人教版七年级数学上册 3.4.2 实际问题与一元一次方程总结
人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4
人教版七年级数学上册:3.4《实际问题与一元一次方程——配套问题》说课稿4一. 教材分析《实际问题与一元一次方程——配套问题》是人教版七年级数学上册第三章第四节的内容。
本节课的主要任务是通过实际问题引导学生理解一元一次方程的解法,培养学生运用数学知识解决实际问题的能力。
教材中给出了四个配套问题,分别是:购物问题、速度问题、利润问题和工程问题。
这些问题都是日常生活中常见的问题,通过这些问题让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析七年级的学生已经学习了代数的基础知识,对一元一次方程有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为数学问题,更不知道如何运用一元一次方程解决问题。
因此,在教学过程中,教师需要引导学生正确地将实际问题转化为数学问题,并运用一元一次方程进行解答。
三. 说教学目标1.知识与技能目标:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:让学生感受数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 说教学重难点1.教学重点:让学生掌握一元一次方程的解法,能运用一元一次方程解决实际问题。
2.教学难点:如何引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法。
2.教学手段:利用多媒体课件、实物模型和教学卡片等辅助教学。
六. 说教学过程1.导入新课:通过一个购物问题引入本节课的内容,激发学生的学习兴趣。
2.知识讲解:讲解一元一次方程的解法,并通过实例让学生理解解法的步骤。
3.案例分析:分析教材中的四个配套问题,引导学生将实际问题转化为数学问题,并运用一元一次方程进行解答。
4.实践环节:让学生分组讨论,选取一个实际问题进行解决,培养学生的动手能力和团队协作能力。
人教版七年级数学上册3.4:实际问题与一元一次方程(三)
例题讲解
例1 一个两位数,十位数字比个位数字的4倍多1. 将 这两个数字调换位置后所得新数比原数小63.求原数.
分析: ①原数=十位数字×10+个位数字;
②十位数字=4×个位数字+1;
巩固新知
练习 一个三位数,十位上的数字比百位上的数字大2, 个位上的数字比十位上的数字大2,对调个位数字与百 位数字,所得的新数比原数的2倍大150.求这个三位数 是多少?
提示
十位数字=百位数字+2;个位数字=十位数字+2.
巩固新知
练习 一个三位数,十位上的数字比百位上的数字大2, 个位上的数字比十位上的数字大2,对调个位数字与百 位数字,所得的新数比原数的2倍大150.求这个三位数 是多少?
解:设原数的个位数字为x,则原数的十位数字为(4x+1). 依题意,得 10x+(4x+1)=10(4x+1)+x-63, 解这个方程,得 10x+4x+1=40x+10+x-63, 27x=54, x=2. 4x+1=9.
答:原数是92.
例1 一个两位数,十位数字比个位数字的4倍多1.将
这两个数字调换位置后所得新数比原数小63.求原数.
例2 有一个三位数,它的百位数字是1,如果把1移 到最后,其他两位数字顺序不变,所得的三位数比 这个三位数的2倍少7,求这个三位数.
原数 新数
百位数字 十位数字 个位数字
1
b
c
b
c
1
三位数 100+10b+c 100b+10c+1
§3.4.2实际问题与一元一次方程--分配问题(一)
【基本关系量】
相等关系1 : 总量=各部分量的和
相等关系2 : 表示同一个量的两个不同的式子相等
【分配问题的应用】
1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,这个工厂
去年上半年每月平均用电多少度?
2.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.原有多少鸽子和多少鸽笼?
3.一人用540卢布买了两种布料共138俄尺,其中蓝布料每俄尺3卢布,黑布料每俄尺5卢布,两种布料各买
了多少俄尺?
4.今有鸡兔同笼共50只,共有180条腿,则鸡有多少只,兔有多少只?
5.学校把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?
6.喷灌和滴灌是比漫灌节水的灌溉方式.随着农业技术的现代化,节水灌溉得到逐步推广.灌溉三块同样大的试验田,第一块用漫灌方式,第二块用喷灌方式,第三块用滴灌方式.后两种方式用水量分别是漫灌的25%和15%,三块地共用水420吨 .每块地各用水多少吨 ?
7.种一批树苗,如果每人种10棵,则剩6棵树苗未种;如果每人种12棵,则缺6棵树苗.有多少人种树?
8.已知5台A型机器一天的产品装满8箱后还剩4个,7台B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品,求每箱有多少个产品.
练习用时:分钟批改人:。
人教版数学七年级上册3.4.2 解一元一次方程--销售中的盈亏问题
总售价(120元) < 总成本 亏 损
总售价(120元) = 总成本 不盈不亏
¥60
¥60
例题 讲解 现在两件衣服的售价为已知条件,要知道卖这两件衣服是盈利还是亏损,还
需要知道什么?
两件衣服的成本(即进价).
如果设盈利的那件衣服的进价为x 元,根 据进价、利润率、售价之间的关系,你 能列出方程求解吗?同理,如果设另一 件衣服的进价为 y 元呢?
¥60
¥60
例题 解:解(1) 析设盈利25%的衣服进价是 x 元,
依题意得 x+0.25 x=60.
解得
x=48.
(2) 设亏损25%的衣服进价是 y元,
依题意得 y-0.25y=60.
解得
y=80.
¥60
¥60
两件衣服总成本:x+y=48+80=128 (元).
因为120-128=-8(元) 所以卖这两件衣服共亏损了8元.
过关 练习 据了解个体商店销售中售价只要高出进价的
20%便可盈利,但老板们常以高出进价50%~100% 标价,假若你准备买一双标价为600元的运动鞋, 应在什么范围内还价?
进价
高于进价50% x元
高于进价100% y元
标价
(1+50%)x
(1+100%)x
列方程 方程的解
盈利价
(1+50%)x=600 x=400
90% ),并再让利 40 元销售,仍可获利 10% ,求该商品的进价. 【分析】由题目条件,易知该商品的实际售价是( 900×90%-40 ) 元. 设该 商品的进价为每件 x元,根据实际售价 (不同表示法) 相等列方程求解.
解:设该商品的进价为每件 x 元,
依题意,得 900×0.9-40=10% x +x,
七上数学实际问题与一元一次方程
七上数学实际问题与一元一次方程一、概述数学作为一门基础学科,在我们的日常生活中扮演着重要的角色。
数学知识的应用不仅仅停留在课堂上,更多的是贯穿在我们的日常生活和实际问题中。
在七年级的数学课程中,一元一次方程是一个重要的概念。
本文将通过介绍一元一次方程的实际问题,探讨其在现实生活中的应用。
二、什么是一元一次方程?一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。
一般来说,一元一次方程的一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
通过解一元一次方程可以求出未知数的值,从而解决实际问题。
三、一元一次方程在实际问题中的应用1. 购物问题假设小明去商店买东西,他手头有一些零钱,但是不知道能不能够买到心仪的物品。
假设小明手头有5元、10元、20元三种面额的纸币各若干张,他想要买一件价值95元的物品,问他是否能够买到?这个问题可以用一元一次方程来解决。
设5元、10元、20元的钞票分别为x、y、z张,则可以得到一个一元一次方程:5x+10y+20z=95。
通过解这个方程,可以求出x、y、z 的取值范围,从而判断小明能否买到心仪的物品。
2. 分配问题假设一个班级有40个学生,老师根据学生的成绩等级分别设立了三个奖励等级:一等奖、二等奖、三等奖。
一等奖的奖品价值200元,二等奖的奖品价值100元,三等奖的奖品价值50元。
如果班级设置的奖品总价值不超过6000元,求一等奖、二等奖、三等奖分别应该设多少名学生?这个问题也可以用一元一次方程来解决。
设一等奖、二等奖、三等奖的学生数分别为x、y、z名,则可以得到一个一元一次方程:200x+100y+50z=6000。
通过解这个方程,可以求出x、y、z的取值范围,从而得出合理的分配方案。
3. 速度问题假设小明和小华分别从A地和B地同时出发,小明的速度是v1,小华的速度是v2。
他们在t小时后相遇,求A地到B地的距离。
这个问题也可以用一元一次方程来解决。
《实际问题与一元一次方程:销售盈亏问题》七年级初一上册PPT课件(第3.4.2课时)
由此可知,两件衣服的进价是x+y=128(元)
而 128(两件衣服的进价) > 120(两件衣服的手机)
亏损
利润=售价-成本=120-128=-8(元)
如何判断盈亏
审:理解并找出实际问题中的等量关系;设:用代数式表示实际问题中的基础数据;列:找到所列代数式中的等量关系,以此为依据列出方程;解:求解;验:考虑求出的解是否具有实际意义;答:实际问题的答案.
(销售盈亏问题)
LOGO
你知道为什么用(利润÷商品进价)而不是(利润÷商品售价)呢?
利润率是利润与成本之间的比率,考虑的是投入多少可以带回多少收益。
现售价 = 标价×折扣
售价 = 进价×(1+利润率)
若盈利利润率为正,若亏损利润率为负。
销售中的等量关系
盈利
亏损
售价- 进价> 0
售价- 进价< 0
不盈不亏
售价- 进价= 0
单 部 手 机 利 润:1500 - 1200=300元单部手机的利润率: 300÷1200=25%
情景引入
利润= 商品售价-商品进价
3)进价、利润、利润率的关系:
4)标价、折扣、商品现售价关系 :
5)商品售价、进价、利润率的关系:
1)销售金额=
售价×数量
2)售价、进价、利润的关系式:
利润率=(利润÷商品进价)×100%
【答案】B【详解】设这种商品的标价是x元,=20%,x=240这种商品的标价是240元.
课堂测试
2.(2019·哈尔滨市萧红中学初二月考)商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A.九折 B.八五折 C.八折 D.七五折
七年级上册数学一元一次方程应用题知识点
七年级上册数学一元一次方程应用题的知识点主要包括以下几个方面:
1.方程的概念:了解方程的基本定义,即含有未知数的等式。
2.一元一次方程的解法:通过去分母、去括号、移项、合并同类项等步骤,将一元一
次方程化为标准形式,并求解。
3.方程的解与解集:理解方程的解是指使方程成立的未知数的值,而解集则是指所有
满足方程的未知数的值的集合。
4.实际问题的数学模型:能够将实际问题转化为数学问题,通过建立一元一次方程来
求解。
在应用题方面,通常会涉及到以下几种类型:
1.相遇问题:两个物体在某一点相遇,需要求出它们的速度和时间等参数。
2.追及问题:一个物体追赶另一个物体,需要求出追赶的速度和时间等参数。
3.利润与折扣问题:涉及到商品的利润和折扣计算,需要建立一元一次方程来求解。
4.工程的分配问题:需要分配一定量的工程任务给多个工人或机器,需要根据各自的
效率或能力进行分配,需要建立一元一次方程来求解。
总之,七年级上册数学一元一次方程应用题的知识点包括方程的概念、一元一次方程的解法、方程的解与解集以及实际问题的数学模型等。
通过掌握这些知识点,可以更好地解决实际问题。
人教版初中数学七年级上册第三章3.4.2工程问题与一元一次方程
甲、乙两个工程队合力完成,已知甲工程队每天整治24m,乙工
程队每天整治16m。
问:甲的工作效率是:
乙的工作效率是:
甲乙的工作时间是:
甲的工作量是:
乙的工作量是:
自主探究:
例2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天 的工作效率是 ,乙每天的工作效率是 ,两人合作3天 完成的工作量是 ,此时剩余的工作量是______.
例3.一项工作甲独做a天完成,乙独做b天完成,那么甲每 天的工作效率是 ,乙每天的工作效率是 ,两人合作 3天完成的工作量是 ,此时剩余的工作量是_______.
通常情况下,将工作总量看成单位“1”
自主探究:
例4.一条地下管线由甲工程队单独铺设需要12天,由乙工程队 单独铺设需要24天,如果甲、乙两个工程队同时施工,需要多 少天铺好这条管线?
第三章 一元一次方程
3.4 第2课时 工程问题与一元一次方程
复习回顾:
工程问题: 1.工程问题的3个基本量是:
2.(1)工作总量= (2)工作时间= (3)工作效率=
工作总量 工作时间 工作效率
3.通常情况下,将工作总量看成单位“1”
自主探究:
例1.某地为了打造风光带,将一段长为360m的河道整治任务由
例7.整理一批数据,由一个人做要80 h完成,现计划由一部分人先 做2 h,然后增加5人与他们一起做8 h,完成这项工作的3/4.假设这 些人的工作效率相同,具体应先安排多少人工作?
自主探究:
例8.某中学的学生自己动手整修操场,如果让七年级学生单独工 作,需要7.5h完成;如果让八年级学生单独工作,需要5h完成。 如果让七、年级学生一起工作1h,再由八年级学生单独完成剩 余部分,共需多少时间完成?
人教版七年级数学上册知识点总结1-4章
第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
人教版七年级数学上册 3.4实际问题与一元一次方程 知识点归纳
人教版七年级数学上册实际问题与一元一次方程用方程解决实际问题的步骤:①审题,圈起关键字词。
②找出等量关系。
③设未知数,列方程。
④解方程。
⑤时间充裕的话,可以把结果代入原方程检验。
⑥作答。
和差倍分问题:先设其中一个未知数为x,再用含有x的式子表示另一个未知数,最后根据题目的等量关系列出方程。
比赛积分问题、鸡兔同笼问题:设其中一个未知数为x,则另一个未知数=总数-x,最后根据题目的等量关系列出方程。
配套问题:①设其中一种工作的人数为x,则另一种工作的人数为:(总数-x)。
②用含有x的式子表示出两种工作的总量。
③根据比找出等量关系,即可列出方程。
调配问题:先用含有未知数的式子,表示出调配前的人数和调配后的人数,再根据题目所给的等量关系列方程。
数字问题:个位上的数是几就表示几个1,十位上的数是几就表示几个10,百位上的数是几就表示几个100。
例子:个位上的数是a,十位上的数是b,百位上的数是c,则这个数表示为a+10b+100c 。
日历问题:在日历中,左右两个日期相差1天,上下两个日期相差7天。
盈亏问题:①每人所得数×人数+盈=物数②每人所得数×人数-亏=物数③两次的物数相等。
年龄问题:①每过一年,人人都长大1岁。
②无论过多少年,两人的年龄差不变。
浓度问题:①溶质+溶剂=溶液②浓度=溶质溶液①利息=本金×利率×存期②利息×税率=利息税③本息和=本金+利息行程问题:速度×时间=路程行程问题中还分相遇问题、追及问题、相离问题、环形跑道问题,我们只要抓住最原始的公式“速度×时间=路程”,再配合画线段图,即可找出等量关系。
流水行船问题:①静水速度+水流速度=顺水速度②静水速度-水流速度=逆水速度如果把船改为飞机,则也有类似的等量关系:①静风速度+风速=顺风速度②静风速度-风速=逆风速度火车过桥问题:①桥长+车长=路程②车速×通过时间=桥长+车长流水行船问题、火车过桥问题都属于行程问题,除了要明确基本的公式以外,还要会画线段图,画出线段图之后,等量关系往往就会清晰了。
人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)
人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN人教版七年级上册数学3.4实际问题与一元一次方程(分段计费和方案决策问题)分段计费问题知识点分段计费问题1.某市按如下规定收取每月煤气费:用户每月用煤气如果不超过60立方米,每立方米按1元收费,如果超过60立方米,超过部分每立方米按元收费.已知12月份某用户的煤气费平均每立方米元,那么12月份该用户用煤气立方米.2.平凉市出租车的收费标准是:起步价10元(行驶距离不超过2 km,都需付10元车费),超过2 km时,每增加1 km,加收元.小陈乘出租车到达目的地后共支付车费49元,那么小陈坐车可行驶的路程最远是(不考虑其他收费)()A.15 km B.16 km C.17 km D.18 km3.参加医疗保险,住院治疗的病人享受分段报销,保险公司制定的报销细则如下表:A.1 000元B.1 250元C.1 500元D.2 000元4.据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:(1)琪琪家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前琪琪家的电费是增多了,还是减少了增多或减少了多少元请说明理由;(2)琪琪家这个月用电95度,经测算比换表前使用95度电节省了元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度5例如:一户居民七月份用电420度,则需缴电费420×=357(元).某户居民五、六月份共用电500度,缴电费元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度方案决策问题知识点方案决策问题1.请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.2(1)设通话时间为x分钟,则方式一每月收费 )元,方式二每月收费元;(2)当本地通话分钟时,两种收费方式一样;(3)当通话时间为250分钟时,选择比较合算;当通话时间为150分钟时,选择比较合算.3.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1 000元,经粗加工后销售,每吨利润可达4 500元,经精加工后销售,每吨利润涨至7 500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果进行精加工,每天可加工6吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天内将这批蔬菜全部销售或加工完毕,为此公司制定了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多为什么4.某景点的门票价格如表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,那么一共支付 1 118元;如果两班联合起来作为一个团体购票,那么只需花费816元.(1)两个班各有多少名学生(2)团体购票与单独购票相比较,两个班各节约了多少钱5.为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物,所有商品价格可获九五折优惠;方案二:若交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,分别用含有x的式子表示出两种购物方案中的支出金额;(2)若某人计划在商都购买价格为5 880元的电视机一台,请分析选择哪种方案更省钱(3)哪种情况下,两种方案下的支出金额相同6.某地上网有两种收费方式,用户可以任选其一:A计时制:1元/小时;B包月制:80元/月.此外,每一种上网方式都加收通信费元/小时.(1)某用户每月上网40小时,选择哪种上网方式比较合算(2)某用户每月有100元钱用于上网,选用哪种上网方式比较合算(3)请你为用户设计一个方案,使用户能合理地选择上网方式.。
人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(基础)知识讲解及解答
实质问题【学习目标】1.娴熟掌握剖析解决实质问题的一般方法及步骤;2.熟习行程,工程,配套及和差倍分问题的解题思路.【重点梳理】知识点一、用一元一次方程解决实质问题的一般步骤列方程解应用题的基本思路为:问题剖析方程求解解答.由此可得解决此类抽象查验题的一般步骤为:审、设、列、解、查验、答.重点解说:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,找寻等量关系;(2)“设”就是设未知数,一般求什么就设什么为x,但有时也能够间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要一致;(4)“解”就是解方程,求出未知数的值.(5)“查验”就是指查验方程的解能否切合实质意义,当有不切合的解时,实时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.知识点二、常有列方程解应用题的几种种类(待续)1.和、差、倍、分问题( 1)基本量及关系:增加量=原有量×增加率,现有量=原有量+增加量,现有量=原有量- 降低量.(2)找寻相等关系:抓住重点词列方程,常有的重点词有:多、少、和、差、不足、节余以及倍,增加率等.2.行程问题( 1)三个基本量间的关系:行程=速度×时间( 2)基本种类有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇行程=速度和×相遇时间Ⅱ.找寻相等关系:甲走的行程+乙走的行程=两地距离.②追及问题:Ⅰ.基本量及关系:追及行程=速度差×追实时间Ⅱ.找寻相等关系:第一,同地不一样时出发:前者走的行程=追者走的行程;第二,第二,同时不一样地出发:前者走的行程 +二者相距距离=追者走的行程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度 +水流速度,逆流速度 =静水速度-水流速度,顺流速度-逆水速度= 2×水速;Ⅱ.找寻相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的重点是抓住甲、乙两物体的时间关系或所走的行程关系,而且还经常借助画草图来剖析.3.工程问题假如题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量 =工作效率×工作时间;(2)总工作量 =各单位工作量之和.4.分配问题找寻相等关系的方法:抓住分配后甲处的数目与乙处的数目间的关系去考虑.【典型例题】种类一、和差倍分问题1.2011 年北京市生产营运用水和居民家庭用水的总和为 5. 8 亿立方米,此中居民家庭用水比生产营运用水的 3 倍还多 0. 6 亿立方米,问生产营运用水和居民家庭用水各多少亿立方米 ?【答案与分析】设生产营运用水x 亿立方米,则居民家庭用水( 5. 8- x) 亿立方米.5. 8- x= 3x+0 . 6依题意,得解得 x= 1. 35. 8- x= 5. 8- 1. 3= 4. 5(亿立方米)答:生产营运用水 1. 3 亿立方米,居民家庭用水 4. 5 亿立方米.【总结升华】此题要求两个未知数,不如设此中一个未知数为x,此外一个用含x 的式子表示.此题的相等关系是生产营运用水量+居民家庭用水总量= 5. 8 亿立方米.贯通融会:【变式】 ( 麻城期末考试) 麻商公司三个季度共销售冰箱2800 台,第一个季度销售量是第二个季度的 2 倍.第三个季度销售量是第一个季度的 2 倍,试问麻商公司第二个季度销售冰箱多少台 ?【答案】解:设第二个季度麻商公司销售冰箱x 台,则第一季度销售量为2x 台,第三季度销售量为4x 台,依题意可得:x+2x+4x = 2800,解得: x= 400400 台.答:麻商公司第二个季度销售冰箱种类二、行程问题1.一般问题2.小山娃要到城里参加运动会,假如每小时走 4 千米,那么走完预定时间隔县城还有0.5 千米,假如他每小时走 5 千米,那么比预定时间早半小时便可抵达县城.试问学校到县城的距离是多少千米 ?【答案与分析】解:设小山娃预定的时间为x 小时,由题意得:4x+0 . 5= 5( x- 0. 5) ,解得 x= 3.因此 4x+0 . 5= 4× 3+0. 5= 12. 5( 千米 ) .答:学校到县城的距离是12. 5 千米.【总结升华】当直接设未知数有困难时,可采纳间接设的方法.即所设的不是最后所求的,而是经过求其余的数目间接地求最后的未知量.贯通融会:【变式】某汽车在一段坡路上来回行驶,上坡的速度为10 千米 / 时,下坡的速度为20 千米/时,求汽车的均匀速度.【答案】解:设这段坡路长为 a 千米,汽车的均匀速度为x 千米 / 时,则上坡行驶的时间为a小时,10下坡行驶的时间为a20小时.依题意,得:a a10 20x 2a,化简得:3ax40a .明显a≠ 0,解得x 1313答:汽车的均匀速度为131 千米/时.32.相遇问题(相向问题)【高清讲堂:实质问题与一元一次方程( 一 ) 388410相遇问题】3. A 、B 两地相距100km,甲、乙两人骑自行车分别从A、B 两地出发相向而行,甲的速度是 23km/h,乙的速度是 21km/h,甲骑了 1h 后,乙从 B 地出发,问甲经过多少时间与乙相遇?【答案与分析】解: 设甲经过x 小时与乙相遇 .由题意得: 23 12321 ( x1)100解得, x=2.75答:甲经过 2.75 小时与乙相遇.【总结升华】等量关系:甲走的行程+乙走的行程 =100km贯通融会:【变式】甲、乙两人骑自行车,同时从相距45km的两地相向而行, 2 小时相遇,每小时甲比乙多走 2.5km,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶( x+2.5) 千米,依据题意,得:2( x 2.5)2x45解得: x10x 2.5 10 2.512.5(千米)答:甲每小时行驶12.5 千米,乙每小时行驶10 千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度前进,走了18分钟时,学校要将一紧迫通知传给队长,通信员从学校出发,骑自行车以14 千米 / 时的速度按原路追上去,通信员用多少分钟能够追上学生队伍?【答案与分析】解:设通信员x 小时能够追上学生队伍,则依据题意,得 14x518 5x ,601得: x, 1小时 =10 分钟.6 6答:通信员用 10 分钟能够追上学生队伍.【总结升华】 追及问题:行程差 =速度差×时间,别的注意:方程中x 表示小时, 18 表示分钟,两边单位不一致,应先一致单位.4. 航行问题(顺顶风问题)5.一艘船航行于 A 、 B 两个码头之间,轮船顺流航行需3 小时,逆水航行需5 小时,已知水流速度是 4 千米 / 时,求这两个码头之间的距离. 【答案与分析】解法 1:设船在静水中速度为x 千米 / 时,则船顺流航行的速度为( x+4) 千米 / 时,逆水航行的速度为 ( x- 4) 千米 / 时,由两码头的距离不变得方程: 3( x+4) = 5( x- 4) ,解得: x=16,( 16+4)× 3=60 (千米)答:两码头之间的距离为60 千米.解法 2:设 A 、B 两码头之间的距离为 x 千米,则船顺流航行时速度为 x千米 / 时,逆水航行时速度为 x千米 / 时,由船在静水中的速度不变得方程:xx 344 ,解得: x 60 560 千米.35答:两码头之间的距离为【总结升华】 顺流速度 =静水速度 +水流速度; 逆流速度 =静水速度 -水流速度, 依据两个码头的距离不变或船在静水中的速度不变列方程.种类三、工程问题6.一个水池有两个灌水管,两个水管同时灌水,10 小时能够注满水池;甲管独自开15 小时能够注满水池,现两管同时灌水 7 小时,关掉甲管,独自开乙管灌水,还需要几小时能注满水池 ?【思路点拨】 视水管的蓄水量为“ 1”,设乙管还需 x 小时能够注满水池;那么甲乙合注1 小时灌水池的1 ,甲管独自灌水每小时灌水池的 1 ,合注 7 小时灌水池的7,乙管每小101510时灌水池的11 .10 15【答案与分析】解:设乙管还需 x 小时才能注满水池.1 17由题意得方程:15x 110 10解此方程得: x = 9答:独自开乙管,还需 9 小时能够注满水池.【总结升华】 工作效率×工作时间 =工作量,假如没有详细的工作量,一般视总的工作量为“1” .贯通融会:【变式】修筑某处住所区的自来水管道, 甲独自达成需 14 天,乙独自达成需 18 天,丙独自达成需 12 天,前 7 天由甲、乙两人合作,但乙半途走开了一段时间,后两天由乙、丙合作达成问乙半途走开了几日 ?【答案】解:设乙半途走开x 天,由题意得171(7 x 2) 1 2 114 1812解得: x 3答:乙半途走开了3 天种类四、分配问题( 比率问题、劳动力分配问题)7.星光服饰厂接受生产某种型号的学生服的任务,已知每3m 长的某种布料可做上衣2 件或裤子3 条,一件上衣和一条裤子为一套,计划用 750m 长的这类布料生产学生服,应分别用多少布料生产上衣和裤子才能恰巧配套?共能生产多少套 ?【思路点拨】 每 3 米布料可做上衣 2 件或裤子 3 条,意思是每1 米布料可做上衣2件,或3做裤子 1 条,别的恰巧配套说明裤子的数目应当等于上衣的数目.【答案与分析】 解:设做上衣需要xm ,则做裤子为 ( 750- x) m ,做上衣的件数为x2 件,做裤子的件数为750 x2x3(750 x)33 ,则有:3 33解得: x = 450,750- x =750- 450= 300( m) ,450 2300 (套) 3答:用 450m 做上衣, 300m 做裤子恰巧配套,共能生产 300 套.【总结升华】 用参数表示上衣总件数与裤子的总件数, 等量关系: 上衣总件数=裤子的总件数.贯通融会:【高清讲堂:实质问题与一元一次方程 ( 一 ) 388410 分配问题 】【变式】甲队有 72 人,乙队有 68 人,需要从甲队调出多少人到乙队,才能使甲队恰巧是乙队人数的 3.4解:设从甲队调出x 人到乙队 . 由题意得,72 x368 x4解得, x=12.答:需要从甲队调出12 人到乙队,才能使甲队恰巧是乙队人数的3.4。
七年级数学实际问题与一元一次方程
销售中的盈亏问题 例 1:文星商店以每支 4 元的价格购进 100 支钢笔,卖出时 每支的标价 6 元,当卖出一部分钢笔后,剩余的打 9 折出售, 卖完时商店盈利 188 元,其中打 9 折的钢笔有几支? 思路导引:列表分析题中所给数量关系:
↓ 则乙厂计划生产机床( 360-x )台←用未知数表示题目中 相关的量
↓ 则有:x×112%+(360-x)×110%=400←明确等量关系, 并根据等量关系列方程
↓ 解得: ( x=200 )
↓ 甲厂计划生产机床__2_0_0__台←写出答案
2.列方程解应用题的常见数量关系: 行程问题:路程=速度×___时__间___; 工程问题:工作量=工作时间×_工__作__效__率_; 销售问题:商品利润=商品售价-商品___进__价___,
(1)当Ⅱ号稻谷的国家收购价是每千克多少元时,在田间管 理、土质和面积相同的两块田地里分别种植Ⅰ号、Ⅱ号稻谷的 收益相同?
(2)去年小王在土质、面积相同的两块田里分别种植Ⅰ号、 Ⅱ号稻谷,且进行了相同的田间管理,收获后,小王把稻谷全
部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为 2.2 元/ 千克,Ⅰ号稻谷的国家收购价未变,这样小王卖Ⅱ号稻谷比卖
解:设原计划生产小麦 x 吨,则生产玉米(18-x)吨. 根据题意,得 12%x+10%(18-x)=20-18. 解得 x=10.则 18-x=18-10=8. 10×(1+12%)=11.2(吨), 8×(1+10%)=8.8(吨). 答:该专业户去年实际生产小麦 11.2 吨,玉米 8.8 吨.
按标价出售 9 折出售
售价 6
6×90%
数量 100-x
人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答
实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。
3.4(2) 再探实际问题与一元一次方程
例2 小明想在两种灯中选购一种,其中一种是11瓦(即 0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06 千瓦)的白炽灯,售价3元.两种灯的照明效果一样,使用 寿命也相同(3000小时以上).节能灯售价较高,但是较 省电;白炽灯售价低,但是用电多.如果电费是0.5元 /(千瓦时),选哪种灯可以节省电费(灯的售价加电费)? 问题: 如果灯的使用寿命都是3000小时,而计划照明 3500小时,则需要购买两个灯,试设计你认为能省钱 的选灯方案. 你的方案 参考方案:买白炽灯和节能灯各一只,用白炽灯照明 的总费用 500小时,节能灯照明3000小时. 是多少? 在这种方案中的总费用为:
当商场资金小于20000元时,月初出售获利多; 当商场资金多于20000元时,月底出售获利多。
再 见
学以致用
2、商场计划投入一笔资金采购一批紧俏商品,经过调 查发现,如果月初出售可获利15%,并可用本利再 投资其它商品,到月底可获利10%;如果直接月底 出售,可获利30%,但要付700元的仓储费, 请问:根据商场情况,如何购销商品? 分析:设商场资金为a元,则 1+15%)(1+10%)a 元, (1)月初出售可得本利和为:( _________________ [(1+30%)a-700] 元, (2)月底出售可得本利和为:_________________ 令: (1+15%)(1+10%)a=[(1+30%)a-700] 则:a=20000 因此: 当商场资金刚好20000元时,两种购销方法都一样;
60+0.5×0.011×3000+3+0.5×0.06×500 =60+16.5+3+15 =94.5(元)
购书问题
例3、一种课外必读书售价为 2.3元/本.,如果
人教版初中数学七上第三章 一元一次方程 3.4 实际问题与一元一次方程 第1课时 配套问题与工程问题
(2)如果甲、乙两个工程队合作30天后,因甲工程队另有任务,剩下工作由乙 工程队完成,那么修好这条公路共需要几天?
答:修好这条公路共需要75天.
8.制作一张桌子要用一个桌面和4条桌腿,1 m3木材可制作15个桌面或制作300条桌 腿,现有18 m3的木材,应怎样计划用料才能制作尽可能多的桌子? 解:设用x m3木材制作桌面,(18-x)m3木材制作桌腿,才能制作尽可能 多的桌子. 由题意,得4×15x=300(18-x), 解得x=15,则18-15=3(m3). 答:用15 m3木材制作桌面,3 m3木材制作桌腿,才能制作尽可能多的桌子.
11.某中学原计划加工一批校服,现有甲、乙两个工厂都想加工这批校服,已知甲工 厂每天能加工这种校服16件,乙工厂每天能加工这种校服24件,且单独加工这 批校服甲工厂比乙工厂要多用20天.在加工过程中,学校每天需付甲、乙两个工 厂的费用分别是80元、费用120元. (1)这批校服共有多少件?
(2)在实际加工过程中,甲、乙两个工厂按原生产效率合作一段时间后,甲工厂 停工了,乙工厂每天的生产效率提高25%,乙工厂单独完成剩余部分,且乙工厂 的全部工作时间比甲工厂工作时间的2倍还多4天,则乙工厂共加工了多少天? 解:(2)设甲工厂加工a天,则乙工厂共加工(2a+4)天. 由题意,得(16+24)a+24×(1+25%)(2a+4-a)=960,解得a=12,所 以2a+4=28. 答:乙工厂共加工28天.
A.2×5(33-x)=3×15x B.2×5x=3×15(33-x) C.3×5x=2×15(33-x) D.3×5(33-x)=2×15x
人教版七年级数学上册:3.4《实际问题与一元一次方程》说课稿
人教版七年级数学上册:3.4 《实际问题与一元一次方程》说课稿一. 教材分析《实际问题与一元一次方程》是人教版七年级数学上册第三章第四节的内容。
这一节的内容是在学生已经学习了代数基础知识和一元一次方程的基础上进行讲解的,目的是让学生能够将所学的代数知识应用到解决实际问题中。
教材通过引入一些生活中的实际问题,让学生学会用一元一次方程来表示问题,并通过解方程来求解问题的方法。
二. 学情分析七年级的学生已经具备了一定的代数知识,对于一元一次方程也有了一定的了解。
但是,学生可能对于如何将实际问题转化为方程表示还是有一定的困难。
因此,在教学过程中,我需要引导学生如何将实际问题转化为方程,并通过解方程来求解问题。
三. 说教学目标1.知识与技能:学生能够理解实际问题与一元一次方程之间的关系,学会将实际问题转化为方程表示,并能够通过解方程来求解问题。
2.过程与方法:学生能够通过解决实际问题,培养解决问题的能力和思维方法。
3.情感态度与价值观:学生能够感受到数学与生活的紧密联系,增强对数学的兴趣和信心。
四. 说教学重难点1.教学重点:学生能够理解实际问题与一元一次方程之间的关系,学会将实际问题转化为方程表示,并能够通过解方程来求解问题。
2.教学难点:学生对于如何将实际问题转化为方程表示可能有一定的困难,需要进行引导和讲解。
五. 说教学方法与手段在教学过程中,我将采用问题驱动的教学方法,引导学生通过解决实际问题来学习一元一次方程的应用。
同时,我会利用多媒体教学手段,展示一些实际问题的图片或视频,帮助学生更好地理解和解决问题。
六. 说教学过程1.导入:通过展示一些实际问题的图片或视频,引导学生思考如何用数学方法来解决这些问题。
2.新课导入:介绍实际问题与一元一次方程之间的关系,讲解如何将实际问题转化为方程表示。
3.案例讲解:通过一些具体的案例,讲解如何将实际问题转化为方程表示,并通过解方程来求解问题。
4.学生练习:让学生尝试解决一些实际问题,巩固所学的内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变式:
在甲处劳动的有52人,在乙处劳动的有23人, 现从甲、乙两处共调出12人到丙处劳动,使在 甲处劳动的人数是在乙处劳动人数的2倍,求应 从甲、乙两处各调走多少人?
变式练习: 出操时,初一、初二两个方队共有学生146
人.如果让初一方队中的11人插到初二方队,那 么两个方队的人数相等,则两个方队原来各有 多少人?
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31
5、一个两位数,十位上的数字比个位上的数字 小1,十位与个位上的数字的和是这个两位数的1/5. 求这个两位数。
6、在数理化竞赛中,小亮三科成绩的总分为240分, 各科分数的比为9:8:7,小亮各科的成绩分别是多少?
2、三个连续奇数的和为33,求这三个连续的奇数
3、按规律排列的一列数:2,-4,8,-16,32,-64,...,其中某 四个相邻数的和为-640,求这四个数
4、如图日历中,任意圈出两列上下相邻的四个数,其中四个 数之和为52,求这四个数各是多少?
日一二三四五六
1
2
3
4
5
6
7
8
9 10 11 12 13
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A 车追上?
A
B
甲
乙
再变 路程=速度×时间
例1.小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米, 叔叔每秒跑7.5米。
(1)若两人同时同地同向出发,多长时间两人首次相遇?
等量关系
甲行的路程-乙行的路程=400米
(2)若两人同时同地反向出发,多长时间两人首次相遇?
例4 一个两位数,十位上的数字是个位数字 的2倍,如果把个位上的数和十位上的数对调 得到的数比原数小36,求原来的两位数
数字问题: 设一个两位数的十位上的数字和个位上的
数字分别为a,b,则这个两位数可表示为10a+b
练习: 一个两位数,个位上的数字是十位上数字的
2倍,如果把十位上的数字与个位上的数字对 调,那么所得的两位数比原两位数大27,求原 两位数.
……
例3 观察下面的一列数,回答问题 5,-10,15,-20,25,-30,...
(1)第20各数是多少? (2)若某三个相邻的数的和是80,这三个数分 别是多少?
练习: 有一列数,按一定规律排列成1,-3,9,
-27,81,-243,...,其中某三个相邻数的和是 -1701,这三个数各是多少?
等量关系
甲行的路程+乙行的路程=400米
制作一张桌子要用一个桌面和4条桌腿,1 m³木 材可制作20个桌面,或者制作400条桌腿,现有 12 m³木材,应怎样计划用料才能制作尽可能多 的桌子?
例1、有一项工作,甲单独完成需要30 h,
乙单独完成需要60 h. 工作总量=人均效率×人数×时间
(1)甲的工作效率是多少? (2)乙的工作效率是多少?
列一元一次方程解应用题的一般步骤:
1、审:理解题意,分清已知量和未知量,明确个数量之间的关 系
2、设:设出未知数,(直接设未知数或间接设未知数) 3、列:根据题目中的等量关系列出方程 4、解:解所列出的方程,求出未知数的值 5、验:检验所求出的未知数的值是否符合题意 6、答:作答
根据下列条件,列出方程 1、x的3倍减5,等于x的2倍加1 2、x的30%加2的和的一半,等于x的20%减5
(1)若两车相向而行,请问B车行了多长时间后与A车相遇?
A
B
甲
乙
(2)若两车相向而行,请问B车行了多长时间后两车相距10千米?
A
B
甲
乙
Aபைடு நூலகம்
B
路程=速度×时间
甲
乙
路程=速度×时间
变式练习:
A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千 米,B车每小时行30千米,A车出发1.5小时后B车再出发。
7、几个人共同种一批树苗,如果每人种10棵,则剩 下6棵树苗未种;如果每人种12棵,则缺6棵树苗.问 参与种树的有多少人?总共有多少棵树?
8、在甲处劳动的有27人,在乙处劳动的有19人,现在 另调20人去支援,使在甲处的人数为在乙处的人数2倍, 应调往甲、乙两处各多少人?
9、一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙 码头返回甲码头逆流行驶用了2.5小时,已知水流的速度是 4 km/h,求船在静水中的平均速度.
练习:
一个黑白足球的表面一共有32个皮块,其 中有若干块黑色五边形和白色六边形,黑、白 皮块的数目之比为3:5,问黑、白皮块各有多 少?
例6 把一些图书分给某班学生阅读,如果每人分3
本,则剩余20本;如果每人分4本,则还缺25本.这 个班有多少学生?
练习:
七年级4班第一小组的同学去果园参加劳动, 休息时果农师傅分给同学们吃,若每个人3个, 还剩8个;若每人5个,还缺2个.那么第一小组有 多少名同学?果农师傅共分了多少个苹果给同学 们?
10、甲、乙两站间路程为450 km,一列慢车从甲站开出, 每小时行驶65 km;一列快车从乙站开出,每小时行驶85 km. (1)两车同时开出,相向而行,多少小时相遇? (2)快车先开30 min,两车相向而行,慢车行驶多少小时两 车相遇.
21
23
25
27
29
31
33
35
37
39
……
练习:
现将连续自然数1~2012按如图方式排列成一个
长方形阵列.用一个长方形框出4个数(如图所
示),若这四个数的和是132,求这四个数分别
是多少? 1
2
3
4
5
6
7
8
9
10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
例1 某商场今年第一季度共销售电视机2800台,
二月份销售量是一月份的2倍,三月份销售量是二 月份的2倍,一月份这家商场销售电视机是多少台?
练习:
某校七年级1班共有学生48人,其中女生人 数比男生人数的4/5多3人,这个班有男生多少 人?
例1 四个连续偶数的和是100,求这四个偶数各 是多少?
例5 某制药厂制造一批药品,如用旧工艺,则
废水排量要比环保限制的最大量还多200t;如用 新工艺,则废水排量比环保限制的最大值少100t. 新旧工艺的废水排量之比为2:5,两种工艺的废 水排量各是多少?
比例问题:
如果题目中告诉的比是a:b,一般设ax和bx两部分 如果题目中告诉的比是a:b:c,一般设ax,bx和cx三部分
若售价>进价,则商品盈利; 若售价<进价,则商品亏损; 若售价=进价,则商品不盈不亏
练习:
某商场为减少库存积压,以每件120元的价格出 售两件夹克上衣,其中一件盈利20%,另一件亏损 20%,在这次买卖中商场是盈利还是亏损,请求出 盈利或者亏损了多少元?
作业:
1、某工厂的产值连续增长,去年比前年的1.5倍, 今年是去年的2倍,这三年总产值为550万元,前 年的产值是多少?
(3)若甲、乙两人合作,每小时可以完成工作量的几分之几?
(4)完成这项工作,两人合作需要几个小时?
(5)如果甲先工作10 h,则他完成的工作量是多少?
(6)在(5)的情况下,乙又工作了x h,则剩余的工作占总工作的几分之 几?
练习:
整理一批数据,由一个人做需80 小时完成。 现在计划由一些人先做2小时,再增加5人做8小 时,完成这项工作的四分之三。计划由多少人先 做两小时?
例4 有一个水池,若用进水管向空水池注
水,3 h可注满;若用出水管向外排水,4 h 可把水池里的水放完,则两个水管同时开放 几个小时可把空水池注满。
变式: 一个水池有甲、乙、丙三个水管,甲、乙是
进水管,丙是出水管。单开甲水管20分钟可将水池注满, 单开乙水管15分钟可将水池注满,单开丙水管25分钟可将 满水池放完。现在先开甲、乙两水管,4分钟后关上甲水管 开丙水管,问又经过多少分钟才能将水池注满?
路程=速度×时间
单击此处添加备注1.A、B两车分别停靠在相距240千米的甲、乙两地,A车每小 时行50千米,B车每小时行30千米,
(1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?
A
B
甲
乙
相等关系:A车走的距离 + B车走的距离 =两地距离
变式练习:
A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千 米,B车每小时行30千米,A车出发1.5小时后B车再出发。
奇、偶数问题: 相邻的两个偶数(或奇数)相差2
练习: 已知三个连续奇数之和是2007,求这三个
奇数各是多少?
例3 如图,将一列数按如图的方式排列成一个方阵,用
一个小长方形,框住其中的三个数,这三个数的和为111,
则这三个数分别是多少?这三个数的和能不能是157,为
什么?
1
3
5
7
9
11
13
15
17
19
顺水、逆水问题
一艘轮船航行于两地之间,顺水要用3小时,逆水要 用4小时,已知船在静水中的速度是50千米/小时, 求水流的速度.
航行问题常用的等量关系是:
(1)顺水速度=静水速度+水流速度 (2)逆水速度=静水速度-水流速度
(3)顺速 – 逆速 = 2水速; 顺速 + 逆速 = 2船速
(4)顺水的路程 = 逆水的路程