初一上册《一元一次方程》计算题

合集下载

初一上册数学一元一次方程-含答案

初一上册数学一元一次方程-含答案

【典型例题】例1 将一批数据输入电脑,甲独做需要50分钟完成,乙独做需要30分钟完成,现在甲独做30分钟,剩下的部分由甲、乙合做,问甲、乙两人合做的时间是多少?解析:首先设甲乙合作的时间是x分钟,根据题意可得等量关系:甲工作(30+x)分钟的工作量+乙工作x分钟的工作量=1,根据等量关系,列出方程,再解方程即可.设甲乙合作的时间是x分钟,由题意得:【方法突破】工程问题是典型的a=bc型数量关系,可以知二求一,三个基本量及其关系为:工作总量=工作效率×工作时间需要注意的是:工作总量往往在题目条件中并不会直接给出,我们可以设工作总量为单位1。

二、比赛计分问题【典型例题】例1某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。

已知某人有5道题未作,得了103分,则这个人选错了多少道题。

解:设这个人选对了x道题目,则选错了(45-x)道题,于是3x-(45-x)=1034x=148解得 x=37则 45-x=8答:这个人选错了8道题.例2某校高一年级有12个班.在学校组织的高一年级篮球比赛中,规定每两个班之间只进行一场比赛,每场比赛都要分出胜负,每班胜一场得2分,负一场得1分.某班要想在全部比赛中得18分,那么这个班的胜负场数应分别是多少?因为共有12个班,且规定每两个班之间只进行一场比赛,所以这个班应该比赛11场,设胜了x场,那么负了(11-x)场,根据得分为18分可列方程求解.【解析】设胜了x场,那么负了(11-x)场.2x+1•(11-x)=18x=711-7=4那么这个班的胜负场数应分别是7和4.【方法突破】比赛积分问题的关键是要了解比赛的积分规则,规则不同,积分方式不同,常见的数量关系有:每队的胜场数+负场数+平场数=这个队比赛场次;得分总数+失分总数=总积分;失分常用负数表示,有些时候平场不计分,另外如果设场数或者题数为x,那么x最后的取值必须为正整数。

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案

人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。

七年级一元一次方程经典题型计算题100道

七年级一元一次方程经典题型计算题100道

七年级一元一次方程经典题型计算题100道解方程(等式的性质)1.x-2=3-2x2.3x-1.3x+5x-2.7x=-12*3-6*43.-x=1-2x4.5=5-3x5.x-5=16.5-3x=8x+17.7x=3+2x8.x-3x-1.2=4.8-5x9.3x-7+4x=6x-210.11x+64-2x=100-9x11.x-7+8x=9x-3-4x12.2x-x+3=1.5-2x13.0.5x-0.7=6.5-1.3x14.-4x+6x-0.5x=-315.-x=-2/5x+116.x-6=-3/5x+317.3/2x=2/318.x=1+x^2/2-x^4/8+1619.x^4/2-1/2=x^2/2+3/420.-x^2/3+x=1解方程(去括号)1.2x-2=42.10x-10=53.-x+3=5x+94.3x-6+1=x-2x+15.5x+10=10x-26.2x-2-x-2=12-3x7.4x+3=2x-2+18.4x+2x-4=12-x9.2x-4-24x+6=3-3x10.4x-8-15x+3=9-x11.1-4x-6=-6x-312.x+1-2x+2=1-3x13.4x-60-3x+21=6x-63-7x14.2x-4=-x-315.4x-8+2x=7+x16.2x-5x-16=3-6x+817.-3x+6+1=4x-2x+118.4x+2x-4=12-x-419.2x-4-12x+3=9-9x20.2y+4-12y+3=9-9y21.4x-60-3x+21=6x-63-7x22.2{3[4(5x-1)-8]-20}-7=123.x-2[x-3(x+4)-5]=3{2x-[x-8(x-4)]}-224.x-(x-1)/(2)=(x-1)/(2)25.2x-x-(x-1)=(x-1)/(2)26.(x-1)/3-2[x-1(1/4/5)]+4=127.(x-1)^(-1)=1/21、解方程:1128、6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/82、解方程:1/5x-(1/2)(3-2x)=1/23 化简得:2x+15=46-5x移项得:7x=31解得:x=31/73、解方程:2-(2/3)x=4化简得:(2/3)x=-2移项得:x=-34、解方程:|x+5|=5分两种情况讨论:当x+5=5时,解得:x=0当x+5=-5时,解得:x=-10 5、解方程:6(x-4)+2x=7-(x-1) 化简得:8x-22=7移项得:8x=29解得:x=29/86、解方程:(3x-6)/(2/5x-3)=1 化简得:(3x-6)/(2/5x-3)=1移项得:3x-6=2/5x-3移项得:13/5x=3解得:x=15/137、解方程:(x+1)/2-(x+1)/6=1 化简得:(3/6)x+1/2-1=1化简得:(3/6)x=1/2解得:x=18、解方程:2x-11/(0.5x-3)=-6 化简得:(2x-11)/(0.5x-3)=-6 移项得:2x-11=-3x+18移项得:5x=29解得:x=29/59、解方程:0.1x+0.2x/(1-0.3x)=1/0.5-0.2 化简得:0.1x+0.2x/(1-0.3x)=1.25移项得:0.1x(1-0.3x)+0.2x=1.25(1-0.3x) 化简得:0.1x+0.26x-0.375x^2=1.25移项得:-0.375x^2+0.36x-1.25=0解得:x=5/310、解方程:(5-3x)^2=3(3+5x)化简得:25-30x+9x^2=9+15x移项得:9x^2-45x+16=0解得:x=(45±√(45^2-4*9*16))/(2*9)化简得:x=(15±(33))/6解得:x=8/3或x=1/311、解方程:(x-3)/0.2-(2x+5)/0.3=1.6 化简得:1.5x-7.5-6.667x-11.667=1.6 移项得:-5.167x=20.767解得:x=-412、解方程:(2x+1)/4-(x+1)/2=2化简得:0.5x-0.25=2移项得:0.5x=2.25解得:x=4.513、解方程:(y+4)/3-y+5=2-(y-2)/2 化简得:(y+4)/3-y+5=2-(y-2)/2移项得:(y+4)/3+(y-2)/2=3化简得:(2y+8+3y-6)/6=3解得:y=214、解方程:(y-1)/2=2-(y+2)/5化简得:5(y-1)=2(10-3y-6)移项得:8y=33解得:y=33/815、解方程:(x-1)/4+1=2-(x+3)/6化简得:(x-1)/4+(x+3)/6=1化简得:3(x-1)+2(x+3)=12移项得:5x=13解得:x=13/516、解方程:(x-1)/3=(x+1)/5化简得:5(x-1)=3(x+1)移项得:2x=8解得:x=417、解方程:(x-1)/3+1=2-(x+1)/5 化简得:(x-1)/3+(x+1)/5=1化简得:5(x-1)+3(x+1)=15移项得:8x=28解得:x=7/218、解方程:(x-2)/3=(x+2)/4 化简得:4(x-2)=3(x+2)移项得:x=1419、解方程:(1-x^4)-1=(x+1)/2 化简得:-x^4+(x+3)/2=0移项得:x^4-(x+3)/2=0解得:x=-1或x=√220、解方程:(x-1)/3-1=3-(2-x)/2化简得:(x-1)/3+(2-x)/2=4化简得:2(x-1)+3(2-x)=24移项得:-x=5解得:x=-521、解方程:5x-13x^2/4=1/2-(2-x)/3 化简得:20x-39x^2=6-4+2x移项得:39x^2-18x=-2解得:x=2/3或x=-2/1322、解方程:5x+1/6=9x+1/8-(1-x)/3化简得:15x+2=72x+3-(8-24x)/3化简得:45x+6=216x+9+8-24x移项得:-24x=11解得:x=-11/2423、解方程:2x+1/3-(x+2)/6=1/4化简得:12x+4-2(x+2)=3移项得:10x=1解得:x=1/1024、解方程:3x+2(2x-1)/5-1=4-(x+1)/5 化简得:15x+4(2x-1)-5=20-x-1移项得:32x=31解得:x=31/3225、解方程:3x-(2x-1)^2/2=2-(x-2)/5 化简得:6x-(2x-1)^2=20-2(x-2)化简得:6x-4x^2+4x-1=20-2x+4移项得:4x^2-8x+15=0解得:无实数解26、解方程:x-(x-1)^2/2=2-(x+2)/3 化简得:6x-3(x-1)^2=12-(x+2)2化简得:6x-3x^2+6x-6=12-x^2-4x-4移项得:2x^2-16x+22=0解得:x=4-√6或x=4+√627、解方程:x-2=-2x+1/2化简得:3x=5/2解得:x=5/628、解方程:4x-1/3=5x+5/6化简得:3x=11/6解得:x=11/1829、解方程:3x+(x-1)/(x+1)=4-2(x-1) 化简得:3x+((x-1)(x+1))/(x+1)=4-2x+2化简得:3x+(x^2-1)/(x+1)=6-2x化简得:3x(x+1)+(x^2-1)=6x-2x(x+1)化简得:4x^2+5x-1=0解得:x=-1或x=1/430、解方程:x-2x/(x+5/3)=31/3化简得:(x^2+5x/3-2x)/x+5/3=31/3化简得:(x^2-1/3x-31)/x+5/3=0移项得:x^2-1/3x-31=0解得:x=(1/3+√397)/2或x=(1/3-√397)/2 31、解方程:2(x+2)/3-5(x+3)/6=2/3化简得:4(x+2)-5(x+3)=4移项得:-x=1解得:x=-132、解方程:x-2x/(x-2)=5/2化简得:(x^2-2x-5)/x-2=0移项得:x^2-2x-5=0解得:x=1+√6或x=1-√633、解方程:(0.8-9x)/(1.3-3x)+5x-0.4=1.3 化XXX:(0.8-9x)/(1.3-3x)+5x=1.7化简得:0.8-9x+5x(1.3-3x)=1.7(1.3-3x)化简得:-15x^2+10x+23=0解得:x=(-1±√(1-4*(-15)*23))/(2*(-15)) 化简得:x=(-1±√1381)/3034、解方程:(x-1)^2/4+(x-4)^3/27=2 化简得:27(x-1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x-1)^2解得:x=235、解方程:19x-2/x-6-2=0化简得:19x^2-2x-6=0解得:x=1/19或x=336、解方程:1.8-8x/1.2-1.3-3x/(5x-0.4)=1.3化简得:(1.8-8x)(5x-0.4)-(1.3-3x)(1.2-1.3)=1.3(1.2-1.3)(5x-0.4)化简得:-39x^2+31x+6=0解得:x=(1±√(1-4*(-39)*6))/(2*(-39))化简得:x=(1±√937))/7837、解方程:(x+1)^2/4+(x-4)^3/27=2化简得:27(x+1)^2+4(x-4)^3=216移项得:4(x-4)^3=216-27(x+1)^2解得:x=238、将分式化简:frac{0.1x-0.27x+0.18}{2.04}=\frac{x+4}{139}小幅度改写:化简分式得:frac{-0.17x+0.18}{2.04}=\frac{x+4}{139} 41、将方程移项并通分:frac{x^3-1}{2}+\frac{x-1}{2}=0小幅度改写:移项并通分得:frac{x^3+x-2}{2}=042、将方程通分并移项:frac{(y+1)^2}{2}=\frac{y(3-y)-3}{6}小幅度改写:通分并移项得:2y^2+2y-9=043、将方程通分并移项:frac{(x-2)^2}{2}-\frac{3(x-2)}{4}=-1小幅度改写:通分并移项得:2x^2-11x+12=044、将方程通分并移项:frac{x^5+112}{2}-\frac{6(x-4)}{3}=1小幅度改写:通分并移项得:2x^5-3x+70=045、将方程通分并移项:frac{x-4}{x-3}-\frac{2.5}{x-3000}=10\cdot\frac{60}{64}小幅度改写:通分并移项得:frac{-61x+}{64(x-3)(x-3000)}=7549、将方程通分并移项:frac{0.1x}{0.7}-\frac{0.03}{0.7}=\frac{0.9}{0.7}-0.2x-150小幅度改写:通分并移项得:14x+300=0。

(完整版)初一数学上册一元一次方程100道

(完整版)初一数学上册一元一次方程100道

精心整理一百道题3X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-X80y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=4010*+6=26*=224:8*=1*=3%8*+23=39*=2004*+9=21*=36:2*=3*=15%*-3=2*=1006×+8=68×=108:6×=1/3×=4.x-3/0.5-x+4/0.2=1.6x=-9.22.2x/0.3+8/3-(1.4-3x)/0.2=2(x=1/5)3.(4-6x)/0.01-6.5=(0.02-2x)/0.02-7.5(x=4/5)4.x/0.7-(0.17-0.2x)/0.03=1(x=14/17)14.59+x-25.31=0 x=10.72②x-48.32+78.51=80x=49.81③820-16x=45.5×8④(x-x=5x=2x=2x-2x=32+32x=1+42x=x+13x=3=x4x=4x=56+4x=2*12x=5*610x=15x=106x=710x=1010=x+110=2x+1 10=3x+111=4x+131=12x+34 31=9x+1 31=9x+212=4x+1 12=2x+1 12=3x+1 12=5x+23 1=6x+12312=12x+3412=9x+112=9x+23X+5X=4814X-8X=126*5+2X=4420X-50=5028+6X=8832-22X=1024-3X=310X*(5+1)=6099X=100-XX+3=18X-6=1256-2X=2080y-90=7078y+2y=16088-x=809-4x=120x=4065y-30=10051y-y=10085y+1=-8645x-50=40(x-2)12=8xx=6初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.456____78•则需9A.10AC11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10%B.减少10%C.不增也不减D.减少1%15b=(A.16ACD1714A.18A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)=-(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个23.千米,(1(224票价5元4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1 2.-3得3.4.6.525解得7.18 8.4[解得二、9 10.B 当x≥0当x<011.D x=b+3 a=,12.B方程)程得22100((x+1解得23A站所以A (2解得距离为G•24103×>x3.2【知能点分类训练】知能点1合并与移项1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8;(2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2去分母,得x-12=10;②由方程x=两边同除以,得x=1;③由方程6x-4=x+4移项,得7x=0;④由方程2-两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4B3A.2B4(1)(3)5(1)6(1)78知能点9.一桶色拉油毛重8千克,从桶中取出一半油后,毛重4.5千克,•桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50克,45克盐,问应该从盘A内拿出多少盐放到盘B内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?【综合应用提高】12(113.-15=0的解.14(1(215.为两2千米/(1(2)若此学生打算从A处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到A处,请你为他设计一条步行路线,•并说明这样设计的理由(不考虑其他因素).答:案1.(1)题不对,-8从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B[点拨:方程x=,两边同除以,得x=)3.B[点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(15.(1并,得(2)得(3)y=-(4)6.(1项,得(2得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3[点拨:解方程3x+4=0,得x=-,把它代入3x+4k=8,得-4+4k=8,解得k=3] 8.19[点拨:∵3y+4=4a,y-5=a是同解方为盘A盘B原有盐(克)5045现有盐(克)50-x45+x设应从盘A内拿出盐x克放在盘B内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A内拿出盐2.5克放入到盘B 内.11.解:(1)设爸爸追上小明时,用了x(2)12.(1[x=-](2)[解得13.解:∵x=-2,∴x=-4.∵方程x=-2的根比方程5x-2a=0的根大2,∴方程5x-2a=0的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE的长为x千米,依据题意得1.6+1+x+1=2(3-2×0.5)E—A+3×A(或)+3E—A4.20%+(1-20%)(320-x)=320×40%5.2(x-2)+2=x+16.2(x-2)-3(4x-1)=9(1-x)7.11x+64-2x=100-9x8.15-(8-5x)=7x+(4-3x)9.3(x-7)-2[9-4(2-x)]=2210.3/2[2/3(1/4x-1)-2]-x=2(x+5y)-(3y-4x)=x+5y-3y+4x1/2(x6^2-y)+1/3(x-y^2)+(x^2)(^为平方号)10a+6b-7a+3b-10a+10b+12a+8b4xy-2y+3x-xy(3x-5y)-(6x+7y)+(9x-2y)2a-[3b-5a-(3a-5b)](6m2n-5mn2)-6(m2n-mn2) (5x-4y-3xy)-(8x-y+2xy)a-(a-3b+4c)+3(-c+2b)7x2-7xy+16-5b-(3a-2b)-(1-6b)(5x-4y-3xy)-(8x-y+2xy)(3x2-4xy+2y2)+(x2+2xy-5y2)。

初一七年级一元一次方程30题(含标准答案解析)

初一七年级一元一次方程30题(含标准答案解析)

初一七年级一元一次方程30题(含答案解析)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5 (II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=53×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

初一数学一元一次方程练习题

初一数学一元一次方程练习题

初一数学一元一次方程练习题一元一次方程练习题题目一:解一元一次方程1. 解方程:2x + 7 = 15首先,我们将方程化简为标准形式:2x = 15 - 7得到:2x = 8再将方程化简为最简形式:x = 8 ÷ 2解得:x = 42. 解方程:3x - 5 = 10 + 2x将方程化简为标准形式:3x - 2x = 10 + 5得到:x = 15因此,方程的解为 x = 15。

题目二:编写一元一次方程1. 编写一个一元一次方程,使其解为 x = 6。

解答:我们可以将方程写为 x - 6 = 0。

验证:将 x = 6 代入方程,得到 6 - 6 = 0,等式成立。

2. 编写一个一元一次方程,使其解为 x = -3。

解答:我们可以将方程写为 x + 3 = 0。

验证:将 x = -3 代入方程,得到 -3 + 3 = 0,等式成立。

题目三:应用一元一次方程1. 某银行工作人员的工资由基本工资和奖金两部分组成。

已知该工作人员的基本工资为3000 元,且他的工资总额与他的销售业绩成正比。

如果他的销售业绩为 10 万元时,工资总额为 6000 元,求他的工资总额与销售业绩的比例关系。

解答:设他的工资总额为 y(单位:元),销售业绩为 x(单位:万元)。

根据题意可得出一元一次方程:3000 + kx = y其中,k 为比例系数,表示工资总额与销售业绩的比例关系。

已知当 x = 10 时,y = 6000。

代入方程得:3000 + 10k = 6000解方程可得 k = 300因此,他的工资总额与销售业绩的比例关系为:y = 300x + 3000。

2. 某商店举办促销活动,限时打折销售。

一件原价 800 元的商品,在促销活动中打八折出售后,售价为 640 元。

根据这一信息,求折扣率。

解答:设折扣率为 p。

根据题意可得出一元一次方程:800 - p(800) = 640化简方程得:800 - 800p = 640解方程可得 p = 0.2因此,折扣率为 0.2 或 20%。

初一数学综合算式一元一次方程练习题

初一数学综合算式一元一次方程练习题

初一数学综合算式一元一次方程练习题在初一数学学习中,一元一次方程是我们常见的一种代数运算题型。

通过解一元一次方程,我们可以培养逻辑思维、分析问题的能力,从而更好地理解和应用数学知识。

本文将为大家提供一些初一数学综合算式一元一次方程的练习题,帮助大家巩固和提高知识应用能力。

1. 小明买了一些苹果,每斤价格为3元,共花费了15元。

求小明买了多少斤苹果。

解:设小明买了x斤苹果,根据题意可以列出一元一次方程:3x = 15。

解方程得到x = 5。

答:小明买了5斤苹果。

2. 一个数的两倍加上5等于19,求这个数。

解:设这个数为x,根据题意可以列出一元一次方程:2x + 5 = 19。

解方程得到x = 7。

答:这个数为7。

3. 小华的年龄比小明大3岁,5年后,小华的年龄将比小明的年龄是原来的两倍。

求他们现在的年龄。

解:设小华现在的年龄为x岁,小明现在的年龄为(x-3)岁。

根据题意可以列出一元一次方程:x + 5 = 2(x-3)。

解方程得到x = 16,因此小华现在的年龄为16岁,小明现在的年龄为13岁。

答:小华现在的年龄为16岁,小明现在的年龄为13岁。

4. 某家商店举办打折活动,一种商品原价100元,现在打8折出售。

小李购买了n件,总共支付了72元。

求小李购买了多少件这种商品。

解:设小李购买了x件这种商品,根据题意可以列出一元一次方程:0.8 * 100 * x = 72。

解方程得到x = 9。

答:小李购买了9件这种商品。

5. 某班级有60名学生,男生人数是女生人数的2倍,求男生和女生的人数。

解:设男生人数为x,女生人数为y,根据题意可以列出两个一元一次方程:x + y = 60 和 x = 2y。

解这个方程组,得到x = 40,y = 20。

答:男生人数为40人,女生人数为20人。

通过以上的练习题,我们可以发现一元一次方程在日常生活中的实际应用。

掌握了一元一次方程的解题方法,我们可以更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档