九年级数学上册第二十五章概率初步专题训练二十八概率的综合应用作业课件人教版.ppt

合集下载

数学:第二十五章概率初步复习课件(人教新课标九年级上)

数学:第二十五章概率初步复习课件(人教新课标九年级上)

Copyright 2004-2009 版权所有 盗版必究
六.本章编写特点
1.注重随机观念的渗透; 2.突出概率思想的内涵 ; 3.深刻领会概率概念中蕴涵的辨证思想
Copyright 2004-2009 版权所有 盗版必究
七.几个值得关注的问题
1.注重学生的合作和交流活动,在活动中促进知识的 学习,并进一步发展学生的合作交流意识与能力; 2.注意揭示概率与频率的联系与区别 ; 3.鼓励学生动手实验,注意现代信息技术的应用; 4.注意把握好教学难度 ; 5.注意选取丰富、科学且真实的素材,充分体现概率 与生活的密切联系 ;
Copyright 2004-2009 版权所有 盗版必究
五.本章的内容安排和教学建议
五. 25.4 课题学习 键盘上字母的排列规律 教材在最后一节安排了一个具有一 定综合性和活动性的“课题学习”,这 个“课题学习”选用了与学生生活联系 密切的键盘上字母的排列规律问题。由 于本章是《课程标准》“统计与概率”部 分的最后一章,因此这个课题学习的综 合性比前面三章统计中的课题学习更强。
Copyright 2004-2009 版权所有 盗版必究
五Байду номын сангаас本章的内容安排和教学建议
三. 25.2用列举法求概率
例4的事件在试验时包含了两步,要把两步 可能的结果都列出来,教师可适当让学生了 解: 试验中每一步的可能结果有两个,两 步的所有结果就有2×2=4个。
Copyright 2004-2009 版权所有 盗版必究
可能性的相对大小
Copyright 2004-2009 版权所有 盗版必究
五.本章的内容安排和教学建议
二. 25.1概率
试验 把全班同学分成10组,每组同学掷一枚硬币 50次,整理同学们获得的试验数据,并记录在表 25—2中. 第一组的数据填在第一列,第一、二组的数据之和 填在第二列?…,10个组的数据之和填在第10列.

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT

新人教版九年级数学上册课件《第二十五章概率初步》复习课件部编版PPT

元就有一次按下面规则转动转盘获奖机会,且两超市奖额等同.
规则是: ①A超市把转盘甲等分成4个扇形区域、B超市把转盘
乙等分成3个扇形区域,并标上了数字(如图所示); ②顾客
第一回转动转盘要转两次,第一次与第二次分别停止后指针所
指数字之和为奇数时就获奖(若指针停在等分线上,那么重转
一次,直到指针指向某一份为止).
解:(1)画出树状图来说明三位评委给出A选手的所有可能结果:

通过
待定

通过
待定
通过
待定
丙 通过 待定 通过 待定 通过 待定 通过 待定
(2)由上图可知三位评委给出A选手的所有可能的结果共有8种. 对于选手A, “只有甲、乙两位评委给出相同结果”有2种,即 “通过-通过-待定” “待定-待定-通过”,所以对于选手A,
前提条件 求法
等可能性事件 发生的可能性 的大小
直接列举法
列表法
画树状图法
( 特别要注意是否放回)
课后训练
1.下列说法错误的是( B ) A.必然发生的事件发生的概率为1 B.不确定事件发生的概率为0 C.随机事件发生的概率大于0且小于1 D.不可能发生的事件发生的概率为0
2.某地区林业局要考察一种树苗移植பைடு நூலகம்成活率,对该地区这种
少万棵?
0.8
解:18÷0.9﹣5=15;
答:该地区需移植这种树苗约15万棵.0
2 4 6 8 10 移植数量/千棵
3.有四根小木棒长度分别是2,3,4,5,若从中任意抽出三
根木棒组成三角形. (1)下列说法错误的是 ② (填序号).
1
①第一个抽出的木棒是4的可能性是 4 ; ②第二个抽出的木棒是3的可能性是 1 ;

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)

人教版九年级数学上册第二十五章概率初步全章课件(共12份)

人教版九年级数学上册第二十五章概率初步全章课件(共12份)


早上,我迟到了。于是就急忙去学校上学,可是在
楼梯上遇到了班主任,她批评了我一顿。我想我真不走
运,她经常在办公室的啊,今天我真倒霉。我明天不能 再迟到了,不然明天早上我将在楼梯上遇到班主任。 中午放学回家,我看了一场篮球赛,我想长大后我 会比姚明还高,我将长到100米高。看完比赛后,我又回
到学校上学。
活动2:摸球游戏 (1)小明从盒中任意摸出一球,一定能摸到红球吗?
(2)小麦从盒中摸出的球一定是白球吗? (3)小米从盒中摸出的球一定是红球吗?
(4)三人每次都能摸到红球吗?
可能发生, 也 可能不发生
必然不会发生
必然发生
试分析:“从如下一堆牌中任意抽一张牌,可以事先 知道抽到红牌的发生情况”吗?
白 球 3
【结论】由于两种球的数量不等,所以“摸出黑
球”和“摸出白球”的可能性的大小是不一样的,
且“摸出黑球”的可能性大于“摸出白球”的可
能性.
想一想: 能否通过改变袋子中某种颜色的球的数量,使“摸 出黑球”和“摸出白球”的可能性大小相同?
答:可以.例如:白球个数不变,拿出两个黑球或黑
球个数不变,加入2个白球.
2.如果袋子中有4个黑球和x个白球,从袋子中随机摸 出一个,“摸出白球”与“摸出黑球”的可能性相 同,则x= 4 .
3.已知地球表面陆地面积与海洋面积的比约为3:7,
如果宇宙中飞来一块陨石落在地球上,“落在海洋
里”发生的可能性( A )“落在陆地上”的可能
性.
A.大于 C.小于 B.等于 D.三种情况都有可能
后,袋中有不少于8个绿球,即绿球的数量 最多,这样摸到绿球的可能性最大.
当堂练习
1.下列事件是必然事件,不可能事件还是随机事件?

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题(带答案)

九年级数学上册第二十五章概率初步专项训练题单选题1、王师傅对某批零件的质量进行了随机抽查,并将抽查结果绘制成如下表格,请你根据表格估计,若从该批零件中任取一个,为合格零件的概率为( )答案:A分析:用“实验频率”的稳定值估计“概率”,从而得到合格零件的概率;解:∵随着实验次数的增多,合格零件的频率逐渐靠近常数0.9,∴从该批零件中任取一个,为合格零件的概率为0.9.故选:A .小提示:本题考查利用频率估计概率,掌握“大量反复试验下频率稳定值即概率”是解本题的关键.2、,甲,乙两辆汽车即将经过该丁字路口,它们各自可能向左转或向右转,且两种情况的可能性相等,则它们经过丁字路口时,都向右转的概率为( )A .14B .13C .12D .23 答案:A分析:通过画树状图法或列表法找出所有等可能的结果数,再找出符合题意(都向右转)的结果数,利用概率公式计算即可.:由题意,画树状图如下:可知共有4种等可能的结果,符合条件的只有1种,故两辆汽车都向右转的概率为14, 故选:A .小提示:本题考查简单概率的计算,熟练掌握概率公式,能够通过列表或画树状图法找出所有等可能的结果数是解题的关键.3、如图,点D 在△ABC 的边AC 上,连接BD ,点P 的位置如图所示,在图中随机选择一个三角形,则点P 在选择的三角形内部的概率是( )A .12B .13C .23D .1 答案:C分析:先找到图中一共有3个三角形,再找到符合要求的三角形有2个,即可求出概率.解:∵图干图形中,三角形有△ABD 、△ABC 、△BCD ,则点P 在△ABD 、△ABC 内部∴P (点P 在选择的三角形内部的概率)=23故选:C .小提示:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、关于频率和概率的关系,下列说法正确的是( )A.当实验次数很大时,概率稳定在频率附近B.实验得到的频率与概率不可能相等C.当实验次数很大时,频率稳定在概率附近D.频率等于概率答案:C分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果.解:A、概率是定值,故本选项错误,不符合题意;B、可以相同,如“抛硬币实验”,可得到正面向上的频率为0.5,与概率相同,故本选项错误,不符合题意;C、当实验次数很大时,概率稳定在频率附近,正确,故本选项符合题意;D、频率只能估计概率,故本选项错误,不符合题意;故选:C.小提示:此题考查利用频率估计概率,大量反复试验下频率稳定值即概率.5、小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:)A.20B.300C.500D.800答案:C分析:随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×0.5=500次,故选C.小提示:本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.6、如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是()A .π12B .π24C .√10π60D .√5π60 答案:A分析:根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.解:由图可知,总面积为:5×6=30,OB =√32+12=√10,∴阴影部分面积为:90·π×10360=5π2,∴飞镖击中扇形OAB (阴影部分)的概率是5π230=π12,故选:A .小提示:本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件发生的概率.7、小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B.从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率答案:C分析:根据统计图可知,实验结果频率在33%左右,因此事件的概率也为33%,符合此概率的即为正确答案.=50%,故A选项错误,不符合题意;A、掷一枚硬币,正面朝上的概率为12B、从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率为1=25%,故B选项错误,不符合题意;4≈33%,故C选项正C、从一个装有2个白球和1个红球的不透明袋子中任意摸出一球,摸到红球的概率为13确,符合题意;D、任意买一张电影票,座位号是2的倍数的概率在是50%,故D选项错误,不符合题意;故选C.小提示:本题考查了利用频率估计概率的知识,分别求得每个选项的概率是解题的关键.8、有一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.24答案:B分析:先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.解:∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1-15%-45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选B.小提示:本题考查了利用频率求频数的知识,具体数目应等于总数乘部分所占总体的比值.9、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.10、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x,20当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,=0.35,解得x=7.综上有:x20故选:B.小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.填空题11、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.答案:8分析:首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,∴摸出红球的概率为0.2,=0.2,由题意,22+m解得:m=8,经检验,m=8是原方程的解,且符合题意,所以答案是:8.小提示:本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.12、从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.答案:34分析:从4个数中取两个数组成两位数,把所有情况全部列出来,找出其中的奇数,用奇数的个数除以两位数的总个数就是这个两位数是奇数的概率.从3、5、6、9这四个数中取两个数组成两位数有下列情况:35、36、39、53、56、59、63、65、69、93、95、96,共12种结果,其中奇数有9种结果,∴P(这个两位数是奇数)= 912=34所以答案是:34小提示:本题考查了概率的计算,事件A发生的概率=事件A发生的所有可能结果数所有事件发生的可能结果数,掌握概率的计算方法是解题的关键.13、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是__.答案:16分析:根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC∥AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是16;故答案为16.小提示:此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.14、一个木盒里装有除颜色不同以外其他完全相同的2枚黑色围棋子和3枚白色围棋子.现从木盒中随机取出1枚棋子,记下颜色后放回篮中搅拌均匀.再从木盒里取出一枚棋子,则前后两次取到都是白棋的概率是__________.答案:925分析:画树状图,共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,再由概率公式求解即可.解:画树状图如下:共有25种等可能的结果,其中前后两次取到都是白棋的结果有9种,∴前后两次取到都是白棋的概率是925所以答案是:925.小提示:本题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15、投掷一枚正方体骰子,朝上的一面是合数的可能性大小是_____.答案:13分析:正方体骰子共6个数,其中4和6为合数,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3.解:正方体骰子共6个数,合数为4,6共2个,所以投掷一枚正方体骰子,朝上的一面是合数的可能性大小是26=1 3,所以答案是:13.小提示:本题考查判断事件发生的可能性大小,利用概率来求解是解题的关键.解答题16、“共和国勋章”获得者钟南山院士说:按照疫苗保护率达到70%计算,中国的新冠疫苗覆盖率需要达到近80%,才有可能形成群体免疫.本着自愿的原则,18至60周岁符合身体条件的中国公民均可免费接种新冠疫苗.居民甲、乙准备接种疫苗,其居住地及工作单位附近有两个大型医院和两个社区卫生服务中心均可免费接种疫苗,提供疫苗种类如下表:用A、B、C、D表示选取结果)(1)居民甲接种的是新冠病毒灭活疫苗的概率为;(2)请用列表或画树状图的方法求居民甲、乙接种的是相同种类疫苗的概率.答案:(1)12(2)居民甲、乙接种的是相同种类疫苗的概率为12分析:(1)利用概率公式直接计算即可;(2)先画出树状图求解所有的等可能的结果数,再得到符合条件的结果数,从而利用概率公式进行计算即可.(1)解:由概率的定义可得:居民甲接种的是新冠病毒灭活疫苗的概率是24=1 2.所以答案是:12.(2)画树状图如图:由上表可知:一共有16种等可能的结果,居民甲、乙接种的是相同种类疫苗的结果有8种, ∴居民甲、乙接种的是相同种类疫苗的概率为816=12 .小提示:本题考查的是随机事件的概率,利用列表法或画树状图求解概率,掌握列表的方法与画树状图的方法是解题的关键.17、某组织就2022年春节联欢晚会节目的喜爱程度,在万达广场进行了问卷调查,将问卷调查结果分为“非常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作A ,B ,C ,D ,根据调查结果绘制出如图的“扇形统计图”和“条形统计图”,请结合图中所给信息解答下列问题:(1)这次被调查对象共有 人,被调查者“不太喜欢”有 人; (2)补全扇形统计图和条形统计图;(3)在“非常喜欢”调查结果里有5人为80后,分别为3男2女,在这5人中,该民间组织打算随机抽取2人进行采访,请你用列表法或列举法求出所选2人均为男生的概率. 答案:(1)50;5 (2)见解析 (3)310分析:(1)利用公式“该部分的人数÷部分所占的百分比=总人数”求解即可.(2)先算出B 所占的百分比,然后再算出C 的百分比及C 对应的人数即可作图.(3)利用列表法求出5人中3男2女,选2人接受采访均为男生的所有可能的情况,然后根据概率的计算方法求解即可.(1)∵15÷30%=50(人),∴50×10%=5(人)即:这次被调查对象共有 50人,被调查者“不太喜欢”有 5人;所以答案是:50;5(2)∵B占总数的百分比为20÷50×100%=40%,∴C占总数的百分比为:1﹣10%﹣30%﹣40%=20%,∴C的人数为:50×20%=10(人),所求扇形统计图和条形统计图如下图所示:(3)用列表法表示选2人接受采访的所有可能如下:故:P(所选2人均为男生)=20=10小提示:本题考查了列表法与树状图、条形统计图、扇形统计图等问题,解题的关键是要掌握整体与部分之间的数量关系及条形统计图与扇形统计图的作法.18、某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1 .抽奖方案有以下两种:方案A,从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若是红球,则获得奖金15元,否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案B,从装有2个红、1个白球(仅颜色不同)的乙袋中随机摸出1个球,若是红球则获得奖金10元,否则,没有奖金,兑奖后将摸出的球放回乙袋中.2 .抽奖条件是:顾客购买商品的金额每满100元,可根据方案A抽奖一次:每满足150元,可根据方案B抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案A抽奖三次或方案B抽奖两次或方案A,B各抽奖一次).已知某顾客在该商场购买商品的金额为250元.(1)若该顾客只选择根据方案A进行抽奖,求其所获奖金为15元的概率;(2)以顾客所获得的奖金的平均值为依据,应采用哪种方式抽奖更合算?并说明理由.;答案:(1)49(2)选择方案A、方案B各抽1次的方案,更为合算.理由见解析分析:(1)利用列表法表示获得奖金15元所有可能出现结果情况,进而求出相应的概率即可;(2)由种抽奖方案,即:2次都选择方案A,1次方案A1次方案B,1次方案B,分别求出各种情况下获得奖金的平均值即可.(1)解:由于某顾客在该商场购买商品的金额为250元,只选择方案进行抽奖,因此可以抽2次,由抽奖规则可知,两次抽出的结果为一红一白的可获得奖金15元,从1个红球,2个白球中有放回抽2次,所有可能出现的结果情况如下:共有9种等可能出现的结果,其中一红一白,即可获奖金15元的有4种,所以该顾客只选择根据方案A 进行抽奖,获奖金为15元的概率为49;(2)解:①由(1)可得,只选择方案A ,抽奖2次,获得15元的概率为49,获得30元(2次都是红球)的概率为19,两次都不获奖的概率为49,所以只选择方案A 获得奖金的平均值为:15×49+30×19=10(元),②只选择方案B ,则只能摸奖1次,摸到红球的概率为23,因此获得奖金的平均值为:10×23≈6.7(元), ③选择方案A 1次,方案B 1次,所获奖金的平均值为:15×13+10×23≈11.7(元), 因此选择方案A 、方案B 各抽1次的方案,更为合算.小提示:本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.。

人教版九年级上册数学二十五章概率初步常考基础题专项训练(含解析)

人教版九年级上册数学二十五章概率初步常考基础题专项训练(含解析)

人教版九上数学二十五章概率初步常考基础题专项训练(含解析)一、选择题1. “抛一枚均匀硬币,落地后正面朝上”这一事件是( )A. 必然事件B. 随机事件C. 确定事件D. 不可能事件2. 气象台预报“本市明天降水概率是80%”,对此信息,下面的几种说法正确的是( )A. 本市明天将有80%的地区降水B. 本市明天将有80%的时间降水C. 明天肯定下雨D. 明天降水的可能性比较大3. 下面有四种说法:①了解某一天出入南京市的人口流量适合用普查方式;;②抛掷一个正方体骰子,点数为奇数的概率是12③“打开电视机,正在播放关于篮球巨星科比退役的相关新闻”是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是( )A. ①②③B. ①②④C. ②③④D. ②④4. 我国文化源远流长,很多成语无论过去、现在、将来都有教育意义,下列成语中反映不可能事件的是( )A. 望梅止渴B. 见异思迁C. 钻冰取火D. 唇亡齿寒5. 下列事件为必然事件的是( )A. 抛掷一枚硬币,落地后正面朝上B. 篮球运动员投篮,投进篮筐C. 自然状态下水从高处流向低处D. 打开电视机,正在播放新闻6. 如图,把一个圆形转盘按1:2:3:4的比例分成A,B,C,D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为( )A. 35B. 25C. 15D. 1107. “抛一枚均匀硬币,落地后正面朝上”这一事件是( )A. 必然事件B. 随机事件C. 确定事件D. 不可能事件8. 用长分别为3cm,4cm,7cm的三条线段围成三角形的事件是( )A. 随机事件B. 必然事件C. 不可能事件D. 以上都不是9. 下列事件为必然事件的是( )A. 任意买一张机票,座位靠窗B. 打开电视机,正在播放新闻联播C. 13个同学中至少有两个同学的生日在同一个月D. 某彩票中奖机率是1%,小东买100张此彩票会中奖10. 小明做了6次掷质地均匀硬币的试验,在前5次试验中,有2次正面朝上,3次正面朝下,那么第6次试验,硬币正面朝上的概率是( )A. 1B. 0C. 0.5D. 不稳定11. 下列事件,是必然事件的有( )A. 打开电视,它正在播广告B. 抛掷一枚硬币,正面朝上C. 打雷后下雨D. 367人中有至少两个人的生日相同12. 如图,一个质地均匀的骰子,每个面上分别刻有1,2,3,4,5,6点,任意掷出骰子后,掷出的点数大于5的概率是( )A. 16B. 13C. 23D. 1213. 如图,让转盘自由转动一次,则指针落在A区域的概率是( )A. 23B. 12C. 13D. 1414. 一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6的点数,掷这个骰子一次,则掷得面朝上的点数为奇数的概率是( )A. 14B. 16C. 12D. 1315. 下列说法中不正确的是( )A. 经过有交通信号灯的路口,遇到红灯是随机事件B. 某妇产医院里,下一个出生的婴儿是女孩是必然事件C. 367人中至少有2人生日(公历)相同是必然事件D. 长分别为3,5,9的三条线段不能围成一个三角形是必然事件16. 下列说法中,正确的是( )A. 不可能事件发生的概率是0B. 打开电视机正在播放动画片,是必然事件C. 随机事件发生的概率是12D. 对“梦想的声音”节目收视率的调查,宜采用普查17. 在一副扑克牌(54张,其中王牌两张)中,任意抽一张是王牌的概率是( )A. 154B. 129C. 127D. 11318. 元旦游园晚会上,有一个闯关活动:将20个大小重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.如果任意摸出一个乒乓球是红色,就可以过关,那么一次过关的概率为( )A. 23B. 14C. 15D. 11019. 用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108∘,当宇宙中一块陨石落在地球上,则落在陆地上的概率是( )A. 0.2B. 0.3C. 0.4D. 0.520. 下列事件是必然事件的为( )A. 明天太阳从西方升起B. 掷一枚硬币,正面朝上C. 打开电视机,正在播放“夏津新闻”D. 任意一个三角形,它的内角和等于180∘21. 下列说法正确的是( )A. 13名同学中,至少有两人的出生月份相同是必然事件B. “抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次有1次出现正面朝上C. 如果一件事发生的机会只有十万分之一,那么它就不可能发生D. 从1,2,3,4,5,6中任取一个数是奇数的可能性要大于偶数的可能性22. 分别写有数0,2−1,−2,cos30∘,3的五张卡片,除数不同外其它均相同,从中任意取一张,那么抽到负数的概率是( )A. 15B. 25C. 35D. 4523. 在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫.每包中混入的M号衬衫数如下表:M号衬衫数0145791011包数7310155433根据以上数据,选择正确选项( )A. M号衬衫一共有47件B. 从中随机取一包,包中L号衬衫数不低于9是随机事件C. 从中随机取一包,包中M号衬衫数不超过4的概率为0.26D. 将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.25224. 在50包型号为L的衬衫包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表所示:M号衬衫数0145791011包数7310155433根据以上数据,选择正确选项( )A. M号衬衫一共有47件B. 从中随机取一包,包中L 号衬衫数不低于 9 是随机事件C. 从中随机取一包,包中L 号衬衫数不超过 4 的概率为 0.26D. 将 50 包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M 号的概率为 0.25225. 一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 ( )A. 415B. 13C. 15D. 21526. 有一种推理游戏叫做“天黑请闭眼”,9 位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9 张卡牌(除所写文字不同,其余均相同),其中有法官牌 1 张,杀手牌 2 张,好人牌 6 张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是 ( ) A. 12B. 13C. 29D. 1927. 在平面内任意画一个四边形,其内角和是 180∘,这个事件是 ( ) A. 随机事件 B. 必然事件C. 不可能事件D. 以上选项均不正确28. 从 23,2x 3,2x 3,√x32这四个代数式中任意抽取一个,下列事件中为确定事件的是 ( ) A. 抽到的是单项式 B. 抽到的是整式 C. 抽到的是分式D. 抽到的是二次根式29. 下列事件中,属于必然事件的是 ( ) A. 某校初二年级共有 480 人,则至少有两人的生日是同一天 B. 经过路口,恰好遇到红灯C. 打开电视,正在播放动画片D. 抛一枚硬币,正面朝上30. 下列事件中,是不可能事件的是( )A. 买一张电影票,座位号是奇数B. 射击运动员射击一次,命中9环C. 明天会下雨D. 度量三角形的内角和,结果是360∘二、填空题31. 下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100∘C;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360∘.其中是随机事件的是.(填序号)32. 在一个不透明的盒子中装有2个白球和3个红球,这些球除了颜色外无其他差别,现从这个盒子中任意摸出1个球,那么摸到红球的概率是.33. 掷一枚骰子,朝上的点数是素数的可能性的大小是.34. “太阳每天从东方升起”,这是一个A事件.(填“确定”或“不确定”)35. 如果从八年级(1)、(2)、(3)班中随机抽取一个班与八(4)班进行一场拔河比赛,那么恰好抽到八(1)班的概率是.36. 如图,转动的转盘停止转动后,指针指向白色区域的概率是.37. 在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是.38. 一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为.39. 一个不透明的布袋里装有7个只有颜色不同的球,其中4个红球、3个白球,从布袋中随机摸出一个球,则摸到红球的概率是.40. 某种油菜籽在相同条件下发芽试验的结果如下:每批粒数100400800100020004000发芽的频数8530065279316043204发芽的频率0.8500.7500.8150.7930.8020.801根据以上数据可以估计,该油菜籽种子发芽的概率为(精确到0.1).41. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋯、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是.42. 一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是.43. 在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为粒.44. 一个不透明的布袋中装有分别标着数字1,2,3,4的四张卡片,现从袋中随机摸出两张卡片,则这两张卡片上的数字之和大于5的概率为.45. “石头、剪刀、布”是民间广为流传的游戏.游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率P=.46. 如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.47. 甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏.(填“公平”或“不公平”)48. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.49. 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是.50. 甲盒装有3个乒乓球,分别标号为1,2,3;乙盒装有2个乒乓球,分别标号为1,2.现分别从每个盒中随机地取出1个球,则取出的两球标号之和为4的概率是三、解答题51. 某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球B.乒乓球C.羽毛球D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人,在扇形统计图中“D”对应的圆心角的度数为;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).52. 一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1)当x=3时,谁获胜的可能性大?(2)当x为何值时,游戏对双方是公平的?53. 有两个不透明的袋子分别装有红、白两种颜色的球(除颜色不同外其余均相同),甲袋中有2个红球和1个白球,乙袋中有1个红球和3个白球.(1)如果在甲袋中随机摸出一个小球,那么摸到红球的概率是;(2)如果在乙袋中随机摸出两个小球,那么摸到两球颜色相同的概率是;(3)如果在甲、乙两个袋子中分别随机摸出一个小球,那么摸到两球颜色相同的概率是多少?(请用列表法或树状图法说明)54. 一个不透明的袋子中装有2个白球,1个红球,1个黑球,每个球除颜色外都相同,将球搅匀.(1)从中任意摸出1个球,恰好摸到白球的概率是;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,求两次都摸到白球的概率.(用树状图或列表法求解)55. 某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500mL)、红茶(500mL)和可乐(600mL),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(转动转盘,当转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.56. 不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(除颜色外其余都相同),其中红球2.个(分别标有1号、2号),蓝球1个.若从中任意摸出一个球,它是蓝球的概率为14(1)求袋中黄球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用画树状图或列表格的方法,求两次摸到不同颜色球的概率.57. 小明做投掷骰子(质地均匀的正方体)实验,共做了100次实验,实验的结果如下:朝上的点数123456出现的次数141523162012(1)计算“4点朝上”的频率.(2)小明说:“根据实验,一次实验中出现3点朝上的概率最大”.他的说法正确吗?为什么?(3)小明投掷一枚骰子,计算投掷点数小于3的概率.58. 一个不透明的口袋里装有分别标有汉字“书”、“香”、“昌”、“平”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“昌平”的概率.59. 一个转盘的盘面被平均分成“红”、“黄”、“蓝”三部分.(1)若随机的转动转盘一次,则指针正好指向红色的概率是多少?(2)若随机的转动转盘两次,求配成紫色的概率.(注:两次转盘的指针分别一个指向红色,一个指向蓝色即可配出紫色)60. 一个转盘的盘面被平均分成“红”、“黄”、“蓝”三部分.(1)若随机的转动转盘一次,则指针正好指向红色的概率是多少?(2)若随机的转动转盘两次,求配成紫色的概率.(注:两次转盘的指针分别一次指向红色,一次指向蓝色即可配出紫色)答案第一部分1. B2. D 【解析】本市明天降水概率是80%,只说明明天降水的可能性比较大,是随机事件,A,B,C 属于对题意的误解,只有D正确.3. C4. C5. C【解析】A.抛掷一枚硬币,落地后正面朝上是随机事件;B.篮球运动员投篮,投进篮筐是随机事件;C.自然状态下水从高处流向低处是必然事件;D.打开电视机,正在播放新闻是随机事件.6. C7. B 【解析】抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.8. C 【解析】∵3+4=7,∴用长分别为3cm,4cm,7cm的三条线段无法围成三角形,∴用长分别为3cm,4cm,7cm的三条线段围成三角形的事件是不可能事件.9. C10. C.【解析】因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是12 11. D 【解析】A.打开电视,它正在播广告是随机事件;B.抛掷一枚硬币,正面朝上是随机事件;C.打雷后下雨是随机事件;D.∵一年有365天,∴367人中有至少两个人的生日相同是必然事件.12. A13. A14. C15. B16. A17. C18. D19. B20. D【解析】A、明天太阳从西方升起是不可能事件,故 A 错误;B、掷一枚硬币,正面朝上是随机事件,故 B 错误;C、打开电视机,正在播放“夏津新闻”是随机事件,故 C 错误;D、任意一个三角形,它的内角和等于180∘是必然事件,故 D 正确.21. A 【解析】A.13名同学中,至少有两人的出生月份相同是必然事件,正确;B.“抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次可能有1次出现正面朝上,此选项错误;C.如果一件事发生的机会只有十万分之一,那么它发生的可能性小,此选项错误;D.从1,2,3,4,5,6中任取一个数是奇数的可能性等于偶数的可能性,此选项错误.22. A23. D24. D25. B26. C27. C 【解析】∵四边形内角和是360∘,∴在平面内任意画一个四边形,其内角和是180∘,这个事件是不可能事件.28. D 【解析】A .2x 3 不是单项式,错误;B .2x 3 不是整式,错误;C .23,2x 3,√x 32 不是分式,错误; D .23,2x 3,2x 3,√x 32都是二次根式,正确. 29. A 【解析】A .某校初二年级共有 480 人,则至少有两人的生日是同一天;属于必然事件;B .经过路口,恰好遇到红灯;属于随机事件;C .打开电视,正在播放动画片;属于随机事件;D .抛一枚硬币,正面朝上;属于随机事件.30. D第二部分31. ①③32. 35【解析】∵ 不透明的盒子中装有 2 个白球和 3 个红球,共有 5 个球,∴ 这个盒子中任意摸出 1 个球、那么摸到红球的概率是 35. 33. 1234. 确定【解析】根据生活常识,知“太阳每天从东方升起”,一定发生,这是一个确定事件.35. 1336. 31037. 1338. 4939. 4740. 0.841. 1242. 1443. 125044. 13【解析】根据题意画树状图如下:共有12种情况,两张卡片上的数字之和大于5的有4种,则这两张卡片上的数字之和大于5的概率为412=13.45. 1346. 2347. 不公平【解析】两次抽取的牌面的数字的积可能为30,35,42,25,36,49,其中30,35,42都是两次,即共9种情况,其中奇数有4种,偶数有5种,显然是不公平的.48. 51349. 1350. 13【解析】画树状图得:∵共有6种等可能的结果,取出的两球标号之和为4的有2种情况,∴取出的两球标号之和为4的概率是:26=13.第三部分51. (1)200;72∘【解析】20÷36∘360∘=200(人),∴这次被调查的学生共有200人,在扇形统计图中“D”对应的圆心角的度数=40200×360∘=72∘.(2) C类人数为200−80−20−40=60(人),完整条形统计图为:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种.∴P(恰好选中甲、乙两位同学)=212=16.52. (1) 当 x =3 时,甲同学获胜可能性为 316,乙同学获胜可能性为16−3−616=716, ∵ 316<716,∴ 当 x =3 时,乙同学获胜可能性大.(2) 游戏对双方公平必须有:x 16=16−3x 16,解得:x =4,答:当 x =4 时,游戏对双方是公平的.53. (1) 23(2) 12【解析】如果在乙袋中随机摸出两个小球,则有红白、红白、红白、白白、白白、白白共 6 种等可能的结果数,其中摸到两球颜色相同的概率 =36=12.(3) 画树状图为:共有 12 种等可能的结果数,其中摸到两球颜色相同的结果数为 5,∴ 摸到两球颜色相同的概率 =512.54. (1) 12【解析】4 个小球中有 2 个白球,则任意摸出 1 个球,恰好摸到白球的概率 12. (2) 列表如下:白白红黑白−−−(白,白)(白,红)(黑,白)白(白,白)−−−(白,红)(黑,白)红(红,白)(红,白)−−−(黑,红)黑(白,黑)(白,黑)(红,黑)−−−所有等可能的情况有 12 种,其中两次都摸到白球有 2 种可能,则 P(两次摸到白球)=212=16.55. (1) 因为转盘被等分成五个扇形区域,每个区域上分别写有“可”“绿”“乐”“茶”“红”字样,所以一次“有效随机转动”可获得“乐”字的概率为15.(2)树状图如图:因为共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,所以该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为225.56. (1)设袋中黄球的个数为x个,∵从中任意摸出一个球,它是蓝球的概率为14,∴1x+2+1=14,解得:x=1,经检验x=1是原方程的解,且符合题意.∴袋中黄球的个数为1个;(2)画树状图得:∵共有12种等可能的结果,两次摸到不同颜色球的有10种情况,∴两次摸到不同颜色球的概率为:P=1012=56.57. (1)“4点朝上”的频率为16100=0.16.(2)小明的说法错误;因为当实验的次数足够大时,该事件发生的频率会稳定在事件发生的概率附近;而事件发生具有随机性,所以小明的判断是错误的.(3)P(小于3)=26=13.58. (1)从中任取一个球,球上的汉字刚好是“书”的概率为14.(2)画树状图为:共有12种等可能的结果,其中取出的两个球上的汉字能组成“昌平”的结果数为2,所以取出的两个球上的汉字能组成“昌平”的概率为212=16.59. (1)随机的转动转盘一次,则指针正好指向红色的概率=13.(2)画树状图为:共有9种等可能的结果,其中配成紫色的结果数为2,所以配成紫色的概率=29.60. (1)随机的转动转盘一次,则指针正好指向红色的概率为13.(2)画树状图为:共有 9 种等可能的结果,其中配成紫色的结果数为 2,∴ 配成紫色的概率为 29.。

2022九年级数学上册 第25章 概率初步 基础专题 概率与放回 不放回问题习题课件 (新版)新人教

2022九年级数学上册 第25章 概率初步 基础专题 概率与放回 不放回问题习题课件 (新版)新人教
解:分别用白1、白2、白3表示3颗白球,用黑1表示黑球,用列表法表示所有可能出现的结 果如下:
共有12种等可能的结果,其中“一白一黑〞的结果有6种,所以恰好取出“一白一黑〞两颗 棋子的概率为
4.(2021•沈阳)为了丰富校园文化生活,提高学生的综合素质,促进中学生全 面开展,学校开展了多种社团活动.小明喜欢的社团有:合唱社团、足球社 团、书法社团、科技社团(分别用字母A,B,C,D依次表示这四个社团), 并把这四个字母分别写在四张完全相同的不透明的卡片的正面上,然后将
第二十五章 概率初步
根底专题 概率与“放回〞“不放回〞问题
类型一 概率与“放回〞问题
1.(2021•长春)一个不透明的口袋中有三个小球,每个小球上只标有一个汉 字,分别是“家〞“家〞“乐〞,除汉字外其余均相同.小新同学从口袋中随机 摸出一个小球,记下汉字后放回并搅匀,再从口袋中随机摸出一个小球记 下汉字,用画树状图(或列表的)方法,求小新同学两次摸出小球上的汉字相 同的概率.
解:画树状图如下:
共有9种等可能的结果,其中小新同学两次摸出小球上的汉字相同的结果 有5种,∴小新同学两次摸出小球上的汉字相同的概率为
2.图1是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2, 3,4,图2是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规那么 是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就 从图2中的点A开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的 收诱惑的一瞬间被决定 。22.5.622.5.6F riday, May 06, 2022 10、低头要有勇气,抬头要有低气。10:10:2110:10:2110:105/6/2022 10:10:21 AM 11、人总是珍惜为得到。22.5.610:10:2110:10May-226-May-22 12、人乱于心,不宽余请。10:10:2110:10:2110:10Fri day, May 06, 2022 13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.610:10:2110:10:21May 6, 2022 14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午10时10分21秒10:10:2122.5.6 15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午10时10分 22.5.610:10M ay 6, 2022 16、业余生活要有意义,不要越轨。2022年5月6日 星期五10时10分21秒10:10:216 May 2022 17、一个人即使已登上顶峰,也仍要 自强不 息。上 午10时10分21秒上午10时10分10:10:2122.5.6

人教版九年级数学上册第二十五章 概率初步练习(含答案)

人教版九年级数学上册第二十五章 概率初步练习(含答案)

第二十五章 概率初步一、单选题1.下列事件中,属于必然事件的是( )A .购买一张彩票,中奖B .三角形的两边之和大于第三边C .经过有交通信号灯的路口,遇到红灯D .对角线相等的四边形是矩形 2.下列事件中,属于随机事件的是( ).A .三角形一边上的中线和这条边上的高重合B .用长度分别是1cm ,3cm ,4cm 的细木条首尾顺次相连可组成一个三角形C .若两个图形关于某条直线对称,则这两个图形全等D .任意一个三角形的内角和等于180°3.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是14,则袋中球的总个数是( ) A .2 B .4C .6D .8 4.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( )A .16B .19C .118D .2155.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .126.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程240ax x c ++=有实数解的概率为( )A.14B.13C.12D.237.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.抛一个质地均匀的正六面体骰子,向上的面点数是5D.抛一枚硬币,出现反面的概率8.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.6个B.15个C.13个D.12个9.学完《概率初步》这一章后,老师让同学结合实例说一说自己的认识,请你判断以下四位同学说法正确的是()A.小智说,做3次掷图钉试验,发现2次钉尖朝上,因此钉尖朝上的概率是2 3B.小慧说,某彩票的中奖概率是5%,那么如果买100张彩票一定会有5张中奖C.小通说,射击运动员射击一次只有两种结果:中靶与不中靶,所以它们发生的概率都是12D.小达做了20次抛掷均匀硬币的试验,其中有5次正面朝上,15次正面朝下,他认为再做一次,正面朝上的概率是二分之一10.如图,正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点.现随机向正方形ABCD内投掷一枚小针,则针尖落在阴影区域的概率为()A.18B.14C.13D.12二、填空题11.从一副扑克牌中任意抽一张扑克牌,是红桃2,此事件是____________事件.(填“必然”“随机”或“不可能”)12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.13.如图是小明在抛掷图钉的试验中得到的图钉针尖朝上的折线统计图,请你估计抛掷图钉针尖朝上的概率是_____.14.现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是____________.三、解答题15.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.()1从口袋中任意取出一个球,是一个白球;()2从口袋中一次任取5个球,全是蓝球;()3从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.16.如图,现有一个均匀的转盘被平均分成六等份,分別标有2、3、4、5、6、7这六个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时重转).(1)转动转盘,求转出的数字大于3的概率;(2)随机转动转盘,转盘停止后记下转出的数字,并与数字3和4分别作为三条线段的长度,求这三条线段能构成三角形的概率.17.某商场举办抽奖活动规则如下:在不透明的袋子中有2个黑球和2个红球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到黑球,则获得1份奖品;若摸到红球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为.(2)如果小芳有两次摸球机会(摸出后不放回),请用表格法或树状图法求小芳获得2份奖品的概率.18.共享经济已经进入人们的生活.小沈收集了自已感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)答案1.B 2.A 3.D4.B 5.C 6.C 7.B 8.D 9.D 10.B 11.随机12.4 513.0.614.2 315.()1不确定事件;()2不可能事件;()3必然事件16.(1)23;(2)5617.(1)12;(2)1618.(1)14;(2)16。

九年级数学上册第二十五章概率初步专题课堂十三概率的综合应用课件新版新人教版

九年级数学上册第二十五章概率初步专题课堂十三概率的综合应用课件新版新人教版
第二十五章 概率初步
专题课堂(十三) 概率的综合应用
1.在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后, 小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华 随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).
(1)用列表或画树状图法表示出(x,y)的所有可能出现的结果; (2)求小明、小华各摸一次扑克牌所确定的一对数 是方程x+y=5的解的概率; (3)求小明、小华各摸一次扑克牌 所确定的一2018·曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片 A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图), 把四张卡片背面朝上放在桌面上,李老师从这四张卡片中 随机抽取一张卡片后不放回,再随机抽取一张.
(1)用树状图或者列表表示所有可能出现的结果; (2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.
解:(1)搅匀后从中摸出 1 个盒子有 3 种等可能结果, 所以摸出的盒子中是 A 型矩形纸片的概率为13 (2)画树状图如下:
由树状图知共有 6 种等可能结果,其中 2 次摸出的盒子的纸片能 拼成一个新矩形的有 4 种结果,分别为 AB,BA,BC,CB, 所以 2 次摸出的盒子的纸片能拼成一个新矩形的概率为46=23
解:(1)画树状图(略),共有 9 种等可能的结果 (2)满足 Δ=b2-4a>0 的有 5 种结果: (12,3),(12,2),(14,3),(14,2),(1,3), ∴P(甲获胜)=59,P(乙获胜)=1-59=49,∴P(甲获胜)>P(乙获胜), ∴这样的游戏规则对甲有利,不公平
3.(2018·扬州)4张相同的卡片分别写着数字-1,-3,4,6, 将卡片的背面朝上,并洗匀.

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397

九年级数学上册第25章概率初步25.1随机事件与概率25.1.2概率课件新版新人教版_397
第二十五章
概率初步
25.1 随机事件与概率
25.1.2 概 率
导入新课 讲授新课 当堂练习 课堂小结
学习目标
1.理解一个事件概率的意义. 2.会在具体情境中求出一个事件的概率.(重点) 3.会进行简单的概率计算及应用.(难点)
导入新课
视频引入
视频中的游戏公平吗?为什么?
讲授新课
一 概率的定义及适用对象
的概率,记为P(A).
例如 :“抽到1”事件的概率:P(抽到1)=
1 . 5
想一想 “抽到奇数”事件的概率是多少呢?
二 简单概率的计算
互动探究
试验1:抛掷一个质地均匀的骰子 (1)它落地时向上的点数有几种可能的结果? (2)各点数出现的可能性会相等吗?
相等 6种
1 (3)试猜想:各点数出现的可能性大小是多少? 6
解:A区域的方格总共有8个,标号3表示在这8个方 格中有3个方格各藏有1颗地雷.因此,点击A区域的任 3 一方格,遇到地雷的概率是 ; 8 B区域方格数为9×9-9=72.其中有地雷的方格数 为10-3=7.因此,点击B区域的任一方格,遇到地雷
7 的概率是 72
;
3 7 由于 8 > 72 ,即点击A区域遇到地雷的可能 性大于点击B区域遇到地雷的可能性,因而第
活动2 掷一枚骰子,向上一面的点数有6种可能,即 1,2,3,4,5,6. 因为骰子形状规则、质地均匀,又是随机 掷出,所以每种点数出现的可能性大小相 等.我们用 性大小.
1 6
表示每一种点数出现的可能
概率的定义 一般地,对于一个随机事件A,我们把刻画其
发生可能性大小的数值,称为随机事件A发生
(2)指向红色或黄色;
(3)不指向红色.

人教版九年级数学上册第二十五章概率初步全章课件份(1)

人教版九年级数学上册第二十五章概率初步全章课件份(1)

(3)在一个不透明的布袋中装有红色、白色玻璃 球共 40 个,除颜色外其他完全相同.小明通过多次摸 球试验后发现,其中摸到红色球的概率稳定在 15% 左 右,则口袋中红色球可能有( B ). A.4个 B.6个 C.34个 D.36个
小 结
(1)在什么条件下,可以通过列举法得到随机事件 的概率? (2)用列举法求概率有哪些具体的方法?它们各有 什么特点? (3)简述用频率估计概率的一般做法.
游戏规则 随机抽取一张卡片,记下数字放回,洗匀后 再抽一张.将抽取的第一张、第二张卡片上的数 字分别作为十位数字和个位数字,若组成的两位 数不超过 32,则小贝胜,反之小晶胜.
(2)如图,A、B 两个转盘分别被平均分成三个、 四个扇形,分别转动 A 盘、B 盘各一次.转动过程中, 指针保持不动,如果指针恰好指在分割线上,则重转一 次,直到指针指向一个数字所在的区域为止.请用列表 或画树状图的方法,求两个转盘停止后指针所指区域内 的数字之和小于 6 的概率. 1 0 A 2 6 3 B 5 4
B.了解一批电视机的使用寿命适合用抽样调查 C.若甲组数据的标准差 S甲=0.31,乙组数据的标 准差 S乙=0.25,则乙组数据比甲组数据稳定 D.在一个装有白球和绿球的袋中摸球,摸出黑球 是不的试卷共 12 页,其中语文 4 页、数学 2 页、英语 6 页,他随机地从 讲义夹中抽出 1 页,抽出的试卷恰好是数学试卷的概率 为____.
第25章
整理与复习
• 复习目标:
1.理解随机事件的定义及概率的定义; 2.能够用列举法计算简单事件的发生概率,能够通 过重复试验,用事件发生的频率估计概率; 3.通过实例进一步丰富对概率的认识,并能解决一 些简单的实际问题.
知识梳理,构建体系

九年级数学上册第25章概率初步综合专题概率与其他知识的综合应用习题名师公开课省级获奖课件新版新人教版

九年级数学上册第25章概率初步综合专题概率与其他知识的综合应用习题名师公开课省级获奖课件新版新人教版
7.现有4张完全相同的卡片分别写着数字-2,1,3,4.将卡片的背面朝上 并洗匀,从中任意抽取一张,将卡片上的数字记作a.再从余下的卡片中任意 抽取一张,将卡片上的数字记作c,则抛物线y=ax2+4x+c与x轴有交点的 概率为______.
8.在-2,-1,0,1,2这五个数中任意取两个数m,n,已知有二次函数y =(x-m)2+n.
了解面对逆境,远比如何接受顺境重要得多2024年7月

1、
9日星期二8时8分29秒08:08:298:08:29 AM 。24.7.924.7.9Tuesday, July 09, 2024
一般的伟人总是让身边的人感到渺小Tuesday, July 09, 2

2、
0248:08:29 AM7/9/2024 8:08:29 AM08:08Jul-24 。08: 08:2908 :08:290 8:087/9 /2024 8:08:29 AM
要及时把握梦想,因为梦想一死7/9/2024 8:08:29 AM

9、
。上午8时8分29秒上午8时8 分08:08 :2924.7 .9
• 10、一个人的梦想也许不值钱,但一个人的努力很值 钱。7/9/2024 8:08:29 AM08:08:292024/7/9
• 11、在真实的生命里,每桩伟业都由信心开始,并由 信心跨出第一步。7/9/2024 8:08 AM7/9/2024 8:08 AM2
类型四 概率与统计的综合应用
14.(2019•遵义)电子政务、数字经济、智慧社会……一场数字革命正在神 州大地激荡.在第二届数字中国建设峰会召开之际,某校举行了第二届“掌 握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生 成绩统计后,绘制成如下统计图表(不完整):

九年级数学上册单元清(第二十五章概率初步)课件(新版)新人教版

九年级数学上册单元清(第二十五章概率初步)课件(新版)新人教版
检测内容:第二十五章 概率初步
一、选择题(每小题 3 分,共 36 分)
1.掷一枚质地均匀的硬币 10 次,下列说法正确的是( A )
A.可能有 5 次正面朝上 B.必有 5 次正面朝上 C.掷 3 次必有 1 次正面朝上 D.不可能 10 次正面朝上 2.(2016·武汉)不透明的袋子中装有性状、大小、质地完全相同的 6 个球,其中 4 个黑
1
____3____. 15.(2016·南宁)如图,在 4×4 正方形网格中,有 3 个小正方形已经涂黑,若再涂黑任意
一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的
3
图形是轴对称图形的概率是____1_3___.
16.小明把 80 个除颜色以外其余都相同的黄、蓝、红三种球放进一个不透明的口袋内, 经很多次摸球后,得到它们的频率分别为 25%,35%,40%,试估计黄、蓝、红三种球的个
等于( D)
A.1 B.21 C.31 D.23
第 7 题图
第 9 题图
8.(2016·葫芦岛)在一个不透明的布袋中装有若干个只有颜色不同的小球,如果袋中有红球 5
个,黄球 4 个,其余为白球,从袋子中随机摸出一个球,“摸出黄球”的概率为13,则袋中白球的
个数为( B)
A.2 B.3 C.4 D.12
20.(10 分)为了估计一片森林里有多少只野鹿,野生动物保护协会从森林中捕获 45 只野 鹿在耳朵上做好标记,然后放回森林里去,过几天,再捕第二批野鹿 50 只,若其中带标记的 野鹿有 5 只,估计这片森林里共有多少只野鹿?
解:因第二批捕 50 只野鹿中有 5 只是带有标记的,故带有标记的野鹿出现的频率为110,就是 说在鹿群中捕到一只带有标记的鹿的概率是110,又知带有标记的有 45 只野鹿,故这片森林中 有 45÷110=450 只野鹿

【单元练】(人教版)福州九年级数学上册第二十五章《概率初步》经典练习(含答案解析)

【单元练】(人教版)福州九年级数学上册第二十五章《概率初步》经典练习(含答案解析)

一、选择题1.下列事件中,是随机事件的是()A.明天河南有新冠肺炎输入病例B.十三个人中,有人出生在同一个月C.地球绕着太阳转D.掷一次骰子,向上一面的点数是7A解析:A【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、是随机事件,故A符合题意.B、是必然事件,故B不符合题意.C、是必然事件,故C不符合题意.D、是不可能事件,故D不符合题意.故选A.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件指在一定条件下,可能发生也可能不发生的事件.2.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是 180°D.抛一枚硬币,落地后正面朝上C解析:C【解析】分析:必然事件就是一定发生的事件,依据定义即可作出判断.详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选C.点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.下列事件中,属于必然事件的是()A.深圳明天会下大暴雨B.打开电视机,正好在播足球比赛C.在13个人中,一定有两个人在同月出生D.小明这次数学期末考试得分是80分C解析:C【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【详解】A、深圳明天会下大暴雨,是随机事件,故本选项错误;B、打开电视机,正好在播足球比赛,是随机事件,故本选项错误;C、在13个人中,一定有两个人在同月出生,是必然事件,故本选项正确;D、小明这次数学期末考试得分是80分,是随机事件,故本选项错误.故选:C.【点睛】本题考查的是随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,①必然事件发生的概率为1,即P(必然事件)=1;②不可能事件发生的概率为0,即P(不可能事件)=0;③如果A为不确定事件(随机事件),那么0<P(A)<1.4.如图是一个圆形的地板图案,其中大圆直径恰好等于两个小圆直径的和.若在地板上任意扔一颗小玻璃珠,则小玻璃珠静止后,滚落在阴影部分的概率是().A.12B.13C.14D.1πA解析:A【分析】小玻璃珠滚落在阴影部分的概率为该阴影部分的面积与总面积的比值.【详解】解:设小圆的半径为r,则大圆半径为2r∴大圆面积为:π(2r)2=4πr2阴影部分的面积为:大圆面积-2个小圆的面积=4πr2-2πr2=2πr2∴滚落在阴影部分的概率是2221 42rrππ=.故答案为A.【点睛】本题考查几何概率的求法,确定大圆面积和阴影部分的面积是解答本题的关键. 5.有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是 ( )A .415B .15C .13D .215C 解析:C【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【详解】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值=515=13, ∴最终停在阴影方砖上的概率为13. 故选:C .【点睛】本题考查的是几何概率,熟知概率公式是解答此题的关键.6.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流.A .1B .2C .3D .4B 解析:B【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案.【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件;因此,(1)(4)为必然事件,故答案为A.【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件;不确定事件:无法确定它会不会发生的事件;不可能事件:一定不会发生的事件.7.“明天的降水概率为90%”的含义解释正确的是( )A .明天90%的地区会下雨B .90%的人认为明天会下雨C.明天90%的时间会下雨D.在100次类似于明天的天气条件下,大约有90次会下雨D解析:D【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得,在100次类似于明天的天气条件下,大约有90次会下雨,正确;故选:D.【点睛】随机事件是指在一定条件下,可能发生也可能不发生的事件.概率表示随机事件发生的可能性的大小.8.从1到9这9个自然数中任取一个,既是2的倍数,又是3的倍数的概率是()A.19B.13C.12D.79A解析:A【分析】从1到9这9个自然数中,既是2的倍数,又是3的倍数只有6一个,所以既是2的倍数,又是3的倍数的概率是九分之一.【详解】解:∵既是2的倍数,又是3的倍数只有6一个,∴P(既是2的倍数,又是3的倍数)=19.故选:A.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.9.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.16C解析:C【分析】画出树状图,找出所有等可能的结果,计算即可.【详解】根据题意画出树状图如下:共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,∴()21 = 63P两盏灯泡同时发光,故选C.【点睛】本题考查了列表法与树状图法,正确的画出树状图是解决此题的关键.10.下列事件发生的可能性为0的是( )A.掷两枚骰子,同时出现数字“6”朝上B.小明从家里到学校用了10分钟,从学校回到家里却用了15分钟C.今天是星期天,昨天必定是星期六D.小明步行的速度是每小时50千米D解析:D【分析】事件发生的可能性是0,说明这件事情不可能发生.据此解答即可.【详解】解:A、掷两枚骰子,同时出现数字“6”朝上,是可能事件;B、小明从家里到学校用了10分钟,从学校回到家里却用了15分钟,是可能事件;C、今天是星期天,昨天必定是星期六,是必然事件,概率为1;D、小明步行的速度是每小时50千米,是不可能事件,概率为0.故选:D.【点睛】此题主要考查可能性的判断.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件发生的可能性为1,即P(必然事件)=1;不可能事件发生的可能性为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.二、填空题11.六张大小、质地均相同的卡片上分别标有1、2、3、4、5、6,现将标有数字的一面朝下扣在桌面上,从中随机抽取一张(放回洗匀),再随机抽取第二张.记前后两次抽得的数字分别为m、n,若把m、n分别作为点A的横坐标和纵坐标,则点A(m,n)在函数y=12x的图象上的概率是_____.【分析】根据反比例函数的性质找出符合点在函数y=图象上的点即可根据概率公式求解【详解】解:列表得:∴一共有36种情况在函数y=的图象上的有(26)(34)(43)(62)共4种;∴在函数y=的图象上解析:1 9【分析】根据反比例函数的性质,找出符合点在函数y=12x图象上的点,即可根据概率公式求解.【详解】解:列表得:∴一共有36种情况,在函数y=12x的图象上的有(2,6)(3,4)(4,3)(6,2)共4种;∴在函数y=12x 的图象上的概率是436=19,故答案为:19.【点睛】本题为反比例函数与概率的综合,考查的是用列表法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比;反比例函数上的点的横纵坐标的积为比例系数.12.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;235;24解析:3 4【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.13.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是__________.【分析】列举出所有等可能的情况数找出能构成三角形的情况数即可求出所求概率【详解】从长为35710的四条线段中任意选取三条作为边所有等可能情况有:357;3510;3710;5710共4种其中能构成三解析:1 2【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【详解】从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)=21 42 ,故答案为12.【点睛】此题考查了列表法与树状图法,以及三角形的三边关系,其中概率=所求情况数与总情况数之比.14.如图,AD平分∠BAC,BD⊥AD,垂足为D,连接CD,若三角形△ABC内有一点P,则点P落在△ADC内(包括边界的阴影部分)的概率为__________.【分析】据已知条件证得△ABD≌△AED根据全等三角形的性质得到BD=ED得出S△ABD=S△AEDS△BCD=S△DCE推出S△ACD=S△ABC根据概率公式可得的答案【详解】延长BD交AC于E∵解析:12【分析】据已知条件证得△ABD ≌△AED ,根据全等三角形的性质得到BD =ED ,得出S △ABD =S △AED ,S △BCD =S △DCE ,推出S △ACD =12S △ABC ,根据概率公式可得的答案. 【详解】延长BD 交AC 于E ,∵AD 平分∠BAC ,∴∠BAD =∠EAD ,∵BD ⊥AD ,∴∠ADB =∠ADE =90°,在△ABD 和△AED 中,ADB ADE AD AD BAD EAD ∠=∠⎧⎪=⎨⎪∠∠⎩=, ∴△ABD ≌△AED (ASA ),∴BD =ED ,∴S △ABD =S △AED ,S △BCD =S △DCE ,,∴S △ACD =12S △ABC , 则点P 落在△ADC 内(包括边界)的概率为:12ACD ABC S S =. 故答案为12. 【点睛】 本题考查了概率公式的应用与全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.15.在一个不透明的盒子里装有6个形状大小完全相同的乒乓球,上面分别标有-1,-2,0,0.5,1,2,六个数字,现将它们摇匀后从中任取一个乒乓球,将该乒乓球上的数字记为m ,则使关于x 的一元二次方程mx 2+4x+4=0有实数根,且使关于x 的分式方程112m x -=-有正数解的概率为______.【分析】根据一元二次方程有实数根以及分式方程有正数解求出m 的取值范围再根据概率公式即可解答【详解】解:∵关于x 的一元二次方程mx2+4x+4=0有实数根∴解得:且又∵关于x 的分式方程有正数解∴且解得 解析:16【分析】根据一元二次方程有实数根以及分式方程有正数解,求出m 的取值范围,再根据概率公式即可解答.【详解】解:∵关于x 的一元二次方程mx 2+4x+4=0有实数根,∴16160m ∆=-≥,解得:1m 且0m ≠,又∵关于x 的分式方程112m x -=-有正数解, ∴10x m =+>,且12x m =+≠,解得:1m >-且1m ≠,∴m 的取值范围为:11m -<<∴符合条件的m 只有0.5,∴符合条件的概率为16, 故答案为:16. 【点睛】本题考查了概念的计算以及一元二次方程根的判别式的应用,分式方程的解,解题的关键是根据题意求出m 的取值范围.16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中任意摸出一个球,摸到红球的概率是310,摸到白球的概率是12,那么摸到黑球的概率是____.【分析】根据摸出三种球的概率的和是1列式计算即可得解【详解】∵摸到红球的概率是摸到白球的概率是∴摸出黑球的概率是:故答案为:【点睛】本题考查了概率的意义理解总概率之和是1是解题的关键 解析:15【分析】根据摸出三种球的概率的和是1列式计算即可得解.【详解】∵摸到红球的概率是310,摸到白球的概率是12, ∴摸出黑球的概率是:3111--=1025故答案为:15. 【点睛】 本题考查了概率的意义,理解总概率之和是1是解题的关键.17.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__.5【分析】根据概率公式列出方程即可求出答案【详解】解:由题意得解得m =5经检验m =5是原分式方程的根故答案为5【点睛】本题主要考查了概率公式根据概率公式列出方程是解题的关键解析:5【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.18.如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.已知AE=5,BE=3,若向正方形ABCD 内随意投掷飞镖(每次均落在正方形ABCD 内,且落在正方形ABCD 内任何一点的机会均等),则恰好落在正方形EFGH 内的概率为__________.【分析】根据几何概型概率的求法飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比根据题意可得小正方形的面积与大正方形的面积进而可得答案【详解】解:根据题意AB2=AE2+BE2=34∴S 正方形A 解析:217【分析】根据几何概型概率的求法,飞镖扎在小正方形内的概率为小正方形内与大正方形的面积比,根据题意,可得小正方形的面积与大正方形的面积,进而可得答案.【详解】解:根据题意,AB2=AE2+BE2=34,∴S正方形ABCD=34,∵△ABE≌△BCF,∴AE=BF=5,∵BE=3,∴EF=2,∴S正方形EFGH=4,故飞镖扎在小正方形内的概率为42 3417=.故答案为2 17.【点睛】本题考查概率、正方形的性质,用到的知识点为:概率=相应的面积与总面积之比;难点是得到正方形的边长.19.有四张背面完全相同的卡片,正面上分别标有数字﹣2,﹣1,1,2.把这四张卡片背面朝上,随机抽取一张,记下数字为m;放回搅匀,再随机抽取一张卡片,记下数字为n,则y=mx+n不经过第三象限的概率为_____.【分析】根据题意列表然后根据表格求得所有等可能的结果与直线y=mx+n不经过第三象限的的情况数根据概率公式求解即可【详解】列表得:mn-2-112-2(-2-2)(-2-1)(-2解析:1 4【分析】根据题意列表,然后根据表格求得所有等可能的结果与直线y=mx+n不经过第三象限的的情况数,根据概率公式求解即可.【详解】列表得:其中使得直线y=mx+n不经过第三象限有(-2,1)、(-2,2)、(-1,1)、(-1,2)共4种情况,所以直线y=mx+n不经过第三象限的概率为:41 164=,故答案为:1 4 .【点睛】本题考查了列表法或树状图法求概念,一次函数的图象与性质,熟练掌握相关知识是解题的关键.20.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________.(2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档