北京顺义区2011-2012学年中考数学模拟试卷(含答案)

合集下载

2011学年北京市顺义区中考数学模拟试卷

2011学年北京市顺义区中考数学模拟试卷

2011-2012学年北京市顺义区中考数学模拟试卷2011-2012学年北京市顺义区中考数学模拟试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.C.2.(4分)(2012•阜阳一模)在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年)6.(4分)(2012•阜阳一模)如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是().C7.(4分)(2009•丰台区一模)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符8.(4分)(2008•芜湖)将一正方体纸盒沿下如图所示的粗实线剪开,展开成平面图,其展开图的形状为().CD .二、填空题(共4道小题,每小题4分,共16分) 9.(4分)(2012•常德)在函数中,自变量x 的取值范围是 _________ .10.(4分)(2009•丰台区一模)如图,点A ,B ,C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数为 _________ 度.11.(4分)(2012•六盘水)分解因式:2x 2+4x+2= _________ .12.(4分)(2009•丰台区一模)如图,小正方形方格的边长为1cm,则的长为 _________ cm .三、解答题(共5道小题,共25分) 13.(5分)(2009•丰台区一模)计算:.14.(5分)(2009•丰台区一模)解不等式组.15.(5分)(2012•藤县一模)已知:如图,AB ∥DE ,∠A=∠D ,且BE=CF , 求证:∠ACB=∠F .16.(5分)(2009•丰台区一模)先化简,再求值:,其中a2﹣4a+1=0.17.(5分)(2009•丰台区一模)如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.求反比例函数与一次函数的解析式.四、解答题(共2道小题,共10分)18.(5分)(2009•丰台区一模)如图1,矩形纸片ABCD中,AB=4,BC=4,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接B D′,如图2,求线段BD′的长.19.(5分)如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=,求EF的长.五、解答题(本题满分5分)20.(5分)某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是_________(填写序号);(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为_________人.(注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分)21.(5分)(2008•乌鲁木齐)2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?22.(5分)(2008•枣庄)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.七、解答题(本题满分7分)23.(7分)(2009•丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为_________,线段CF、BD的数量关系为_________;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.八、解答题(本题满分7分)24.(7分)(2009•丰台区一模)如图,在平面直角坐标系中,直线y=分别交x轴、y轴于A、B两点.点C(4,0)、D(8,0),以CD为一边在x轴上方作矩形CDEF,且CF:CD=1:2.设矩形CDEF与△ABO 重叠部分的面积为S.(1)求点E、F的坐标;(2)当b值由小到大变化时,求S与b的函数关系式;(3)若在直线y=上存在点Q,使∠OQC等于90°,请直接写出b的取值范围.九、解答题(本题满分8分)25.(8分)(2009•丰台区一模)已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2﹣2x﹣3=0的两个根(x1<x2).(1)求抛物线的解析式;(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x 轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.2011-2012学年北京市顺义区中考数学模拟试卷参考答案与试题解析一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑.C.2.(4分)(2012•阜阳一模)在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年)6.(4分)(2012•阜阳一模)如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是().C是无理数,所以抽出卡片正面的实数是无理数的概率是7.(4分)(2009•丰台区一模)已知:2+=22×,3+=32×,4+=42×,5+=52×,…,若10+=102×符=2×3+×10+×2+×3+×=10×中,8.(4分)(2008•芜湖)将一正方体纸盒沿下如图所示的粗实线剪开,展开成平面图,其展开图的形状为().C D.二、填空题(共4道小题,每小题4分,共16分)9.(4分)(2012•常德)在函数中,自变量x的取值范围是x≥4.10.(4分)(2009•丰台区一模)如图,点A,B,C是⊙O上三点,∠C为20°,则∠AOB的度数为40度.11.(4分)(2012•六盘水)分解因式:2x2+4x+2=2(x+1)2.12.(4分)(2009•丰台区一模)如图,小正方形方格的边长为1cm,则的长为cm.可求出.OA=OB==2=三、解答题(共5道小题,共25分)13.(5分)(2009•丰台区一模)计算:.14.(5分)(2009•丰台区一模)解不等式组.15.(5分)(2012•藤县一模)已知:如图,AB∥DE,∠A=∠D,且BE=CF,求证:∠ACB=∠F.16.(5分)(2009•丰台区一模)先化简,再求值:,其中a2﹣4a+1=0.17.(5分)(2009•丰台区一模)如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,﹣1)两点.求反比例函数与一次函数的解析式.的图象上,y=y=四、解答题(共2道小题,共10分)18.(5分)(2009•丰台区一模)如图1,矩形纸片ABCD中,AB=4,BC=4,将矩形纸片沿对角线AC向下翻折,点D落在点D′处,连接B D′,如图2,求线段BD′的长.ACB=,有∠BAC==AD=BC=,∴AE=∠19.(5分)如图,点D是⊙O直径CA的延长线上一点,点B在⊙O上,且AB=AD=AO.(1)求证:BD是⊙O的切线;(2)若点E是劣弧BC上一点,弦AE与BC相交于点F,且CF=9,cos∠BFA=,求EF的长.=BFA=,EF=五、解答题(本题满分5分)20.(5分)某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是③(填写序号);(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为220人.(注:图2中相邻两虚线形成的圆心角为30°)×六、解答题(共2道小题,共10分)21.(5分)(2008•乌鲁木齐)2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?顶帐篷需要的天数是:顶,实际生产的天数是:据题意得:=22.(5分)(2008•枣庄)把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.AB=3cm AB=×中,CP=七、解答题(本题满分7分)23.(7分)(2009•丰台区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为垂直,线段CF、BD 的数量关系为相等;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.八、解答题(本题满分7分)24.(7分)(2009•丰台区一模)如图,在平面直角坐标系中,直线y=分别交x轴、y轴于A、B两点.点C(4,0)、D(8,0),以CD为一边在x轴上方作矩形CDEF,且CF:CD=1:2.设矩形CDEF与△ABO 重叠部分的面积为S.(1)求点E、F的坐标;(2)当b值由小到大变化时,求S与b的函数关系式;(3)若在直线y=上存在点Q,使∠OQC等于90°,请直接写出b的取值范围.BAO=BAO=,即BAO=EGH=,﹣x+bx+b(﹣≤≤九、解答题(本题满分8分)25.(8分)(2009•丰台区一模)已知抛物线与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于点C,且x1,x2是方程x2﹣2x﹣3=0的两个根(x1<x2).(1)求抛物线的解析式;(2)过点A作AD∥CB交抛物线于点D,求四边形ACBD的面积;(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作平行于x轴的直线l交BC于点Q,那么在x 轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.x x+2﹣﹣﹣x.,)AB AB=(x+2m+3,(﹣,坐标为((﹣(坐标为(,((参与本试卷答题和审题的老师有:zhqd;CJX;zhjh;lanchong;HLing;cook2360;zhangCF;心若在;feng;wdxwwzy;星期八;xiu;ljj;wangjc3;345624;答案;wdxwzk;MMCH;gbl210;HJJ;cair。

2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)

2012北京市各区中考数学一模试卷及答案试题试卷_1 (2)

顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。

2012北京市顺义区初三(一模)数 学

2012北京市顺义区初三(一模)数    学

2012北京市顺义区初三(一模)数学一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.(4分)中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为()A.0.4×1011元B.4×1011元C.40×1011元D.4×1012元3.(4分)下列图形中是中心对称图形,而不是轴对称图形的是()A.等边三角形B.平行四边形C.矩形D.菱形4.(4分)下列运算正确的是()A.2a2+a2=3a4B.2a2﹣a2=a4C.2a2•a2=2a4D.2a2÷a2=2a5.(4分)某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是()职务经理副经理职员人数 1 2 12月工资(元) 5 000 2 000 800A.520,2000,2 000B.2600,800,800C.1240,2000,800D.1240,800,8006.(4分)如图,AB∥CD,点E在AB上,点F在CD上,且∠FEG=90°,∠EFD=55°,则∠AEG的度数是()A.25°B.35°C.45°D.55°7.(4分)一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是()A.B.C.D.18.(4分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB边上一个动点(不与点A、B重合),E是BC边上一点,且∠CDE=30°.设AD=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)若,则m﹣n的值是.10.(4分)分解因式:5x3﹣10x2y+5xy2=.11.(4分)如图,用测角仪测得校园的旗杆顶点A的仰角α=45°,仪器高CD=1.4米,测角仪底部中心位置D到旗杆根部B的距离BD=10米,则旗杆AB的高是米.12.(4分)如图,菱形ABCD中,AB=2,∠C=60°,我们把菱形ABCD的对称中心称作菱形的中心.菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O所经过的路径长为;经过18次这样的操作菱形中心O所经过的路径总长为;经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为.(结果都保留π)三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)解方程组:.15.(5分)已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:∠ADE=∠AED.16.(5分)已知x=2012,求代数式的值.17.(5分)如图,在平面直角坐标系xOy中,反比例函数(x>0)的图象与一次函数y=﹣x+b的图象的一个交点为A(4,m).(1)求一次函数的解析式;(2)设一次函数y=﹣x+b的图象与y轴交于点B,P为一次函数y=﹣x+b的图象上一点,若△OBP的面积为5,求点P的坐标.18.(5分)列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A、B两种户型.已知所有A户型窗户改造的总费用为54万元,所有B户型窗户改造的总费用为48万元,且B户型窗户的每户改造费用比A户型窗户的每户改造费用便宜500元.问A、B两种户型的每户窗户改造费用各为多少元?四、解答题(本题共20分,每小题5分)19.(5分)如图,在▱ABCD中,E是对角线AC的中点,EF⊥AD于F,∠B=60°,AB=4,∠ACB=45°,求DF的长.20.(5分)如图,C是⊙O的直径AB延长线上一点,点D在⊙O上,且∠A=30°,∠BDC=∠ABD.(1)求证:CD是⊙O的切线;(2)若OF∥AD分别交BD、CD于E、F,BD=2,求OE及CF的长.21.(5分)某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题:步行骑自行车坐公共汽车其他20(1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.22.(5分)(1)如图,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点E作EF∥AB交BC于点F.请按图示数据填空:四边形DBFE的面积S=,△EFC的面积S1=,△ADE的面积S2=.探究发现(2)在(1)中,若BF=a,FC=b,DE与BC间的距离为h.请证明S2=4S1S2.拓展迁移(3)如图,▱DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)已知关于x的方程(k﹣1)x2+2kx+k+3=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程y2+(a﹣4k)y+a+1=0的整数根(a为正整数).24.(7分)如图,在平面直角坐标系xOy中,抛物线y=mx2+2mx+n经过点A(﹣4,0)和点B(0,3),(1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A的对应点为A′,点B的对应点为B′,试问:在平移后的抛物线上是否存在一点P,使△OA′P的面积与四边形AA′B′B的面积相等?若存在,求出点P的坐标;若不存在,说明理由.25.(8分)问题:如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是射线CB上任意一点,△ADE是等边三角形,且点E在∠ACB的内部,连接BE.探究线段BE与DE之间的数量关系.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当点D与点C重合时(如图2),请你补全图形.由∠BAC的度数为,点E落在,容易得出BE 与DE之间的数量关系为;(2)当点D在如图3的位置时,请你画出图形,研究线段BE与DE之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.数学试题答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】﹣3的相反数是3,故选:A.2.【解答】4 000亿=400000000000,用科学记数法表示为:4×1011.故选:B.3.【解答】A、等边三角形是轴对称图形,不是中心对称图形,故A选项错误;B、平行四边形不是轴对称图形,是中心对称图形,故B选项正确;C、矩形是轴对称图形,也是中心对称图形,故C选项错误;D、菱形是轴对称图形,也是中心对称图形,故D选项错误.故选:B.4.【解答】A、2a2+a2=3a2,故本选项错误;B、2a2﹣a2=a2,故本选项错误;C、2a2•a2=2a4,故本选项正确;D、2a2÷a2=2,故本选项错误;故选C.5.【解答】该公司所有工作人员的月工资的平均数是(5000×1+2000×2+800×12)÷15=1240(元),中位数为:800,众数为800;故选D.6.【解答】∵AB∥CD,∠EFD=55°,∴∠AEF=∠EFD=55°,∵∠FEG=90°,∴∠AEG=∠AEF=90°﹣55°=35°.故选B.7.【解答】列表如下:1 2 3 42,3 1,2,3 2,2,3 3,2,3 4,2,3共有4种等可能的结果数,其中三个数能构成三角形的有2,2,3;3,2,3;4,2,3.所以这张卡片与口袋外的两张卡片上的数能构成三角形的概率=.故选C.8.【解答】∵∠A=60°,AC=2,∴AB=4,BC=2,BD=4﹣x,CE=2﹣y,在△ACD中,利用余弦定理可得CD2=AC2+AD2﹣2AC•ADcos∠A=4+x2﹣2x,故可得CD=又∵∠CDE=∠CBD=30°,∠ECD=∠DCB(同一个角),∴△CDE∽△CBD,即可得=,=故可得:y=﹣x2+x+,即呈二次函数关系,且开口朝下.故选C.二、填空题(本题共16分,每小题4分)9.【解答】根据题意得,m+n=0,m﹣2=0,解得m=2,n=﹣2,所以,m﹣n=2﹣(﹣2)=2+2=4.故答案为:4.10.【解答】5x3﹣10x2y+5xy2,=5x(x2﹣2xy+y2),=5x(x﹣y)2.故答案为:5x(x﹣y)2.11.【解答】∵用测角仪测得校园的旗杆顶点A的仰角α=45°,∴∠ACE=45°,∵BD=10米,∴CE=AE=BD=10米,∴AB=AE+BE=AE+CD=10+1.4=11.4米,故答案为:11.4.12.【解答】∵菱形ABCD中,AB=2,∠C=60°,∴△ABD是等边三角形,BO=DO=1,AO==,第一次旋转的弧长==π,∵第一、二次旋转的弧长和=+=π+π=π,第三次旋转的弧长为:=∵18÷3=6,故中心O所经过的路径总长=6(π+)=(4+2)π,故经过3n(n为正整数)次这样的操作菱形中心O所经过的路径总长为:n×(π+)=nπ.故答案为:π,(4+2)π,nπ.三、解答题(本题共30分,每小题5分)13.【解答】﹣2cos30°+()0﹣(﹣3)﹣1=3﹣2×+1﹣(﹣)=3﹣+1+=2+.14.【解答】①+②,得3x=3,解得x=1,把x=1代入①,得1+y=2,解得y=1,∴原方程组的解为.15.【解答】证明:法一:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).法二:过点A作AM⊥BC于M,∵AB=AC,∴BM=CM,∵BD=CE,∴DM=EM,∴AD=AE,∴∠ADE=∠AED(等边对等角).16.【解答】===x﹣3…(4分)当x=2012时,原式=2012﹣3=2009.17.【解答】(1)∵点A(4,m)在反比例函数(x>0)的图象上,∴,∴A点坐标为(4,1),将A(4,1)代入一次函数y=﹣x+b中,得b=5.∴一次函数的解析式为y=﹣x+5;(2)由题意,得B(0,5),∴OB=5.设P点的横坐标为x P.∵△OBP的面积为5,∴,∴x P=±2.当x=2,y=﹣x+5=3;当x=﹣2,y=﹣x+5=7,∴点P的坐标为(2,3)或(﹣2,7).18.【解答】设A户型的每户窗户改造费用为x元,则B户型的每户窗户改造费用为(x﹣500)元.根据题意列方程得:=,解得:x=4500,经检验,x=4500是原方程的解,且符合题意,则:x﹣500=4000,答:A户型的每户窗户改造费用为4500元,B户型的每户窗户改造费用为4000元.四、解答题(本题共20分,每小题5分)19.【解答】过点C作CM⊥AD于M,∵在□ABCD中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD∥BC.∴∠DAC=45°.在Rt△CDM中,CM=CD•sinD=CD•sin60°=2,DM=CD•cosD=4•cos60°=2,在Rt△ACM中,∵∠MAC=45°,∴AM=CM=2,∴AD=AM+DM=2+2,∵EF⊥AD,CM⊥AD,∴EF∥CM.∴EF=CM=,在Rt△AEF中,∵AF=EF=,∴DF=AD﹣AF=2+2﹣=+2.20.【解答】(1)证明:连接OD.∵AB是⊙O的直径,∴∠ADB=90°.∵∠A=30°,∴∠ABD=60°.∴∠BDC=∠ABD=30°.∵OD=OB,∴△ODB是等边三角形.∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC=90°.即OD⊥DC.∴CD是⊙O的切线;(2)解:∵OF∥AD,∠ADB=90°,∴OF⊥BD,∠BOE=∠A=30°.∴DE=BE=BD=1.在Rt△OEB中,OB=2BE=2,.∵OD=OB=2,∠C=∠ABD﹣∠BDC=30°,∠DOF=30°,∴CD=2,DF=OD•tan30°=.∴CF=CD﹣DF=2﹣=.21.【解答】(1)调查的学生人数为:20÷20%=100;此次共调查了100名学生.…(1分)(2)填表:步行骑自行车坐公共汽车其他20 45 30 5…(3分);(3)补全统计图如下:.…(5分)22.【解答】(1)解:S=6,S1=9,S2=1;(2)证明:∵DE∥BC,EF∥AB,∴四边形DBFE为平行四边形,∠AED=∠C,∠A=∠CEF,∴△ADE∽△EFC,∴,∵,∴,∴,而S=ah,∴S2=4S1S2;(3)解:过点G作GH∥AB交BC于H,则四边形DBHG为平行四边形,∴∠GHC=∠B,BD=HG,DG=BH,∵四边形DEFG为平行四边形,∴DG=EF,∴BH=EF∴BE=HF,∴△DBE≌△GHF,∴△GHC的面积为5+3=8,由(2)得,▱DBHG的面积为,∴△ABC的面积为2+8+8=18.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)∵关于x的方程(k﹣1)x2+2kx+k+3=0有两个不相等的实数根,∴△=b2﹣4ac=(2k)2﹣4×(k﹣1)×(k+3)=4k2﹣4k2﹣8k+12=﹣8k+12>0…(1分)解得:k<,∵k﹣1≠0,即k≠1,∴k的取值范围是k<且k≠1.…(3分)(2)∵当方程有两个相等的实数根时,△=﹣8k+12=0.∴k=.…(4分)∴关于y的方程为y2+(a﹣6)y+a+1=0.∴△′=(a﹣6)2﹣4(a+1)=a2﹣12a+36﹣4a﹣4=a2﹣16a+32=(a﹣8)2﹣32.由a为正整数,当(a﹣8)2﹣32是完全平方数时,方程才有可能有整数根.设(a﹣8)2﹣32=m2(其中m为整数),32=p•q(p、q均为整数),∴(a﹣8)2﹣m2=32.即(a﹣8+m)(a﹣8﹣m)=32.不妨设两式相加,得a=.∵(a﹣8+m)与(a﹣8﹣m)的奇偶性相同,∴32可分解为2×16,4×8,(﹣2)×(﹣16),(﹣4)×(﹣8),∴p+q=18或12或﹣18或﹣12.∴a=17或14或﹣1(不合题意,舍去)或2.当a=17时,方程的两根为y=,即y1=﹣2,y2=﹣9.…(5分)当a=14时,方程的两根为y=,即y1=﹣3,y2=﹣5.…(6分)当a=2时,方程的两根为y=,即y1=3,y2=1.…(7分)24.【解答】(1)由题意得,抛物线y=mx2+2mx+n经过点A(﹣4,0)和点B(0,3),故可得:,解得:.即抛物线的解析式为:.(2)令y=3,得,得x1=0,x2=﹣2,∵抛物线向右平移后仍经过点B,∴抛物线向右平移2个单位,∵==,∴平移后的抛物线解析式为.(3)由抛物线向右平移2个单位,得A'(﹣2,0),B'(2,3),又∵四边形AA'B'B为平行四边形,∴其面积=AA'•OB=2×3=6,设P点的纵坐标为y P,由△OA'P的面积=6,故可得,即,解得:|y P|=6,y P=±6,当y P=6时,方程无实根,当y P=﹣6时,方程的解为x1=6,x2=﹣4.故点P的坐标为(6,﹣6)或(﹣4,﹣6).25.【解答】(1)如图2,∵∠C=90°,∠ABC=30°,∴∠BAC=60°,∵△ADE是等边三角形,∴AE=CE,∴点E落在AB的中点处;∴AE=CE=BE=DE,故答案为:60°;AB的中点处;BE=DE;(2)如图3.猜想:BE=DE.证明:取AB的中点F,连接EF.∵∠ACB=90°,∠ABC=30°,∴∠1=60°,CF=AF=AB,∴△ACF是等边三角形.∴AC=AF①∵△ADE是等边三角形,∴∠2=60°,AD=AE ②∴∠1=∠2.∴∠1+∠BAD=∠2+∠BAD.即∠CAD=∠FAE③由①②③得△ACD≌△AFE(SAS).∴∠ACD=∠AFE=90°.∵F是AB的中点,∴EF是AB的垂直平分线,∴BE=AE,∵△ADE是等边三角形,∴DE=AE,∴BE=DE.。

北京各区中考数学模拟试卷(含答案)

北京各区中考数学模拟试卷(含答案)

北京东城区2011-2012年中考数学模拟试卷(满分:150分时间:120分钟)一、选择题:(本大题共8小题。

每小题3分,共24分.在每小题给出的四个选项中.只有一项是符合题目要求的,请将你认为正确的答案填涂在答题纸上)1.下列计算正确的是A.011303-⎛⎫⨯=⎪⎝⎭B.x5+x5=x10C.x8÷x2=x4 D.(-a3) 2=a62.2009年1月9日,住房和城乡建设部部长在全国建设工作会议上透露,2008年全国住房公积金缴纳规模达到了2.02万亿元,请用科学记数法表示2.02万亿元应为A.2.02×1010元B.2.02×1011元C.2.02×1012元D.2.02×1013元3. 如图所示零件的左视图是4.不等式组312840xx->⎧⎨-≥⎩的解集在数轴上表示为5.估计132128⨯+的运算结果应在A.3到4之间B.4到5之间C.5到6之间D.6到7之间6.如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立...的是A.DA=DE B.BD=CEC.∠EAC=90° D.∠ABC=2∠E7.如图,直线32y x=-与双曲线kyx=(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于正面(第3题)A.B.C.D.A.233B.3C.2 D.3第6题图第7题图第8题图8.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的面积是A.10 B.16 C.18 D.20二、填空题:(本大题共10小题.每小题3分.共30分.把答案填在答题纸上)9.函数y=3x中,自变量x的取值范围是▲10.因式分解:2a3-8a=▲ .11.已知一组数据:3,3,4,5,5,6,6,6.这组数据的众数是▲.12.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为▲ .13已知实数a,b同时满足a2+b2-11=0,a2-5b-5=0,则b= ▲ .14.一连串分数,共有6个,是按照一种简单规律排成的. 由于抄写的人笔头较慢,别人抄下来前3个,他只抄了前两个,把第3个空着;别人把后面3个也抄好了,他才抄了第4个和第5个,把第6个也空着. 请你帮他补上:1 20、110、、15、14、.15.如图,该图形经过折叠可以围成一个正方体,折好以后,与“静”字相对的字是▲.16.如图,在平行四边形ABCD中,DB=DC,∠A=70°,CE⊥BD于E,则∠BCE= ▲°.17.如图,将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若AB=3cm,则AE的长为 ▲ cm .18.如图,MN=3,以MN 为直径的⊙O 1,与一个半径为5的⊙O 2相切于点M ,正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点N ,则正方形ABCD 的边长为 ▲ .三、解答题:(本大题共10小题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本小题满分8分)计算20.(本小题满分8分) 请先将下式化简,再选择一个适当的无理数...代入求值.2221112444x x x x ⎛⎫--÷ ⎪+--+⎝⎭36)21(60tan 1)2(100+-----π如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.(1)在△ABC中,BC= ▲,tanB= ▲;(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.22.(本小题满分10分)已知:如图,在梯形ABCD中,AD∥BC,BC=DC,CF平分∠BCD,DF∥AB,BF的延长线交DC于点E.求证:(1)△BFC≌△DFC;(2)AD=DE.“农民也能报销医疗费了!”这是国家推行新型农村医疗合作的成果.村民只要每人每年交10元钱,就可以加入合作医疗,每年先由自己支付医疗费,年终时可得到按一定比例返回的返回款,这一举措极大地增强了农民抵御大病风险的能力.小华与同学随机调查了他们乡的一些农民,根据收集到的数据绘制了以下的统计图.第23题图根据以上信息,解答以下问题:(1)本次调查了▲名村民,被调查的村民中,有▲人参加合作医疗得到了返回款?(2)若该乡有10000名村民,请你估计有多少人参加了合作医疗?要使两年后参加合作医疗的人数增加到9680人,假设这两年的年平均增长率相同,求年平均增长率.24.(本小题满分10分)一个不透明的布袋内装有形状、大小、质地等完全相同的4个小球,分别标有数字1,2,3,4.(1)从布袋中随机地取出一个小球,则小球上所标的数字恰好为4的概率是▲;(2)从布袋中随机地取出一个小球,记录小球上所标的数字为x,不将取出的小球放回.........布袋,再随机地取出一个小球,记录小球上所标的数字为y,这样就确定点P的一个坐标为(x,y),求点P落在直线y=x+1上的概率;(3)从布袋中随机地取出一个小球,用小球上所标的数字作为十位上的数字,将取出小球放回.......布袋后,再随机地取出一个小球,用小球上所标的数字作为个位上的数字,求组成的两位数恰好是3的倍数的概率.BC的中点,OE交弦BC于点D,过点C作⊙O切25.(本小题满分10分)如图,AB是半圆O上的直径,E是⌒线交OE的延长线于点F. 已知BC=8,DE=2.⑴求⊙O的半径;⑵求CF的长;⑶求tan∠BAD的值AB26.(本小题满分10分)某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植一亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)求政府补贴政策实施后,种植亩数y、每亩蔬菜的收益z分别与政府补贴数额x之间的函数关系式;(3)要使全市种植这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.图1 x/元(第26题)图2x/元27.(本小题满分10分)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连结DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,四边形CDBF面积为▲;(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)如图3,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连结AE,请你求出sin∠AED的值.28.(本小题满分12分) 如图①,在平面直角坐标系中,已知△ABC 是等边三角形,点B 的坐标为(12,0),动点P 在线段AB 上从点A 向点Bt 秒.以点P 为顶点,作等边△PMN ,点M ,N 在x 轴上.(1)当t 为何值时,点M 与点O 重合.(2)求点P 坐标和等边△PMN 的边长(用t 的代数式表示).(3)如果取OB 的中点D ,以OD 为边在△AOB 内部作如图②所示的矩形ODEF ,点E 在线段AB 上.设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请求出当02t ≤≤秒时S 与t 的函数关系式,并求出S 的最大值.参考答案及评分标准说明:本评分标准每题只给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题3分,共计24分)题号 1 2 3 4 5 6 78 答案 DCBCCBBD二、填空题(每小题3分,共计30分)9.X ≤3 10.2a(a+2)(a-2)11.612.10% 13. 1 14.203,103 15.着 16.20 17.23 18. 6三、解答题(本大题共10小题,共计96分)19.(本题8分)解=1-|1-3|-2+23 (4分)=1+1-3-2+23 (7分) =3 (8分)20.(本题8分)21.(本题8分)36)21(60tan 1)2(100+-----π(2)画图正确给4分23.(本题10分)24.(本题10分)25.(本题10分)(本题10分)(6分)(8分)(9分)(10分).⑴ r =5 (3分) ⑵ CF =203(3分) ⑶ tan ∠BAD =617(4分) 26.(本题10分)解:(1)政府没出台补贴政策前,这种蔬菜的收益额为30008002400000⨯=(元). ·················· 2分(2)由题意可设y 与x 的函数关系为800y kx =+,将(501200),代入上式得120050800k =+, 得8k =,所以种植亩数与政府补贴的函数关系为8800y x =+. ········ 4分 同理可得,每亩蔬菜的收益与政府补贴的函数关系为33000z x =-+. · 5分 (3)由题意(8800)(33000)u yz x x ==+-+ ·············· 7分224216002400000x x =-++224(450)7260000x =--+. ··················8分 所以当450x =,即政府每亩补贴450元时,全市的总收益额最大,最大值为7260000元. ································ 10分注:本卷只在第26题中,学生若出现答题时未写单位或未答分别扣除1分. 27.(本题10分)28.(本题12分)(1)如图①,点M与点O重合.∵△ABC是等边三角形,∴∠ABO=30°,∠BAO=60°.由OB=12,∴ABAO.∵△PON是等边三角形,∴∠PON=60°.∴∠AOP=60°.∴AO=2AP,即.解得t=2.∴当t=2时,点M与点O重合.………………4分2)如图②,过P分别作PQ⊥OA于点Q,PS⊥OB于点S.可求得AQ=12AP PS=QO∴点P坐标为(t23,.………………6分在Rt△PMS中,sin60°=PSPM,∴PM=(=8-t.………………8分(3)(Ⅰ)当0≤t≤1时,见图③.设PN交EF于点G,则重叠部分为直角梯形FONG,作GH⊥OB于点H.∵∠GNH=60°,GH HN=2.∵MP=8-t,∴BM=2MP=16-2t.∴OM=BM-OB=16-2t-12=4-2t.∴ON=MN-OM=8-t-(4-2t)=4+t.∴FG=OH=ON-HN=4+t-2=2+t.∴S=12(2+t+4+t+∵S随t的增大而增大,∴当t=1时,S最大10分(Ⅱ)当1<t≤2时,见图④.设PM交EF于点I,交FO于点Q,PN交EF于点G.重叠部分为五边形OQIGN.OQ,FQ-FI FQ =2t -2.∴三角形QFP 的面积=12-t -t 2-2t +1).由(Ⅰ)可知梯形OFGN 的面积+∴S +t 2-2t +1)=-t 2-3t -2).∵-0,∴当t =32时,S 有最大值,S 最大综上所述:当0≤t ≤1时,S +1<t ≤2时,S =-2++;S ……………………12分北京顺义区2011-2012中考数学全真模拟试题第Ⅰ卷 ( 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( ) A .528510⨯ B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .2108.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).纸盒剪裁线0.16—32A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数y =x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°. 11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:1012sin 60(2009)2-⎛⎫+-- ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,15.(本小题满分5分)AO BAOCB已知:如图,AB∥DE,∠A=∠D,且BE=CF,求证:∠ACB=∠F.16.(本小题满分5分)先化简,再求值:2314223a aa a+-⎛⎫+÷⎪--⎝⎭,其中2410a a-+=.17.(本小题满分5分)如图,反比例函数kyx=的图象与一次函数y mx b=+的图象交于(13)A,,(1)B n-,两点.求反比例函数与一次函数的解析式.AB CDFC B DA图1图2AD 'B C四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BF A =32,求EF 的长.五、解答题(本题满分5分)AC ED B20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号);(2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人.(注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分)21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.图122.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与 CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.B 图2AE 1CD 1OF七、解答题(本题满分7分)23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.八、解答题(本题满分7分)图1图2 C图3 DE24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF CD =.设矩形CDEF 与ABO △重叠部分的面积为S .(1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90,请直接..写出b 的取值范围.九、解答题(本题满分8分)25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)2-⎛⎫+- ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,②212=+-+…………4分 解:解不等式①,得x >2; ····· 2分 3=-5分 解不等式②,得1x -≥; ··· 4分 在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. ·· 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF , ·························································· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ································ 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ···················································· 4分 ∴∠ACB =∠F . ············································································ 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷ ⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ····················································· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. ················································· 5分17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分 ∴反比例函数的解析式为3y x =, ··················································· 2分∵点B (1)n -,在反比例函数3y x=的图象上, ∴31n=-,∴3n =-, ································································ 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+ ····················································· 5分O 1423BD 'A 图2图1A D BCE四、解答题(共2个小题,共10分) 18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n ∠BAC=BC AB == ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, (4)分 ∴AE=D’E=AD’—AE =∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n ∠BAC=BC AB ==, ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分 又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ····························································· 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD ,又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分 ∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… 4分∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. ···· 1分根据题意,得1500300150030041.5x x---=, ········································· 3分 解这个方程,得100x =, ··································································· 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. ······················································ 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°, ∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°,又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. ·········· 1分(2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB ,∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC , ∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 15. ······················ 3分 (3)点B 在△D 2CE 2内部. ·································································· 4分 理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP12CE 2, 在R t △ABC 中,可求BC=2<,即BC <CP ,………5分 ∴点B 在△D 2CE 2内部.七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分B 图1A E 1C D 1O FG D E FA 图1图3图4由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º.即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =, ∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =, ①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-, 在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-,在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分 ④当b >6时,如图4,8S =.………………………………………………6分(3)0b <1+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分 ∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩解,得432b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为224233y x x =-++. ·········································· 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--. 解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩,∴点D 的坐标为(4,103-). ······························································ 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4.∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103 ·························· 5分(3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ),∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C , ∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫-⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). ································································ 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2, 同理可求,点R 2坐标为(1,0). ······················································· 7分③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =, ∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件. 综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).FEDC BA北京昌平区2011-2012年中考数学模拟题一、选择题(共8道小题,每小题4分,共32分)1.3-的倒数是 A . 3-B .3C .13-D .132.第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000km .用科学记数法表示137 000是 A .1.37×105 B .13.7×104 C .1.37×104 D .1.37×103 3. 已知两圆的半径分别为6和8,圆心距为7,则两圆的位置关系是 ( )A .外离B .外切C .内切D .相交4. 某电视台体育直播节目从接到的5000条短信(每人只许发一条短信)中,抽取10名“幸运观众” .小明给此直播节目发了一条短信,他成为“幸运观众”的概率是 A .15000B .1500C .150D .1105.如图,AB ∥CD ,BE 交CD 于点F ,∠B=45°,∠E=21°则的∠D 为A. 21°B. 24°C. 45°D. 66° 6. 如图所示圆柱的左视图是( ).A .B .C .D .7.某居民小区开展节约用水活动,对该小区200户家庭用水情况统计分析,3月份比2月份节约用水情况如下表所示:则3月份平均每户节水量为A. 1.5立方米B. 2 立方米C. 1.8立方米D. 1.6立方米 8. 如图, A 、B 、C 、D 为O 的四等分点,动点P 从圆心O 出发,沿O C D O --- 路线作匀速运动,设运动时间为t (秒),∠APB=y (度),则下列图象中表示y 与t 之间函数 关系最恰当的是二、填空题(共4道小题,每小题4分,共16分)9.若分式11x x -+的值为0,则x 的值为 . 10.分解因式:2m n n -= _______ .11.如图,在△AOB 中,∠AOB=90,OA=OB=以点O 为圆心的圆与AB相切于点C ,则图中阴影部分的面积是______________.12.填在下面三个田字格内的数有相同的规律,根据此规律,请填出图4中的数字.5675320531108975图1 图2 图3 图4三、解答题(共5道小题,共25分)13.(本小题满分5分)计算 :1012sin 60()(3.14)5π--+-.14.(本小题满分5分)解不等式:7-3x < 2(x -4),并把解集在数轴上表示出来.15.(本小题满分5分)解方程组: 33,24x y x y -=⎧⎨-=-⎩第8题图ABC DOP B .D .A .C .16.(本小题满分5分)已知:如图,A B ⊥BE 于点B ,DE ⊥BE 于点E ,F 、C 在BE 上,AC 、DF 相交于点G ,且AB =DE ,BF =CE .求证: GF =GC .17.(本小题满分5分) 先化简, 再求值:222621·4432x x x x x x x +---++-, 其中2x =-.A四、解答题(共2道小题,共10分)18.(本小题满分5分)已知:如图,在直角梯形ABCD 中,AD BC ∥,90A ∠=,10BC CD ==,4sin 5C =. ⑴ 求直角梯形ABCD 的面积;⑵ 点E 是BC 边上一点,过点E 作EF ⊥DC 于点F. 求证AB CE EF CD ⋅=⋅.19.(本小题满分5分)已知:如图,AB 为⊙O 的直径,AD 为弦,∠DBC =∠A . (1)求证: BC 是⊙O 的切线;(2)若OC ∥AD ,OC 交BD 于E ,BD=6,CE=4,求AD 的长.ADCF BE 第18题图五、列方程(组)解应用题(本小题满6分)20. 在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电,该地供电局组织电工进行抢修。

2012顺义区中考数学二模

2012顺义区中考数学二模

2012顺义区中考数学二模一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.(4分)9的平方根为()A.3 B.﹣3 C.±3 D.2.(4分)据人民网报道,“十一五”我国铁路营业里程达9.1万公里.请把9.1万用科学记数法表示应为()A.9.1×105B.9.1×104C.91×104D.9.1×1033.(4分)如图,下列选项中不是正六棱柱三视图的是()A. B.C. D.4.(4分)把4a2b﹣16b分解因式,结果正确的是()A.b(2a﹣4)2B.b(2a+2)(2a﹣2)C.4b(a﹣2)2D.4b(a+2)(a﹣2)5.(4分)北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了10户家庭的5月份用水量,结果如下(单位:立方米):5,6,6,2,5,6,7,10,7,6,则关于这10户家庭的5月份用水量,下列说法错误的是()A.众数是6 B.极差是8 C.平均数是6 D.方差是46.(4分)如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子OA、OB在O点钉在一起,并使它们保持互相垂直.在测直径时,把O点靠在圆周上,读得刻度OE=4个单位,OF=3个单位,则圆的直径为()A.7个单位B.6个单位C.5个单位D.4个单位7.(4分)从1,﹣2,3,﹣4四个数中,随机抽取两个数相乘,积是正数的概率是()A.B.C.D.8.(4分)如图,将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去小扇形,把纸片展开,得到的图形是()A.B.C.D.二、填空题(本题共16分,每小题4分)9.(4分)若分式的值为0,则x的值等于.10.(4分)如图,▱ABCD中,E是边BC上一点,AE交BD于F,若BE=2,EC=3,则的值为.11.(4分)将方程x2﹣4x﹣1=0化为(x﹣m)2=n的形式,其中m,n是常数,则m+n=.12.(4分)如图,△ABC中,AB=AC=2,若P为BC的中点,则AP2+BP•PC的值为;若BC边上有100个不同的点P1,P2,…,P100,记m i=AP i2+BP i•P i C(i=1,2,…,100),则m1+m2+…+m100的值为.三、解答题(本题共30分,每小题5分)13.(5分)计算:.14.(5分)解不等式2(x+2)≤4(x﹣1)+6,并把它的解集在数轴上表示出来.15.(5分)已知:如图,E,F在BC上,且AE∥DF,AB∥CD,AB=CD.求证:BF=CE.16.(5分)解方程:.17.(5分)已知2x﹣3=0,求代数式5x(x﹣2)﹣(x﹣2)(x+4)+1的值.18.(5分)某市实施“限塑令”后,2008年大约减少塑料消耗约4万吨.调查分析结果显示,从2008年开始,五年内该市因实施“限塑令”而减少的塑料消耗量y(万吨)随若时间x(年)逐年成直线上升,y 与x之间的关系如图所示.(1)求y与x之间的关系式;(2)请你估计,该市2011年因实施“限塑令”而减少的塑料消耗量为多少?四、解答题(本题共20分,每小题5分)19.(5分)如图,在矩形ABCD中,E是边CB延长线上的点,且EB=AB,DE与AB相交于点F,AD=2,CD=1,求AE及DF的长.20.(5分)已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若BC=2,,求PC的长及点C到PA的距离.21.(5分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比;(2)求表中a,b的值;(3)求该校学生平均每人读多少本课外书?22.(5分)阅读下列材料:问题:如图1,P为正方形ABCD内一点,且PA:PB:PC=1:2:3,求∠APB的度数.小娜同学的想法是:不妨设PA=1,PB=2,PC=3,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连接PE,问题得以解决.请你回答:图2中∠APB的度数为.请你参考小娜同学的思路,解决下列问题:如图3,P是等边三角形ABC内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA、PB、PC的长度为三边长的一个三角形(保留画图痕迹);(2)求出以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)如图,直线AB经过第一象限,分别与x轴、y轴交于A、B两点,P为线段AB上任意一点(不与A、B 重合),过点P分别向x轴、y轴作垂线,垂足分别为C、D.设OC=x,四边形OCPD的面积为S.(1)若已知A(4,0),B(0,6),求S与x之间的函数关系式;(2)若已知A(a,0),B(0,b),且当x=时,S有最大值,求直线AB的解析式;(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y轴的距离相等,点N在过M点的反比例函数图象上,且△OAN是直角三角形,求点N的坐标.24.(7分)已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).25.(8分)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象经过点A(﹣3,6),并与x轴交于点B (﹣1,0)和点C,顶点为P.(1)求二次函数的解析式;(2)设D为线段OC上的一点,若∠DPC=∠BAC,求点D的坐标;(3)在(2)的条件下,若点M在抛物线y=x2+bx+c上,点N在y轴上,要使以M、N、B、D为顶点的四边形是平行四边形,这样的点M、N是否存在?若存在,求出所有满足条件的点M的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.【解答】9的平方根有:=±3.故选C.2.【解答】9.1万=9.1×104,故选:B.3.【解答】正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选A.4.【解答】4a2b﹣16b=4b(a2﹣4)=4b(a+2)(a﹣2).故选D.5.【解答】这组数据6出现了4次,最多,所以这组数据的众数为6;这组数据的最大值为10,最小值为2,所以这组数据的极差=10﹣2=8;这组数据的平均数=(2+5×2+6×4+7×2+10)=6;这组数据的方差S2=[(2﹣6)2+2×(5﹣6)2+4×(6﹣6)2+2×(7﹣6)2+(10﹣6)2]=3.6;则四个选项中,A、B、C正确,D错误.故选D.6.【解答】连接EF,∵OE⊥OF,∴∠EOF=90°,∴EF是圆的直径,∵OE=4,OF=3,∴EF==5,即圆的直径为5个单位.故选C.7.【解答】画树状图得:∵共有12种等可能的结果,积是正数的有4种情况,∴积是正数的概率是:=.故选B.8.【解答】严格按照图中的顺序向下对折,向右对折,向右下角对折,从右下角剪去一个四分之一圆,展开得到结论.故选A.二、填空题(本题共16分,每小题4分)9.【解答】由题意得:x﹣1≠0,2x﹣6=0,解得:x=3.故答案为:3.10.【解答】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BE=2,EC=3,∴BC=AD=BE+CE=2+3=5,∵AD∥BC,∴△BEF∽△DAF,∴BE:AD=BF:DF=2:5,即=,故答案为:.11.【解答】x2﹣4x﹣1=0,移项得:x2﹣4x=1,配方得:x2﹣4x+4=1+4,(x﹣2)2=5,∴m=2,n=5,∴m+n=5+2=7,故答案为:7.12.【解答】如图1中,∵AB=AC,BP=PC,∴AP⊥BC,∴AP2+BP•PC=AP2+PB2=AB2,∵AB=2,∴AP2+BP•PC=AB2=4,故答案为:4;如图2中,作AD⊥BC于D,则BC=2BD=2CD.根据勾股定理,得AP i2=AD2+DP i2=AD2+(BD﹣BP i)2=AD2+BD2﹣2BD•BP i+BP i2,又P i B•P i C=P i B•(BC﹣P i B)=2BD•BP i﹣BP i2,∴M i=AD2+BD2=AB2=4,∴M1+M2+…+M100=4×100=400.故答案为:400.三、解答题(本题共30分,每小题5分)13.【解答】==.14.【解答】去括号得2x+4≤4x﹣4+6,移项得2x﹣4x≤﹣4+6﹣4,合并得﹣2x≤﹣2,系数化为1得x≥1.不等式的解集在数轴上表示如下:15.【解答】证明:∵AE∥DF,∴∠AEB=∠DFC,∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF(AAS),∴BE=CF,∴BE﹣EF=CF﹣EF.即BF=CE.16.【解答】去分母得:3x(x﹣2)﹣2(x+2)=3(x﹣2)(x+2),去括号得:3x2﹣6x﹣2x﹣4=3x2﹣12,移项得:3x2﹣6x﹣2x﹣3x2=﹣12+4,合并同类项得:﹣8x=﹣8把x的系数化为1得:x=1,检验:把x=1代入最简公分母(x﹣2)(x+2)≠0,∴原分式方程的解为:x=1.17.【解答】5x(x﹣2)﹣(x﹣2)(x+4)+1=5x2﹣10x﹣(x2+2x﹣8)+1=5x2﹣10x﹣x2﹣2x+8+1=4x2﹣12x+9 =(2x﹣3)2.当2x﹣3=0时,原式=0.18.【解答】(1)由图象可知函数图象经过点(2008,4)和(2010,6)设函数的解析式为:y=kx+b∴解得,∴y与x之间的关系式为y=x﹣2004;(2)令x=2011,∴y=2011﹣2004=7,∴该市2011年因实施“限塑令”而减少的塑料消耗量为7万吨.四、解答题(本题共20分,每小题5分)19.【解答】:∵四边形ABCD是矩形,且AD=2,CD=1,∴BC=AD=2,AB=CD=1,∠ABC=∠C=90°,AB∥DC.∴EB=AB=1.在Rt△ABE中,;在Rt△DCE中,;∵AB∥DC,∴.设EF=x,则DF=2x.∵EF+DF=DE,∴x+2x=∴x=,∴DF=2x=.20.【解答】(1)直线PC与⊙O相切.理由如下:连接OC,∵BC∥OP,∴∠1=∠2,∠3=∠4.∵OB=OC,∴∠1=∠3.∴∠2=∠4.又∵OC=OA,OP=OP,∴△POC≌△POA,∴∠PCO=∠PAO.∵PA切⊙O于点A,∴∠PAO=90°,∴∠PCO=90°,∴PC与⊙O相切;(2)连AC,如图,∵△POC≌△POA,∴∠5=∠6=∠APC,∴sin∠5=sin∠APC=,∵∠PCO=90°,∴∠2+∠5=90°,∴cos∠2=sin∠5=,∵∠3=∠1=∠2,∴cos∠3=,∵AB是⊙O的直径,∴∠ACB=90°.∴cos∠3===,∴AB=6,∴OA=OB=OC=3,AC==4,在Rt△POC中,OC=3,sin∠5==,∴OP=9,∴PC==6,过点C作CD⊥PA于D,∵∠ACB=∠PAO=90°,∴∠3+∠7=90°,∠7+∠8=90°.∴∠3=∠8.∴cos∠8=cos∠3=,在Rt△CAD中,cos∠8===,∴AD=,∴CD==,即点C到PA的距离为.21.【解答】(1)∵1﹣28%﹣38%=34%.∴该校八年级学生的人数占全校学生总人数的百分比为34%.(2)∵144÷0.06=2400,∴a=2400×0.25=600,b=840÷2400=0.35.(3)∵八年级学生人数为204人,占全校学生总人数的百分比为34%,∴全校学生总人数为204÷34%=600.∴该校学生平均每人读课外书:2400÷600=4.答:该校学生平均每人读4本课外书.22.【解答】如图2.∵根据旋转的性质知∠PBE=90°,△BCP≌△BAE.∴BP=BE,PC=AE,∴∠BPE=∠BEP=45°.又PA:PB:PC=1:2:3,∴AE2=AP2+PE2,∴∠APE=90°,∴∠APB=∠APE+∠BPE=90°+45°=135°,即图2中∠APB的度数为135°.故答案是:135°;(1)如图3,将△BCP绕点C顺时针旋转60°得到△ACM,然后连接PM,△APM即为所求,即以PA、PB、PC的长度为三边长的一个三角形是△APM.以PA、PB、PC的长度为三边长的一个三角形是△APM.(2)如图3.∵根据旋转的性质知∠PCM=60°,△BCP≌△ACM.∴PC=CM,∠AMC=∠BPC=125°,∴△PCM是等边三角形,∴∠MPC=∠PMC=60°,∠AMP=∠AMC﹣∠PMC=65°.∵∠APB=115°,∠BPC=125°,∠APB+∠BPC+∠MPC+∠APM=360°,∴∠APM=60°,∴∠PAM=180°﹣∠APM﹣∠AMP=55°.∴以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于60°、65°、55°.故答案是:60°、65°、55°.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.【解答】(1)设直线AB的解析式为y=kx+b,由A(4,0),B(0,6),得解得∴直线AB的解析式为.∵OC=x,∴.∴.即(0<x<4).(2)设直线AB的解析式为y=mx+n,∵OC=x,∴P(x,mx+n).∴S=mx2+nx.∵当x=时,S有最大值,∴解得∴直线AB的解析式为y=﹣2x+3.∴A(,0),B(0,3).即,b=3.(3)设点M的坐标为(x M,y M),由点M在(2)中的直线AB上,∴y M=﹣2x M+3.∵点M到x轴、y轴的距离相等,∴x M=y M或x M=﹣y M.当x M=y M时,M点的坐标为(1,1).过M点的反比例函数的解析式为.∵点N在的图象上,OA在x轴上,且△OAN是直角三角形,∴点N的坐标为.当x M=﹣y M时,M点的坐标为(3,﹣3),过M点的反比例函数的解析式为.∵点N在的图象上,OA在x轴上,且△OAN是直角三角形,∴点N的坐标为.综上,点N的坐标为或.24.【解答】(1)猜想:∠ACE=∠BCF.证明:∵D是AB中点,∴AD=BD,又∵AE=BD,BF=AD,∴AE=BF.∵CD⊥AB,AD=BD,∴CA=CB.∴∠1=∠2.∵AE⊥AB,BF⊥AB,∴∠3=∠4=90°.∴∠1+∠3=∠2+∠4.即∠CAE=∠CBF.∴△CAE≌△CBF(SAS).∴∠ACE=∠BCF.…(2分)(2)∠ACE=∠BCF仍然成立.证明:连接BE、AF.∵CD⊥AB,AE⊥AB,∴∠CDB=∠BAE=90°.又∵BD=AE,CD=AB,△CDB≌△BAE.…(3分)∴CB=BE,∠BCD=∠EBA.在Rt△CDB中,∵∠CDB=90°,∴∠BCD+∠CBD=90°.∴∠EBA+∠CBD=90°.即∠CBE=90°.∴△BCE是等腰直角三角形.∴∠BCE=45°.…(4分)同理可证:△ACF是等腰直角三角形.∴∠ACF=45°.…(5分)∴∠ACF=∠BCE.∴∠ACF﹣∠ECF=∠BCE﹣∠ECF.即∠ACE=∠BCF.…(6分)(3)∠ECF的度数为90°﹣α.…(7分)25.【解答】(1)将点A(﹣3,6),B(﹣1,0)代入中,得,解得,∴二次函数的解析式为.(2)令y=0,得,解得x1=﹣1,x2=3,则点C的坐标为(3,0),∵,∴顶点P的坐标为(1,﹣2).过点A作AE⊥x轴,过点P作PF⊥x轴,垂足分别为E,F,易得∠ACB=∠PCD=45°,,,又∵∠DPC=∠BAC,∴△ACB∽△PCD,∴,∵BC=3﹣(﹣1)=4,∴,∴,∴点D的坐标为.(3)①当BD为一边时,由于,此时可得点M的横坐标为或﹣,代入函数解析式,可得点M的坐标为或.②当BD为对角线时,根据对角线互相平分,可得平行四边形的中心的坐标为(,0)由∵点N的横坐标为0,∴点M的横坐标为,代入函数解析式可得此时点M的坐标为.综上可得点M的坐标为:(,﹣)或(﹣,)或(,﹣).。

北京2011-2012年中考数学模拟试卷(2)及答案

北京2011-2012年中考数学模拟试卷(2)及答案

北京2011-2012年中考数学模拟试卷(2)说明:本卷满分150分,考试时间为100分钟.题号 一 二 三四 五 总 分16 17 18 19 20 21 22 得分一、单项选择题(每小题4分,共20分,请将所选选项的字母写在题目后的括号内) 1.今年1至4月份,我省旅游收入累计达5163000000元,用科学记数法表示是( )A .6105163⨯元 B .910163.5⨯元 C .810163.5⨯元 D .1010163.5⨯元 2.函数x y -=2 中,自变量x 的取值范围是( )A .2≠xB .x ≥2C .x ≤2D .0<x3.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中, 下列说法正确的是( )A .300名学生是总体B .300是众数C .30名学生是抽取的一个样本D .30是样本的容量4.如图1,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共 有( ) A .1对 B .2对 C .3对D .4对5.一个空间几何体的主视图和左视图都是边长 为2的正方形,俯视图是一个圆,那么这个 几何体的表面积是( )A .π6B .π4C .π8D .4二、填空题(每小题4分,共20分,请把下列各题的正确答案填写在横线上) 6.计算=+-+-- 30cos 2)142.3(2201π .7.若()b a x x x -+=--2214,则b a -= .8.若相交两圆的半径长分别是方程0232=+-x x 的两个根,则它们的圆心距d 的取值范EABDF G C(图1)围是 .9.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是 .10.如图2,菱形ABCD 中,对角线AC 、BD 交于O 点,分别以A 、C 为圆心,AO 、CO 为半径画圆弧,交菱形各边于点E 、F 、G 、H ,若AC=32,BD=2,则图中阴影部分的面积是 .三、解答下列各题(每小题6分,共30分) 11.解不等式组(要求利用数轴求出解集):5351x x -<+① 423322-+>-x x x ②12.已知13+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值.13.观察下面的几个算式:13×17=221可写成100×1×(1+1)+21; 23×27=621可写成100×2×(2+1)+21; 33×37=1221可写成100×3×(3+1)+21; 43×47=2021可写成100×4×(4+1)+21; …… ……根据上面规律填空:AB CDO (图2)E FGH(1)83×87可写成 .(2))710)(310(++n n 可写成 . (3)计算:1993×1997=.14.如图3,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连接为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B 的坐标为(-2,-2). (1)把△ABC向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形,此时点B 1的坐标为 .(2)把△ABC绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 2B 2C 的图形,此时点B 2的坐标为. (3)把△ABC以点A 为位似中心放大为△AB 3C 3,使放大前后对应边长的比为1︰2,画出△AB 3C 3的图形.15.如图4,△ABC中,AB=AC ,D 、E 分别是BC 、AC 上的点, ∠BAD与∠CDE满足什么条件时AD=AE ?写出你的推理过程.四、解答下列各题(每小题7分,共28分)16.初三级一位学生对本班同学的上学方式进行了一次调查统计,图5①和图5②是他通过采A BxyOC(图3)ABD CE (图4)集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题: (1)该班共有多少名学生?(2)在图5①中将表示“骑车”的部分补充完整.(3)在扇形统计图中,“步行”部分对应的圆心角的度数是多少? (4)如果全年级共有300名学生,请你估算全年级骑车上学的学生人数.(1)答: (3)答: (4)解:17.如图6,一次函数b kx y +=的图象与反比例函数xm y =的图象交于A 、B 两点。

顺义区2011年九年级第一次统一练习

顺义区2011年九年级第一次统一练习

顺义区2011年九年级第一次统一练习 数学试题参考答案及评分参考一、选择题题号1 2 3 4 5 6 7 8 答案C DBDCBCA二、填空题9.32x ≠; 10. 2(1)ab b + ; 11. 12 ; 12. 81 ; 第45行第15列 .三、解答题13.解:原式=32234142⨯-⨯-+ ----------------------------4分=233+ ---------------------------------------------5分14. 解:去分母,得 2(21)3(51)6x x --+≥ -------------------------1分 去括号,得 421536x x ---≥ ----------------------------2分 移项合并同类项,得 1111x -≥ ----------------------------3分系数化为1,得 1x ≤- --------------------------------4分 所以,此不等式的解集为1x ≤- ,在数轴上表示如图所示-----------------------------5分15. 解: 原式=3(2)(2)53(2)22a a a a a a a -+-⎡⎤÷-⎢⎥---⎣⎦------------2分 =2393(2)2a a a a a --÷--=323(2)(3)(3)a a a a a a --⨯-+- --------------------3分=13(3)a a +=2139a a + ------------------------4分∵ a 是方程232x x +-=的实数根, ∴ 232a a +=∴ 原式=21113(3)326a a ==+⨯ ------------------------------5分16. 证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒ --------1分 ∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒∴ DB DC = ----------------------2分∵ BE AC ⊥ ∴ 90AEB ∠=︒ ∴ 90A ABE ∠+∠=︒ ∵ 90CDA ∠=︒ ∴ 90A ACD ∠+∠=︒∴ ABE ACD ∠=∠ ----------------3分 在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆ ------------------4分 ∴BF AC = --------------------------5分17. 解:设九年级一班有x 名学生,二班有y 名学生. ----------------------1分根据题意列方程组,得321963244x y x y +=⎧⎨-=⎩--------------------------------3分解此方程组,得 4038x y =⎧⎨=⎩答:九年级一班有40名学生,二班有38名学生. -----------------------5分18. 解:令0y =,得 2x = ∴ A 点坐标为(2 ,0)令0x =, 得 4y =∴ B 点坐标为(0 ,4)---------------------------------1分∵6ABP S ∆= ∴1462AP ⨯⨯= 即3AP =∴ P 点的坐标分别为1(1,0)P -或2(5,0)P -----------2分设直线PB 的函数解析式为y kx b =+∴ 04k b b -+=⎧⎨=⎩ 或 504k b b +=⎧⎨=⎩ ------------------4分∴ 44k b =⎧⎨=⎩或 454k b ⎧=-⎪⎨⎪=⎩ ∴ 直线PB 的函数解析式为44y x =+或445y x =-+------------------------------5分19. 解:(1) 过点D 作DF BC ⊥于F . ∵ AD BC , 90B ∠=︒, AD AB =,∴ 四边形ABFD 是正方形.∴4DF BF AB === , 3FC = --------1分 在Rt DFC ∆中, 2222435CD DF FC =+=+=∴ '5C D =∵ AD FD =,90A DFC ∠=∠=︒, 'C D CD = ∴ 'AC D FCD ∆≅∆∴ 'ADC FDC ∠=∠ , '3AC FC == ----------------------------------2分 ∴ ''''90ADF ADC C DF FDC C DF C DC ∠=∠+∠=∠+∠=∠=︒ ∵ 'C DE CDE ∠=∠∴ '45C DE ∠=︒ -----------------------------------------------------------3分(2) 设 EC x = , 则7BE x =- ,'C E x = ∵'3AC = ∴'1BC = 在Rt 'BEC ∆中22(7)1x x -+= 解方程,得 257x =∴'11255014722777C DE CDE S S EC DF ∆∆==⋅=⨯⨯== ---------------5分20.(1) 证明:连结OP 和BP ∵AB 是O 的直径,BC 切O 于B ,∴ 90APB ∠=︒ , AB BC ⊥ ,∴ 90ABC ABP PBC ∠=∠+∠=︒ ------1分 在Rt BPC ∆中,D 为BC 边的中点 ∴ BD PD = ∴ BPD PBD ∠=∠ ∵ OB OP =∴OPB OBP ∠=∠--------------------------------2分∴ 90OPD OPB BPD OBP PBD ABC ∠=∠+∠=∠+∠=∠=︒ 即 PD OP ⊥∴DP 是O 的切线 -----------------------------3分(2) 连结OD 在Rt ABC ∆中∵3cos 5A =, O 的半径为5 ∴50cos 3AB AC A ==∵ OA OB =, DC DB =∴12523OD AC ==OPCDBAABD CPO在Rt OPD ∆中222225202()56333P D O D O P =-=-== --------5分21. 解:(1)由两个统计图可知该校报名总人数是16016040040%0.4==(人).-----1分 (2)选羽毛球的人数是40025%100⨯=(人). --------------------------------------2分因为选排球的人数是100人,所以10025%400=,因为选篮球的人数是40人,所以4010%400=,即选排球、篮球的人数占报名的总人数分别是25%和10%.---------------------------3分 (3)如图(每补充完整一个图得1分,共2分).22.(1)如图-----------------------------2分(2)面积可得 2()(2)x y x y y +=+ ----------------------3分22222x xy y xy y ++=+ 220x xy y +-=2()10x xy y +-= ----------------------------------------4分512x y--=(舍去) 512x y -= ------------5分 23. (1)解:[]22243(1)4(23)(3)b ac m m m m ∆=-=----=--------1分∵方程有两个不相等的实数根,∴2(3)0m -> 且 0m ≠------------------------------------------------2分 ∴ 3m ≠且 0m ≠∴m 的取值范围是3m ≠且 0m ≠ ------------------------------------3分(2)证明:由求根公式243(1)(3)22b b ac m m x a m -±--±-==-----------------------4分 ∴133323322m m m x m m m -+--===-④③②①233312m m x m --+== ∴无论m 为何值,方程总有一个固定的根是1 ----------------5分(3)∵m 为整数,且方程的两个根均为正整数∴132x m =-必为整数 ∴ 1m =± 或 3m =± 当1m =时 ,11x =- ;当1m =-时,15x =; 当3m =时,11x = ; 当3m =-时,13x =.∴ 1m =- 或3m =± --------------------------------------------8分24.(1)猜想:2AE MD = ------------------------------------------1分 证明:∵ △ABC 是等边三角形,点D 为BC 边的中点, ∴ 2AB BC BD ==∵ ∠BAE =∠BDF , ∠ABE =∠DBM ∴ ABE ∆∽DBM ∆ ----------------------2分∴2AE ABDM DB == 即 2AE MD = -------------3分(2)解:如图, 连接EP 由(1)ABE ∆∽DBM ∆∴2BE ABBM DB ==∴2BE BM =∵MP BM = ∴ 2BP BM = ∴ BE BP =∵ 60EBP ABE ABP PBC ABP ABC ∠=∠+∠=∠+∠=∠=︒ ∴EBP ∆为等边三角形 ----------------------4分 ∴ EM BP ⊥ ∴ 90BMD ∠=︒∴90AEB ∠=︒ -----------------------5分在Rt △AEB 中,AB =7,AE =72 ∴ BE =21=22AE-AB∴3tan 2BAE ∠=-------------------6分 ∵ A B C B = ,BE BP = ,∠ABE =∠DBM ∴ A B E C B P ∆≅∆ ∴ BCP BAE ∠=∠∴ tan BCP ∠=3tan 2BAE ∠=---------7分25.解:(1)∵抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,3)C ,与x 轴交于A (1,0)-∴203a a c c ++=⎧⎨=⎩ 解得 13a c =-⎧⎨=⎩∴ 抛物线的解析式为223y x x =-++ ----------------1分 ∵222(2)3(211)3(1)4y x x x x x =--+=--+-+=--+ ∴顶点D 的坐标为( 1 ,4) -----------------2分(2)连结BC ,过点D 作DE x ⊥轴于点E .令0y = 则2230x x -++=∴ 11x =- ,23x =∴ 点B 的坐标为(3 ,0) ∴AOC EBDACDB OEDC S S S S ∆∆=++四边形梯形11113(34)1249222=⨯⨯+⨯+⨯+⨯⨯=--------3分 ∵14362ABC S ∆=⨯⨯=∴3BCD S ∆=∵点P 是在第一象限内抛物线上的一个动点,ACDB ACPB S S =四边形四边形∴3BCP BCD SS∆∆==∴ 点P 是过 D 且与直线BC 平行的直线和抛物线的交点而直线BC 的函数解析式为3y x =-+--------------------4分 ∴设直线DP 的函数解析式为y x b =-+ , 过点D (1,4) ∴14b -+= , 5b =∴直线DP 的函数解析式为5y x =-+ ----------------------5分把5y x =-+代入223y x x =-++中,解得11x =,22x = ∴点P 的坐标为(2,3) ---------------------------------6分(3)∵点P 与点C 关于DE 对称,点B 与点A 关于 DE 对称 ∴APD BCD ∆≅∆ ∴3APD BCD S S ∆∆==.---------------7分。

2012年北京市顺义区中考二模数学试卷

2012年北京市顺义区中考二模数学试卷

2012年北京顺义中考二模数学一、选择题(共8小题;共40分)1. 的平方根是 ( )A. B. C. D.2. 据人民网报道,“十一五”我国铁路营业里程达万公里.请把万用科学记数法表示应为 ( )A. B. C. D.3. 如图,下列选项中不是正六棱柱三视图的是 ( )A. B.C. D.4. 把分解因式,结果正确的是 ( )A. B.C. D.5. 北京是严重缺水的城市,市政府号召居民节约用水,为了解居民用水情况,小敏在某小区随机抽查了户家庭的月份用水量,结果如下(单位:立方米):,,,,,,,,,,则关于这户家庭的月份用水量,下列说法错误的是 ( )A. 众数是B. 极差是C. 平均数是D. 方差是6. 如图,小华同学设计了一个圆直径的测量器,把标有刻度的尺子,在点钉在一起,并使它们保持互相垂直.在测直径时,把点靠在圆周上,读得刻度个单位,个单位,则圆的直径为 ( )A. 个单位B. 个单位C. 个单位D. 个单位7. 从,,,四个数中,随机抽取两个数相乘,积是正数的概率是 ( )A. B. C. D.8. 将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去右上方的小三角形.将纸片展开,得到的图形是 ( )A. B.C. D.二、填空题(共4小题;共20分)9. 若分式的值为,则的值等于.10. 如图,平行四边形中,是边上一点,交于,若,,则的值为.11. 将方程化为的形式,其中,是常数,则.12. 如图,中,,若为的中点,则的值为;若边上有个不同的点,,,,记(,,,),则的值为.三、解答题(共13小题;共169分)13. 计算:.14. 解不等式,并把它的解集在数轴上表示出来.15. 已知:如图,,在上,且,,.求证:.16. 解分式方程:.17. 已知,求代数式的值.18. 某市实施“限塑令”后,2008 年大约减少塑料消耗约万吨.调查分析结果显示,从 2008 年开始,五年内该市因实施“限塑令”而减少的塑料消耗量(万吨)随着时间(年)逐年成直线上升,与之间的关系如图所示.(1)求与之间的关系式;(2)请你估计,该市 2011 年因实施“限塑令”而减少的塑料消耗量为多少 ?19. 如图,在矩形中,是边延长线上的点,且,与相交于点,,,求及的长.20. 已知:如图,是外一点,切于点,是的直径,交于点.(1)判断直线与的位置关系,并证明你的结论;(2)若,,求的长及点到的距离.21. 阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的 4 月 23 日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1 是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为人,请你根据图表中提供的信息,解答下列问题:(1)求该校八年级学生的人数占全校学生总人数的百分比;(2)求表中,的值;(3)求该校学生平均每人读多少本课外书?22. 阅读下列材料:问题:如图1,为正方形内一点,且,求的度数.小娜同学的想法是:不妨设,,,设法把,,相对集中,于是他将绕点顺时针旋转得到(如图2),然后连接,问题得以解决.请你回答:图 2 中的度数为.请你参考小娜同学的思路,解决下列问题:如图 3,是等边三角形内一点,已知,.(1)在图中画出并指明以,,的长度为三边长的一个三角形(保留画图痕迹);(2)求出以,,的长度为三边长的三角形的各内角的度数分别等于.23. 如图,直线经过第一象限,分别与轴,轴交于,两点,为线段上任意一点(不与,重合),过点分别向轴,轴作垂线,垂足分别为,.设,四边形的面积为.(1)若已知,,求与之间的函数关系式;(2)若已知,,且当时,有最大值,求直线的解析式;(3)在(2)的条件下,在直线上有一点,且点到轴,轴的距离相等,点在过点的反比例函数图象上,且是直角三角形,求点的坐标.24. 已知:如图,为线段上一点(不与点,重合),,且,,,且,.(1)如图 1,当点恰是的中点时,请你猜想并证明与的数量关系;(2)如图2,当点不是的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;(3)若,直接写出的度数(用含的式子表示).25. 如图,在平面直角坐标系中,二次函数的图象经过点,并与轴交于点和点,顶点为.(1)求二次函数的解析式;(2)设为线段上的一点,若,求点的坐标;(3)在(2)的条件下,若点在抛物线上,点在轴上,要使以,,,为顶点的四边形是平行四边形,这样的点,是否存在?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.答案第一部分1. C2. B3. A4. D5. D6. C 【解析】连接,即为直径.7. B 8. A第二部分9.10.11.【解析】移项得配方得即,..12. ;【解析】当为的中点时,,为的中点,,.,.当,,,,为上不同的点时,过作,垂足为,则有.根据勾股定理,得.又,..第三部分13. 原式.14. 去括号,得移项,得合并,得系数化为,得不等式的解集在数轴上表示如下:15.,.,.在和中,...即.16. 去分母,得去括号,得整理,得解得经检验,是原方程的解.原方程的解是.原式17.当时,原式.18. (1)设与之间的关系式为.由题意,得解得与之间的关系式为().(2)当时,.该市年因“限塑令”而减少的塑料消耗量约为万吨.19. 四边形是矩形,且,,,,,..在中,.在中,.,.设,则.,...20. (1)直线与相切.证明:连接,,,.,..又,,..切于点,..与相切.(2),..,..,.连接,是的直径,..,.在中,..过点作于,,,...在中,..21. (1).该校八年级学生的人数占全校学生总人数的百分比为.(2),,.(3)八年级学生人数为人,占全校学生总人数的百分比为,全校学生总人数为.该校学生平均每人读课外书.答:该校学生平均每人读本课外书.22. (1)图 2 中的度数为.如图,将绕着点顺时针旋转,得到,连接,则及为所求,因此以,,的长度为三边长的一个三角形是.(2)以,,的长度为三边长的三角形的各内角的度数分别等于,,.【解析】,,为等边三角形..,,..,..23. (1)设直线的解析式为,由,,得解得直线的解析式为.,..即().(2)设直线的解析式为,,..当时,有最大值,解得直线的解析式为.,.即,.(3)设点的坐标为,由点在(2)中的直线上,.点到轴,轴的距离相等,或.当时,点的坐标为.过点的反比例函数的解析式为.点在的图象上,在轴上,且是直角三角形,点的坐标为.当为直角时,不符合题意.当时,点的坐标为,过点的反比例函数的解析式为.点在的图象上,在轴上,且是直角三角形,点的坐标为.当为直角时,不符合题意.综上,点的坐标为或.24. (1)猜想:.证明:是中点,,又,,.,,..,,..即...(2)仍然成立.证明:连接,.,,.又,,.,.在中,,..即.是等腰直角三角形..同理可证:是等腰直角三角形....即.(3)的度数为.25. (1)将点,代入中,得解得二次函数的解析式为.(2)令,得解得,点的坐标为.,顶点的坐标为.过点作轴,过点作轴,垂足分别为,.易得.,.又,..,..点的坐标为.(3)存在.当为一边时,由于,即的横坐标为或,代入抛物线解析式,点的坐标为或.当为对角线时,的中点为.点的横坐标为,所以的横坐标为.点的坐标为.。

2011年北京顺义中考一《数学》模试题及答案

2011年北京顺义中考一《数学》模试题及答案

2011年下半年中国高校市场营销大赛综合考试本试卷第Ⅰ卷(选择题)和第Ⅱ卷两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至10页。

共100分。

考试时间为150分钟。

第Ⅰ卷(共20分)注意事项:1.本次考试不使用答题卡,每小题选出答案后,请将答案填写到第Ⅱ卷上方的选择题答题栏中,直接答在第Ⅰ卷不得分。

2.考试结束,将本试卷和第Ⅱ卷一并交回。

一、单项选择题(每小题1分,共计10分)下列各题A)、B)、C)、D)四个选项中,只有一个选项是正确的。

请将正确选项填写到第Ⅱ卷上方的选择题答题栏中,答在第Ⅰ卷上不得分。

1.某汽车公司在分析细分市场时,认为专门为1.5米以下的人设计汽车是不可行的,则其衡量细分市场的原则是A)价值性B)足量性C)衡量性D)到达性2.某企业为了促进顾客忠诚,防止关键客户转换,让高级主管和关键客户直接接触,并每月都与其关键客户召开沟通协调会。

该企业设置的转换障碍属于A)可见的转换成本B)信息的获得C)竞争替代者D)人际关系3.某公司尽力鼓励现有顾客多购买,在一定时间内使用更多的公司产品,则其采取的营销发展战略属于A)产品渗透战略B)产品开发战略C)市场开发战略D)市场渗透战略4.随着经济体制改革和对外开放的步伐加快,中国日益重视经济立法与执法,先后颁布了《中国人民共和国广告法》等经济法规,这属于企业应该分析的A)文化环境B)人口环境C)政治环境D)自然环境中国高校市场营销大赛综合考试Ⅰ第1页(共10页)5.关于采购中心,下列说法中错误的是A)是一个非正式的跨部门的决策单位B)成员要参加采购决策C)是一个正式的跨部门的决策单位D)成员要分担决策风险6-某企业在对自己的渠道体系进行规划时,有意识地限制所使用的中间商数量,使其享有专营本企业产品的权利,其采用的渠道模式是A)专营性分销B)密集性分销C)选择性分销D)区域性分销7.患者在接受医生的治疗时,必须参与到治疗的整个过程,则医生提供的服务具有A)易变性特征B)无形性特征C)不可分离性特征D)易消失性特征8.某顾客在沟通比较注重实效,具有非常明确的目标与个人远景;以事为中心,要求对方具有一定的专业水准和深度;说话直截了当,节奏迅速。

2011顺义区初三一模数学试题(含答案)

2011顺义区初三一模数学试题(含答案)

顺义区2011年九年级第一次统一练习数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.12-的绝对值是 A .2B .2-C .12D . 12-2. 某区在一次扶贫助残活动中,共捐款136 000元.将136 000元用科学记数法表示为 A .61.3610⨯元 B .60.13610⨯元 C .513.610⨯元 D .51.3610⨯元3.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6 , 10 , 5 , 3 , 4 , 8 , 4 ,这组数据的中位数和极差分别是 A .4, 7 B .5, 7 C .7, 5 D .3, 7 4. 下列图形中,是中心对称图形的是 A.等边三角形 B.等腰直角三角形 C.等腰梯形 D.菱形 5.几何体的三视图如下图所示,那么这个几何体是6. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A . 2S =B . 4S =C . 24S <<D .4S >7.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径,BD 交AC 于点E ,连结DC ,则BEC ∠等于 A .50︒ B .60︒ C .70︒ D .110︒ 8.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x之间的函数关系用图象表示大A .B .C .D .主视图左视图俯视图致是下图中的二、填空题(本题共16分, 每小题4分) 9. 若分式223x x --有意义,则x 的取值范围是 . 10.分解因式: 322ab ab ab ++= .11. 从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是 .12. 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.三、解答题(本题共30分,每小题5分) 13.计算: 0214sin 60(1()2-︒-+ 14. 解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来. 15. 已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值. 16 已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =;C .D .A .B .D CBA P17. 列方程或方程组解应用题:我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?18. 已知:如图,在平面直角坐标系xOy 中,一次函数24y x =-+的图象分别与x y 、轴交于点A 、 B ,点P 在x 轴上,若6ABP S ∆=,求直线PB 的函数解析式.四、解答题(本题共20分,每小题5分)19.已知:如图,梯形ABCD 中,AD ∥BC ,90B ∠=︒,4AD AB ==,7BC =,点E 在BC 边上,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点'C 处. (1)求'C DE ∠的度数;(2)求△'C DE 的面积.20. 已知:如图,AB 是O 的直径,BC 切O 于B ,AC 交O 于P ,D 为BC 边的中点,连结DP . (1) DP 是O 的切线;(2) 若3cos 5A =, O 的半径为5, 求DP 的长.21. 学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了右边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:(1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整. C'E D C B AB22. 如图,将正方形沿图中虚线(其x y <)剪成① ② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图; (2)求xy的值.五、解答题(本题共22分,第23题8分,第24题7分,第25题7分)23. 已知:关于x 的一元二次方程23(1)230mx m x m --+-= ()m 为实数 (1) 若方程有两个不相等的实数根,求m 的取值范围; (2)求证:无论m 为何值,方程总有一个固定的根;(3)若m 为整数,且方程的两个根均为正整数,求m 的值.24. 已知:如图,等边△ABC 中,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,∠BAE =∠BDF ,点M 在线段DF 上,∠ABE =∠DBM . (1)猜想:线段AE 、MD 之间有怎样的数量关系,并加以证明; (2)在(1)的条件下延长BM 到P ,使MP =BM ,连接CP ,若AB =7,AE =72,求tan ∠BCP 的值.25. 已知:如图,抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点,点A 的坐标为(1,0)-.(1)求抛物线的解析式及顶点D 的坐标; (2)设点P 是在第一象限内抛物线上的一个动点,求使与四边形ACDB 面积相等的四边形ACPB 的点P 的坐标;(3)求APD ∆的面积.yy x y x y x x④③②①羽毛球25%体操40%顺义区2011年九年级第一次统一练习数学试题参考答案及评分参考二、填空题 9. 32x ≠; 10. 2(1)ab b + ; 11. 12; 12. 81 ; 第45行第15列 . 三、解答题13.解:原式=2414⨯+ ----------------------------4分=3 ---------------------------------------------5分 14. 解:去分母,得 2(21)3(51)6x x --+≥ -------------------------1分 去括号,得 421536x x ---≥ ----------------------------2分移项合并同类项,得 1111x -≥ ----------------------------3分系数化为1,得 1x ≤- --------------------------------4分所以,此不等式的解集为1x ≤- ,在数轴上表示如图所示-----------------------------5分15. 解: 原式=3(2)(2)53(2)22a a a a a a a -+-⎡⎤÷-⎢⎥---⎣⎦------------2分=2393(2)2a a a a a --÷--=323(2)(3)(3)a a a a a a --⨯-+- --------------------3分=13(3)a a +=2139a a+ ------------------------4分∵ a 是方程2320x x +-=的实数根,∴ 232a a += ∴ 原式=21113(3)326a a ==+⨯ ------------------------------5分16. 证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒ --------1分 ∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒∴ DB DC = ----------------------2分 ∵ BE AC ⊥ ∴ 90AEB ∠=︒∴ 90A ABE ∠+∠=︒ ∵ 90CDA ∠=︒∴ 90A ACD ∠+∠=︒∴ ABE ACD ∠=∠ ----------------3分 在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆ ------------------4分 ∴BF AC = --------------------------5分17. 解:设九年级一班有x 名学生,二班有y 名学生. ----------------------1分 根据题意列方程组,得 321963244x y x y +=⎧⎨-=⎩ --------------------------------3分解此方程组,得 4038x y =⎧⎨=⎩答:九年级一班有40名学生,二班有38名学生. -----------------------5分18. 解:令0y =,得 2x = ∴ A 点坐标为(2 ,0) 令0x =, 得 4y =∴ B 点坐标为(0 ,4)---------------------------------1分 ∵ 6ABP S ∆= ∴1462AP ⨯⨯= 即3AP = ∴ P 点的坐标分别为1(1,0)P -或2(5,0)P -----------2分 设直线PB 的函数解析式为y kx b =+∴ 04k b b -+=⎧⎨=⎩ 或504k b b +=⎧⎨=⎩ ------------------4分 ∴ 44k b =⎧⎨=⎩ 或 454k b ⎧=-⎪⎨⎪=⎩∴ 直线PB 的函数解析式为44y x =+或445y x =-+ ------------------------------5分19. 解:(1) 过点D 作DF BC ⊥于F . ∵ AD BC , 90B ∠=︒, AD AB =, ∴ 四边形ABFD 是正方形.∴4DF BF AB === , 3FC = --------1分 在Rt DFC ∆中,5CD =∴ '5C D =∵ AD FD =,90A DFC ∠=∠=︒, 'C D CD =∴ 'AC D FCD ∆≅∆∴ 'ADC FDC ∠=∠ , '3AC FC == ----------------------------------2分 ∴ ''''90ADF ADC C DF FDC C DF C DC ∠=∠+∠=∠+∠=∠=︒ ∵ 'C DE CDE ∠=∠∴ '45C DE ∠=︒ -----------------------------------------------------------3分(2) 设 EC x = , 则7BE x =- ,'C E x = ∵'3AC = ∴'1BC =在Rt 'BEC ∆中22(7)1x x -+= 解方程,得 257x =∴ '11255014722777C DE CDES S EC DF ∆∆==⋅=⨯⨯== ---------------5分20.(1) 证明:连结OP 和BP∵AB 是O 的直径,BC 切O 于B ,∴ 90APB ∠=︒ , AB BC ⊥ ,∴ 90ABC ABP PBC ∠=∠+∠=︒ ------1分 在Rt BPC ∆中,D 为BC 边的中点 ∴ BD PD =∴ BPD PBD ∠=∠ ∵ OB OP =∴OPB OBP ∠=∠--------------------------------2分B∴ 90OPD OPB BPD OBP PBD ABC ∠=∠+∠=∠+∠=∠=︒ 即 PD OP ⊥∴DP 是O 的切线 -----------------------------3分(2) 连结OD 在Rt ABC ∆中∵ 3cos 5A =, O 的半径为5 ∴ 50cos 3AB AC A ==∵ OA OB =, DC DB =∴ 12523OD AC ==在Rt OPD ∆中202633P D === --------5分21. 解:(1)由两个统计图可知该校报名总人数是16016040040%0.4==(人).-----1分 (2)选羽毛球的人数是40025%100⨯=(人). --------------------------------------2分因为选排球的人数是100人,所以10025%400=,因为选篮球的人数是40人,所以4010%400=,即选排球、篮球的人数占报名的总人数分别是25%和10%.---------------------------3分 (3)如图(每补充完整一个图得1分,共2分).22.(1)如图-----------------------------2分 (2)面积可得 2()(2)x y x y y +=+ ----------------------3分 22222x xy y xy y ++=+ 220x xy y +-=B④③②①2()10x xyy+-= ----------------------------------------4分12x y =(舍去) 12x y = ------------5分 23. (1)解: []22243(1)4(23)(3)b ac m m m m ∆=-=----=--------1分 ∵方程有两个不相等的实数根,∴ 2(3)0m -> 且 0m ≠------------------------------------------------2分∴ 3m ≠且 0m ≠∴m 的取值范围是3m ≠且 0m ≠ ------------------------------------3分(2)证明:由求根公式3(1)(3)22b m m x a m-±-±-== -----------------------4分∴ 133323322m m m x m m m -+--===-233312m m x m--+==∴无论m 为何值,方程总有一个固定的根是1 ----------------5分(3)∵m 为整数,且方程的两个根均为正整数∴132x m=-必为整数∴ 1m =± 或 3m =±当1m =时 ,11x =- ;当1m =-时,15x =; 当3m =时, 11x = ; 当3m =-时,13x =.∴ 1m =- 或3m =± --------------------------------------------8分24.(1)猜想:2AE MD = ------------------------------------------1分证明:∵ △ABC 是等边三角形,点D 为BC 边的中点,∴ 2AB BC BD ==∵ ∠BAE =∠BDF , ∠ABE =∠DBM∴ ABE ∆∽DBM ∆ ----------------------2分 ∴2AE ABDM DB== 即 2AE MD = -------------3分(2)解:如图, 连接EP 由(1)ABE ∆∽DBM ∆∴2BE ABBM DB == ∴2BE BM =∵MP BM =∴ 2BP BM =∴ BE BP =∵ 60EBP ABE ABP PBC ABP ABC ∠=∠+∠=∠+∠=∠=︒ ∴EBP ∆为等边三角形 ----------------------4分 ∴ EM BP ⊥∴ 90BMD ∠=︒∴90AEB ∠=︒ -----------------------5分在Rt △AEB 中,AB =7,AE =72 ∴ BE =21=22AE -AB∴ tan 2BAE ∠=-------------------6分 ∵ AB CB = ,BE BP = ,∠ABE =∠DBM ∴ ABE CBP ∆≅∆ ∴ BCP BAE ∠=∠∴ tan BCP ∠=tan BAE ∠=分25.解:(1)∵抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,3)C ,与x 轴交于A (1,0)-∴203a a c c ++=⎧⎨=⎩ 解得13a c =-⎧⎨=⎩∴ 抛物线的解析式为223y x x =-++ ----------------1分 ∵222(2)3(211)3(1)4y x x x x x =--+=--+-+=--+ ∴顶点D 的坐标为( 1 ,4) -----------------2分(2)连结BC ,过点D 作DE x ⊥轴于点E . 令0y = 则2230x x -++= ∴ 11x =- ,23x = ∴ 点B 的坐标为(3 ,0)∴AOC EBD ACDB OEDC S S S S ∆∆=++四边形梯形11113(34)1249222=⨯⨯+⨯+⨯+⨯⨯=--------3分 ∵14362ABC S ∆=⨯⨯= ∴3BCD S ∆=∵点P 是在第一象限内抛物线上的一个动点,ACDB ACPB S S =四边形四边形∴3BCP BCD S S ∆∆==∴ 点P 是过 D 且与直线BC 平行的直线和抛物线的交点而直线BC 的函数解析式为3y x =-+--------------------4分∴设直线DP 的函数解析式为y x b =-+ , 过点D (1,4)∴14b -+= , 5b =∴直线DP 的函数解析式为5y x =-+ ----------------------5分把5y x =-+代入223y x x =-++中,解得11x =,22x =∴点P 的坐标为(2,3) ---------------------------------6分(3)∵点P 与点C 关于DE 对称,点B 与点A 关于 DE 对称∴APD BCD ∆≅∆∴3APD BCD S S ∆∆==.---------------7分人类在漫长的岁月里,创造了丰富多彩的音乐文化,从古至今,从东方到西方,中国文化艺术,渊源流长。

2012顺义区初三数学一模试卷及答案

2012顺义区初三数学一模试卷及答案

GEFDCB A顺义区2012届初三第一次统一练习数学试卷一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元 B .11410⨯元 C .114010⨯元 D . 12410⨯元 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a+=B .2242a a a-=C .22422a a a =D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是C .1 240,2 000,800D .1 240,800,8006.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90FEG ∠=︒,55EFD ∠=︒,则AEG ∠的度数是A .25°B .35°C .45°D .55 °EDBCA 7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12 C . 34D .1 8.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)92(2)0m -=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4CD =米,测角仪底部中心位置D 到旗杆根部B 的距离10BD =米,则旗杆AB 的高是 米. 12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心O 所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分)13()12cos303-︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩lαDC BA15.已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m .(1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若OBP △的面积为5,求点P 的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?四、解答题(本题共20分,每小题5分) 19.如图,在□ABCD 中,E 是对角线AC 的中点,EF⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠BDC =12ABD ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.ECBAF EDCBA FE DCO BA21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题:(1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图 到校方式扇形统计图22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F .请按图示数据填空:四边形DFCE 的面积S = , △DBF 的面积1S = ,△ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S = (用含S 、1S 的代数式表示). 拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG 的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'OA P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ; (2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DB CAABC (D )图3图2图1D EBCA。

顺义区中考二模数学试题及答案

顺义区中考二模数学试题及答案

CDB A顺义区初三第二次统一练习数学试卷考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1. 5月4日,在“百度搜索”的“手机型号排行榜” 中显示,排名第一位的是苹果 iphone5S ,关注指数为46 590,将46 590用科学记数法表示为A .54.65910⨯B .44.65910⨯C .50.465910⨯D .346.610⨯ 2.16的平方根是A .4±B .4C .-4D .8±3.某中学九(1)班6个同学在课间体育活动时进行1分钟跳绳比赛,跳绳个数如下:126,144,134,118,126,152.这组数据中,众数和中位数分别是A .126,126B .130,134C .126,130D .118,152 4.下图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左试图改变D .主视图改变,左视图不变 5.从1,2,3这三个数字中随机抽取两个,抽取的这两个数的和是奇数的概率是A .13 B .12C .23D .566.如图,BD 平分ABC ∠,CD ⊥BD ,D 为垂足,55C ∠=︒, 则ABC ∠的度数是A .35°B .55°C .60°D . 70° 7.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸 和爱心两种,两种气球的价格不同,但 同一种气球的价格相同.由于会场布置 需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示, 则第三束气球的价格(单位:元)为 A .19 B .18 C . 16 D .158.如图,已知边长为4的正方形ABCD , E 是BC 边上 一动点(与B 、C 不重合),连结AE ,作EF ⊥AE 交 ∠BCD 的外角平分线于F ,设BE =x ,△ECF 的面积 为y ,下列图象中,能表示y 与x 的函数关系的图象大致 是二、填空题(本题共16分,每小题4分) 9.分解因式:29xy x -= .10.如果关于x 的方程220x mx -+=有两个相等的实数根,那么m 的值为 .11.如图,AB 是⊙O 的直径,点C 是圆上一点,70BAC ∠=︒,则OCB ∠= °.12.如图,正方形ABCD 的边长为3,点E ,F 分别在边AB ,BC 上,AE =BF =1,小球P从点E 出发沿直线向点F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P 第一次碰到B C 边时,小球P 所经过的路程为 ;当小球P 第一次碰到AD 边时,小球P 所经过的路程为 ;当小球P 第n (n 为正整数)次碰到点F 时,小球P 所经过的路程为 .三、解答题(本题共30分,每小题5分)13.计算:()1cos 602311π--+-+-°.14.解不等式34(23)x --≥3(32)x -,并把它的解集在数轴上表示出来.15.已知:如图,点E 、F 在线段AD 上,AE=DF ,AB ∥CD ,∠B =∠C . 求证:BF =CE .D CFBAEFEDCBA FEDCBA-3-2-1321OC16.已知2(20a b +-=,求2(2)(3)(3)a a b a b a b +-+-的值.17.如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与x 轴交于点A ,与y 轴交于点B ,已知(2,0)A ,(0,1)B ,点C (-2,m )在直线AB 上,反比例函数y =kx的图象经过点C . (1)求一次函数及反比例函数的解析式;(2)结合图象直接写出:当0x <时,不等式k ax b x+>的解集.18.列方程或方程组解应用题:A 、B 两地相距15千米,甲从A 地出发步行前往B 地,15分钟后,乙从B 地出发骑车前往A 地,且乙骑车的速度是甲步行速度的3倍.乙到达A 地后停留45分钟,然后骑车按原路原速返回,结果甲、乙二人同时到达B 地.求甲步行的速度.四、解答题(本题共20分,每小题5分)19.如图,在ABC △中,D 、E 分别是AB 、AC 的中点,BE =2DE ,过点C 作CF ∥BE 交DE 的延长线于F . (1)求证:四边形BCFE 是菱形;(2)若4CE =,120BCF ∠=°,求菱形BCFE 的面积.20.保障房建设是民心工程,某市从加快保障房建设工程.现统计了该市从到这5年新建保障房情况,绘制成如图1、2所示的折线统计图和不完整的条形统计图.某市-新建保障房套数年增长率折线统计图 某市-新建保障房套数条形统计图(1)小颖看了统计图后说:“该市新建保障房的套数比少了.”你认为小颖的说法正确吗?请说明理由;(2)求新建保障房的套数,并补全条形统计图; (3)求这5年平均每年新建保障房的套数.图2图1FEDCB AB Axy O21.如图,O ⊙是△ABC 的外接圆,AB = AC ,过点A 作AD ∥BC 交BO 的延长线于点D .(1)求证:AD 是O ⊙的切线;(2)若O ⊙的半径OB=5,BC=8,求线段AD 的长.22.问题:如图1,在△ABC 中,BE 平分∠ABC ,CE 平分∠ACB .若∠A=80︒,则∠BEC= ;若∠A=n ︒,则∠BEC= . 探究:(1)如图2,在△ABC 中,BD 、BE 三等分∠ABC ,CD 、CE 三等分∠ACB .若∠A=n ︒,则∠BEC= ;(2)如图3,在△ABC 中,BE 平分∠ABC ,CE 平分外角∠ACM .若∠A=n ︒,则∠BEC= ;(3)如图4,在△ABC 中,BE 平分外角∠CBM ,CE 平分外角∠BCN .若∠A=n ︒,则∠BEC= .五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知关于的一元二次方程2440mx x m ++-=. (1)求证:方程总有两个实数根;(2)若m 为整数,当此方程有两个互不相等的负整数根时,求m 的值;(3)在(2)的条件下,设抛物线244y mx x m =++-与x 轴交点为A 、B (点B 在点A的右侧),与y 轴交于点C .点O 为坐标原点,点P 在直线BC 上,且OP =12BC ,求点P 的坐标.x D图4图3图2图1NM EC B AEC BADE C BA ECBA24.在△ABC 中, A B = AC ,∠A =30︒,将线段 B C 绕点 B 逆时针旋转 60︒得到线段 B D ,再将线段BD 平移到EF ,使点E 在AB 上,点F 在AC 上. (1)如图 1,直接写出 ∠ABD 和∠CFE 的度数;(2)在图1中证明: A E =CF ; (3)如图2,连接 C E ,判断△CEF 的形状并加以证明.25.如图,在平面直角坐标系xOy 中,抛物线23()5y x bx c =++过点(1,0)A ,(0,3)B ,这条抛物线的对称轴与x 轴交于点C ,点P 为射线CB 上一个动点(不与点C 重合),点D 为此抛物线对称轴上一点,且∠CPD =60︒.(1)求抛物线的解析式;(2)若点P 的横坐标为m ,△PCD 的面积为S ,求S 与m 之间的函数关系式;(3)过点P 作PE ⊥DP ,连接DE ,F 为DE 的中点,试求线段BF 的最小值.顺义区初三第二次统一练习 数学学科参考答案及评分细则一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案BACDCDCB图2图1ABCDEF F E DBA二、填空题(本题共16分,每小题4分)9.(3)(3)x y y +-; 10.± 11.20︒; 12,- 三、解答题(本题共30分,每小题5分) 13.解:()1cos 602311π--+-+-°111122π=-++- ……………………………………………………… 4分 π= ………………………………………………………………………… 5分 14.解:去括号,得 3812x -+≥96x -. ……………………………………… 1分移项,得 86x x -+≥9312--. ……………………………………… 2分 合并同类项,得 2x -≥6-. ……………………………………………… 3分 系数化1,得 x ≤3. ………………………………………………………… 4分 把它的解集在数轴上表示为…………………………………………… 5分15.证明:∵AB ∥CD ,∴A D ∠=∠. ………………………………………………………… 1分∵AE=DF ,∴AE + EF =DF + EF .即AF =DE . ……………………………………………………………… 2分在△ABF 和△DCE 中,,,,B C A D AF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△DCE .……………………………………………………… 4分 ∴ BF=CE . ……………………………………………………………… 5分16.解:2(2)(3)(3)a a b a b a b +-+-222249a ab a b =+-+………………………………………………………… 2分 2249a ab b =++ ……………………………………………………………… 3分 ∵2(20a b +-=,∴ 2a b ==.……………………………………………………………… 4分∴ 原式22429233639=++⨯=+=+ 5分17.解:(1)依题意,得20,1.a b b +=⎧⎨=⎩ 解得 1,21.a b ⎧=-⎪⎨⎪=⎩ ………………………… 2分∴一次函数的解析式为112y x =-+. ∵点C (-2,m )在直线AB 上,-3-2-132118151223.42422套数(万套)14FE ODCBA∴1(2)122m =-⨯-+=.……………………………………………… 3分 把C (-2,2)代入反比例函数y =kx中,得 4k =-. ∴反比例函数的解析式为4y x=-.…………… 4分(2)结合图象可知:当0x <时,不等式kax b x+>的解集为2x <-.…………………………………… 5分18.解:设甲步行的速度是x 千米/小时,……………………………………………… 1分由题意,得301513x x+=. ……………………………………………… 2分 解得 5x =.………………………………………………………… 3分 经检验,5x =是所列方程的解.…………………………………………… 4分答:甲步行的速度是5千米/小时. ……………………………………………… 5分 四、解答题(本题共20分,每小题5分) 19.(1)证明:∵D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,BC =2DE .………………………………………………… 1分 ∵CF ∥BE ,∴四边形BCFE 是平行四边形.……………………………………… 2分 ∵BE =2DE ,BC =2DE , ∴BE = BC .∴□BCFE 是菱形. …………………………………………………… 3分(2)解:连结BF ,交CE 于点O .∵四边形BCFE 是菱形,120BCF ∠=°, ∴60BCE FCE ∠=∠=°,BF CE ⊥.∴△BCE 是等边三角形.……………………… 4分 ∴4BC CE ==.∴322sin 6024432BF BO BC ==︒=⨯⨯=. ∴114438322BCFE S CE BF ==⨯⨯=菱形.……………………… 5分 20.解:(1)小颖的说法不正确.……………………………………………………… 1分理由:虽然新建保障房套数的年增长率为20%,比的年增长率25%低,但是新建保障房套数还是比增长了20%,因此,小颖的说法不正确.…………………………………………………………… 2分 (2)新建保障房套数:15(120%)18⨯+=(万套).…………… 3分D 补全统计图如右图:……………………… 4分(3)1012151823.415.685++++=(万套)答:这5年平均每年新建保障房的套数是15.68万套.………………… 5分21.(1)证明:连结AO,并延长交O⊙于E,交BC于F.∵AB =AC ,∴AB AC=.∴AE BC⊥.…………………………1分∴90EFC∠=°.∵AD∥BC,∴90FAD EFC∠=∠=°.∵AO是半径,∴AD是O⊙的切线.………………………2分(2)解:∵AE是直径,AE BC⊥,BC=8,∴142BF CF BC===.……………………………………………3分∵OB=5,∴3OF==.∵AD∥BC,∴△AOD∽△FOB.………………………………………………………4分∴OA ADOF BF=.∴542033OA BFADOF⨯===.…………………………………………5分22.解:问题:如图1,若∠A=80︒,则∠BEC=130°;若∠A=n︒,则∠BEC=1902n︒+︒.探究:(1)如图2,若∠A=n︒,则∠BEC=2603n︒+︒;(2)如图3,若∠A=n︒,则∠BEC=12n︒;(3)如图4,若∠A=n︒,则∠BEC=1902n︒-︒.(……每空1分,共5分)五、解答题(本题共22分,23小题7分,24小题8分,25小题7分)23.(1)证明:∵22244(4)161644(2)m m m m m=--=-+=-≥0, (1)分∴方程总有两个实数根.……………………………………………… 2分(2)解:∵42(2)2mxm-±-==,F A ∴142(2)42m m x m m -+--==,242(2)12m x m---==-.………… 3分∵方程有两个互不相等的负整数根, ∴40m m-<. ∴0,40.m m >⎧⎨-<⎩或0,40.m m <⎧⎨->⎩∴04m <<.∵m 为整数,∴m =1或2或3. ………………………………………… 4分当m =1时,121431x x -==-≠,符合题意; 当m =2时,122412x x -==-=,不符合题意;当m =3时,1234133x x -==-≠,但不是整数,不符合题意.∴m =1. ………………………………………………………………… 5分(3)解:m =1时,抛物线解析式为243y x x =++.令0y =,得121,3x x =-=-;令x =0,得y =3. ∴A (-3-1,0),C (0,3). ∴221310BC =+= ∴OP =12BC 10=.设直线BC 的解析式为y kx b =+,∴3,0.b k b =⎧⎨-+=⎩ ∴3,3.b k =⎧⎨=⎩∴直线BC 的解析式为33y x =+.设00(,33)P x x +,由勾股定理有:2220010(33)(x x ++=, 整理,得 2002036130x x ++=.解得 00113210x x =-=-或. ∴13(,)22P -或139(,)1010P --.…………………………………… 7分24.(1)∠ABD= 15 °,∠CFE= 45 °.……………………………………… 2分(2)证明:连结CD 、DF .∵线段 B C 绕点 B 逆时针旋转 60︒得到线段 B D , ∴BD = BC ,∠CBD =60︒. ∴△BCD 是等边三角形. ∴CD = BD .图2∵线段BD 平移到EF , ∴EF ∥BD ,EF = BD .∴四边形BDFE 是平行四边形,EF = CD .……… 3分 ∵AB = AC ,∠A =30︒, ∴∠ABC =∠ACB =75︒.∴∠ABD =∠ABC -∠CBD =15︒=∠ACD . ∴∠DFE =∠ABD =15︒,∠AEF =∠ABD =15︒.∴∠AEF =∠ ACD =15︒.………………………………………………… 4分 ∵∠CFE =∠A+∠AEF =30︒+15︒=45︒, ∴∠CFD =∠CFE -∠DFE =45︒-15︒=30︒.∴∠A =∠CFD =30︒. …………………………………………………… 5分 ∴△AEF ≌△FCD (AAS ).∴A E =CF . …………………………………………………………… 6分(3)解:△CEF 是等腰直角三角形.证明:过点E 作EG ⊥CF 于G , ∵∠CFE =45︒,∴∠FEG =45︒. ∴EG =FG .∵∠A =30︒,∠AGE =90︒,∴12EG AE =.∵A E =CF ,∴12EG CF =. ∴12FG CF =. ∴G 为CF 的中点.∴EG 为CF 的垂直平分线.∴EF =EC .∴∠CEF =2∠FEG=90︒.∴△CEF 是等腰直角三角形.………………………………………… 8分25.解:(1)依题意,得)0,55b c ++=⎪⎪⎪=⎪⎩解得6,5.b c =-⎧⎨=⎩ ∴抛物线的解析式为265)y x x =-+. 即2363355y x x =-+. ………………………………………… 2分 (2)抛物线的对称轴为3x =.∴C (3,0).……………………………………………………………… 3分第11页 共11页 ∵3)B ,∴3OC =,3OB = ∴3tan OB OCB OC ∠== ∴∠OCB =30︒.∴∠PCD =60︒.∵∠CPD =60︒,∴∠CDP =60︒.∴△PCD 是等边三角形.………………………………………………… 4分 过点P 作PQ ⊥. ∴3(3)3m CP CD -==,PG=CQ=3-m . ∴21123(3)3(3))2233PCD m S CD PG m m -==⨯⨯-=-. 即232333S m =-+m <3). ……………………………… 5分 (3)连结PF 、CF .∵PE ⊥DP ,F 为DE 的中点,∴PF=12DE =DF . ∵CP=CD ,CF=CF ,∴ △CPF ≌△CDF .∴∠PCF=∠DCF .∴点F 在∠PCD 的平分线所在的直线上.…………………………… 6分 ∴BF 的最小值为点B 到直线CF 的距离.∵∠OCB =∠BCF =30︒.∴点B 到直线CF 的距离等于OB .∴BF 3.…………………………………………………… 7分 各题如有其他解法,请老师们参考本细则酌情给分.。

12.2012年1月顺义初三数学期末试题及答案

12.2012年1月顺义初三数学期末试题及答案

12.顺义区2011——2012学年度第一学期期末九年级教学质量检测数学试卷一、选择题(共8道小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.21-的绝对值是 A .2- B .2 C .21 D .21- 2.若一个多边形的内角和等于︒540,则这个多边形的边数是 A .4 B .5 C .6 D .73.在△ABC 中,∠C =90°,AB =5,BC =4,则sin B 的值是A .53 B .54 C .43 D .354.若两个相似三角形的相似比为1∶2,则它们面积的比为A .2∶1B .1∶2C .1∶4D .1∶5 5.如图,在⊙O 中,弦AB 的长为10,圆周角45ACB ∠=︒,则这个圆的直径AD 为A .25B .210C .215D .220 6.对于函数xm y 4-=,当0<x 时, y 的值随x 值的增大而减小,则m 的取值范围是A .4>mB .4<mC .4->mD .4-<m7.某中学在建党九十周年时,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛,那么九年级同学获得前两名的概率是 A .12 B .13C .14D .16D CBA 8.如图,将抛物线221x y -=平移后经过原点O 和点)0,6(A ,平移后的抛物线的顶点为点B ,对称轴与抛物线221x y -=相交于点C ,则图中直线BC 与两条抛物线围成的阴影部分的面积为 A .221 B .12 C .227 D .15二、填空题(共4道小题,每小题4分,共16分) 9.分解因式:=++x x x 4423 . 10.抛物线322+-=x x y 的顶点坐标是 . 11.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,若9=MN ,则=BC .12.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为 .三、解答题(共5道小题,每小题5分,共25分) 13.计算:)21(30tan )2(60sin 21--︒---︒-.14.已知02=-b a ,求代数式2(2)2()()()a a b a b a b a b -++-++的值.15.已知:如图,△ABC 中,D 是AB 的中点,且B ACD ∠=∠,若 AB=10,求AC 的长.16.抛物线c bx x y ++-=2过点(0,-3)和(2,1),试确定抛物线的解析式,并求出抛物线与x 轴的交点坐标.17.甲、乙、丙三位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学打第一场比赛的概率.N M E D CBA9.顺义初三 第 3 页 共 11 页四、解答题(共3道小题,每小题5分,共15分) 18.已知:如图,在Rt ABC △中,︒=∠90ACB ,点D 是斜边AB 上的一点,且CD=AC=3,AB=4,求B cos ,ADC ∠sin 及DCA ∠21cos的值.19.如图,AB 为⊙O 的弦,C 、D 分别是OA 、OB 延长线上的点,且CD ∥AB ,CD 交⊙O于点E 、F ,若3=OA ,2=AC .(1)求OD 的长; (2)若55sin =C ,求弦EF 的长.20.已知:反比例函数xm y 2-=(2≠m 且m 为正整数)的图象分布在第二、四象限,与一次函数b x y +-=2(b 为常数)的图象相交于点),1(n P .试确定反比例函数和一次函数的解析式.五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°, ∠A =60°,AC=6,试求BC 、CD 的长.22.已知:如图,AB 是⊙O 的弦,2=OB ,︒=∠30B ,点C 是弦AB 上一动点(不与点A 、B 重合),连结CO 并延长交⊙O 于点D ,连结AD . (1)求弦AB 的长;(2)当︒=∠20D 时,求BOD ∠的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似?FEDCBA OD OCBABADF EACB DP N M B B B A A A C C C (E )六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.如图,AB 是⊙O 的直径,AC 是弦,∠ACD =21∠AOC ,AD ⊥CD 于点D .(1)求证:CD 是⊙O 的切线;(2)若AB=10,AD =2,求AC 的长.24.在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或B C 相交于点E .点M 在线段AP 上,点N 在线段BP 上,且PM=PN ,3tan =∠EMP .(1)如图①,当点E 与点C 重合时,求MP 的长;(2)设x AP =,△ENB 的面积为y ,求y 与x 的函数关系式,并求出当x 取何值时,y 有最大值,最大值是多少?图① 备用图 备用图25.已知:如图,在平面直角坐标系xOy 中,边长为32的等边ABC △随着顶点A 在抛物线x x y 322-=上运动而运动,且始终有BC ∥x 轴.(1)当顶点A 运动至与原点重合时,顶点C 是否在该抛物线上?(2)ABC △在运动过程中有可能被x 轴分成两部分,当上下两部分的面积之比为1∶8(即8:1:=下部分上部分S S )时,求顶点A 的坐标;(3)ABC △在运动过程中,当顶点B 落在坐标轴上时,直接写出顶点C 的坐标.DOCBA9.顺义初三 第 5 页 共 11 页9.顺义区2011——2012学年度第一学期期末九年级教学质量检测数学学科参考答案及评分细则二、填空题(共4道小题,每小题4分,共16分)9.2)2(+x x ; 10.(1,2); 11.12; 12.(1,3)或(5,1). 三、解答题(共5道小题,每小题5分,共25分) 13.解:)21(30tan )2(60sin 21--︒---︒-2133)21(232+---⨯= …………………………………………………4分 2133213+-+= 1332+=……………………………………………………………………5分 14.解:2(2)2()()()a a b a b a b a b -++-++222222222b ab a b a ab a +++-+-= …………………………………3分 224b a -= ……………………………………………………………………4分 ∵02=-b a ,∴ 原式)2)(2(b a b a -+==0.…………………………………………………5分 15.解:∵B ACD ∠=∠,A A ∠=∠,∴△ACD ∽△ABC . ……………………………………………………………2分 ∴ACADAB AC =. …………………………………………………………………3分 ∵D 是AB 的中点,AB=10,∴521==AB AD . ……………………………………………………………4分 ∴ACAC 510=. ∴502=AC . ∴25=AC (舍负). ………………………………………………………5分16.解:∵抛物线c bx x y ++-=2过点(0,-3)和(2,1),∴ ⎩⎨⎧=++--=.124,3c b c …………………………………………………………2分解得 ⎩⎨⎧-==.3,4c b抛物线的解析式为342-+-=x x y .…………………………………………3分 令0=y ,得 0342=-+-x x ,即 0342=+-x x . ∴ 11=x ,32=x .∴抛物线与x 轴的交点坐标为(1,0)、(3,0). ……………………………5分17.解:方法一:画树状图如下:其中一人 甲 乙 丙另一人 乙 丙 甲 丙 甲 乙 ………………3分 结果 (甲乙)(甲丙)(乙甲)(乙丙)(丙甲)(丙乙)所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种,所以P (甲乙)=3162=. …………………………………………………………5分 方法二: 列表法如下: 甲 乙 丙甲 乙甲 丙甲乙 甲乙 丙乙丙 甲丙 乙丙所有可能出现的情况有6种,其中甲乙两位同学组合的情况有两种, 所以P (甲乙)=3162=.…………………………………………………………5分 四、解答题(共3道小题,每小题5分,共15分) 18.解:在Rt △ABC 中,∵︒=∠90ACB ,AC=3,AB=4,∴722=-=AC AB BC . ……………………………………………1分∴47sin cos ===AB BC A B .……………………………………………2分 ∵CD=AC ,∴A ADC ∠=∠.9.顺义初三 第 7 页 共 11 页EDBCAGFEDCBA O∴47sin sin ==∠A ADC .……………3分过点C 作AD CE ⊥于E ,∴DCA ACE ∠=∠21,︒=∠+∠90A ACE .∴47sin cos 21cos ==∠=∠A ACE DCA . ……………………………5分 19.解:(1)∵3=OA ,2=AC ,∴5=OC . ………………………………………………………………1分 ∵CD ∥AB ,∴ODOBOC OA =.∵3==OA OB . ∴5=⋅=OAOCOB OD . …………………………………………………2分 (2)过点O 作OG ⊥CD 于G ,连结OE .∴3==OA OE .∵55sin =C , ∴55=OC OG . ∴5=OG .………………………………………………………………3分 在Rt △OEG 中,有 25922=-=-=OG OE EG . ……………4分 ∵EF OG ⊥,EF 是弦,∴42==EG EF . ………………………………………………………5分20.解:由已知,得 02<-m ,∴2<m . ………………………………………………………………………2分 ∵m 为正整数, ∴1=m .∴反比例函数的解析式为xy 1-=. …………………………………………3分 ∵点),1(n P 在反比例函数的图象上,∴1-=n . ………………………………………………………………………4分 把)1,1(-P 代入一次函数b x y +-=2中,得 b +⨯-=-121. ∴1=b .∴一次函数的解析式为12+-=x y . ………………………………………5分五、解答题(共2道小题,21小题5分,22小题6分,共11分) 21.解:过点B 作BM ⊥FD 于点M .在Rt △ABC 中,∵∠ACB =90°,∠A =60°,AC=6, ∴ACBCA =tan ,∠ABC =90°-∠A =30°. ∴3660tan 6tan =︒⨯=⋅=A AC BC . …………………………………2分 ∵AB ∥CF ,∴∠BCM =∠ABC =30°. ∴33213630sin =⨯=︒⋅=BC BM , 9233630cos =⨯=︒⋅=BC CM .…3分 在△EFD 中,∠F =90°, ∠E =45°, ∴∠EDF =45°.∴33==BM DM . ………………………………………………………4分 ∴339-=-=DM CM CD . ……………………………………………5分22.解:(1)过点O 作AB OE ⊥于点E ,在Rt △OEB 中,2=OB ,︒=∠30B ,∴323230cos =⨯=︒⋅=OB BE . ………1分 ∴322==BE AB . …………………………2分(2)连结OA ,∵OD OB OA ==, ∴︒=∠=∠30B OAB ,︒=∠=∠20D OAD . ∴︒=︒+︒=∠+∠=∠502030OAD OAB BAD .∴︒=∠=∠1002BAD BOD . …………………………………………4分 (3)∵∠BCO=∠DAB +∠D ,∴∠BCO >∠DAB ,∠BCO >∠D .∴要使△DAC 与△BOC 相似,只能∠DCA=∠BCO=90°. 此时,∠BOC=60°,∠BOD=120°,∴∠DAC=60°. ∴△DAC ∽△BOC .∵∠BCO =90°,即OC ⊥AB ,∴AC =21AB =3. ∴当3=AC 时,以A 、C 、D 为顶点的三角形与以B 、O 、C 为顶点的三角形相似 . ………………………………………………………………6分ED OC B A9.顺义初三 第 9 页 共 11 页E D O C B A六、解答题(共3道小题,23小题6分,24小题7分,25小题8分,共21分) 23.(1)证明:∵OC OA =,∴OAC OCA ∠=∠.∵︒=∠+∠+∠180OAC OCA AOC , ∴︒=∠+∠1802OCA AOC .∴︒=∠+∠9021OCA AOC . ∵∠ACD =21∠AOC ,∴︒=∠+∠90OCA ACD . 即︒=∠90DCO . 又∵OC 是半径,∴CD 是⊙O 的切线. ……………………………………………………3分(2)解:过点A 作OC AE ⊥,垂足为E . ∵AD ⊥CD ,︒=∠90DCO ,∴AD ∥CO ,AE ∥DC . ∴四边形DCEA 是矩形. ∴2==AD CE . …………………………4分 ∵AB 是直径,且AB=10, ∴5==OC OA . ∴325=-=-=CE OC OE .∴在Rt △AEO 中,4352222=-=-=OE OA AE . …………………5分 ∴在Rt △ACE 中,52422222=+=+=AE CE AC . ……………6分24.解:(1)∵在Rt ABC △中,︒=∠90ACB ,30=BC ,40=AC ,∴5040302222=+=+=AC BC AB . …………………………1分由面积公式可得 AC BC EP AB ⋅=⋅.∴24504030=⨯=⋅=AB AC BC EP . ……………………………………2分 ∵PE ⊥AB ,3tan =∠EMP ,∴8tan =∠=EMPEPMP . ………………………………………………3分 (2)分两种情况考虑:①当点E 在线段AC 上时,如图②,在Rt △AEP 和Rt △ABC 中,∵︒=∠=∠90ACB APE ,A A ∠=∠,∴△APE ∽△ACB .∴AC AP BC EP =,即 4030xEP =, ∴x EP 43=.∵3tan =∠EMP ,图②P N MECAB∴PN x EMP EP MP ==∠=41tan .∴x x x PN AP AB BN 45504150-=--=--=.∴x x x x EP BN y 475321543)4550(21212+-=⋅-=⋅=.………………4分 当点E 与点C 重合时,32244022=-=AP .∴自变量x 的取值范围是:320<<x . …………………………………5分 ②当点E 在线段BC 上时,如图③, 在Rt △BPE 和Rt △BCA 中,∵︒=∠=∠90BCA BPE ,B B ∠=∠, ∴△BPE ∽△BCA .∴BC BP AC EP =,即 305040x EP -=, ∴)50(34x EP -=.∵3tan =∠EMP ,∴PN x EMP EP MP =-=∠=)50(94tan . ∴)50(95)50(9450x x x PN AP AB BN -=---=--=.∴2)50(2710)50(34)50(952121x x x EP BN y -=-⨯-⨯=⋅=. y 与x 的函数关系式为⎪⎪⎩⎪⎪⎨⎧<≤-<<+-=)5032()50(2710)320(475321522x x x x x y ……………6分当点E 在线段AC 上时,2375)20(3215475321522+--=+-=x x x y , 此时,当20=x 时,y 有最大值为2375.而当点E 在线段BC 上时,y 的最大值为点E 与点C 重合时,显然没有2375大.∴当20=x 时,y 有最大值,最大值为2375.……………………………7分图③P NM EC A B9.顺义初三 第 11 页 共 11 页25.解:(1)当顶点A 运动至与原点重合时,设BC 与y 轴交于点D ,如图所示.∵BC ∥x 轴,BC=AC=32, ∴3=CD ,3=AD .∴C 点的坐标为)3,3(-. ……………1分 ∵当3=x 时,3332)3(2-=⨯-=y .∴当顶点A 运动至与原点重合时,顶点C 在抛物线上.……………2分(2)过点A 作BC AD ⊥于点D ,设点A 的坐标为(x ,x x 322-).∵8:1:=下部分上部分S S , ∴)32(32x x AD -=.∵等边ABC △的边长为32,∴360sin =︒⋅=AC AD . ∴3)32(32=-x x . ∴01322=--x x .解方程,得 =x 23±.∴顶点A 的坐标为)1,23(+或)1,23(-.…………………………5分(3)当顶点B 落在坐标轴上时,顶点C 的坐标为)0,632(-、)0,632(+、)6,32(-. …………………………………………………………… 8分。

2011与2012北京各区中考数学模考大题汇编_之一_(试题_答案_与解析很详细)

2011与2012北京各区中考数学模考大题汇编_之一_(试题_答案_与解析很详细)

一、选择题(共6小题)1、如图,扇形OAB的半径OA=6,圆心角∠AOB=90°,C是上不同于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点H在线段DE上,且EH=DE.设EC的长为x,△CEH的面积为y,选项中表示y与x的函数关系式的图象可能是()A、B、C、D、2、一电工沿着如图所示的梯子NL往上爬,当他爬到中点M处时,由于地面太滑,梯子沿墙面与地面滑下,设点M的坐标为(x,y)(x>0),则y与x之间的函数关系用图象表示大致是()A、B、C、D、3、如图所示的正方体的展开图是()A、B、C、D、4、已知:如图,直线y=﹣x+4分别与x轴,y轴交于A、B两点,从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A、B、6C、D、5、(2005•湖州)如图,在等边△ABC中,M、N分别是边AB,AC的中点,D为MN上任意一点,BD,CD的延长线分别交于AB,AC于点E,F.若=6,则△ABC的边长为()A、B、C、D、16、下列图案给出了折叠一个直角边长为2的等腰直角三角形纸片(图1)的全过程:首先对折,如图2,折痕CD 交AB于点D;打开后,过点D任意折叠,使折痕DE交BC于点E,如图3;打开后,如图4;再沿AE折叠,如图5;打开后,折痕如图6.则折痕DE和AE长度的和的最小值是()A、B、1+C、2D、3二、填空题(共5小题)7、如图,扇形CAB的圆心角∠ACB=90°,半径CA=8cm,D为弧AB的中点,以CD为直径的⊙O与CA、CB相交于点E、F,则弧AB的长为_________cm,图中阴影部分的面积是_________cm2.8、已知在△ABC中,BC=a.如图1,点B1、C1分别是AB、AC的中点,则线段B1C1的长是_________;如图2,点B1、B2,C1、C2分别是AB、AC的三等分点,则线段B1C1+B2C2的值是_________;如图3,点B1、B2、…、B n,C1、C2、…、C n分别是AB、AC的(n+1)等分点,则线段B1C1+B2C2+…+B n C n的值是_________.9、已知:如图,在Rt△ABC中,点D1是斜边AB的中点,过点D1作D1E1⊥AC于点E1,连接BE1交CD1于点D2;过点D2作D2E2⊥AC于点E2,连接BE2交CD1于点D3;过点D3作D3E3⊥AC于点E3,如此继续,可以依次得到点D4、D5、…、D n,分别记△BD1E1、△BD2E2、△BD3E3、…、△BD n E n的面积为S1、S2、S3、…S n.设△ABC的面积是1,则S1=_________,S n=_________(用含n的代数式表示).10、如图平面内有公共端点的五条射线OA,OB,OC,OD,OE,从射线OA开始,在射线上写出数字1,2,3,4,5;6,7,8,9,10;….按此规律,则“12”在射线_________上;“2011”在射线_________上.11、如图,在函数(x>0)的图象上,有点P1,P2,P3,…,P n,P n+1,若P1的横坐标为a,且以后每点的横坐标与它前面一个点的横坐标的差都为2,过点P1,P2,P3,…,P n,P n+1分别作x轴、y轴的垂线段,构成若干个矩形如图所示,将图中阴影部分的面积从左到右依次记为S1,S2,S3,…,S n,则S1=_________,S1+S2+S3+…+S n=_________.(用n的代数式表示)三、解答题(共19小题)12、已知抛物线经过点A(5,0),且满足bc=0,b<c.(1)求该抛物线的解析式;(2)点M在直线y=2x上,点P在抛物线上,求当以O、A、P、M为顶点的四边形为平行四边形时的P点坐标.13、在△ABC中,D为AB边上一点,过点D作DE∥BC交AC于点E,以DE为折线,将△ADE翻折,设所得的△A′DE与梯形DBCE重叠部分的面积为y.(1)如图(甲),若∠C=90°,AB=10,BC=6,,则y的值为_________;(2)如图(乙),若AB=AC=10,BC=12,D为AB中点,则y的值为_________;(3)若∠B=30°,AB=10,BC=12,设AD=x.①求y与x的函数解析式;②y是否有最大值,若有,求出y的最大值;若没有,请说明理由.14、若△ABC和△ADE均为等边三角形,M、N分别是BE、CD的中点.(1)当△ADE绕A点旋转到如图①的位置时,求证:CD=BE,△AMN是等边三角形;(2)如图②,当∠EAB=30°,AB=12,AD=时,求AM的长.15、阅读材料并解答问题如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,可以得出结论△ABC 的面积与△AEG的面积相等.(1)在图①中的△ABC的直角边AB上任取一点H,连接CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连接EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为_________.(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是_________.(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是_________.16、已知:反比例函数经过点B(1,1).(1)求该反比例函数解析式;(2)连接OB,再把点A(2,0)与点B连接,将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此双曲线上,并说明理由;(3)若该反比例函数图象上有一点F(m,)(其中m>0),在线段OF上任取一点E,设E点的纵坐标为n,过F点作FM⊥x轴于点M,连接EM,使△OEM的面积是,求代数式的值.17、已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD.探究下列问题:(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=_________;(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=_________;(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求CD的最大值及相应的∠ACB的度数.18、已知:如图,在▱EFGH中,点F的坐标是(﹣2,﹣1),∠EFG=45°.(1)求点H的坐标;(2)抛物线C1经过点E、G、H,现将C1向左平移使之经过点F,得到抛物线C2,求抛物线C2的解析式;(3)若抛物线C2与y轴交于点A,点P在抛物线C2的对称轴上运动.请问:是否存在以AG为腰的等腰三角形AGP?若存在,求出点P的坐标;若不存在,请说明理由.19、已知:如图,二次函数图象的顶点坐标为C(1,﹣2),直线y=kx+m的图象与该二次函数的图象交于A、B两点,其中A点坐标为(3,0),B点在y轴上.点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这个二次函数的图象交于点E.(1)求这个二次函数的解析式;(2)设点P的横坐标为x,求线段PE的长(用含x 的代数式表示);(3)点D为直线AB与这个二次函数图象对称轴的交点,若以点P、E、D为顶点的三角形与△AOB相似,请求出P 点的坐标.20、已知:矩形OABC的顶点O在平面直角坐标系的原点,边OA、OC分别在x、y轴的正半轴上,且OA=3cm,OC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求点N的坐标;(2)试求出多边形OAMN的面积S与t的函数关系式;(3)t为何值时,以△OAN的一边所在直线为对称轴翻折△OAN,翻折前后的两个三角形所组成的四边形为菱形?21、已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0.(1)求证:方程总有实数根;(2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数?22、猜想、探究题:(1)观察与发现小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).你认为△AEF是什么形状的三角形?(2)实践与运用将矩形纸片ABCD(AB<CD)沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D'处,折痕为EG(如图④);再展平纸片(如图⑤).猜想△EBG的形状,证明你的猜想,并求图⑤中∠FEG的大小.23、已知:如图,AF为△ABC的角平分线,以BC为直径的圆与边AB交于点D,点E为弧BD的中点,连接CE交AB于H,AH=AC.(1)求证:AC与⊙O相切;(2)若AC=6,AB=10,求EC的长.24、(1)已知:如图1,在四边形ABCD中,E是AD上一点,EC∥AB,EB∥CD,若S△DEC=1,S△ABE=3,则S△BCE= _________;若S△DEC=S1,S△ABE=S2,S△BCE=S,请直接写出S与S1、S2间的关系式:_________;(2)如图2,△ABC、△DCE、△GEF都是等边三角形,且A、D、G在同一直线上,B、C、E、F也在同一直线上,S△ABC=4,S△DCE=9,试利用(1)中的结论得△GEF的面积为_________.25、已知:如图,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,OC=OA,△ABC的面积为2.(1)求抛物线的解析式;(2)若平行于x轴的动直线DE从点C开始,以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC 于点E、点D,同时动点P从点B出发,在线段OB上以每秒2个单位的速度向原点O运动.当点P运动到点O时,直线DE与点P都停止运动.连接DP,设点P的运动时间为t秒.①当t为何值时,的值最小,并求出最小值;②是否存在t的值,使以P,B,D为顶点的三角形与△ABC相似.若存在,求出t的值;若不存在,请说明理由.26、已知:如图,△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°.(1)如图1,点C、D分别在边OA、OB上,连接AD,BC,点M为线段BC的中点,连接OM,请你猜想OM与AD的数量关系:_________(直接写出答案,不必证明);(2)如图2,在图1的基础上,将△OCD绕点O逆时针旋转一个角度α(0°<α<90°).①OM与AD的数量关系是否仍成立,若成立请证明,若不成立请说明理由;②求证:OM⊥AD.27、已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4).(1)求抛物线顶点D的坐标;(2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?28、(2009•重庆)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G 构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29、已知,点P是∠MON的平分线上的一动点,射线PA交射线OM于点A,将射线PA绕点P逆时针旋转交射线ON于点B,且使∠APB+∠MON=180°.(1)利用图1,求证:PA=PB;(2)如图2,若点C是AB与OP的交点,当S△POB=3S△PCB时,求PB与PC的比值;(3)若∠MON=60°,OB=2,射线AP交ON于点D,且满足且∠PBD=∠ABO,请借助图3补全图形,并求OP的长.30、已知二次函数y=(k2﹣1)x2﹣(3k﹣1)x+2.(1)二次函数的顶点在x轴上,求k的值;(2)若二次函数与x轴的两个交点A、B均为整数点(坐标为整数的点),当k为整数时,求A、B两点的坐标.答案与评分标准一、选择题(共6小题)1、如图,扇形OAB的半径OA=6,圆心角∠AOB=90°,C是上不同于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点H在线段DE上,且EH=DE.设EC的长为x,△CEH的面积为y,选项中表示y与x的函数关系式的图象可能是()A、B、C、D、考点:动点问题的函数图象。

2011顺义一模及答案

2011顺义一模及答案

2011年北京顺义初三一模数学试题及答案一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.12-的绝对值是 A .2B .2-C .12D . 12-2. 某区在一次扶贫助残活动中,共捐款136 000元.将136 000元用科学记数法表示为 A .61.3610⨯元 B .60.13610⨯元 C .513.610⨯元 D .51.3610⨯元3.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数分别为6 , 10 , 5 , 3 , 4 , 8 , 4 ,这组数据的中位数和极差分别是 A .4, 7 B .5, 7 C .7, 5 D .3, 7 4. 下列图形中,是中心对称图形的是 A.等边三角形 B.等腰直角三角形 C.等腰梯形 D.菱形 5.几何体的三视图如下图所示,那么这个几何体是6. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A . 2S =B . 4S =C . 24S <<D .4S >7.如图,ABC △内接于圆O ,50A =∠,60ABC =∠,BD 是圆O 的直径, BD 交AC于点E ,连结DC ,则BEC ∠等于 A .50︒ B .60︒ C .70︒ D .110︒E ABCDOA .B .C .D .主视图左视图俯视图8.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的二、填空题(本题共16分, 每小题4分) 9. 若分式223x x --有意义,则x 的取值范围是 . 10.分解因式: 322ab ab ab ++= .11. 从下面的4张牌中,任意抽取两张.其点数和是奇数的概率是 .12. 将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.三、解答题(本题共30分,每小题5分)13.计算: 0212124sin 60(13)()2--︒--+14. 解不等式2151132x x -+-≥,并把它的解集在数轴上表示出来. 15. 已知a 是一元二次方程2320x x +-=的实数根,求代数式2352362a a a a a -⎛⎫÷+- ⎪--⎝⎭的值.C .D . 1 1 2 3 3.5 xy 0 A . 1 1 2 3 3.5xy 0 B .1 123 3.5 xy 0 1 1 2 3 3.5 xy 0 DCBAPM16 已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =;17. 列方程或方程组解应用题:我区教委要求各学校师生开展“彩虹读书活动”. 某校九年级一班和九年级二班的学生向学校图书馆借课外读物共196本,一班为每位学生借3本,二班为每位学生借2本,一班借的课外读物数量比二班借的课外读物数量多44本,求九年级一班和二班各有学生多少人?18. 已知:如图,在平面直角坐标系xOy 中,一次函数24y x =-+的图象分别与x y 、轴交于点A 、 B ,点P 在x 轴上,若6ABP S ∆=,求直线PB 的函数解析式.四、解答题(本题共20分,每小题5分)19.已知:如图,梯形ABCD 中,AD ∥BC ,90B ∠=︒,4AD AB ==,7BC =,点E 在BC 边上,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点'C 处. (1)求'C DE ∠的度数;(2)求△'C DE 的面积.C'ED CBA20. 已知:如图,AB 是O 的直径,BC 切O 于B ,AC 交O 于P ,D 为BC 边的中点,连结DP .(1) DP 是O 的切线;(2) 若3cos 5A =,O 的半径为5, 求DP 的长.21. 学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了右边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题: (1)该校学生报名总人数有多少人?(2)从表中可知选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整.22. 如图,将正方形沿图中虚线(其x y <)剪成①② ③ ④ 四块图形,用这四块图形恰好能拼成一个矩形(非正方形).(1)画出拼成的矩形的简图; (2)求xy的值.五、解答题(本题共22分,第23题8分,第24题7分,第25题7分)23. 已知:关于x 的一元二次方程23(1)230mx m x m --+-= ()m 为实数 (1) 若方程有两个不相等的实数根,求m 的取值范围; (2)求证:无论m 为何值,方程总有一个固定的根;(3)若m 为整数,且方程的两个根均为正整数,求m 的值.yy x y x y x x④③②①羽毛球 25% 体操40%OPC D B A24. 已知:如图,等边△ABC 中,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,∠BAE =∠BDF ,点M 在线段DF 上,∠ABE =∠DBM .(1)猜想:线段AE 、MD 之间有怎样的数量关系,并加以证明;(2)在(1)的条件下延长BM 到P ,使MP =BM ,连接CP ,若AB =7,AE =72,求tan ∠BCP 的值.25. 已知:如图,抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,3)C ,与x 轴交于A 、B 两点,点A 的坐标为(1,0)-.(1)求抛物线的解析式及顶点D 的坐标;(2)设点P 是在第一象限内抛物线上的一个动点,求使与四边形ACDB 面积相等的四边形ACPB 的点P 的坐标;(3)求APD ∆的面积.顺义区2011年九年级第一次统一练习数学试题参考答案及评分参考一、选择题 题号 1 2 3 4 5 6 7 8 答案 CDBDCBCA二、填空题 9. 32x ≠; 10. 2(1)ab b + ; 11. 12; 12. 81 ; 第45行第15列 . 三、解答题13.解:原式=32234142⨯-⨯-+ ----------------------------4分 =233+ ---------------------------------------------5分 14. 解:去分母,得 2(21)3(51)6x x --+≥ -------------------------1分 去括号,得 421536x x ---≥ ----------------------------2分移项合并同类项,得 1111x -≥ ----------------------------3分系数化为1,得 1x ≤- --------------------------------4分所以,此不等式的解集为1x ≤- ,在数轴上表示如图所示-----------------------------5分15. 解: 原式=3(2)(2)53(2)22a a a a a a a -+-⎡⎤÷-⎢⎥---⎣⎦------------2分 =2393(2)2a a a a a --÷-- =323(2)(3)(3)a a a a a a --⨯-+- --------------------3分=13(3)a a +=2139a a+ ------------------------4分∵ a 是方程2320x x +-=的实数根,∴ 232a a += ∴ 原式=21113(3)326a a ==+⨯ ------------------------------5分16. 证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒ --------1分 ∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒∴ DB DC = ----------------------2分 ∵ BE AC ⊥ ∴ 90AEB ∠=︒∴ 90A ABE ∠+∠=︒ ∵ 90CDA ∠=︒∴ 90A ACD ∠+∠=︒∴ ABE ACD ∠=∠ ----------------3分 在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆ ------------------4分 ∴BF AC = --------------------------5分17. 解:设九年级一班有x 名学生,二班有y 名学生. ----------------------1分 根据题意列方程组,得321963244x y x y +=⎧⎨-=⎩--------------------------------3分解此方程组,得 4038x y =⎧⎨=⎩答:九年级一班有40名学生,二班有38名学生. -----------------------5分18. 解:令0y =,得 2x = ∴ A 点坐标为(2 ,0) 令0x =, 得 4y =∴ B 点坐标为(0 ,4)---------------------------------1分 ∵ 6ABP S ∆= ∴1462AP ⨯⨯= 即3AP = ∴ P 点的坐标分别为1(1,0)P -或2(5,0)P -----------2分 设直线PB 的函数解析式为y kx b =+∴ 04k b b -+=⎧⎨=⎩ 或504k b b +=⎧⎨=⎩------------------4分 ∴ 44k b =⎧⎨=⎩ 或454k b ⎧=-⎪⎨⎪=⎩ ∴ 直线PB 的函数解析式为44y x =+或445y x =-+ ------------------------------5分19. 解:(1) 过点D 作DF BC ⊥于F . ∵ AD BC , 90B ∠=︒, AD AB =, ∴ 四边形ABFD 是正方形.∴4DF BF AB === , 3FC = --------1分 在Rt DFC ∆中,2222435CD DF FC =+=+=∴ '5C D =∵AD FD =,90A DFC ∠=∠=︒, 'C D CD = ∴ 'AC D FCD ∆≅∆∴ 'ADC FDC ∠=∠ , '3AC FC == ----------------------------------2分 ∴ ''''90ADF ADC C DF FDC C DF C DC ∠=∠+∠=∠+∠=∠=︒ ∵ 'C DE CDE ∠=∠∴ '45C DE ∠=︒ -----------------------------------------------------------3分(2) 设 EC x = , 则7BE x =- ,'C E x = ∵'3AC = ∴'1BC =在Rt 'BEC ∆中22(7)1x x -+= 解方程,得 257x =∴ '11255014722777C DE CDES S EC DF ∆∆==⋅=⨯⨯== ---------------5分20.(1) 证明:连结OP 和BP∵AB 是O 的直径,BC 切O 于B ,∴ 90APB ∠=︒ , AB BC ⊥ ,∴ 90ABC ABP PBC ∠=∠+∠=︒ ------1分在Rt BPC ∆中,D 为BC 边的中点 ∴ BD PD =∴ BPD PBD ∠=∠∵ OB OP =∴OPB OBP ∠=∠--------------------------------2分∴ 90OPD OPB BPD OBP PBD ABC ∠=∠+∠=∠+∠=∠=︒OPCD BA即 PD OP ⊥∴DP 是O 的切线 -----------------------------3分(2) 连结OD 在Rt ABC ∆中∵ 3cos 5A =, O 的半径为5 ∴ 50cos 3AB AC A == ∵ OA OB =, DC DB =∴ 12523OD AC ==在Rt OPD ∆中222225202()56333P D O D O P =-=-== --------5分21. 解:(1)由两个统计图可知该校报名总人数是16016040040%0.4==(人).-----1分 (2)选羽毛球的人数是40025%100⨯=(人). --------------------------------------2分因为选排球的人数是100人,所以10025%400=,因为选篮球的人数是40人,所以4010%400=, 即选排球、篮球的人数占报名的总人数分别是25%和10%.---------------------------3分 (3)如图(每补充完整一个图得1分,共2分).22.(1)如图-----------------------------2分 (2)面积可得 2()(2)x y x y y +=+ ----------------------3分 22222x xy y xy y ++=+ 220x xy y +-=ABD CPO④③②①2()10x xyy+-= ----------------------------------------4分512x y --= (舍去) 512x y -=------------5分 23. (1)解: []22243(1)4(23)(3)b ac m m m m ∆=-=----=--------1分∵方程有两个不相等的实数根,∴ 2(3)0m -> 且 0m ≠------------------------------------------------2分∴ 3m ≠且 0m ≠∴m 的取值范围是3m ≠且 0m ≠ ------------------------------------3分(2)证明:由求根公式243(1)(3)22b b ac m m x a m-±--±-==-----------------------4分 ∴ 133323322m m m x m m m -+--===-233312m m x m--+==∴无论m 为何值,方程总有一个固定的根是1 ----------------5分(3)∵m 为整数,且方程的两个根均为正整数∴132x m=-必为整数∴ 1m =± 或 3m =±当1m =时 ,11x =- ;当1m =-时,15x =; 当3m =时, 11x = ; 当3m =-时,13x =.∴ 1m =- 或3m =± --------------------------------------------8分24.(1)猜想:2AE MD = ------------------------------------------1分证明:∵ △ABC 是等边三角形,点D 为BC 边的中点, ∴ 2AB BC BD ==∵ ∠BAE =∠BDF , ∠ABE =∠DBM∴ ABE ∆∽DBM ∆ ----------------------2分 ∴2AE ABDM DB== 即 2AE MD = -------------3分(2)解:如图, 连接EP 由(1)ABE ∆∽DBM ∆∴2BE ABBM DB == ∴2BE BM =∵MP BM =∴ 2BP BM =∴ BE BP =∵ 60EBP ABE ABP PBC ABP ABC ∠=∠+∠=∠+∠=∠=︒ ∴EBP ∆为等边三角形 ----------------------4分∴ EM BP ⊥∴ 90BMD ∠=︒∴90AEB ∠=︒ -----------------------5分在Rt △AEB 中,AB =7,AE =72∴ BE =21=22AE -AB∴ 3tan 2BAE ∠= -------------------6分∵ AB CB = ,BE BP = ,∠ABE =∠DBM∴ ABE CBP ∆≅∆∴ BCP BAE ∠=∠∴ tan BCP ∠=3tan 2BAE ∠= ---------7分25.解:(1)∵抛物线22(0)y ax ax c a =-+≠与y 轴交于点(0,3)C ,与x 轴交于A (1,0)-∴203a a c c ++=⎧⎨=⎩ 解得 13a c =-⎧⎨=⎩∴ 抛物线的解析式为223y x x =-++ ----------------1分∵222(2)3(211)3(1)4y x x x x x =--+=--+-+=--+ ∴顶点D 的坐标为( 1 ,4) -----------------2分(2)连结BC ,过点D 作DE x ⊥轴于点E .令0y = 则2230x x -++=∴ 11x =- ,23x =∴ 点B 的坐标为(3 ,0)∴AOC EBD ACDB OEDC S S S S ∆∆=++四边形梯形 11113(34)1249222=⨯⨯+⨯+⨯+⨯⨯=--------3分∵14362ABC S ∆=⨯⨯=∴3BCD S ∆=∵点P 是在第一象限内抛物线上的一个动点,ACDB ACPB S S =四边形四边形∴3BCP BCD S S ∆∆==∴ 点P 是过 D 且与直线BC 平行的直线和抛物线的交点 而直线BC 的函数解析式为3y x =-+--------------------4分 ∴设直线DP 的函数解析式为y x b =-+ , 过点D (1,4) ∴14b -+= , 5b =∴直线DP 的函数解析式为5y x =-+ ----------------------5分 把5y x =-+代入223y x x =-++中,解得11x =,22x = ∴点P 的坐标为(2,3) ---------------------------------6分(3)∵点P 与点C 关于DE 对称,点B 与点A 关于 DE 对称∴APD BCD ∆≅∆∴3APD BCD S S ∆∆==.---------------7分。

顺义1中2011━2012学年度下学期初1年级期中考试数学试题

顺义1中2011━2012学年度下学期初1年级期中考试数学试题

顺义一中2011━2012学年度下学期初一年级期中考试数学试题2012.04.27.一.选择题.本大题共10个小题,每个小题2分,共20分.在每小题所给的四个选项中,只有一个是符合题意的,请将正确答案前面的代号填在题后的表格内. 1.下列方程中,是二元一次方程的是A.52=+x xB.1=xyC.123=+yx D.y x 32=2.已知⎩⎨⎧==1,1y x 是二元一次方程74=+y kx 的一个解,则=kA.2B.3C.4D.5 3.下列计算结果,正确的是A.221a aa a =⋅÷ B.()623a a =-- C.()63282x x -=- D.236a a a =÷4.不等式组⎩⎨⎧≤->+153,312x x 的解集在数轴上表示正确的是5.用不等式表示“x 的3倍与5的差最大是2-”,正确的是 A.253->-x B.253-<-x C.253-≥-x D.253-≤-x6.若n m y x 373--与2322y x n m +是同类项,则n m ,的值分别是A.31,3==n mB.31,3-==n mC.31,3=-=n mD.31,3-=-=n m7.若b a <,则下列不等式正确的是 A.1<ba B.22bc ac < C.ab -<- D.0<-a b 8.在边长为a 的正方形中挖去一个边长为b 的小正方形()b a >(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证 A.()()2222b ab a b a b a -+=-+B.()()b a b a b a -+=-22C.()2222b ab a b a ++=+D.()2222b ab a b a +-=-9.不等式组⎪⎩⎪⎨⎧<-<-62,2131m x m x 的解集是36+<m x ,则m 的取值范围是图乙图甲2A .B .2C .12 D .12A.0≤mB.0≥mC.0>mD.0<m10.小明买了数支单价分别为10元和15元的圆珠笔,共花费90元,则这两种圆珠笔的数量可能相差 A.2支 B.3支 C.4支 D.5支二.填空题.横线上.11.方程423=+yx 化为用含x 的代数式表示y ,得 .12.化简:()()=---a b b a 33 .13.用科学记数法表示0.00004950且保留两个有效数字为 .14.已知不等式1625+<-x x 的最小整数解是方程6233=-ax x 的解,则=a .15.已知52,20422=+=-y x y x ,则=x ,=y .16.已知代数式x x 22+可以利用完全平方公式变形为()112-+x ,进而可知x x 22+的最小值是1-.依此方法,代数式5422+-++y x y x 的最小值是 .17.已知关于y x ,的方程组⎩⎨⎧+=+=+332,23k y x k y x 的解之和为2,则k 的值为 .18.若0,<>c b a ,那么在下列不等式:①c b c a +>+;②bc ac >;③cbc a ->-;④22bc ac >中,所有正确结论的序号是 .19.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第5个图中所贴剪纸“○”的个数为;第n 个图中所贴剪纸“○”的个数为 .三.解答题.本大题共10个小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤.20.(本小题满分10分)解下列不等式(组),并把解集在数轴上表示出来:⑴()1136<+-x ; ⑵()⎪⎩⎪⎨⎧--≥+>+-2131,2823x x x x x .(1) (2) (3) …… ……21.(本小题满分10分)解下列二元一次方程组:⑴⎩⎨⎧-=+=-243,62y x y x ; ⑵⎪⎩⎪⎨⎧=--+=+1545131,523y x y x .22.(本小题满分6分)已知关于x 的方程()()a x x -+=-2513的解大于2,求a 的取值范围.23.(本小题满分8分)在解方程组⎩⎨⎧=-=+132,52by x y ax 时,由于粗心,甲看错了方程组中的a ,得解为⎪⎩⎪⎨⎧-==2,27y x 乙看错了方程组中的b ,得解为⎩⎨⎧-==7,3y x .⑴甲把a 错看成了什么?乙把b 错看成了什么? ⑵求出原方程组的正确解.24.(本小题满分6分)列不等式解应用题:某次数学竞赛中共出了10道题,每答对1题得5分,每答错1题扣3分.若答题只有对错之分,问至少要答对几道题,才能至少得10分.25.(本小题满分8分)列方程(组)、不等式(组)解应用题:某服装厂现有24名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.①若该厂要求每天制作的衬衫和裤子数量相等,则应各安排多少人制作衬衫和裤子?②已知制作一件衬衫可获利30元,制作一条裤子可获利16元,若该厂要求每天获利不少于2100元,则至少需要安排多少名工人制作衬衫?26.(本小题满分10分)先化简,再求值:①()()()[]20222131y xy x y x xy xy ---⋅-⋅⎪⎭⎫ ⎝⎛-,其中2,23=-=y x ;②()()()()[]a a ab a b a b a ÷++-+-+1422,其中4232=--a a b .27.(本小题满分8分)列方程(组)、不等式(组)解应用题:某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.①每台电脑机箱,液晶显示器的进价各是多少元?②该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱,液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?28.(本小题满分6分)阅读下列解方程组的方法:解方程组⎩⎨⎧=+=+151617,171819y x y x 时,我们如果考虑直接消元,那将是非常麻烦的,而采用下面的解法会比较简单.由①-②,得222=+y x ,所以1=+y x ③.由③×16,得161616=+y x ④,②-④,得1-=x ,从而2=y .所以原方程组的解是⎩⎨⎧=-=2,1y x . 请解决下列问题:⑴解方程组⎩⎨⎧=+=+200820092010,201020112012y x y x ;⑵解关于y x ,的方程组()()()()⎩⎨⎧=+++=+++by b x b a y a x a 12,12()b a ≠.29.(本小题满分6分)解关于x 的不等式组:⎩⎨⎧≤-<≤+<1350,1350a x a x ,其中a 为参数.参考答案1~10.DBCCD ACBAC 11.x y 68-=. 12.229b a -. 13.5100.5-⨯. 14.415.41;29.16.43.17.27.18.①③④. 19.17;23+n .20.⑴32>x (图略);⑵12-≤<-x .21.⑴⎩⎨⎧-==2,2y x ;⑵⎩⎨⎧=-=19,11y x .22.3<a .23.①1,1;②⎩⎨⎧-==3,2y x .24.①6-;②8-.25.至少要答对5道题.26.①应安排15人制作衬衫,9人制作裤子; ②至少需要安排18名工人制作衬衫.27.①电脑机箱的进价为60元,显示器的进价为800元;②方案一:机箱24台,显示器26台;方案二:机箱25台,显示器25台;方案三:机箱26台,显示器24台.方案一获利最大.28.①⎩⎨⎧=-=2,1y x ;②⎩⎨⎧=-=2,1y x .29.当61≥a ,或61-≤a 时,原不等式组无解;当610<≤a 时,原不等式组的解集为53153ax a -≤<;当061<<-a 时,原不等式组的解集为53153a x a +≤<-.。

北京市顺义区中考数学第二次统一练习试题

北京市顺义区中考数学第二次统一练习试题

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.16 的算术平方根是A .4±B .8±C .4D .4- 2. 如果一个角等于72︒,那么它的补角等于A .18︒B .36︒C .72︒D .108︒ 3.若点(,2)M a 与点(3,)N b 关于x 轴对称,则,a b 的值分别是A .3,2-B .3,2-C .3,2--D .3,2 4. 把多项式2288x x -+分解因式,结果正确的是A .()222x +B .()222x- C .()224x- D .()224x - 5. 下列计算正确的是A.44aa a ÷= B.325(2)4a a = C .= D =6.从1~9这九个自然数中任取一个,是3的倍数的概率是 A .13 B .32 C .92D . 94 7.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A .2πB .3πC . D.(1π+8.如图,正方形A B C D的边长是3cm ,一个边长为1cm 的小正方形沿着正方形ABCD的边AB BC CD DA→→→连续翻转(小正方形起始位置在AB边上),那么这个小正方形翻转到DA边的终点位置时,它的方向是A. B. C. D.二、填空题(本题共16分, 每小题4分)9. 若分式22123xx x-+-的值为零 , 则x= .10.某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:本次问卷调查抽取的样本容量为_______,表中m的值为_______11. 已知两圆内切,圆心距2d=,一个圆的半径3r=,那么另一个圆的半径为12.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(5)个图形中有黑色瓷砖 __________块,第n个图形中需要黑色瓷砖__________块(用含n的代数式表示).三、解答题(本题共30分,每小题5分)13.计算0111tan60( 3.14)()2π--︒+--(1)(2)(3)……14.求不等式组32451233x x x -≥-⎧⎪-⎨>-⎪⎩ 的正整数解.15. 已知13x x-=,求代数式2(23)(1)(4)x x x --+-的值. 16. 已知:如图,四边形ABCD 是平行四边形,BE AC ⊥于E ,DF AC ⊥于F .求证:BE DF =.17. 列方程或方程组解应用题:在“彩虹读书”活动中,某同学对甲、乙两个班学生的读书情况进行了统计:甲班学生人数比乙班学生人数多3人, 甲班学生读书480本,乙班学生读书 360本,乙班平均每人读书的本数是甲班平均每人读书的本数的45倍.求甲、乙两班各有多少人? 18.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A ,与y 轴的交点为(0,2)C ,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4=.(1)求直线AB 的解析式和反比例函数的解析式; (2).求tan ABO ∠的值.四、解答题(本题共20分,每小题5分)19.已知:如图,矩形ABCD 中, 4AB =,7BC =,点P 是AD 边上一个动点,PE PC ⊥,PE 交AB 于点E ,对应点E 也随之在AB 上运动,连结EC .FEDCBA(1)若PEC ∆是等腰三角形,求PD 的长; (2)当30PEC ∠=︒时,求AP 的长.20. 已知:如图,AB 是O ⊙的直径,10AB =, DC 切O ⊙于点C AD DC ⊥,,垂足为D ,AD 交O ⊙于点E . (1)求证:BC EC =; (2)若4cos 5BEC ∠=, 求DC 的长.21. 为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭去年每个月的用水量,统计得到的数据绘制了下面的两幅统计图.图1是去年这50户家庭月总用水量的折线统计图,图2是去年这50户家庭月总用水量的不完整的频数分布直方图.(1)根据图1提供的信息,补全图2中的频数分布直方图;(2)在抽查的50户家庭去年月总用水量这12个数据中,极差是 米3,众数是 米3,中位数是 米3;BE PDCBA DCBA图1(3)请你根据上述提供的统计数据,估计该住宅区今年每户家庭平均每 月的用水量是多少米3? 22.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x (x >0). 依题意,割补前后图形面积相等, 有52=x , 解得5=x .由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.请你参考小东同学的做法,解决如下问题:(1) 如图4,是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图4上画出分割线,在图4的右侧画出拼成的正方形简图);(2)如图5,是由边长分别为a 和b 的两个正方形组成,请你通过分割,把它拼成一个正方形(在图5上画出分割线,在图5的右侧画出拼成的正方形简图).图3图2图1图3图2图1五、解答题(本题共22分,第23题8分,第24题7分,第25题7分) 23.已知关于x 的方程2(31)220mx m x m --+-=. (1)求证:无论m 取任何实数时,方程恒有实数根;(2)若m 为整数,且抛物线2(31)22y mx m x m =--+-与x 轴两交点间的距离为2,求抛物线的解析式;(3)若直线y x b =+与(2) 中的抛物线没有交点,求b 的取值范围. 24. 已知:如图,ABC ∆内接于O , AB 为O的直径,AC BC =点D 是AC 上一个动点,连结AD 、CD 和BD , BD 与AC 相交于点E , 过点C 作PC CD⊥于C , PC 与BD 相交于点P ,连结OP 和AP . (1) 求证:AD BP =; (2)如图1,若1tan 2ACD ∠=, 求证:DC AP ; (3) 如图2,设AD x = , 四边形APCD 的面积为y ,求y 与x 之间的关系式.25.已知,如图,抛物线24(0)y ax bx a =++≠与y 轴图1图2BB交于点C ,与x 轴交于点A B ,,点A 的坐标为(40)-,,对称轴是1x =-. (1)求该抛物线的解析式;(2)点M 是线段AB 上的动点,过点M 作MN ∥AC ,分别交y 轴、BC 于点P 、N ,连接CM .当CMN △的面积最大时,求点M 的坐标; (3)在(2)的条件下,求CPNABCS S ∆∆的值.顺义区2011年九年级第二次统一练习 数学试题参考答案及评分参考 一、选择题二、填空题9. 1- ; 10. 200 , 0.6 ; 11. 5或1 ; 12. 15 ,31n + .三、解答题13.解:原式=112+- ----------------------------------------4分=------------------------------------------------------------5分14. 解:解不等式3245x x -≥-,得 3x ≤,----------------------------1分解不等式1233x->- , 得5x <,------------------------------2分 所以,此不等式组的解集为3x ≤ ---------------------------------4分所以,此不等式组的正整数解为 1, 2, 3 ---------------------------5分 15. 解:2(23)(1)(4)x x x --+-=224129(34)x x x x -+--- -------------------------2分 =23913x x -+ --------------------------------------3分 由 13x x-= ,得231x x -= ------------------------4分 原式=23(3)13x x -+=16 ------------------------------5分16. 证明:∵四边形ABCD 是平行四边形,∴ ,AB CD AB =∥CD -------------------------------------------1分∴BAC DCA ∠=∠-----------------------------------------------2分 ∵BE AC ⊥于E ,DF AC ⊥于F∴90AEB DFC ∠=∠=︒------------------------------------------3分∴ABE ∆≌CDF ∆ ---------------------------------4分∴BE DF =-----------------------------------------------------------5分17. 解:设乙班有x 人,则甲班有(3)x +人.---------------------------------1分根据题意得:480436035x x⨯=+--------------------------------------------------------------------3分 解这个方程得45x =.经检验45x =是所列方程的根. --------------------------------------------------4分348x ∴+=(人)答:甲班有48人,乙班有45人. -----------------------------------------------5分18. 解:(1)由(0,2)C ,得 2OC =.∵点(2,)B n 在第一象限内,4AOB S ∆=. ∴112422OC OA OC ⋅+⨯=.∴2OA =.∴点A的坐标是(-.----------------------------------------------------1分 设直线AB 的解析式为(0)y kx b k =+≠.将点A ,C 的坐标分别代入,得 20,2.k b b -+=⎧⎨=⎩ 解得 1,2.k b =⎧⎨=⎩∴直线AB 的解析式为2y x =+. --------------------------2分∵点(2,)B n 在直线AB 上 ∴ 4n =设反比例函数的解析式为(0)ky a x=≠. 将点B 的坐标代入,得 42k=, ∴8k =.∴反比例函数的解析式为:8y x=. ---------------------------------------3分 (2)过点O 作OD AB ⊥于D ,BE y ⊥轴于E∴OD CD == ,BC =-------------------------------------4分∴ BD =∴1tan 3OD ABO BD ∠== -------------------------------------------------------5分 19. 解:(1)∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,7,4AD BC DC AB ====. ∴ 90APE AEP ∠+∠=︒ ∵PE PC ⊥∴90EPC ∠=︒∴90APE DPC ∠+∠=︒∴AEP DPC ∠=∠--------------------------------------1分∴AEPDPC ∆∆∴PE APCP DC=-------------------------------------------2分∵PEC ∆是等腰三角形,90EPC ∠=︒∴ PE CP =∴ 4AP DC ==∴ 3PD AD AP =-= ------------------------------3分(2)设PD x =, 则7AP x =-∵PE APCP DC =∴74PE x CP -= -------------------------------------------4分 在CPE ∆中, 90EPC ∠=︒, 30PEC ∠=︒∴tan 303CP PE =︒=∴PECP =∴74x -=∴7x =-∴AP =分20. (1)证明:连结OC由DC 是切线得OC DC ⊥-------------------------------1分又AD DC ⊥ AD OC ∥∴DAC ACO ∠=∠又由OA OC =得BAC ACO ∠=∠ DAC BAC ∴∠=∠ ∴EC BC =∴BC EC =(2)解:AB 为直径∴90ACB ∠=° 又BAC BEC ∠=∠∴ cos cos 8AC AB BAC AB BEC =⋅∠=⋅∠=B6BC ∴==--------------------------3分∴ 3sin 5BAC ∠= ----------------------------------4分 又DAC BAC BEC ∠=∠=∠且AD DC ⊥24sin sin 5CD AC DAC AC BAC ∴=∠=∠=·· --------5分21. 解:(1)补全的频数分布图如下图所示:--------------------------------------------1分 (2)250;750;725--------------------------------------------------------------------4分 (3)∵去年50户家庭年总用水量为: 550+600×2+650+700×2+750×4+800×2 =8400(米3)8400÷50÷12=14(米3)∴估计该住宅区今年每户家庭平均每月的用水量是14米3. -------------------------5分 22.解:ba-bba画出(1)的简图-------------------2分, 画出(2)的简图----------------3分23. 解:(1)分两种情况讨论.① 当0m =时,方程为x 20-=∴2x = 方程有实数根 -----------------------------1分 ②当0m ≠,则一元二次方程的根的判别式()()2222314229618821m m m m m m m m m ∆=----=-+-+=++⎡⎤⎣⎦=()21m +∴不论m 为何实数,∆≥0成立,∴方程恒有实数根 -----------------------------------------2分综合①、②,可知m 取任何实数,方程()231220mx m x m --+-=恒有实数根(2)设12x x ,为抛物线()23122y mx m x m =--+-与x 轴交点的横坐标.令0y =, 则 ()231220mx m x m --+-=由求根公式得,12x = ,21m x m-=-------------------------------------3分 ∴抛物线2(31)22y mx m x m =--+-不论m 为任何不为0的实数时恒过定点(20)., ∵ 122x x -= ∴ 222x -= ∴20x =或24x =,----------------------------------------------------------4分 ∴ 1m = 或13m =-(舍去)∴求抛物线解析式为22y x x =-, ----------------------------------------5分(3)由22y x x y x b⎧=-⎨=+⎩ ,得230x x b --=∴94b ∆=+∵直线y x b =+与抛物线22y x x =-没有交点 ∴940b ∆=+< ∴94b <-所以,当94b <-, 直线y x b =+与(2)中的抛物线没有交点.----------------------------------------------------------------------------7分24.(1) 证明: ∵PC CD ⊥, AB 为O 的直径∴90DCP ACB ADB ∠=∠=∠=︒∵DCP ACD ACP ∠=∠+∠,ACB ACP BCP ∠=∠+∠ ∴ACD BCP ∠=∠-------------------------------------------------1分∵AC BC =∴ABC ∆是等腰直角三角形 ∴45BAC ∠=︒∴45BDC BAC ∠=∠=︒ ∴DCP ∆是等腰直角三角形 ∴DC PC =-----------------------------------------------------------2分∴ADC ∆≌BPC ∆ ∴AD BP =----------------------------------------------------------3分(2)证明:∵ABD ACD ∠=∠∴1tan tan 2ABD ACD ∠=∠=---------------------------------4分 ∴12AD BD = ∴12PB BD = ∴P是BD的中点---------------------------------------------------5分∴AD PB PD == ∴ADP ∆是等腰直角三角形 ∴45APD ∠=︒ ∴APD BDC ∠=∠∴DC∥AP-------------------------------------------------------- 6分 (3)解:ACP ACD ACP BCP ABC ABP y S S S S S S ∆∆∆∆∆∆=+=+=-=21252x -(0x <<----------------------------------7分25.解:(1)由题意,得1644012a b b a-+=⎧⎪⎨-=-⎪⎩解得121a b ⎧=-⎪⎨⎪=-⎩,.----------------1分∴所求抛物线的解析式为:2142y x x =--+.-----------------------------2分(2)设点M 的坐标为(0)m ,,过点N 作NE x ⊥轴于点E . 由21402x x --+=,得14x =-,22x =. ∴点B的坐标为(20),.----------------------------------3分∴6AB =,2BM m =-.MN ∥AC ,∴BMN BAC △∽△.∴NE BMCO BA=, 即246NE m -=. ∴423mNE -=. -------------4分CMN CBM NBM S S S ∆∆∴=-△1122BM CO BM NE =- 142(2)423m m -⎛⎫=-- ⎪⎝⎭2128333m m =--+---------------------------------------------------5分21(1)33m =-++.又42m -≤≤,∴当1m =-时,CMN S △有最大值3,此时(10)M -,.-------------------6分 ∵ (4,0)A - 、(2,0)B 、(0,4)C 、(1,0)M - ∴ AOC∆是等腰直角三角形 ∴ AC =∵MN ∥AC∴ 45PMO CAO ∠=∠=︒ ∴ MOP ∆是等腰直角三角形 ∴ 点P 的坐标为(0,1) ∴ 3CP = ∴ 1322CPM S CP MO ∆=⋅= ∴ 33322CPN CMN CPM S S S ∆∆=-=-= ∵1122ABC S AB OC ∆=⋅= ∴18CPN ABC S S ∆∆= ------------------------------------------------------8分 以上答案仅供参考,若有问题,请老师们改正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京顺义区2011-2012中考数学全真模拟试题第Ⅰ卷 ( 共32分)一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑. 1.5-的相反数是( )A .5B .5-C .15 D .15- 2.在第十一届全国人民代表大会第二次会议上,温家宝总理在政府报告中指出:2008年我国粮食连续五年增产,总产量为52850万吨,创历史最高水平.将52850用科学记数法表示应为( ) A .528510⨯ B .352.8510⨯ C .35.28510⨯ D .45.28510⨯ 3.五边形的内角和是( )A .180°B .360°C .540°D .720° 4.我国部分城市五月某一天最高温度如下表,这些数据的众数和中位数分别是( )城市 北京 上海 重庆 杭州 苏州 广州 武汉 最高温度 (℃)262531 29293131A .29,28B .31,29C .26,30D .25,315.若两圆的半径分别是2cm 和5cm ,圆心距为3cm ,则这两圆的位置关系是( ) A .外离 B .相交 C .外切 D .内切 6.如图,有4张形状、大小、质地均相同的卡片,正面分别写有一个实数,背面完全相同.现将这4张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出卡片正面的实数是无理数的概率是A .12B .14C .34D .17.已知:2222233+=⨯,2333388+=⨯,244441515+=⨯,255552424+=⨯,…,若 21010b ba a+=⨯符合前面式子的规律,则a b +的值为( )A .179B .140C .109D .2108.将一正方体纸盒沿下右图所示的粗实线剪开,展开成平面图,其展开图的形状为( ).0.1625—32A .B .C .D .第Ⅱ卷 (非机读卷 共88分)二、填空题(共4道小题,每小题4分,共16分) 9.在函数1y x =-中,自变量x 的取值范围是______________.10.如图,点A 、B 、C 是⊙O 上三点,∠C 为20°,则∠AOB 的度数 为__________°. 11.分解因式:2242x x ++=____________________.12.如图,小正方形方格的边长为1cm ,则AB ⌒的长为___________cm .三、解答题(共5道小题,共25分) 13.(本小题满分5分)计算:112sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭.14.(本小题满分5分)解不等式组()2035148x x x -<⎧⎪⎨+-⎪⎩≥,AO BAOCB15.(本小题满分5分)已知:如图,AB ∥DE ,∠A =∠D ,且BE =CF , 求证:∠ACB =∠F . 16.(本小题满分5分)先化简,再求值:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭,其中2410a a -+=.17.(本小题满分5分)如图,反比例函数ky x=的图象与一次函数y mx b =+的图象交于(13)A ,,(1)B n -,两点.求反比例函数与一次函数的解析式.A B C DE FC B DA图1图2AD 'B C ACE OBD F四、解答题(共2道小题,共10分) 18.(本小题满分5分)如图1,矩形纸片ABCD 中,AB =4,BC =43,将矩形纸片沿对角线AC 向下翻折,点D 落在点D ’处,联结B D ’,如图2,求线段BD ’ 的长.19.(本小题满分5分)如图,点D 是⊙O 直径CA 的延长线上一点,点B 在⊙O 上,且AB =AD =AO . (1)求证:BD 是⊙O 的切线;(2)若点E 是劣弧BC 上一点,弦AE 与BC 相交于点F ,且CF =9,cos ∠BF A =32,求EF 的长.图1A CE DB五、解答题(本题满分5分)20.某校学生会准备调查本校初中三年级同学每天(除课间操外)课外锻炼的平均时间.(1)确定调查方式时,①甲同学说:“我到1班去调查全体同学”;②乙同学说:“我到体育场上去询问参加锻炼的同学”;③丙同学说:“我到初中三年级每个班去随机调查一定数量的同学”.上面同学说的三种调查方式中最为合理的是___________(填写序号); (2)他们采用了最为合理的调查方式收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将图1补充完整;(3)若该校初中三年级共有240名同学,则其中每天(除课间操外)课外锻炼平均时间不大于20分钟的人数约为__________人. (注:图2中相邻两虚线形成的圆心角为30°)六、解答题(共2道小题,共10分) 21.(本小题满分5分)列方程或方程组解应用题:2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心.“一方有难、八方支援”,某厂计划加工1500顶帐篷支援灾区,在加工了300顶帐篷后,由于情况紧急,该厂又增加了人员进行生产,将工作效率提高到原来的1.5倍,结果提前4天完成任务.问该厂原来每天加工多少顶帐篷.22.(本小题满分5分)把两个三角形按如图1放置,其中90ACB DEC ==︒∠∠, 45A =︒∠,30D =︒∠,且6AB =,7DC =.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图2,这时AB 与 CD 1相交于点O ,与D 1E 1相交于点F .(1)求1ACD ∠的度数;(2)求线段AD 1的长;(3)若把△D 1CE 1绕点C 顺时针再旋转30°得到△D 2CE 2,这时点B 在△D 2CE 2的内部、外部、还是边上?请说明理由.B图2AE 1CD 1OF七、解答题(本题满分7分)23.如图1,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,联结AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB AC =,90BAC =∠,①当点D 在线段BC 上时(与点B 不重合),如图2,线段CF BD 、所在直线的位置关系为 __________ ,线段CF BD 、的数量关系为 ;②当点D 在线段BC 的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB AC ≠,BAC ∠是锐角,点D 在线段BC 上,当ACB ∠满足什么条件时,CF BC ⊥(点C F 、不重合),并说明理由.图1 A B D F E C图2 AB D EC F F图3 AB DC E24. 如图,在平面直角坐标系中,直线1(0)2y x b b =-+>分别交x 轴、y 轴于A B 、两点.点(40)C ,、(80)D ,,以CD 为一边在x 轴上方作矩形CDEF ,且:1:2CF C D =.设矩形CDEF 与ABO △重叠部分的面积为S .(1)求点E 、F 的坐标;(2)当b 值由小到大变化时,求S 与b 的函数关系式; (3)若在直线1(0)2y x b b =-+>上存在点Q ,使OQC ∠等于90,请直接..写出b 的取值范围.xyB C E AF DO25.已知抛物线223y x bx c =-++与x 轴交于不同的两点()10A x ,和()20B x ,,与y 轴交于点C ,且12x x ,是方程2230x x --=的两个根(12x x <).(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积; (3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.答案及评分参考一、选择题(共8道小题,每小题4分,共32分)1.A ; 2.D ; 3.C ; 4.B ; 5.D ; 6.B ; 7.C ; 8.A . 二、填空题(共4道小题,每小题4分,共16分)9.x ≥1; 10.40; 11.()221x +; 12.2π. 三、解答题(共5道小题,共25分)13.解:1012sin 60(2009)122-⎛⎫+--+ ⎪⎝⎭14.()2035148x x x -<⎧⎪⎨+-⎪⎩≥, ①,② 3212322=⨯+-+…………4分 解:解不等式①,得x >2; ····· 2分 33=-.………………………5分 解不等式②,得1x -≥; ···· 4分 在数轴上表示不等式①、②的解集,∴原不等式组的解集为x >2. ·· 5分15.证明: ∵AB ∥DE ,∴∠B =∠DEF ,··························································· 1分∵BE =CF , ∴BE +CE =CF +CE ,即BC =EF , ································ 2分 ∵∠A =∠D ,∴△ABC ≌△DEF . ···················································· 4分 ∴∠ACB =∠F . ············································································· 5分16.解:2314223a a a a +-⎛⎫+÷ ⎪--⎝⎭2314223a a a a +-⎛⎫=-÷ ⎪--⎝⎭22423a a a +-=÷-………2分 ()()23222a a a a +=⋅-+-2344a a =-+ ····················································· 4分∵2410a a -+= ∴241a a -=-当241a a -=-时, 原式3114==-+. ·················································· 5分17.解:(1)∵点A (13),在反比例函数ky x =的图象上,∴3k =, …………………1分∴反比例函数的解析式为3y x =, ··················································· 2分∵点B (1)n -,在反比例函数3y x=的图象上, ∴31n=-,∴3n =-, ································································· 3分 ∴点B 的坐标为(31)--,,∵点A 、点B 在一次函数y mx b =+的图象上.12345-1-2-3-4-50A C E O BD F O 1423CBD 'A 图2图1ADBCE∴331m b m b +=⎧⎨-+=-⎩,∴12m b =⎧⎨=⎩∴一次函数的解析式为2y x =+ ····················································· 5分四、解答题(共2个小题,共10分)18.解:设AD ’交BC 于O ,方法一:过点B 作BE ⊥AD ’于E , 矩形ABCD 中,∵AD ∥BC ,AD =BC , ∠B =∠D =∠BAD =90°, 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠DAC =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’,∴AD’=AD =BC =43,∠1=∠DAC =30°, ∴∠4=∠BAC —∠1=30°,又在Rt △ABE 中,∠AEB =90°,∴BE =2, ……………………………………4分 ∴AE =2223AB BE -=,∴D’E =AD’—AE =23,∴AE =D’E ,即BE 垂直平分AD’,∴BD ’=AB =4. ……………………………5分 方法二:矩形ABCD 中,∵AD ∥BC ,AD =BC ,∠B =∠D =90°,∴∠ACB =∠DAC , 在Rt △ABC 中,∵ta n ∠BAC =4334BC AB ==, ∴∠BAC =60°,∴∠ACB =90°—∠BAC =30°,……………………………2分∵将△ACD 沿对角线AC 向下翻折,得到△ACD ’, ∴AD =AD’=BC ,∠1=∠DAC =∠ACB =30°, ∴OA =OC ,∴OD ’=OB ,∴∠2=∠3,∵∠BOA =∠1+∠ACB =60°, ∠2+∠3=∠BOA , ∴∠2=12∠BOA =30°,…………………………………………………………4分 ∵∠4=∠BAC —∠1=30°,∴∠2=∠4,∴BD ’=AB =4. …………………5分19.(1)证明:联结BO ,……………………………1分 方法一:∵AB =AD ,∴∠D =∠ABD ,∵AB =AO ,∴∠ABO =∠AOB ,………………2分又在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴∠OBD =90°,即BD ⊥BO ,∴BD 是⊙O 的切线. ······························································ 3分方法二:∵AB =AO ,BO =AO ,∴AB =AO =BO ,∴△ABO 为等边三角形,∴∠BAO =∠ABO =60°, ∵AB =AD ,∴∠D =∠ABD ,又∠D +∠ABD =∠BAO =60°,∴∠ABD =30°, …………………2分 ∴∠OBD =∠ABD +∠ABO =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分方法三:∵ AB =AD =AO ,∴点O 、B 、D 在以OD 为直径的⊙A 上 …………2分∴∠OBD =90°,即BD ⊥BO , ∴BD 是⊙O 的切线. ……………………………………………………3分(2)解:∵∠C =∠E ,∠CAF =∠EBF ,∴△ACF ∽△BEF , …………………… · 4分∵AC 是⊙O 的直径,∴∠ABC =90°,在Rt △BF A 中,cos ∠BF A =32=AF BF ,∴32==AF BF CF EF ,又∵CF =9,∴EF =6.…………………5分五、解答题(本题满分5分) 20.解:(1)③,……………………1分(2)图1补充完整, ……3分 (3)220. …………………5分六、解答题(共2个小题,共10分)21.解:设该厂原来每天加工x 顶帐篷,则工作效率提高后每天加工1.5x 顶帐篷. ····· 1分根据题意,得1500300150030041.5x x---=, ·········································· 3分 解这个方程,得100x =, ··································································· 4分 经检验:100x =是原方程的解.答:该厂原来每天加工100顶帐篷. ······················································ 5分22.解:(1)如图1,由题意可知:∠BCE 1=15°,∵∠D 1CE 1=60°, ∴∠D 1CB =∠D 1CE 1—∠D 1CB =45°,又∠ACB =90°,∴∠ACD 1=∠ACB —∠D 1CB =45°. ··········· 1分(2)由(1)知,∠ACD 1=45°,又∠CAB =45°,∴∠AOD 1=∠CAB +∠ACD 1=45°∴OC ⊥AB ,∵∠BAC =45°,∠ABC =90°—∠BAC =45°, ∴∠ABC =∠BAC ,∴AC =BC , ∴OC =12AB =OA =3,∴OD 1=CD 1—OC =4, 在R t △AOD 1中,∠5=90°,AD 1=221OA OD +=5. ······················ 3分 (3)点B 在△D 2CE 2内部. ·································································· 4分 理由如下:设BC (或延长线)交D 2E 2于点P ,则∠PCE 2=15°+30°=45°.在R t △PCE 2中,可求CP =212CE 2=722, 在R t △ABC 中,可求BC =32,∵72322<,即BC <CP ,………5分 ∴点B 在△D 2CE 2内部.B 图1A E 1C D 1O FG B D C E FA 图1B C ADE FyxOGDE F C 图2A ByxOH GxyBA图3C FE D OD E FC图4AByxO 七、解答题(本题满分7分) 23.(1)①垂直,相等;………………………………………………………………………1分②当点D 在BC 的延长线上时①的结论仍成立.…………………………………2分 由正方形ADEF 得 AD =AF ,∠DAF =90º. ∵∠BAC =90º,∴∠DAF =∠BAC , ∴∠DAB =∠F AC ,又AB =AC ,∴△DAB ≌△F AC , ∴CF =BD , ∠ACF =∠ABD . ∵∠BAC =90º, AB =AC ,∴∠ABC =45º,∴∠ACF =45º,∴∠BCF =∠ACB +∠ACF =90º.即 CF ⊥BD . ……………………………………………………………………5分(2)当∠ACB =45º时,CF ⊥BD (如图).……………………………………………6分 理由:过点A 作AG ⊥AC 交CB 或CB 的延长线于点G ,则∠GAC =90º,∵∠ACB =45°,∠AGC =90°—∠ACB =45°, ∴∠ACB =∠AGC ,∴AC =AG ,∵点D 在线段BC 上,∴点D 在线段GC 上,由(1)①可知CF ⊥BD . …………………………………………………………7分八、解答题(本题满分7分)24. 解:(1)∵(40)C ,,(80)D ,,∴4CD =, ∵矩形CDEF 中,12CF CD =,∴2CF DE ==, ∵点E 、F 在第一象限,∴(8)E ,2,(4)F ,2.………………………1分 (2)由题意,可知(2)A b ,0,(0)B b ,,在R t △ABO 中,ta n ∠BAO =12OA OB =, ①当0<b ≤2时,如图1,0S =.……………………………………………2分 ②当2<b ≤4时,如图2,设AB 交CF 于G ,24AC b =-, 在R t △AGC 中,∵ta n ∠BAO =12GC AC =,∴2CG b =-. ∴()()12422S b b =--,即244S b b =-+,……………………………4分③当4<b ≤6时,如图3,设AB 交EF 于G ,交ED 于H ,28AD b =-, 在R t △ADH 中,∵ta n ∠BAO =12DH AD =,∴4DH b =-,6EH b =-, 在矩形CDEF 中,∵CD ∥EF ,∴∠EGH =∠BAO , 在R t △EGH 中,∵ta n ∠EGH =12EH EG =,∴122EG b =-, ∴()()12412262S b b =⨯---,即21228S b b =-+-,……………5分 ④当b >6时,如图4,8S =.………………………………………………6分(3)0b <≤51+. ………………………………………………………7分九、解答题(本题满分8分)解:(1)解方程2230x x --=,得123x x ==-1,.………………1分 ∴点()0A -1,,点()0B 3,.∴()()221110213302b c b c ⎧-⨯-+⋅-+=⎪⎪⎨⎪-⨯+⋅+=⎪⎩解,得432b c ⎧=⎪⎨⎪=⎩∴抛物线的解析式为224233y x x =-++. ··········································· 2分 (2)∵抛物线与y 轴交于点C .∴点C 的坐标为(0,2).又点()0B 3,,可求直线BC 的解析式为223y x =-+. ∵AD ∥CB ,∴设直线AD 的解析式为23y x b '=-+. 又点()0A -1,,∴23b '=-,直线AD 的解析式为2233y x =--. 解2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩,得211241,1003x x y y =⎧=-⎧⎪⎨⎨==-⎩⎪⎩,∴点D 的坐标为(4,103-). ······························································· 4分 过点D 作DD ’⊥x 轴于D ’, DD ’=103,则又AB =4.∴四边形ACBD 的面积S =12AB •OC +12AB •DD ’=2103·························· 5分 (3)假设存在满足条件的点R ,设直线l 交y 轴于点E (0,m ), ∵点P 不与点A 、C 重合,∴0< m <2,∵点()0A -1,,点()0,2C , ∴可求直线AC 的解析式为22y x =+,∴点112P m m ⎛⎫-⎪⎝⎭,. ∵直线BC 的解析式为223y x =-+,∴点332Q m m ⎛⎫-+ ⎪⎝⎭,. ∴24PQ m =-+.在△PQR 中,①当RQ 为底时,过点P 作PR 1⊥x 轴于点R 1,则∠R 1PQ =90°,PQ =PR 1=m . ∴24m m -+=,解得43m =,∴点1433P ⎛⎫- ⎪⎝⎭,, ∴点R 1坐标为(13-,0). ································································ 6分 ②当RP 为底时,过点Q 作Q R 2⊥x 轴于点R 2, 同理可求,点R 2坐标为(1,0). ······················································· 7分 ③当PQ 为底时,取PQ 中点S ,过S 作SR 3⊥PQ 交x 轴于点R 3,则PR 3=QR 3,∠PR 3Q =90°.∴PQ =2R 3S =2m .∴242m m -+=,解,得1m =, ∴点112P ⎛⎫- ⎪⎝⎭,,点312Q ⎛⎫ ⎪⎝⎭,,可求点R 3坐标为(12,0). …………………8分 经检验,点R 1,点R 2,点R 3都满足条件.综上所述,存在满足条件的点R ,它们分别是R 1(13-,0),R 2(1,0)和点R 3(12,0).。

相关文档
最新文档