考查频率分布直方图、独立性检验、中位数、相互独立事件的概率,考查学生的阅读理解能力、数据处理能力.主要体现了数据分析,数学运算等核心素养.【突破训练3】(2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小(只需写出结论).【例4】 (2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t . (1)分析利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?请说明理由.【素养解读】本题以统计图为背景,考查线性回归方程,考查运算求解能力和数形结合思想,体现了数学运算的核心素养.【突破训练4】 下图是我国2011年至2017年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2019年我国生活垃圾无害化处理量. 附注:参考数据:∑i =17y i =9.32,∑i =17t i y i =40.17,∑i =17(y i -y)2=0.55,7≈2.646.参考公式:相关系数r =∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2∑i =1n (y i -y)2,回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为b ^=∑i =1n(t i -t)(y i -y )∑i =1n(t i -t )2,a ^=y -b ^t .。
2020高考—概率(选择+填空+答案)
2020年高考——概率统计1.(20全国Ⅰ文4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A .15B .25C .12D .452.(20全国Ⅰ文 5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是 A .y a bx =+ B .2y a bx =+ C .e x y a b =+D .ln y a b x =+3.(20全国Ⅰ理8)25()()x x y xy ++的展开式中x 3y 3的系数为A .5B .10C .15D .204.(20全国Ⅱ文4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 A .10名B .18名C .24名D .32名5.(20全国Ⅲ文3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为 A .0.01B .0.1C .1D .106.(20全国Ⅲ理3)在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A .14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ====D .14230.3,0.2p p p p ====7.(20新高考Ⅰ3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种B .90种C .60种D .30种8.(20新高考Ⅰ5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62%B .56%C .46%D .42%9.(20天津4)从一批零件中抽取80个,测量其直径(单位:mm ),将所得数据分为9组:[5.31,5.33),[5.33,5.35),,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为A .10B .18C .20D .3610.(20北京3)在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .1011.(20全国Ⅱ理14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.12.(20全国Ⅲ理14)262()x x+的展开式中常数项是__________(用数字作答).13.(20天津11)在522()x x+的展开式中,2x 的系数是_________.14.(20天津13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.15.(20浙江12)二项展开式23450123545(2)1x a a x a x a x a x a x ++++++=,则4a =_______,135a a a ++=________.16.(20浙江16)盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)P ξ==_______,()E ξ=_______.17.(20江苏3)已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 ▲ . 18.(20江苏4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 ▲ . 参考答案:1.A 2.D 3.C 4.B 5.C 6.B 7.C 8.C 9.B 10.C 11.36 12.240 13.10 14.16;2315.80,122 16.1,1317.2 18.19。
2020高考数学名师预测 知识点02概率与统计
高考猜题专题02 概率与统计新课程命题省市大多命制一道中档难度的解答题考查离散型随机变量的分布列,期望的计算,考查考生的阅读理解能力和分类整合思想或必然思想以及应用意识,同时将古典概型、互斥和独立事件的概率计算融入其中,有时也有命制一道中档难度的选择题或填空题考查古典概率、几何概型,新课标命题省市有加大概率与统计综合考查的趋势,同时概率与统计在全卷中的分值明显增加.一.选择题(共6小题,每小题5分,共30分)1.某公司甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点。
公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②则完成①、②这两项调查宜采用的抽样方法依次是 ( ) A .分层抽样法,系统抽样法 B .分层抽样法,简单随机抽样法 C .系统抽样法,分层抽样法 D .简单随机抽样法,分层抽样法2.某游戏中,一个珠子从如右图所示的通道(图中的斜线)由上至下滑下,从最大面的六个出口出来,规定猜中出 口者为胜.如果你在该游戏中,猜得珠子从出口3出来, 那么你取胜的概率为( ) A .165 B .325 C .61 D .以上都不对3.随机变量ξ的分布列为P (ξ=k )=)1(+k k c,k =1、2、3、4,c 为常数,则P (2521<<ξ)的值为 ( )A .54B .65 C .32D .434. 甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6185.学校为了调查学生在课外读物方面的支出情况, 抽出了一个容量为n 的样本,其频率分布直方 图如图所示,其中支出在[50,60)元的同学有30人,则n 的值为 ( )A .90 B.95 C.100 D.110 6、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(A)184(B)121(C)25(D)35点评:本小题主要考查组合的基本知识及等可能事件的概率。
2020年高考理科数学《概率与统计》题型归纳与训练及答案解析
2020年高考理科数学《概率与统计》题型归纳与训练【题型归纳】题型一 古典概型与几何概型例1、某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 . 【答案】【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为. 例2、市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在)20,10[和)70,60[的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率. 【答案】(1)详见解析;(2)2011. 【解析】(1)由表知,样本中月收入低于20(百元)的共有5人,其中持赞成态度的共有2人,故赞成人数的频率为52,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人,故赞成人数的频率为7564, ∵527564>,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2) 将月收入在)20,10[内,不赞成的3人记为321,,a a a ,赞成的2人记为54,a a ,将月收入在)70,60[内,不赞成的1人记为1b ,赞成的3人记为,,,432b b b 从月收入在)20,10[和)70,60[内的人中各随机抽取1人,基本事件总数20=n ,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有5840155408-=),(),,(),,(),,(),,(),,(),,(),,(),,(),,(),,(1514433323423222413121b a b a b a b a b a b a b a b a b a b a b a 共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率2011=P . 【易错点】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算. 【思维点拨】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比. 题型二 统计与统计案例例1、某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:],90,80[,),40,30[),30,20[Λ并整理得到如下频率分布直方图:(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间)50,40[内的人数;(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.【答案】(Ⅰ)4.0;(Ⅱ)20;(Ⅲ)2:3.【解析】(Ⅰ)根据频率分布直方图可知,样本中分数不小于70的频率为6.010)04.002.0(=⨯+,所以样本中分数小于70的频率为4.06.01=-.(Ⅱ)根据题意,样本中分数不小于50的频率为,分数在区间内的人数为.所以总体中分数在区间内的人数估计为. (Ⅲ)由题意可知,样本中分数不小于70的学生人数为6010010)04.002.0(=⨯⨯+,所以样本中分数不小于70的男生人数为302160=⨯.所以样本中的男生人数为60230=⨯,女生人数为4060100=-,男生和女生人数的比例为2:340:60=,所以根据分层抽样的原理,总体中男生和女生人数的比例估计为2:3. 【易错点】求解统计图表问题,重要的是认真观察图表,发现有用信息和数据.对于频率分布直方图,应注意图中的每一个小矩形的面积是落在该区间上的频率,所有小矩形的面积和为1,当小矩形等高时,说明频率相等,计算时不要漏掉其中一个. 【思维点拨】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成. 4.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 5.求回归直线方程的关键①正确理解计算^^,a b 的公式和准确的计算.②在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关(0.010.020.040.02)100.9+++⨯=[40,50)1001000.955-⨯-=[40,50)540020100⨯=系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 6.独立性检验的关键①根据22⨯列联表准确计算2K ,若22⨯列联表没有列出来,要先列出此表. ②2K 的观测值k 越大,对应假设事件0H 成立的概率越小,0H 不成立的概率越大. 题型三 概率、随机变量及其分布例1、“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为; ②若,则, .【答案】(1) (2) (3)的分布列为;.【解析】(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为A x Z ()2,N μσZ ()14.55,38.45()10,30X X 11.95σ=≈()2~,Z N μσ()0.6826P Z μσμσ-<≤+=(22)0.9544P Z μσμσ-<≤+=26.5x =0.6826X ()2E X =x.(2)①∵服从正态分布,且, ,∴, ∴落在内的概率是. ②根据题意得, ; ; ; ; . ∴的分布列为∴. 50.1150.2250.3350.25450.1526.5x =⨯+⨯+⨯+⨯+⨯=Z ()2,N μσ26.5μ=11.95σ≈(14.5538.45)(26.511.9526.511.95)0.6826P Z P Z <<=-<<+=Z ()14.55,38.450.68261~4,2X B ⎛⎫ ⎪⎝⎭()404110216P X C ⎛⎫=== ⎪⎝⎭()41411124P X C ⎛⎫=== ⎪⎝⎭()42413228P X C ⎛⎫=== ⎪⎝⎭()43411324P X C ⎛⎫=== ⎪⎝⎭()444114216P X C ⎛⎫=== ⎪⎝⎭X ()1422E X =⨯=【思维点拨】1.条件概率的两种求解方法: (2)基本事件法,借助古典概型概率公式,先求事件A 包含的基本事件数)(A n ,再求事件AB 所包含的基本事件数()AB n ,得)()()|(A n AB n A B P =. 2.判断相互独立事件的三种常用方法:(1)利用定义,事件B A ,相互独立⇔)()()(B P A P AB P ⋅=.(2)利用性质,A 与B 相互独立,则A 与A B ,与B ,B A 与也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.3. 求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列、组合与概率知识求出X 取各个值的概率.4. 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检验该概率模型是否满足公式k n k k n p p C k X P --==)1()(的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.5. 求离散型随机变量的均值与方差的基本方法有:(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量X 的均值、方差,求X 的线性函数b aX Y +=的均值、方差,可直接用均值、方差的性质求解,即b X aE b aX E +=+)()(,)()(2X D a b aX D =+(b a ,为常数).(3)如能分析所给随机变量服从常用的分布,可直接利用它们的均值、方差公式求解,即若X 服从两点分布,则p X E =)(,)1()(p p X D -=;若),(~p n B X ,则np X E =)(,)1()(p np X D -=.【巩固训练】题型一 古典概型与几何概型1.已知,,则函数在区间上为增函数的概率是( )A .B .C .D . {}0 1 2a ∈,,{}1 1 3 5b ∈-,,,()22f x ax bx =-()1 +∞,512131416【答案】A【解析】①当时,,情况为符合要求的只有一种; ②当时,则讨论二次函数的对称轴要满足题意则产生的情况表示: ,8种情况满足的只有4种; 综上所述得:使得函数在区间为增函数的概率为:1251214=+=P .2.在区间上任取一数,则的概率是( )A .B .C .D . 【答案】C【解析】由题设可得,即;所以,则由几何概型的概率公式.故应选C .(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.【答案】(1) 0.4;(2) 45;(3)74. 【解析】(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为0a =()2f x bx =- 1 1 3 5b =-,,,1b =-0a ≠22b b x a a -=-=1ba≤() a b ,()()()1 1 1 1 1 3-,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,()22f x ax bx =-()1 +∞,()0,4x 1224x -<<12131434211<-<x 32<<x 4,1==D d 41=P考向二 统计与统计案例1.为考查某种疫苗预防疾病的效果,进行动物实验,得到统计数据如下:现从所有试验动物中任取一只, (Ⅰ)求列联表中的数据,,,的值; (Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效? (Ⅲ)能够有多大把握认为疫苗有效?22⨯x y A B【答案】(Ⅰ),,,;(Ⅱ)详见解析;(Ⅲ)至少有%9.99的把握认为疫苗有效.【解析】(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A, 由已知得,所以,,,.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率.10y =40B =40x =60A =302()1005y P A +==10y =40B =40x =60A =未注射 注射. 所以至少有%9.99的把握认为疫苗有效.2.在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在市的区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合与的关系,求关于的线性回归方程; (Ⅱ)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(Ⅰ)中的线性回归方程,估算该公司应在区开设多少个分店,才能使区平均每个分店的年利润最大? 参考公式:, , .【答案】(1);(2)公司应在区开设4个分店,才能使区平均每个分店的年利润最大.【解析】(1)10085)())(()(,4,42112121^=---=--===∑∑∑∑====x x y yx x x n xyx n yx b y x ni ini iini ini iiΘ,6.0^^=-=x b y a , ∴y 关于x 的线性回归方程6.085.0+=x y .(2) ,区平均每个分店的年利润 ,∴时, 取得最大值,故该公司应在区开设4个分店,才能使区平均每个分店的年利润最大.10000005016.6710.8285020603=≈>⨯⨯S A x y x y x y x A z ,x y 20.05 1.4z y x =--A A y b x a ∧∧∧=+1221ni i i nii x y nxyb x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑a y b x ∧∧=-0.850.6y x =+A A 20.05 1.4z y x =--=20.050.850.8x x -+-A 0.80.050.85z t x x x ==--+800.0150.85x x ⎛⎫=-++ ⎪⎝⎭4x =t A A3. 某商场对商品30天的日销售量y (件)与时间t (天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y (件)与时间t (天)之间具有线性相关关系.(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程a t b y +=. (2)已知商品30天内的销售价格z (元)与时间t(天)的关系为,),200(,20),3020(,100⎩⎨⎧∈<<+∈≤≤+-=N t t t N t t t z 根据(1)中求出的线性回归方程,预测t 为何值时,商品的日销售额最大.参考公式:2121^)(t n tyt n yt b ni ini ii--=∑∑==,t b y a ^^-=.【答案】(1)40^+-=t y ;(2)预测当20=t 时,商品的日销售额最大,最大值为1600元. 【解析】(1)根据题意,6)108642(51=++++⨯=t ,34)3033323738(51=++++⨯=y , 980301033832637438251=⨯+⨯+⨯+⨯+⨯=∑=i i i y t ,22010864222222512=++++=∑=i i t ,所以回归系数为1652203465980)(22121^-=⨯-⨯⨯-=--=∑∑==t n tyt n yt b ni ini ii,406)1(34^^=⨯--=-=t b y a ,故所求的线性回归方程为40^+-=t y . (2)由题意得日销售额为,,3020),40)(100(,200),40)(20(⎩⎨⎧∈≤≤+-+-∈<<+-+=Nt t t t Nt t t t L当N t t ∈<<,200时,900)10(80020)40)(20(22+--=++-=+-+=t t t t t L , 所以当;90010max ==L t 时,当N t t ∈≤≤,3020时,900)70(4000140)40)(100(22--=+-=+-+-=t t t t t L , 所以当.160020max ==L t 时,综上所述,预测当20=t 时,A 商品的日销售额最大,最大值为1600元. 题型三 概率、随机变量及其分布A A A A1.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者654321,,,,,A A A A A A 和4名女志愿者4321,,,B B B B ,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I )求接受甲种心理暗示的志愿者中包含1A 但不包含的频率。
(完整版)2020年高考文科数学《概率与统计》题型归纳与训练,推荐文档
1 52 5258 259 2020 年高考文科数学《概率与统计》题型归纳与训练【题型归纳】 题型一 古典概型 例 1从甲、乙等5 名学生中随机选出2 人,则甲被选中的概率为().A.B.C.D.【答案】 【解析】 法有:可设这 5 名学生分别是甲、乙、丙、丁、戊,从中随机选出 2 人的方(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊), (丙,丁),(丙,戊),(丁,戊),共有10 种选法,其中只有前 4 种是甲被选中,所以所求概率为 42.故选 B.10 5例 2 将 2 本不同的数学书和 1 本语文书在书架上随机排成一行,则 2 本数学书相邻的概率为 .【答案】 【解析】根据题意显然这是一个古典概型,其基本事件有:数 1,数 2,语; 数 1,语,数 2;数 2,数 1,语; 数 2,语,数 1;语,数 2,数 1; 语,数 1,数 2 共B2314π 81 2⎧⎪∆ = 4 p 2 - 4(3 p - 2) ≥ 0⎨ x + x = -2 p < 0 1 2 ⎩ ⎪ x x= 3 p - 2 > 0 1 2有 6 种,其中 2 本数学书相邻的有 4 种,则其概率为:.【易错点】列举不全面或重复,就是不准确 【思维点拨】直接列举,找出符合要求的事件个数. 题型二 几何概型 例 1如图所示,正方形ABCD 内的图形来自中国古代的太极 AD图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概BC率是( ).A.B.C.D.【答案】【解析】不妨设正方形边长为a ,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为.故选 B.例 2 在区间[0, 5] 上随机地选择一个数的概率为.,则方程 x 2 +2 px +3 p - 2 = 0 有两个负根【答案】【解析】方程 x 2+2 px +3 p - 2 = 0 有两个负根的充要条件是 即Bπ 4p 23p = 4 = 6 2 31 ⎛ a ⎫2 ⨯⨯ ⎪2⎝ 2 ⎭ = 8a 2400或 p ≥ 2 ,又因为 p ∈[0, 5] ,所以使方程 x 2 +2 px +3 p - 2 = 0 有两个负根的 p【易错点】“有两个负根”这个条件不会转化.【思维点拨】“有两个负根”转化为函数图像与 x 轴负半轴有两个交点.从而得到参数 p 的范围.在利用几何概型的计算公式计算即可. 题型三 抽样与样本数据特征 例 1某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200 ,, 300 ,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60 件进行检验,则应从丙种型号的产品中抽取件.【答案】18【解析】按照分层抽样的概念应从丙种型号的产品中抽取300 ⨯ 60 1000= 18 (件).例 2已知样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值 x = 5 ,则样本数据2x 1 +1 , 2x 2 +1 , ⋅⋅⋅ , 2x n +1 的均值为 .【答案】11 【解析】因为样本数据x 1 , x 2 , ⋅⋅⋅ , x n 的均值x = 5 ,又样本数据2x 1 +1 ,2x 2 +1, ⋅⋅⋅ , 2x n +1的和为2(x 1 + x 2 + + x n )+ n ,所以样本数据的均值为2x +1 =11.例 3 某电子商务公司对10000 名网络购物者 2018 年度的消费情况进行统计,3 2.发现消费金额(单位:万元)都在区间[0.3,0.9] 内,其频率分布直方图如图所示. (1)直方图中的a = .(2)在这些购物者中,消费金额在区间[0.5,0.9] 内的购物者的人数为.a/万万【答案】a = 3 人数为0.6 ⨯10000 = 6000【解析】由频率分布直方图及频率和等于1,可得0.2 ⨯ 0.1+ 0.8⨯ 0.1+1.5⨯ 0.1+ 2 ⨯ 0.1+ 2.5⨯ 0.1+a ⨯ 0.1 = 1 ,解之得a = 3 .于是消费金额在区间[0.5,0.9]内频率为0.2 ⨯0.1+ 0.8⨯0.1+ 2 ⨯0.1+ 3⨯0.1 = 0.6 ,所以消费金额在区间[0.5,0.9]内的购物者的人数为0.6⨯10000=6000.例4 某城市100户居民的月平均用电量(单位:度),以[160,180),[180, 200),[200, 220),[220, 240),[240, 260),[260, 280),[280, 300]分组的频率分布直方图如图所示.2220 + 240 = 230得 x = 0.0075 .又(0.002 + 0.0095 + 0.011+ 0.0125)⨯ 20 = 0.7 > 0.5 ,160 180 200 220 240 260 280 300 万万万万万万/万(1) 求直方图中 x 的值;(2) 求月平均用电量的众数和中位数;(3)在月平均用电量为[220, 240), [240, 260), [260, 280), [280, 300]的四组用户中, 用分层抽样的方法抽取11户居民,则从月平均用电量在[220, 240)的用户中应抽 取多少户?【答案】见解析【解析】(1)由(0.002 + 0.0095 + 0.011+ 0.0125 + x + 0.005 + 0.0025)⨯ 20 = 1 ,(2)由图可知,月平均用电量的众数是.因为(0.002 + 0.0095 + 0.011)⨯ 20 = 0.45 < 0.5 ,所以月平均用电量的中位数在[220, 240)内.设中位数为a ,由(0.002 +0.0095 +0.011)⨯20 +0.0125⨯(a -220)=0.5 ,得a = 224 ,所以月平均用电量的中位数是224 .(3)月平均用电量为[220,240)的用户有0.0125⨯ 20 ⨯100 = 25 (户);月平均用电量为[240,260)的用户有0.0075⨯20⨯100=15(户);月平均用电量为[260,280)的用户有0.005⨯20⨯100=10(户);月平均用电量为[280, 300]的用户有0.0025⨯ 20 ⨯100 = 5 (户).所以从月平均用电量在[220,240)的用户中应抽取25⨯1 = 5 (户).5【易错点】没有读懂题意,计算错误.不会用函数思想处理问题【思维点拨】根据题意分情况写出函数解析式;2 牵涉到策略问题,一般可以转化为比较两个指标的大小.题型四回归与分析例1 下图是我国2008 年至2014 年生活垃圾无害化处理量(单位:亿吨)的折线图∑ i =1nn(t - t ) (y - y)2 ∑ 2i ii =1∑ i =17( y - y )2i nn万万 1.80 万万 1.60 万万万 1.40 万万 1.20 万万1.00y0.80234567年份代码t(1) 由折线图看出,可用线性回归模型拟合 y 与t 的关系,请用相关系数加以说明(2) 建立 y 关于t 的回归方程(系数精确到0.01 ),预测2016 年我国生活垃圾无害化处理量.参考数据: 7 y = 9.32 , 7 t y = 40.17 ,= 0.55 , ≈ 2.646 .∑ii =1∑i ii =1n∑(t i - t )( y i - y )参考公式:相关系数r =i =1回归方程 y = a+ b t 中斜率和截距的最小二乘估计公式分别为:∑(t i - t )( y i - y )b= i =1 a = y - bt .∑(ti- t )2i =1【答案】见解析72【解析】(1)由折线图中数据和附注中参考数据得t = 4 , ∑(t i - t ) = 28 ,i =1 7∑ i =17 7(t - t ) ⋅ ( y - y )2∑ 2iii =1 ∑ i =17 (t - t ) 2ii =1 ∑ i =17( y - y )2i7 ∑ 7(t - t ) 2 i i =1i= 0.55 ,∑7(t - t )(y - y )= ∑7t y - t ∑7y = 40.17 - 4 ⨯ 9.32 = 2.89 ≈2.89≈ . , r0.99 i ii ii0.55⨯ 2 ⨯ 2.646i =1i =1i =1因为 y 与t 的相关系数近似为0.99 ,说明 y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合 y 与t 的关系.7777 ∑(t i - t )( y i - y )7∑t i y i - ∑t i ⋅∑ y i(1)变量 y 与t 的相关系数r =i =1=i =1i =1,7 ⨯⋅777又∑t i = 28 , ∑ y i = 9.32 , ∑t i y i = 40.17 2= 5.292 ,i =1i =1i =1= 0.55 ,所以r = 7 ⨯ 40.17 - 28⨯ 9.32 ≈ 0.997 ⨯ 5.292 ⨯ 0.55,故可用线性回归模型拟合变量 y 与t 的关系.t y - 7t ⋅ y117∑7i i40.17 - 7 ⨯ 4 ⨯ 7 ⨯ 9.32(2) t = 4 , y =∑y ,所以b ˆ= i =1 == 0.10 ,7 i =1 i∑7 i =1t 2 -7t 2 28a ˆ = y -b ˆx = 1⨯ 9.32 - 0.10 ⨯ 4 ≈ 0.93 ,所以线性回归方程为 y ˆ = 0.1t + 0.93 .7当t = 9 时, y ˆ= 0.1⨯ 9 + 0.93 = 1.83 .因此,我们可以预测 2016 年我国生活垃圾无害化处理1.83 亿吨.【易错点】没有读懂题意,计算错误.∑(72y - y i) i =1∑ i =17( y - y )2i【思维点拨】将题目的已知条件分析透彻,利用好题目中给的公式与数据.题型五独立性检验例1 甲、乙、丙、丁四位同学各自对A、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A、B 两变量更强的线性相关性?( ) A.甲B.乙C.丙D.丁【答案】D【解析】D 因为r>0 且丁最接近1,残差平方和最小,所以丁相关性最高【易错点】不理解相关系数和残差平方和与相关性的关系【思维点拨】相关系数r 的绝对值越趋向于1,相关性越强.残差平方和m 越小相关性越强【巩固训练】题型一古典概型151 141 1211. 将一颗质地均匀的骰子(一种各个面上分别标有1,2, 3, 4,5, 6 个点的正方体玩具)先后抛掷2 次,则出现向上的点数之和小于10 的概率是 .【答案】 56【解析】将先后两次点数记为(x , y ),则基本事件共有6 ⨯ 6 = 36 (个), 其中点数之和大于等于10有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6 种, 则点数之和小于10 共有30 种,所以概率为30 = 5. 36 62. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30 = 7 + 23 .在不超过30 的素数中,随机选取两个不同的数,其和等于 30 的概率是( ).A.B .C .D .【答案】C【解析】不超过 30 的素数有 2、3、5、7、11、13、17、19、23、29,共 10 个, 随机选取两数有45 (种)情况,其中两数相加和为 30 的有 7 和 23,11 和19,13 和 17,共 3 故选C .3. 袋中有形状、大小都相同的 4 只球,其中1 只白球,1 只红球, 2 只黄球,从中一次随机摸出【答案】 只球,则这 2 只球颜色不同的概率为 .【解析】1 只白球设为 a ,1 只红球设为 b , 2 只黄球设c 为 , d ,2 P = 56181则摸球的所有情况为(a,b),(a, c),(a, d ),(b,c),(b,d ),(c, d ),共6 件,满足题意的事件为(a,b),(a, c),(a, d ),(b,c),(b,d ),共5.题型二几何概型1.某公司的班车在7:00,8:00,8:30 发车,学.小明在7:50 至8:30 之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是().A.F(1) 13B. 12F(1)C.F(2) 23D. 34【答案】B【解析】如图所示,画出时间轴.7:30 7:40 7:50 8:00 8:10 8:20 8:30B小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10 分钟.根据几何概型,所求概率P =10 +10 =1 .故选B.40 22.从区间[0,1]随机抽取2n 个数x1,x2 ,…,x n ,y1 ,y2 ,…,y n ,构成n 个数对(x1, y1),(x2 , y2),…,(xn ,yn),其中两数的平方和小于1 的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为().p 2 =p3p 1 =p3p 1 =p2AB4n 2n 4mA.mB. mC.2mnn D. 【答案】C【解析】由题意得:(x i△△△△y i)(i =1 2 ⋅⋅⋅n)在如图所示方格中,而平方和小于1 的π4 =m π =4m点均在如图所示的阴影中,由几何概型概率计算公式知1 n ,所以C.n .故选3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边,A C ,的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,,p3,则A.B.C.D.【答案】A【解析】概率为几何概型,总区域面积一定,只需比较Ⅰ,Ⅱ,Ⅲ区域面积即可.设直角三角形ABC 的三个角 A ,B ,C 所对的边长分别为a ,b ,c ,则区域Ⅰ的面积为S1=1ab ,2p 2p 1 =p2+p3△ABC⎝ ⎭ ⎝ ⎭ ⎝ ⎭2区域Ⅱ的面积为 1 ⎛ 1 ⎫2 1 ⎛ 1 ⎫2 1 1 ⎛ 1 ⎫21S 2 = 2 π 2 c ⎪ + 2 π 2 b ⎪ + 2 ab - 2 π 2 a ⎪ = 2 ab ,2 区域Ⅲ的面积为 S = 1 π⎛ 1 c ⎫ + 1 π⎛ 1 b ⎫ - 1 ab = 1 πa 2 - 1 ab .3 2 2⎪ 2 2 ⎪ 28 2 ⎝ ⎭ ⎝ ⎭显然 p 1 = p 2 .故选 A .题型三 抽样与样本的数据特征1. 已知一组数据4 ,6 , 5 , 8 ,7 , 6 ,那么这组数据的平均数为 .【答案】10【解析】平均数x = 1 (4 + 6 + 5 + 8 + 7 + 6)= 6 . 62. 某电子商务公司对 10000 名网络购物者 2014 年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3, 0.9] 内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =;(Ⅱ)在这些购物者中,消费金额在区间[0.5, 0.9] 内的购物者的人数为.【答案】3;6000【解析】频率和等于 1 可得0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 1.5 ⨯ 0.1 + 2 ⨯ 0.1 + 2.5 ⨯ 0.1 + a ⨯ 0.1 = 1 , 解之得a = 3 .于是消费金额在区间[0.5, 0.9] 内频率为0.2 ⨯ 0.1 + 0.8 ⨯ 0.1 + 2 ⨯ 0.1 + 3 ⨯ 0.1 = 0.6 , 所以消费金额在区间[0.5, 0.9] 内的购物者的人数为: 0.6 ⨯10000 = 6000 ,故应填3;6000.3.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x (吨)、一位居民的月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100 位居民每人的月均用水量(单位:吨),将数据按照[0, 0.5),[0.5,1),⋅⋅⋅,[4, 4.5)分成9 组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30 万居民,估计全市居民中月均用水量不低于3 吨的人数,请说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.【答案】见解析【解析】(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08⨯0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)中的频率分别为0.08 ,0.20 ,0.26 ,0.06 ,0.04 ,0.02 .由0.04+0.08+0.5⨯a + 0.20 + 0.26 + 0.5⨯a + 0.06 + 0.04 + 0.02 = 1 ,解得 a = 0.30 .(2)由(1),100位居民每人月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30 万居民中月均用水量不低于 3 吨的人数为300000⨯ 0.12 = 36000 .(3)因为前 6 组的频率之和为0.04 - 0.08 - 0.15 - 0.20 - 0.26 - 0.15=0.88 > 0.85 ,而前5 组的频率之和为0.04+0.08+0.15 -0.20 -0.26=0.73 < 0.85 ,所以2.5 …x < 3.由0.3⨯(x - 2.5)= 0.85 - 0.73 ,解得x = 2.9 .题型四回归与分析1.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5 户家庭,得到如下统计数据表:区一户收入为15 万元家庭年支出为()A.11.4 万元B.11.8 万元C.12.0 万元D.12.2 万元【答案】B所以回归直线方程为yˆ=0.76x+0.4.当社区一户收入为15 万元,家庭年支出为(万元).故选B.0.4 = 11.8yˆ=0.76⨯15+y ∑2. 为了研究某班学生的脚长x (单位:厘米)和身高 y (单位:厘米)的关系,从该班随机抽取10 名学生,根据测量数据的散点图可以看出 与x 之间有线性相关关系,设其回归直线方程为 y ˆ= b ˆx + a ˆ.已知∑x i i =110= 225 , y i = 1600 , b ˆ= 4 .该i =1班某学生的脚长为 24,据此估计其身高为( ).A . 160B . 163C . 166D .170【答案】C 【解析】 故选 C .x = 22.5 , y = 160 ,所以a= 160 - 4⨯ 22.5 = 70 , x = 24 时, y = 4 ⨯ 24 + 70 = 166 .3. 某公司为确定下一年投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位: )和年利润 z (单位:千元)的影响,对近 8 年的年宣传费x i和年销售量计量的值.y i (i = 1, 2,⋅⋅⋅,8)数据作了初步处理,得到下面的散点图及一些统万万万万/万万10 t(u 2,v 2 ) (u 1,v 1 ) y = c + d x x = 49表中,,(1) 根据散点图判断, y = a + bx 与y = c + d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?(2) 根据(1)的判断结果及表中数据,建立 y 关于x 的回归方程;(3) 已知这种产品的年利润z 与x , y 的关系式为 z = 0.2y - x,根据(2)的结果回答下列问题:(ⅰ)年宣传费 时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据 ,⋅ ⋅ ⋅ , (u n , v n ),其回归直线v =+ u 的斜率,和截距的最小二乘估计分别为【答案】见解析【解析】(1)由散点图变化情况可知选择 较为适宜.w i = x iˆ =i =1∑(u i - u )(v i - v ) n∑ i =1n(u - u )2i.x yw∑( )2x- x ii =1∑( )( - ) w - w y y i ii =1∑8( )2w- w ii =1 ∑( - )( -) 8x x y yiii =146.6563 6.8289.8 1.6 1469 108.81 8w = ∑w i8 i =1563 - 68⨯ 6.8 = 100.6 c = y - d = ∑(w - w1.6)∑8(w - w )(y - yii) 108.8(2)由题意知d =i =1= = 68 .又82i一定过点(, y ),i =1所以 ,所以 y 与x 的回归方程为 y = 100.6 + 68 x .(3)(ⅰ)由(2)知,当 x = 49 时,y = 100.6 + 68⨯ 49 = 576.6(t ),(千元),所以当年宣传费为 x = 49 时,年销售量为576.6(t ),利润预估为66.32 千元.(ⅱ)由(2)知, z = 0.2 y - x = 0.2 (100.6 + 68 x )- x =-(x - 6.8)2+ 6.82 + 20.12 ,所以当 x = 6.8 时,年利润的预估值最大,即 x = 6.82 = 46.24 (千元). 题型五 独立性检验1. 某医疗研究所为了检验某种血清预防感冒的作用,把 500 名使用血清的人与另外 500 名未使用血清的人一年中的感冒记录作比较,提出假设 H :“这种血清不能起到预防感冒的作用”,利用 2×2 列联表计算的 K 2≈3.918,则下列表述中正确的是( )A. 有 95℅的把握认为“这种血清能起到预防感冒的作用”B. 若有人未使用该血清,那么他一年中有 95℅的可能性得感冒y = c + d x 66.32 z = 0.2 ⨯ 576.6 - 49 = 20.12 = 13.6 x - x +a a +bc c + dkg C. 这种血清预防感冒的有效率为 95℅D. 这种血清预防感冒的有效率为 5℅【答案】A【解析】由题可知,在假设成立情况下,P (K 2≥ 3.841) 的概率约为 0.05,即在 犯错的概率不错过 0.05 的前提下认为“血清起预防感冒的作用”,即有 95℅的把握认为“这种血清能起到预防感冒的作用”.这里的 95℅是我们判断 不成立的概率量度而非预测血清与感冒的几率的量度,故 B 错误.C ,D 也犯有 B 中的错误.故选 A2. 观察下面频率等高条形图,其中两个分类变量x ,y 之间关系最强的是( )A .B .C .D .【答案】D【解析】在频率等高条形图中, 与 相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中 x 1, x 2 所占比例相差越大,则分类变量 x , y 关系越强,故选D .3. 淡水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位: )的频率分布直方图如图所示.H H万万万万万万万万万万/k g万万万万(1)设两种养殖方法的箱产量相互独立,记 A 表示事件:旧养殖法的箱产量低于50kg ,新养殖法的箱产量不低于50kg ,估计 A 的概率;(2)填写下面列联表,并根据列联表判断是否有99% 的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01 ).附:21. 【答案】见解析【解析】(1)记:“旧养殖法的箱产量低于50kg ” 为事件B ,“新养殖法的箱产量不低于50kg ”为事件C ,由题图并以频率作为概率得,, P (A )= P (B )P (C )= 0.4092 .(2)由计算可得 的观测值为 k 2 = 200 ⨯ (62 ⨯ 66 - 38 ⨯ 34)2100 ⨯100 ⨯ 96 ⨯104 = 15.705 ,因为15.705 > 6.635 ,所以P (K 2 ≥ 6.635)≈ 0.001 ,从而有99% 以上的把握认为箱产量与养殖方法有关.(3)1 ÷ 5 = 0.2 , 0.1 - (0.004 + 0.020 + 0.044)= 0.032 , 50 + 2.35 = 52.35 ,所以中位数为52.35 .0.032 ÷ 0.068 = 8 17 , 8 ⨯ 5 ≈ 2.35 , = 0.66 P (C )= 0.068 ⨯ 5 + 0.046 ⨯ 5 + 0.010 ⨯ 5 + 0.008 ⨯ 5K 2 = 0.62 P (B )= 0.040 ⨯ 5 + 0.034 ⨯ 5 + 0.024 ⨯ 5 + 0.014 ⨯ 5 + 0.012 ⨯ 5 17K 2= n (ad - bc )2 (a + b )(c + d )(a + c )(b + d )22“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
2020高考数学 总复习 高考大题专项6 高考中的概率与统计
则图书总收入为y=(20+x)(10-0.1x)=200+8x-0.1x2=360-0.1(x-40)2,
当x=40时,图书公司总收入最大为360万元,
预计获利为360×0.275=99万元.
题型一
题型二
题型三
题型四
-11-
题型二 独立性检验的综合问题 例2(2018全国3,理18改)某工厂为提高生产效率,开展技术创新活 动,提出了完成某项生产任务的两种新的生产方式.为比较两种生 产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一 组工人用第一种生产方式,第二组工人用第二种生产方式.根据工 人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
题型二
题型三
题型四
-14-
④由茎叶图可知:用第一种生产方式的工人完成生产任务所需时
间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方 式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致 呈对称分布.又用两种生产方式的工人完成生产任务所需时间分布 的区间相同,故可以认为用第二种生产方式完成生产任务所需的时 间比用第一种生产方式完成生产任务所需的时间更少.因此第二种 生产方式的效率更高.
������
=
3
=
C33 C73
=
315.
∴ξ 的分布列为
ξ0 1 2 3
P
4 35
18 35
12 35
1 35
∴E
������
=0×
345+1×
1385+2×
1325+3×
1 35
=
97.
题型一
题型二
题型三
题型四
2020年高考数学(文)重难点专练05 概率与统计(解析版)
重难点05 概率与统计【命题趋势】统计与概率是高考文科中的一个重要的一环高考对概率与统计内容的考查一般以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向.概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,该题出现在解答题第二或第三题的位置,可见概率统计在高考中属于中档题.虽为中档题,但是实际生活背景在加强,阅读量大,所以快速阅读考题并准确理解题意是很重要的.对于这部分,我们还应当重视与传统内容的有机结合. 为了准确地把握2020年高考概率统计命题思想与趋势,在最后的复习中做到有的放矢,提高复习效率,纵观近五年的全国文科I卷,我们看到近几年每年一考,多出现在19题,分值12分;从难度上看:以中档题为主,重基础,考查的重点为统计图表的绘制与分析、数字特征的计算与分析、概率计算、线性回归分析,独立性检验等知识点,一般都会以实际问题为载体,代替传统建模题目.本专题我们把这些热点问题逐一说明,并提出备考指南,希望同学们在复习时抓住重点、事半功倍.【热点预测以及解题技巧】热点一:“统计”背景下的“概率”问题这类问题一般将统计与概率相结合.以频率分布直方图或茎叶图为背景来考查概率知识,有时以表格为背景来考查概率知识,需要从统计图、表格获取信息、处理数据的能力,并根据得出的数据求概率.热点二:样本分析并通过样本分析作决策进行样本分析时从统计图表中获取数据,得出频率、平均数、方差,用样本频率估计概率、样本数字特征估计总体数字特征,有时需以此作出决策.热点三:线性回归分析根据最小二乘法得出回归直线方程,有时需适当换元转化为线性回归方程. 由于计算量很大,题目一般会给出的参考数据,但是注意数据设置的“障眼法”,这时就要认真领会题意,找出适用的参考数据加以计算.热点四:独立性检验寻找数据完成列联表,下面的解题步骤比较固定,按部就班完成即可.热点五:与函数相结合的概率统计题这类题也是近几年出现较多的一类题,其综合性强,理解题意后找准变量,构建函数关系式.【限时检测】(建议用时:35分钟)一、单选题1.(2019·四川高考模拟(文))空气质量指数AQI是一种反映和评价空气质量的方法,AQI 指数与空气质量对应如下表所示:如图是某城市2018年12月全月的指AQI数变化统计图.根据统计图判断,下列结论正确的是()A.整体上看,这个月的空气质量越来越差B.整体上看,前半月的空气质量好于后半月的空气质量C.从AQI数据看,前半月的方差大于后半月的方差D.从AQI数据看,前半月的平均值小于后半月的平均值【答案】C【分析】根据题意可得,AQI指数越高,空气质量越差;数据波动越大,方差就越大,由此逐项判断,即可得出结果.【详解】从整体上看,这个月AQI数据越来越低,故空气质量越来越好;故A,B不正确;从AQI数据来看,前半个月数据波动较大,后半个月数据波动小,比较稳定,因此前半个月的方差大于后半个月的方差,所以C正确;从AQI数据来看,前半个月数据大于后半个月数据,因此前半个月平均值大于后半个月平均值,故D不正确.故选C.【点睛】本题主要考查样本的均值与方差,熟记方差与均值的意义即可,属于基础题型. 2.(2020·陕西高三月考(理))如图是某学校研究性课题《什么样的活动最能促进同学们进行垃圾分类》向题的统计图(每个受访者都只能在问卷的5个活动中选择一个),以下结论错误的是()A.回答该问卷的总人数不可能是100个B.回答该问卷的受访者中,选择“设置分类明确的垃圾桶”的人数最多C.回答该问卷的受访者中,选择“学校团委会宣传”的人数最少D.回答该问卷的受访者中,选择“公益广告”的人数比选择“学校要求”的少8个【答案】D【分析】先对图表数据分析处理,再结合简单的合情推理逐一检验即可得解.【详解】对于选项A,若回答该问卷的总人数不可能是100个,则选择③③③的同学人数不为整数,故A正确,对于选项B,由统计图可知,选择“设置分类明确的垃圾桶”的人数最多,故B正确,对于选项C,由统计图可知,选择“学校团委会宣传”的人数最少,故C正确,对于选项D,由统计图可知,选择“公益广告”的人数比选择“学校要求”的少8%,故D 错误,故选D.【点睛】本题考查了对图表数据的分析处理能力及简单的合情推理,属中档题. 3.(2018·湖南高考模拟(文))已知变量x 、y 之间的线性回归方程为0.710.3y x =-+,且变量x 、y 之间的一-组相关数据如下表所示,则下列说法错误..的是( )A .可以预测,当20x =时, 3.7y =-B .4m =C .变量x 、y 之间呈负相关关系D .该回归直线必过点()9,4【答案】B 【分析】将20x =的值代入回归直线方程可判断出A 选项的正误;将(),x y 的坐标代入回归直线方程可计算出实数m 的值,可判断出B 选项的正误;根据回归直线方程的斜率的正负可判断出C 选项的正误;根据回归直线过点(),x y 可判断出D 选项的正误. 【详解】对于A 选项,当20x =时,0.72010.3 3.7y =-⨯+=-,A 选项正确;对于B 选项,6810+1292x ++==,6321144m m y ++++==,将点(),x y 的坐标代入回归直线方程得110.7910.344m +=-⨯+=,解得5m =,B 选项错误; 对于C 选项,由于回归直线方程的斜率为负,则变量x 、y 之间呈负相关关系,C 选项正确;对于D 选项,由B 选项可知,回归直线0.710.3y x =-+必过点()9,4,D 选项正确.故选:B.【点睛】本题考查回归直线方程有关命题的判断,解题时要熟悉与回归直线有关的结论,考查分析问题和解决问题的能力,属于基础题.4.(2019·莒县第二中学高考模拟(文))我国现代著名数学家徐利治教授提出:图形的对称性是数学美的具体内容.如图,一个圆的外切正方形和内接正方形构成一个优美的几何图形,正方形ABCD 所围成的区域记为③,在圆内且在正方形ABCD 外的部分记为③,在圆外且在大正方形内的部分记为③.在整个图形中随机取一点,此点取自③,③,③的概率分别记为123,,P P P ,则( )A .123P P P =+B .132P P P >>C .123P P P >=D .123P P P => 【答案】A 【分析】首先要将小正方形旋转45度,由此看出大正方形与小正方形边长的比值,进而得到面积比,从而可确定概率间的关系. 【详解】将小正方形旋转45度,图像转化为:由图像易知:小正方形的面积是大正方形面积的一半,所以123P P P =+. 则选A.【点睛】本题考查了几何概型,着重考查了利用相似比求面积比,突显了对数学抽象与直观想象的考查.5.(2019·湖北高考模拟(理))七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .18【答案】A 【解析】设2AB =,则1BC CD DE EF ====.③1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ③所求的概率为113422216P +==⨯ 故选A.二、解答题6.(2019·陕西高考模拟(文))某公司在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.(1)根据频率分布直方图,计算图中各小长方形的宽度;(2)根据频率分布直方图,估计投入4万元广告费用之后,销售收益的平均值(以各组的区间中点值代表该组的取值);(3)按照类似的研究方法,测得另外一些数据,并整理得到下表:表中的数据显示,x 与y 之间存在线性相关关系,请将(2)的结果填入空白栏,并计算y 关于x 的回归方程.附公式:1221ni ii nii x y nx ybxnx==-=-∑∑$,a y bx =-$$.【答案】(1)2;(2)5;(3) 1.20.2y x =+. 【分析】(③)根据频率分布直方图,由频率分布直方图各小长方形面积总和为1,可计算图中各小长方形的宽度;(③)以各组的区间中点值代表该组的取值,即可计算销售收益的平均值; (③)求出回归系数,即可得出结论. 【详解】(③)设各小长方形的宽度为m ,由频率分布直方图各小长方形面积总和为1,可知()0.080.10.140.120.040.020.51m m +++++⋅==,故2m =;(③)由(③)知各小组依次是[)[)[)[)[)[]0,2,2,4,4,6,6,8,8,10,10,12, 其中点分别为1,3,5,7,9,11,对应的频率分别为0.16,0.20,0.28,0.24,0.08,0.04, 故可估计平均值为10.1630.250.2870.2490.08110.045⨯+⨯+⨯+⨯+⨯+⨯=; (③)由(③)知空白栏中填5. 由题意可知,1234535x ++++==,232573.85y ++++==,51122332455769i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555ii x==++++=∑,根据公式,可求得26953 3.8121.2555310ˆb-⨯⨯===-⨯, 3.8 1.230ˆ.2a =-⨯=,即回归直线的方程为 1.2.2ˆ0yx =+. 【点睛】本题考查回归方程,考查频率分布直方图,考查学生的读图、计算能力,属于中档题.7.(2019·宁夏高考模拟(文))2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元,适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求李师傅比张师傅早到小区的概率.附:临界值表参考公式:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.【答案】(1)有把握;(2)218. 【分析】(1)由直方图得到22⨯列联表,利用公式求得2K 的值,与临界值比较即可作出判定,得到结论.(2)设李师傅、张师傅到小区的时间分别为,x y ,得到试验的全部结果所构成的区域及事件A 表示“李师傅比张师傅早到小区”, 根据几何概型,利用面积比可求()78P A =,则李师傅比张师傅早到小区的天数的分布列为二项分布,利用二项分布的期望公式可得结果. 【详解】 (1)如下表:()225030695 4.046 3.84139113515K ⨯⨯-⨯=≈>⨯⨯⨯所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关. (2)设李师傅、张师傅到小区的时间分别为,x y ,则(,x y )可以看成平面中的点.试验的全部结果所构成的区域为(){,|78,7.58.5}Q x y x x =≤≤≤≤,则S Ω=1,事件A 表示“李师傅比张师傅早到小区”,所构成的区域为A ={(x ,y )|y ≥x ,7≤x ≤8,7.5≤y ≤8.5}, 即图中的阴影部分面积为111712228A S =-⨯⨯=,所以()78A QS P A S ==, 李师傅比张师傅早到小区的天数的分布列为二项分布73,8B ξ⎛⎫~ ⎪⎝⎭,721388E ξ=⨯=. 【点睛】本题主要考查了独立性检验的应用,以及几何概型概率的计算问题,以及二项分布的数学期望公式的应用,属于中档试题. “求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(),X B n p ~),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 8.(2019·江西高二月考(文))通过随机询问某地100名高中学生在选择座位时是否挑同桌,得到如下22⨯列联表:()1从这50名男生中按是否挑同桌采取分层抽样的方法抽取一个容量为5的样本,现从这5人中随机选取3人做深度采访,求这3名学生中至少有2名要挑同桌的概率; ()2根据以上22⨯列联表,是否有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关?下面的临界值表供参考:(参考公式:()()()()22()n ad bc K a b c d a c b d -=++++,其中)n a b c d =+++【答案】(③) 7(10P =③)见解析 试题分析:(③)根据分层抽样原理求出样本中挑同桌有3人,不挑同桌有2人,利用列举法求出基本事件数,计算对应的概率值;(③)根据2×2列联表计算观测值,对照临界值表得出结论. 解析:(③)根据分层抽样方法抽取容量为5的样本,挑同桌有3人,记为A 、B 、C ,不挑同桌有2人,记为d 、e ; 从这5人中随机选取3人,基本事件为ABC ABd ABe ACd ACe Ade BCd BCe Bde Cde ,,,,,,,,,共10种;这3名学生中至少有2名要挑同桌的事件为概率为ABC ABd ABe ACd ACe BCd BCe ,,,,,,,共7种;故所求的概率为710P =; (③)根据以上22⨯列联表,计算观测值22100(30102040) 4.7619 3.84170305050K ⨯⨯-⨯=≈>⨯⨯⨯,对照临界值表知,有95%以上的把握认为“性别与在选择座位时是否挑同桌”有关. 9.(2019·四川棠湖中学高三(文))省环保厅对A 、B 、C 三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:已知在这180个数据中随机抽取一个,恰好抽到记录B 城市空气质量为优的数据的概率为0.2.(I )现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在C 城中应抽取的数据的个数;(II )已知23y ≥,24z ≥,求在C 城中空气质量为优的天数大于空气质量为良的天数的概率.【答案】(1)9;(2)38.【试题分析】(1)由0.2180x=计算出x ,再由总数计算出y z +,按比例计算得应抽人数.(2) 由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,利用列举法和古典概型计算公式计算得相应的概率. 【试题解析】 (1)由题意得0.2180x=,即36x =. ③1802832363054y z +=----=, ③在C 城中应抽取的数据个数为30549180⨯=. (2)由(1)知54y z +=,,y z N ∈且23y ≥,24z ≥,③满足条件的数对(),y z 可能的结果有()23,31,()24,30,()25,29,()26,28,()27,27,()28,26,()29,25,()30,24共8种.其中“空气质量为优的天数大于空气质量为良的天数”对应的结果有()28,26,()29,25,()30,24共3种.③在C 城中空气质量为优的天数大于空气质量为良的天数的概率为38. 10.(2019·江西高考模拟(文))某书店为了了解销售单价(单位:元)在[8,20]]内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照[8,10),[10,12),[12,14),[14,16),[16,18),[18,20]分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在[14,16)内的图书数是销售单价在[18,20]内的图书数的2倍.(1)求出x 与y ,再根据频率分布直方图估计这100本图书销售单价的平均数(同一组中的数据用该组区间的中点值作代表);(2)用分层抽样的方法从销售单价在[8,20]内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.【答案】(1)见解析;(2)6本;(3)25【解析】(1)先求出x 与y ,再根据直方图求出平均值; (2)根据分层抽样是按比例抽样可得结果; (3)用列举法和古典概型概率公式求出结果 【详解】(1)样本中图书的销售单价在[)14,16内的图书数是2100200x x ⨯=g ,样本中图书的销售单价在[)1820,内的图书数是2100200y y ⨯=g , 依据题意,有2002200x y =⨯,即2x y =,③根据频率分布直方图可知()0.120.0250.0521x y ⨯++++⨯=,③ 由③③得0.15,0.075x y ==.根据频率分布直方图估计这100本图书销售单价的平均数为810101212141416161818200.02520.0520.120.1520.120.0752222222++++++⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯ =0.45+1.1+2.6+4.5+3.4+2.85=14.9(元)(2)因为销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20的图书的分层抽样比为1:2:4:6:4:3,故在抽取的40本图书中,销售单价在[)[)[)[)[)[]8,10,10,12,12,14,14,16,16,18,18,20内的图书分别为124643402,404,408,4012,408,406202020202020⨯=⨯=⨯=⨯=⨯=⨯=(本) (3)这40本书中价格低于12元的共有6本,其中价格低于10元的2本,记这2本为12,A A ,另外4本记为1234,,,B B B B ,从中抽取2本的基本事件有:121112131421222324121314232434,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B B B B B B B B B共15个,其中价格不低于10元的有6个,所以: 这2本书价格都不低于10元的概率62155P ==. 【点睛】本题考查了频率分布直方图、分层抽样及概率问题,较为简单11.(2019·四川高考模拟(文))目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了100名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.有声书公司将付费高于20元的用户定义为“爱付费用户”,将年龄在30岁及以下的用户定义为“年轻用户”.已知抽取的样本中有38的“年轻用户”是“爱付费用户”. (1)完成下面的22⨯列联表,并据此资料,能否有95%的把握认为用户“爱付费”与其为“年轻用户”有关?(2)若公司采用分层抽样方法从“爱付费用户”中随机选取5人,再从这5人中随机抽取2 人进行访谈,求抽取的2人恰好都是“年轻用户”的概率.()()()()()22n ad bc K a b c d a c b d -=++++.【答案】(1)有95%的把握认为“爱付费用户”和“年轻用户”有关;(2)35. 【解析】 【分析】(1)根据题意可得列联表,然后根据表中的数据求出2K 后与临界值表中的数据对照后可得结论.(2)根据古典概型概率公式求解可得所求概率. 【详解】(1)根据题意可得22⨯列联表如下:由表中数据可得()()()()()()2221002430406 4.76 3.84130706436n ad bc K a b c d a c b d -⨯⨯-⨯==≈>++++⨯⨯⨯,所以有95%的把握认为“爱付费用户”和“年轻用户”有关.(2)由分层抽样可知,抽取的5人中有4人为“年轻用户”,记为1A ,2A ,3A ,4A ,1人为“非年轻用户”,记为B .则从这5人中随机抽取2人的基本事件有:()12,A A ,()13,A A ,()14,A A ,()1,A B ,()23,A A ,()24,A A ,()2,A B ,()34,A A ,()3,A B ,()4,A B ,共10个基本事件.其中满足抽取的2人均是“年轻用户”的事件有:()12,A A ,()13,A A ,()14,A A ,()23,A A ,()24,A A ,()34,A A ,共6个.所以从中抽取2人恰好都是“年轻用户”的概率为63P 105==. 【点睛】独立性检验的方法是得到列联表后求出2K 的值后与临界值表进行对照后得到结论,查表时要根据题目要求的百分比找到第一行对应的数值,再将该数值对应的k 值与求得的2K 相比较.另外,表中第一行数据表示两个变量没有关联的可能性p ,所以其有关联的可能性为1p -.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常考题型大通关:第3题 概率与统计 考点三 变量间的相关关
系与独立性检验
1、为研究变量x 和
y 的线性相关性,甲、乙二人分别作了研究,利用线性回归方法得到回归
直线方程1l 和2l ,两人计算知x 相同, y 也相同,下列正确的是( ) A. 1l 与2l 重合
B. 1l 与2l 一定平行
C. 1l 与2l 相交于点
(),x y
D.无法判断1l 和2l 是否相交
2、对于两个变量x 和y 进行回归分析,得到一组样本数据:1122(,),(,),...,(,)n n x y x y x y 则下列说法不正确的是( )
A.由样本数据得到的回归直线$
$y bx a =+$必经过样本点中心(,)x y B.残差平方和越小的模型,拟合的效果越好
C.用2R 来刻画回归效果,2R 的值越小,说明模型的拟合效果越好
D.若变量y 和x 之间的相关系数0.9725r =-,则变量y 和x 之间具有线性相关关系 3、相关变量的样本数据如下表
经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为ˆ0.5 2.3y x =+,下
列说法正确的是( )
A .x 增加1时,y 一定增加2.3
B . 5.3a =
C .当y 为6.3时,x 一定是8
D . 5.2a =
4、下列说法正确的是( )
A.在统计学中,回归分析是检验两个分类变量是否有关系的一种统计方法;
B.线性回归方程对应的直线y b x a ∧
∧
=+至少经过其样本数据点
112233(,),(,)(,)(,)n n x y x y x y x y L 中的一个点;
C.在回归分析中,相关指数2R 为0.98的模型比相关指数2R 为0.80的模型拟合的效果差;
D.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高.
5、下列关于统计学的说法中,错误的是( ) A. 回归直线一定过样本中心点()
,x y
B. 残差带越窄,说明选用的模型拟合效果越好
C. 在线性回归模型中,相关指数2R 的值趋近于1,表明模型拟合效果越好
D. 从独立性检验:有99%的把握认为吸烟与患肺病有关系时,可解释为100人吸烟,其中就有99人可能患有肺病 6、下列命题中:
①线性回归方程y b x a ∧
∧
∧
=+必过点(),x y ;
②在回归方程35y x ∧
=-中,当变量增加一个单位时, y 平均增加5个单位;
③在回归分析中,相关指数2R 为0.80的模型比相关指数2R 为0.98的模型拟合的效果要好; ④在回归直线0.58y x ∧=-中,变量时2x =,变量y 的值一定是7-. 其中假命题的个数是( ) A.1 B.2 C.3
D.4
7、对具有线性相关关系的变量,x y ,测得一组数据如下 :
根据上表,利用最小二乘法得它们的回归直线方程为 10.5y x a ∧
∧
=+,据此模型预测当 10x =时,y 的估计值为( ) A.105.5
B.106
C.106.5
D.107
8、登山族为了了解某山高(km)y 与气温(C)x ︒之间的关系,随机统计了4次山高与相应的气温,并制作了对照表如下:
由表中数据得到线性回归方程$$$2(R)y x a a =-+∈,由此估计山高为72km 处气温的度数是
( ) A.-10
B.-8
C.-6
D.-4
9、某学生4次模拟考试英语作文的减分情况如下表:
第x 次考试 1 2 3 4 所减分数y
4.5
4
3
2.5
显然y 与x 之间有较好的线性相关关系,则其线性回归方程为( ) A.0.7 5.25y x =+$
B.0.6 5.25y x =-+$
C.0.7 6.25y x =-+$
D.0.7 5.25y x =-+$
10、某家具厂的原材料费支出x 与销售量y (单位:万元)之间有如下数据,根据表中提供
的全部数据,用最小二乘法得出与的线性回归方程为$8y x b
=+$,则b $为( ) x
2 4 5 6 8
y
25 35 60 55 75
A. 5
B. 10
C. 12
D. 20
11、以下四个命题,其中正确的是( )
A. 由独立性检验可知,有99%的把握认为物理成绩与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀;
B. 两个随机变量相关系越强,则相关系数的绝对值越接近于0;
C. 在线性回归方程0.212ˆy x =+中,当变量每增加一个单位时,变量ˆy 平均增加0.2个单位;
D. 线性回归方程对应的直线ˆˆˆy bx a =+至少经过其样本数据点中的一个点.
12、在吸烟与患肺病这两个分类变量的计算中,下说法正确的是( )
A. 若K 2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B. 从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病
C. 若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误
D. 以上三种说法都不正确
13、某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:
喜欢统计课程
不喜欢统计课程
临界值参考:
(参考公式:2
2()()()()()
n ad bc K a b c d a c b d -=
++++,其中n a b c d =+++)
参照附表,得到的正确结论是( )
A .在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别有关”
B .在犯错误的概率不超过0.1%的前提下,认为“喜欢“应用统计”课程与性别无关”
C .有99.99%以上的把握认为“喜欢“应用统计”课程与性别有关”
D .有99.99%以上的把握认为“喜欢“应用统计”课程与性别无关” 14、下列说法错误的是( )
A.在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法
B.在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好
C.线性回归方程对应的直线ˆˆˆy
bx
a =+至少经过其样本数据点中的一个点 D.在回归分析中,相关指数2R 越大,模拟的效果越好
15、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )
A.若2K 的观测值为 6.635k =,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病
B.从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有
99%的可能患有肺病
C.若从统计量中求出有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推判出现错误
D.以上三种说法都不正确
答案以及解析
1答案及解析: 答案:C
解析:命题人考査线性回归方程恒过样本中心点(),x y .因为两人计算得x 与y 均相同,
故知选C .
2答案及解析: 答案:C 解析:
3答案及解析: 答案:D
解析:由题设1234567
47
x ++++++==,
2.9
3.3 3.6
4.4 4.8
5.924.977a a
y +++++++==
24.940.5 2.3 5.2
7a
a +⨯+=⇒=,应选答案D
4答案及解析:
答案:D 解析:
5答案及解析: 答案:D 解析:
6答案及解析: 答案:C 解析:
7答案及解析: 答案:C
解析:根据表中数据,计算()1
2456855
x =⨯++++=,
()1
2040607080545
y =⨯++++=,
代入回归直线方程10.5y x a ∧∧
=+中, 计算10.55410.55 1.5a y x ∧
=-=-⨯=, ∴回归直线方程为ˆ10.5 1.5y
x =+; 当10x =时,y 的估计值为ˆ10.510 1.5106.5y
=⨯+= 所以C 选项是正确的.
8答案及解析: 答案:C
解析:由题意得1813101104x ++-=
=,24343864
404
y +++==,代入线性回归方程
$$2y x a =-+,可得$60a =,∴$260y x =-+.
由$26072y x =-+=,可得6x =-.
9答案及解析: 答案:D 解析:
10答案及解析: 答案:B 解析:
11答案及解析: 答案:C 解析:
12答案及解析: 答案:C 解析:
13答案及解析: 答案:A 解析:
14答案及解析:
答案:C
解析:对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;
对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;
对于C,线性回归方程对应的直线
ˆ
ˆˆ
y bx a
=+过样本中心点,不一定过样本数据中的点,故
C错误;
对于D,回归分析中,相关指数2R越大,其模拟的效果就越好,正确.
故选:C.
15答案及解析:
答案:C
解析:独立性检验的结论仅仅是一种数学关系,得出的结论也可能犯错误.有95%的把握认为吸烟与患肺病有关系,也可以说这个结论出错的概率为0.05以下,这是数学中的统计思维与确定性思维差异的反映.故选C.。