统计学-课件第八章 相关回归分析

合集下载

第八章 相关与回归分析

第八章 相关与回归分析

相关系数的特点:
相关系数的取值在-1与1之间。 相关系数的取值在之间。 =0时 表明X 没有线性相关关系。 当r=0时,表明X与Y没有线性相关关系。 表明X 当 时,表明X与Y存在一定的线性相关关 系; 表明X 为正相关; 若 表明X与Y 为正相关; 表明X 为负相关。 若 表明X与Y 为负相关。 表明X 完全线性相关; 当 时,表明X与Y完全线性相关; r=1, 完全正相关; 若r=1,称X与Y完全正相关; r=完全负相关。 若r=-1,称X与Y完全负相关
25 20 15 10 5 0 0 2 4 6 8 10 12
11.2 11 10.8 10.6 10.4 10.2 10 0 5 10
相关关系的类型
25
● 从变量相关关系变化的方向 方向看 方向 正相关——变量同方向变化 正相关 负相关——变量反方向变化 负相关 ● 从变量相关的程度看 完全相关 不完全相关 不相关
x
最小二乘法 ˆ ˆ (α 和 β 的计算公式)
根据最小二乘法, 根据最小二乘法,可得求解 和 的公式如下
最小二乘估计的性质 ——高斯 马尔可夫定理 高斯—马尔可夫定理 前提: 在基本假定满足时
最小二乘估计是因变量的线性函数 线性函数 最小二乘估计是无偏估计 无偏估计,即 无偏估计 在所有的线性无偏估计中,回归系数的最小二 乘估计的方差最小 方差最小。 方差最小
结论:
回归系数的最小二乘估计是最佳线性无偏估计 最佳线性无偏估计
四、简单线性回归模型的检验
回归模型的检验包括: 回归模型的检验包括: 理论意义检验: 理论意义检验:主要涉及参数估计值的符号和取 值区间,检验它们与实质性科学的理论以及人们 的实践经验是否相符。 一级检验: 一级检验:又称统计学检验,利用统计学的抽样 理论来检验样本回归方程的可靠性,具体分为拟 合优度检验和显著性检验。 二级检验: 二级检验:又称计量经济学检验,它是对标准线 性回归模型的假设条件是否满足进行检验,包括 自相关检验、异方差检验、多重共线性检验等。

概率论课件_高教版_第八章_方差分析与回归分析

概率论课件_高教版_第八章_方差分析与回归分析

MS A 168.00 F 20.56 MS e 8.17
查附表在f1=3,f2=12时, F0.05=3.49,F0.01=5.95 实得 F> F0.01或 P<0.01,说明药剂处理有统计意义。
四、单因素方差分析模型参数的估计 当方差分析结果为否定原假设时,就需要估计模型的有 关参数 ,下面就讨论方差分析模型参数的估计。 单因素方差分析的模型 为 xij i ij i 1,2, , r 2 ~ N ( 0 , ), 且相互独立 j 1,2, , m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指标 的作用; ij为随机因素对试验指标 值的影响。需要估计的 参数 有 , i , 2。不难证明这些参数的 极大似然估计量为: 1 r m 1 m 1 r m ˆ i xij ˆ xij xij rm i 1 j 1 m j rm i 1 j 1 1 r m 1 2 2 ˆ ˆ) ( xij SSe rm i 1 j 1 rm
Tr
T

xr
x
其中xij是因素A第i水平下第j次重复试验结果 , m r m r T T Ti xij xi T xij Ti x . m rm j 1 i 1 j 1 i 1
单因素方差分析的统计模型
试验数据xij满足 xij i ij i 1,2,, r 2 ~ N ( 0 , ),且相互独立 j 1,2,, m ij 其中为总以平均效应, i为因素A的第i个水平Ai 对试验指 标的作用 ; ij为随机因素对试验指标 值的影响。
鸡重/g-1000
60 80 1 2 12 9 28
Ti

统计学原理 相关与回归分析

统计学原理 相关与回归分析

粮食产量y 随机的
降雨量
土质
种子 耕作技术
X3
X4 X5
可 控 的
(二)相关的种类
完全相关 函数关系是相关关系的一种特例。 不完全相关 相关分析的基本内容
度相 关 密 切 程
y 完全由x的数值唯一确定,函数关系。
不相关
相 关 的 性 质
x、y值变化各自独立,变量间没有相关
关系
正相关 x 负相关
y
x
x2 26896 28900 31329 24336 25600 27556
y2
62540 73695 420857
70225 83521 463382
55696 65025 382469
合计
2114
从表上可以看出,随着个人收入的增加,消 费支出有明显的增长趋势,二者存在一定的依存 关系。正相关关系。 2、相关图(散点图) 直角坐标系第一象限
1、相关表
单变量分组相关表
分组相关表
双变量分组相关表
先做定性分析——相关资料排序——列在一张表上
个人收入x 164 170 177 182 192 207 225 243 265 289
消费支出y 156 160 166 170 178 188 202 218 236 255 1929
xy 25584 27200 29382
yc = 25.32 + 0.7927 300 = 263.13万元
(三)估计标准误差Syx P197
Syx = Syx =
=
(y - yc) 2 n-2 y2 - a y -b xy n-2
382469 -25.32 1929 -0.7927 420857
10 - 2

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

MBA管理统计学(中科大万红燕)第八章回归分析和相关分析

2010-7-23
销售额
12
第二节 相关分析
例1解:
xi = 2139, ∑ yi = 11966, ∑ xi2 = 179291 ∑ yi2 = 6947974, ∑ xi y i = 1055391, n = 30 ∑ r= n∑ xi yi ∑ xi ∑ yi (∑ xi ) 2 n∑ yi2 (∑ yi ) 2
2010-7-23
4
第一节 相关与回归分析的基本概念
三.相关分析与回归分析
相关分析和回归分析是研究现象之间相关关系 的两种基本方法. 相关分析:研究两个或两个以上随机变量之间 相关关系密切程度和相关方向的统计分析方法. 回归分析:研究某一随机变量(因变量)与其 他一个或几个变量(自变量)之间数量变动关 系形式的统计分析方法.
一.一元线性回归模型的建立 设因变量y(通常是随机变量)和一个自变量 (非随机变量)X之间有某种相关关系.在x的 不全相同的取值点x1,x2,…,xn作为独立观 察得到y的个观察值y1,y2,… ,yn记为( x1, y1 )( x2 , y2 ), … ,(xn , yn ). 根据这组数据寻求X与Y之间关系. 设一元线性回归模型为:yi=a+bxi+ ei
r=0.955248
2010-7-23 14
第二节 相关分析
25000 税收收入(亿元 亿元) 20000 15000 10000 5000 0
0 20000 40000 60000 80000 100000 120000 140000
GDP(亿元)
2010-7-23
15
第二节 相关分析
二.有序数据的相关系数(等级相关系数)
2010-7-23
8

医学统计学课件:回归分析

医学统计学课件:回归分析
利用逐步回归等方法,选择重要 的自变量,优化模型,提高预测 精度。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。

生物统计学课件回归与相关分析

生物统计学课件回归与相关分析

影响因素分析
市场预测
多元线性回归可用于分析多个自变量 对因变量的影响,以及各因素之间的 交互作用。
在市场营销中,多元线性回归可用于 预测市场需求和销售量,基于产品特 性、价格、竞争对手等多个因素。
社会经济因素分析
在经济、社会学等领域,多元线性回 归可用于研究多个因素对某一结果的 影响,如收入、教育程度等对个人幸 福感的影响。
线性回归模型
定义
线性回归模型是一种最简单的回 归分析形式,其中因变量和自变 量之间的关系可以用一条直线来
描述。
公式
(Y = beta_0 + beta_1X_1 + beta_2X_2 + ldots + beta_pX_p + varepsilon)
解释
(Y)是因变量,(beta_0, beta_1, ldots, beta_p) 是模型的参数, (X_1, X_2, ldots, X_p) 是自变量, (varepsilon) 是误差项。
R语言介绍与操作
01
R语言是一种开源的统计计算语言 ,具有强大的数据处理和可视化 能力。
02
操作步骤:安装并打开R语言环境 ,导入数据,使用适当的函数进 行回归或相关分析,可视化结果 ,解读分析结果。
Python数据分析库介绍与操作
Python是一种通用编程语言,常用于数据分析。
操作步骤:安装Python和相关的数据分析库(如NumPy、Pandas和SciPy), 导入数据,使用库函数进行回归或相关分析,可视化结果,解读分析结果。
解释
(Y)是因变量,(beta_0, beta_1, ldots, beta_{np}) 是模型的参数,(X_{ij}) 是自变量, (varepsilon) 是误差项。

统计学原理第8章相关与回归分析[精]

统计学原理第8章相关与回归分析[精]

估计标准误差就是因变量的估计值yc与实际值y之间差异 公 的平均程度。记为Syx,它的基本公式为:


式中,Syx表示估计标准误差;下标yx表示y依x的回归方程; y是因变量的实际值;yc是因变量的估计值。
例8.4以例8.1的资料计算估计标准误差。
步骤: 1.设计一张计算表,将已知x的值代入回归方程求出对应的yc的值 2.计算离差y-yc并加以平方求和 3.求出估计标准误差Syx。
数关系。
当r=0时,表示x与y完全没有线性相关。
当0<|r|<1时,表示x与y存在着一定的线性相关。一般分四个
等级,判断标准如下:
若0<|r|<0.3,则称x与y为微弱相关;
若0.3<|r|<0.5, 则称x与y为低度相关;
若0.5<|r|<0.8, 则称x与y为显著相关;
若0.8<|r|<1, 则称x与y为高度相关。
8.3.2简单直线回归方程
a, b是待定参数 利用最小二乘法 得到a,b求值,再反解得到方程式
建立回归直线的过程:列计算表,求出∑xy,∑x2,∑y2,x,y; 计算Lxy,Lxx和Lyy的值;求出b和a的值并写出方程
例 8.2某工厂某产品的产量与单位成本资料见表8.2,试 求单位成本依产量的回归直线方程。
★ 填空题 (1) 现象之间的相关关系,从相关因素的个数看,可分为()和();从相关的形式
的两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,

第八章直线相关与回归分析

第八章直线相关与回归分析

第十章一元回归与相关分析概述:许多问题需要研究多个变量之间的关系,例如生物的生长发育速度就与温度,营养,湿度等许多因素有关。

相关关系:两变量X,Y均为随机变量,任一变量的每一可能值都有另一变量的一个确定分布与之对应。

回归关系:X是非随机变量(如施肥)或随机变量(如穗长),Y是随机变量,对X的每一确定值x i都有Y的一个确定分布与之对应。

区别:1.相关中的两个变量地位对称,互为因果;回归中X是自变量,Y是因变量。

两种意义不同,分析的数学概念与推导过程不同,但如果使用共同标准即使y的残差平方和最小(最小二乘法),可得到相同的参数估计式。

因此主要讨论X为非随机变量(不包含有随机误差)的情况,所得到的参数估计式也可用于X为随机变量的情况。

2.分析目的不同。

回归分析是建立X与Y之间的数学关系式,用于预测;而相关分析研究X与Y两个随机变量之间的共同变化规律,例如当X增大时Y如何变化,以及这种共变关系的强弱。

分类:从两个变量间相关(或回归)的程度分三种:(1)完全相关。

一个变量的值确定后,另一个变量的值可通过公式求出(函数关系);生物学研究中不太多见。

(2)不相关。

变量之间完全没有任何关系。

一个变量的值不能提供另一个变量的任何信息。

(3)统计相关(不完全相关)。

介于上述两情况之间。

知道一个变量的值通过某种公式就可以提供另一个变量的均值的信息。

一个变量的取值不完全决定另一个变量的取值,但可或多或少地决定它的分布。

科研中最常遇到。

研究“一因一果”,即一个自变量与一个依变量的回归分析称为一元回归分析;研究“多因一果”,即多个自变量与一个依变量的回归分析称为多元回归分析。

一元回归分析又分为直线回归分析与曲线回归分析两种;多元回归分析又分为多元线性回归分析与多元非线性回归分析两种。

对两个变量间的直线关系进行相关分析称为直线相关分析;研究一个变量与多个变量间的线性相关称为复相关分析;研究其余变量保持不变的情况下两个变量间的线性相关称为偏相关分析。

统计学 第八章 线性回归分析

统计学 第八章 线性回归分析

31
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
32
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
33
8.1.5 置信与预测区间
第八章 线性回归分析
《统计学》
34
8.1.5 置信与预测区间
例8.4. 利用例8.1中的回归方程,计算车龄为48个月的二手车对数销售价格的 置信水平为0.95的置信区间以及预测区间。 解.
第八章 线性回归分析
《统计学》
38
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
39
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
40
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
41
8.2.2.1 最小二乘估计
第八章 线性回归分析
《统计学》
42
8.2.2 回归系数的统计推断
统计学
第八章 线性回归分析
统计与管理学院
第八章 线性回归分析
8.1 简单线性回归 8.2 多元线性回归 8.3 回归模型的评估 8.4 残差分析 8.5 变量选择
第八章 线性回归分析
《统计学》
2
第八章 线性回归分析
二手车价格预测
美一家大型丰田汽车经销商为打算购买丰田汽车的顾客提供 了回收二手丰田车的选择,作为以旧换新的交易的一部分。
表: 二手丰田卡罗拉销售数据变量说明表
第八章 线性回归分析
《统计学》
18
例8.1.(续)为了便于说明问题,暂时不考虑行驶里程(KM)低于500公里的数据, 最终共1425个观测值。下表展示了部分数据。请根据数据建立销售价格关于车龄 的回归方程,并根据回归方程预测车龄为48个月的二手丰田卡罗拉的销售价格。

卫生统计学课件---直线相关与回归

卫生统计学课件---直线相关与回归

3、相关的显著性程度与相关的密切程度不同
相关的显著程度(即统计意义的程度)和相 关的密切程度是两个不同的概念。变量间 相关的显著性越高,概率越小,在判断变 量间具有相关关系时,犯第一类错误的可 能性越小。而相关的密切程度高低,是相 关系数具有统计意义的前提下,根据相关 系数绝对值的大小来判断的。
4、作回归分析时要恰当确定自变量与因变量
2、求у和 χ
∑X 47.28χ= ==4.7Fra bibliotek8n 10
∑Y 1392.2
у= =
=139.22
n 10
3、计算离均差平方和∑(X-χ)2及离均差积和 ∑(X-χ)(Y-у)
∑(X-χ)2= ∑X2-(∑X)2/n=224.31- (47.28)2/10=0.77
∑(X-χ)(Y-у)= ∑XY-∑X∑Y/n =6594.26-47.28×1392.2/10=11.94 4、计算回归系数b和截距a
二、直线回归
(一)直线回归的概念 直线回归又称简单回归,是描述和分析两变量间线
性依存关系的一种统计方法。两个变量之间有一 定的数量关系,但又非函数关系,称作回归关系。 如前所述,20岁男青年红细胞数与血红蛋白含量 的关系,只知道两者存在正相关关系,但不能说, 红细胞数是多时,血红蛋白一定是多少。如果想 要进一步由红细胞数估计血红蛋白含量,需要再 作回归分析。直线回归分析的主要任务就是找出 最合适的直线回归方程,以确定一条最接近于各 实测点的直线,来描述两个变量之间的回归关系。 直线回归的表达式为
计算步骤如下:
(1)作散点图:见下图。由散点图可见,10 名男青年的红细胞数与血红蛋白含量有直 线趋势。
10名男青年红细胞数与血红蛋白含量的关系
148 146 144 142 140 138 136 134 132 130

统计学原理第八章相关分析与回归分析

统计学原理第八章相关分析与回归分析

21
例1:P354页,第1题
企业 产量 X 单位成 XY
X2
Y2
序号 (4件) 本(元)Y
1
2
52
104
4
2704
2
3
54
162
9
2916
3
4
52
208
16
2704
4
4
48
192
16
2304
5
5
48
240
25
2304
6
6

24
46
276
36
2116
300
1182
106 15048
即:∑X=24,∑Y=300, ∑XY=1182,
• 2) X倚Y的直线方程的确定
• 根据最小平方法的原理:(x xc )2 最小值
• 将xc = c + dy代入上述公式中,分别对c和d 求一阶偏导数,并令偏导数等于0,就可以
得出两个正规方程:
x nc dy yx cy dy2
d
nyx y n y2 (
x
y )2
c x dy
举例:P355,第4题。
• 偏相关:在复相关中,当假定其他变量不 变时,其中两个变量间的相关关系称为偏 相关。例如,在假定人们收入水平不变的 条件下,某种商品的需求与其价格水平的 关系就是一种偏相关。
9
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象
之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个
• 曲线相关:如果现象之间的相关关系近似 地表现为某种曲线形式时,就称这种相关 关系为曲线相关。

第八章 相关与回归分析-一元线性回归

第八章 相关与回归分析-一元线性回归
11
12
1、散点图
不良贷款
14
12
10
8
6
4
2
0 0
100
200
300
400
贷款余额 不良贷款与贷款余额的散点图
14
12
10
8 6
4
2
0 0
10
20
30
40
贷款项目个数
不良贷款与贷款项目个数的散点图不来自贷款不良贷款14
12
10
8
6
4
2
0 0
10
20
30
累计应收贷款
不良贷款与累计应收贷款的散点图
14
2
本章主要内容
➢ 相关分析
• 相关关系度量 • 相关关系显著性检验
➢ 一元线性回归分析
• 一元线性回归模型 • 参数的最小二乘估计 • 回归直线的拟合优度 • 显著性检验
➢ 利用回归方程进行预测
➢ 残差分析
3
第一节 直线相关分析 一、变量间的关系
函数关系
相关关系
函数关系的例子
▪ 某种商品的销售额(y)与销售量(x)之间的关系可 表示为 y = px (p 为单价)
儿子与父亲的身高关系:Y=33.73+0.516X(英寸)
24
一、概述——什么是回归分析(Regression )?
1. 从一组样本数据出发,确定变量之间的数学关系式 2. 对这些关系式的可信程度进行各种统计检验,并从
影响某一特定变量的诸多变量中找出哪些变量的影 响显著,哪些不显著 3. 利用所求的关系式,根据一个或几个变量的取值来 预测或控制另一个特定变量的取值,并给出这种预 测或控制的精确程度

[精品]2017年第八章回归分析

[精品]2017年第八章回归分析

第八章回归分析第一节 Linear过程8.1.1 主要功能8.1.2 实例操作第二节 Curve Estimation过程8.2.1 主要功能8.2.2 实例操作第三节 Logistic过程8.3.1 主要功能8.3.2 实例操作第四节 Probit过程8.4.1 主要功能8.4.2 实例操作第五节 Nonlinear过程8.5.1 主要功能8.5.2 实例操作回归分析是处理两个及两个以上变量间线性依存关系的统计方法。

在医学领域中,此类问题很普遍,如人头发中某种金属元素的含量与血液中该元素的含量有关系,人的体表面积与身高、体重有关系;等等。

回归分析就是用于说明这种依存变化的数学关系。

第一节 Linear过程8.1.1 主要功能调用此过程可完成二元或多元的线性回归分析。

在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。

返回目录返回全书目录8.1.2 实例操作[例8.1]某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。

试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。

8.1.2.1 数据准备激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。

输入原始数据,结果如图8.1所示。

图8.1 原始数据的输入8.1.2.2 统计分析激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。

从对话框左侧的变量列表中选y,点击 钮使之进入Dependent框,选x1、x2,点击 钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。

概率论与数理统计教程 第8章

概率论与数理统计教程 第8章
fe=nr
MSe= Se/fe
总和
ST
fT=n1
对给定的,可作如下判断:
若F F1 (fA ,fe) ,则说明因子A不显著。 该检验的p值也可利用统计软件求出,若 以Y记服从F(fA ,fe)的随机变量,则检验的 p 值为 p=P(YF)。
如果 F >F1 (fA ,fe),则认为因子A显著;
由定理8.1.2,若H0成立,则检验统计量F服从自由度为fA和fe的F分布,因此拒绝域为W={FF1 (fA ,fe)},通常将上述计算过程列成一张表格,称为方差分析表。
表8.1.3 单因子方差分析表
来源
平方和
自由度
均方和
F比
因子
SA
fA=r1
MSA= SA/fA
F= MSA/ MSe
误差
Se
第八章 方差分析与回归分析
§8.1 方差分析 §8.2 多重比较 §8.3 方差齐性分析 §8.4 一元线性回归 §8.5 一元非线性回归
§8.1 方差分析
8.1.1 问题的提出 实际工作中我们经常碰到多个正态总体均值的比较问题,处理这类问题通常采用所谓的方差分析方法。
例8.1.1 在饲料养鸡增肥的研究中,某研究所提出三种饲料配方:A1是以鱼粉为主的饲料,A2是以槐树粉为主的饲料,A3是以苜蓿粉为主的饲料。为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量。试验结果如下表所示:
模型(8.1.3)可以改写为 (8.1.8) 假设(8.1.1)可改写为 H0 :a1 =a2 =…=ar =0 (8.1.9)
8.1.5 参数估计
在检验结果为显著时,我们可进一步求出总均值 、各主效应ai和误差方差 2的估计。

统计学原理第8章相关与回归分析

统计学原理第8章相关与回归分析
两个回归方程。() (9) 估计标准误差指的就是因变量的估计值yc与实际值y之间的平均误差程度。() (10) 在任何相关条件下,都可以用相关系数r说明变量之间相关的密切程度。() (11) 若变量x与y的相关系数r1=-0.8,变量p与q的相关系数r2=-0.92,由于r1>r2,因
此x与y间相关的程度比较高。()
27
同步练习
★ 判断题 (1) 根据结果标志对因素标志的不同反映,可以把现象间数量上的依存关系划分为
函数关系和相关关系。() (2) 正相关指的就是因素标志和结果标志的数量变动方向都是上升的。() (3) 相关系数是测定变量间相关密切程度的唯一方法。() (4) 只有当相关系数接近于1时,才能说明两变量之间存在高度相关系数。() (5) 若变量x的值减少,y的值也减少,说明变量x与y之间存在相关关系。() (6) 回归系数b和相关系数r都可以来判断现象之间相关的密切程度。() (7) 若回归直线方程为:yc=160-2.3x,则变量x与y之间存在负的相关关系。() (8) 回归分析中,对于没有明显因果关系的两个变量x与y,可以建立y依x和x依y的
D产量每增加1000件时,单位成本下降78元
E产品的产量随生产用固定资产价值的减少而减少
(4) 测定现象间有无相关关系的方法是()。
A编制相关表 B绘制相关图 C对客观现象作定性分析
D计算估计标准误系数时,()。
A相关的两个变量都是随机的
B相关的两个变量是对等的关系
C相关的两个变量一个是随机的,一个是可以控制的量
特点 在进行回归分析时,必须根据研究目的确定相关的变量中谁为自变 量,谁为因变量。 回归方程的作用在于由自变量的数值来估计因变量的值。一个回 归方程只能作一种推算或估计。 在回归分析中,因变量是随机的,自变量是可以控制的量。

8.回归分析方法

8.回归分析方法

2.一元线性回归分析法

2.一元线性回归分析法
实际值
Syy
Q U
理论值
一元线性回归分析法
2.一元线性回归分析法
a y bx
x y x y b x x x
i i 2 i i i
2.一元线性回归分析法
2.一元线性回归分析法
相关性检验 X,y之间是否真的有回归模型描述的关系? 回归方程的可信性:回归方差占总方差的比重:
ˆ 4、将 a, b 两个参数值代入 y a bx
5、根据
ˆ 中求出 y
值;
ˆ y 值正负或大小,说明相关程度
6、如有要求;编制相关分析图。
2.一元线性回归分析法
张秀
等 运用布拉德福定律测定检索工具的完整性 情 报科学 2006,24(1):69-73 CNKI期刊数与发表论文数的分布
0.8539
f n2927
查相关系数临界值表 因为 所以回归方程在
R0.01 0.7977
R R0.01
的检验水平下有统计意义。 0.01
即可以认为大豆的蛋白质含量与脂肪含量有线性相关性。
第一节 简单线性回归方法 二、多元线性回归模型
1. 多元线性回归模型
2. 多元线性回归系数的确定
儿子身高与父母身高发现父母的身高可以预测子女的身高两者近乎一条直线当父母越高或越矮时子女的身高会比一般儿童高或矮儿子与父母身高的这种现象拟合出一种线形关系其回归直线方程为33730516x这种趋势及回归方程表明
第八章 回归分析法
1.概述:回归的概念
Francis
Galton:神童,与达尔文 同一个外祖父。 特立独行、知识渊博而又毁誉不一。 人体测量学、实验心理学、生物统计学、地理学、遗 传学…… 优生学:“种族主义者和法西斯蒂的精神领袖和鼻

统计学-课件第八章 相关回归分析

统计学-课件第八章 相关回归分析
第八章 相关与回归分析
第一节 相关分析 第二节 一元线性回归分析
1
学习目的和要求
了解相关与回归分析的概念、特点,相 关分析与回归分析的区别与联系;
掌握相关分析的定性和定量分析方法;
掌握回归模型的拟合方法、对回归方程 拟合精度的测定和评价的方法。
2
学习重点
相关分析系数计算方法 回归方程的建立
10.9692 7
第一节 相关分析
④由于
T ,t则/拒2 绝 ,表H明0变量间
线性相关在统计上是显著的。即产品产量与
生产费用之间的相关系数是显著的。
回归分析
1.回归分析的概念 回归分析就是对具有相关关系的变量之
间数量变化的一般关系进行测定,确定一 个相关的数学表达式,以便于进行估计或 预测的统计方法。
1.相关表 相关表是一种反映变量之间相关关系
的统计表。将某一变量按其取值的大 小排列,然后再将与其相关的另一变 量的对应值平行排列,便可得到简单 的相关表。
例1:某地区某企业近8年产品产量与 生产费用的相关情况如表6-1所示:
第一节 相关分析
表1 产品产量与生产费用相关表
从表可看 出,产品产量 与生产费用之 间存在一定的 正相关关系。
160
生 140 120
产 100
费 80

60 40
20
0
产品产量与生产费用相关图
9
8
7产
6
5品
4产
3 2

1
0
1997 1998 1999 2000 2001 2002 2003 2004
时间
生产费用(万元)
产品产量(千吨)
第一节 相关分析
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回归分析
例6:以表6-1的资料为例,对其回归模型作F检验
表 6-3 一元线性回归模型 F 检验计算表
年份
x
y
yc
(yc y)2 (y yc )2
1997
1.2
1998
2
1999
3.1
2000
3.8
2001
5
2002
6.1
2003
7.2
2004
8
合计 36.4
620 667.98418 186637.67 2302.4815 860 771.1521 108140.94 7893.9493 800 913.00799 34966.012 12770.806 1100 1003.2799 9354.7739 9354.7739 1150 1158.0318 3367.6898 64.509811 1320 1299.8877 39955.089 404.50501 1350 1441.7436 116788.67 8416.8845 1600 1544.9115 197946.24 3034.7428 8800 8799.9988 697157.09 44242.653
是抽自具有零相关的总体,即
H0 : =0, H1 : ≠0
T r n2 1 r2
2.规定显著性水平,依据自由度(n-2)确定临界值
第一节 相关分析
3.计算检验的统计量 4.做出判断,将计算的统计量与临界值对比,若 统计量大于或等于临界值,表明变量间线性相 关在统计上是显著的,若统计量小于临界值, 则说明相关关系在统计上并不显著
第一节 相关分析
相关图又称散点图,它是将相关表中的 观测值在平面直角坐标系中用坐标点描绘出 来,以表明相关点的分布状况。通过相关图, 可以大致看出两个变量之间有无相关关系以 及相关的形态、方向和密切程度。
例2:以表1为例,用EXCEL绘制相关图如 下
பைடு நூலகம்
第一节 相关分析
产品产量与生产费用相关图
180
回归分析
2.回归分析的特点 (1)在变量之间,必须根据研究目的具体确
定哪些是自变量,哪个是因变量 (2)回归方程的作用在于,在给定自变量的
数值情况下来估计因变量的可能值。一个 回归方程只能做一种推算。推算的结果表 明变量之间具体的变动关系
回归分析
(3)直线回归方程中,自变量的系数为 回归系数。回归系数的符号为正时,表 示正相关;回归系数的符号为负时,表 示负相关。 (4)确定回归方程时,只要求因变量是 随机的,而自变量是给定的数值。
第一节 相关分析
正相关 负相关
y
y
一元相关 多元相关
y
种类
线性相关
曲线相关 y
正 相 关 x 负 相 关 x 曲线相关 x 不 相 关 x
第一节 相关分析
定有无(相关三)相关分析内容
和类型
算相关系数 并检验
相关分析 内容
定相关 密切程度
估计值的 可靠度
定数学模型
第一节 相关分析
(四)相关表和相关图
回归分析
第二步,计算检验统计量F
F SS /1R (ycy)/1 SS /n (E 2) (yyc)/n (2)
可以证明,在原假设成立的情况下,F统计量服 从F分布,第一自由度为1,第二自由度为n-2, 即F~F(1,n-2)。
回归分析
第三步,确定显著性水平以及临界值 F
确定显著性水平 (通常 =0.05)。 依据 和两个自由度 f1、 f2 查 F 分布表可得相应的临界值 F 。 第四步,做出判断。 如果 F > F ,拒绝原假设 H0 ,表明回归效果显著;反之,则接受 原假设,表明线性回归方程的回归效果不显著。
4.相关系数的显著性检验
样本相关系数的检验包括两类检验: (1)对总体相关系数是否等于0进行检验; (2)对总体相关系数是否等于某一给定的不
为0的数值进行检验。
第一节 相关分析
对总体相关系数是否等于0的检验(五)相关系数
总体相关系数检验统计上用t检验。步骤如下: 1.提出原假设和备择假设,假设样本相关系数r
第一步,提出假设。假设样本是从一个没有线性关系的总体 中选出,即
H0 : =0, H1 : ≠0 第二步,计算检验的统计量 T 值。
T b/ Sb
其中: Sb 是回归系数b 的标准差, S y 是估计标准误差。
回归分析
回归系数的检验(续)
Sy
(y yc )2
n2
y2 a y b xy
3
学习难点
理解并掌握有关计算公式 和应用条件
第一节 相关分析
相关关系的概念
1.函数关系
它反映现象之间存在着严格的依存关系,
在这种关系中,对于某一变量的每一个数
值,都有另一个变量的确定值与之相对应,
并且这种关系可以用一个数学表达式反映
出来。如:圆的面积与半径之间的关系,

S R2
第一节 相关分析
在EXCEL主页面中,从[工具]——[数据分 析]——[相关关系]进入相关关系窗口做相应处理 得以下结果:
产品产量(千吨) 生产费用(千元)
产品产量(千吨)
1
生产费用(万元)
0.969704
1
第一节 相关分析
相关系数一般可 以从正负符号和绝对 数值的大小两个层面 理解。正负说明现象 之间是正相关还是负 相关。绝对数值的大 小说明两现象之间线
1.相关表 相关表是一种反映变量之间相关关系
的统计表。将某一变量按其取值的大 小排列,然后再将与其相关的另一变 量的对应值平行排列,便可得到简单 的相关表。
例1:某地区某企业近8年产品产量与 生产费用的相关情况如表6-1所示:
第一节 相关分析
表1 产品产量与生产费用相关表
从表可看 出,产品产量 与生产费用之 间存在一定的 正相关关系。
回归分析
①提出假设。假设线性关系不显著。即 H 0 : =0
②计算检验统计量 F。
F检验的步骤
F
( yc y) /1 = 697157.09 =94.54547
( y yc ) /(n 2) 44242.653/ 6
③确定显著性水平以及临界值 F。
设 =0.05 , f1 =1 , f 2 = n 2 =6 , 查 F 分 布 得 临 界 值
回归分析
3.回归分析的类型 回归分析
回归变量 个数
回归形式
一元回归 多元回归 线形回归 非线性回归
回归分析
1.一元线性回归模型的确定
设有两个变量 和x ,变y量 的取值y随变量 取值 的变x化而变化,我们称 为因变量,y 为自变量;x反
之亦然。一般来说,对于具有线性相关关系的两个 变量,可以用一条直线方程来表示它们之间的关系, 即:
2.相关关系 它反映现象之间确实存在的,但关系数
值不固定的相互依存关系。这一概念表明: a.相关关系是指现象之间确实存在数量上
的相互依存关系。 b.现象之间数量依存关系的具体关系值不
是固定的。
第一节 相关分析
3.相关关系与函数关系的联系 由于有观察或测量误差等原因,函
数关系在实际中往往通过相关关系表 现出来。在研究相关关系时,又常常 要使用函数关系的形式来表现,以便 找到相关关系的一般数量表现形式。
第一节 相关分析
(五)相关系数
相关程度可分为以下几种情况: ① r 0,.3为无线性相关; ②0.3≤ <r 0.5,为低度线性相关; ③0.5≤ <r 0.8,为显著线性相关; ④ ≥r 0.8,一般称为高度线性相关。
以上说明必须建立在相关系数通过显著 性检验的基础之上。
第一节 相关分析
(五)相关系数
回归分析
回归方程的检验一般包括两个方面的内容: 一是线性关系的检验 二是回归系数的检验
回归分析
(1)线性关系的检验 具体方法是将回归离差平方和(SSR)同
残差平方和(SSE)加以比较,应用F检 验来分析二者之间的差别是否显著。检 验的具体步骤如下: 第一步,提出假设。 H0:β=0, H1:β≠0:
第一节 相关分析
例4:对例3中产品产量与生产费用间的相关系数检 验
①提出原假设和备择假设。
0.05
②取显著性水平 t/2 t,0.0根25据自由度
分布表t得
H0 : ==0,2.H414:69≠0
n查26
③计算检验的统计量:
Tr n20.969872 =9.7236
1r2
表2 相关系数计算表
第一节 相关分析
于是
r
845 434 .4 6 6 8800
820 .57 4 3.4 6 2 8 1042 8 18 4 20 00 0
=0.96 97
第一节 相关分析
(2)利用EXCEL计算相关系数
以表6-1的资料为例,处理的简要步骤与结果如 下:
F0.05 (1,6) 5.99
④做出判断。 由于 F=94.54547> F0.05 (1,6) 5.99 ,所以拒绝原假设 H 0 ,表 明回归效果显著。
回归分析
(2)回归系数的检验
回归系数的检验就是检验自变量对因变量的影响程度是否显 著的问题。即总体回归系数 是否等于零。其检验步骤如下:
10.9692 7
第一节 相关分析
④由于
T ,t则/拒2 绝 ,表H明0变量间
线性相关在统计上是显著的。即产品产量与
生产费用之间的相关系数是显著的。
回归分析
1.回归分析的概念 回归分析就是对具有相关关系的变量之
间数量变化的一般关系进行测定,确定一 个相关的数学表达式,以便于进行估计或 预测的统计方法。
相关文档
最新文档