南京市联合体2019年中考数学一模试卷含答案解析+【精选五套中考模拟卷】
江苏省南京市2019-2020学年中考一诊数学试题含解析
江苏省南京市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC→CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.2.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数4.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.a-3,则a的值可以是()5.若22A .﹣7B .163C .132D .126.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个.A .4个B .3个C .2个D .1个7.如图已知⊙O 的内接五边形ABCDE ,连接BE 、CE ,若AB =BC =CE ,∠EDC =130°,则∠ABE 的度数为( )A .25°B .30°C .35°D .40°8.如图,将Rt ∆ABC 绕直角项点C 顺时针旋转90°,得到∆A' B'C ,连接AA',若∠1=20°,则∠B 的度数是( )A .70°B .65°C .60°D .55°9.2019年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是( )A .32,31B .31,32C .31,31D .32,3510.下列各数:1.414213,0,其中是无理数的为( ) A .1.414 B . 2C .﹣13 D .011.将抛物线2 21y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )A .()2212y x =---B .()2212y x =-+-C .()2214y x =--+D .()2214y x =-++ 12.下列各式计算正确的是( )A .2223a a +=B .()236b b -=-C .235c c c ⋅=D .()222m n m n -=-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一组数据4,3,5,x,4,5的众数和中位数都是4,则x=_____.14.一等腰三角形,底边长是18厘米,底边上的高是18厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第_____个.15.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=5x(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.16.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.17.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.18.若x a y与3x2y b是同类项,则ab的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.20.(6分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.21.(6分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(3=1.73,结果保留一位小数.)22.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.23.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.24.(10分)解方程(1)x 1﹣1x ﹣1=0(1)(x+1)1=4(x ﹣1)1.25.(10分)如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.26.(12分)已知:如图,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E . 求证:AD =AE .27.(12分)解不等式组4623x x x x +>⎧⎪+⎨≥⎪⎩并写出它的所有整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.2.B【解析】【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.3.D【解析】【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案.详解:A.是轴对称图形,也是中心对称图形,故此选项错误;B.不是轴对称图形,也不是中心对称图形,故此选项错误;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项正确.故选D.点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.5.C【解析】【分析】根据已知条件得到4<a-2<9,由此求得a 的取值范围,易得符合条件的选项.【详解】解:∵2<2a -<3,∴4<a-2<9,∴6<a <1.又a-2≥0,即a≥2.∴a 的取值范围是6<a <1.观察选项,只有选项C 符合题意.故选C .【点睛】考查了估算无理数的大小,估算无理数大小要用夹逼法.6.B【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据122c x x a ⋅=<-,不等式的两边都乘以a(a<0)得:c>−2a ,由4a−2b+c=0得22c a b -=-,而0<c<2,得到102c -<-<即可求出2a−b+1>0.详解:根据二次函数y=ax 2+bx+c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=−2代入得:4a−2b+c=0,∴①正确;把x=−1代入得:y=a−b+c>0,如图A 点,∴②错误;∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122c x x a ⋅=<-, ∴不等式的两边都乘以a(a<0)得:c>−2a ,∴2a+c>0,∴③正确;④由4a−2b+c=0得22c a b -=-,而0<c<2,∴102c -<-< ∴−1<2a−b<0∴2a−b+1>0,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.7.B【解析】【分析】如图,连接OA ,OB ,OC ,OE .想办法求出∠AOE 即可解决问题.【详解】如图,连接OA ,OB ,OC ,OE .∵∠EBC+∠EDC =180°,∠EDC =130°,∴∠EBC =50°,∴∠EOC =2∠EBC =100°,∵AB =BC =CE ,∴弧AB =弧BC =弧CE ,∴∠AOB =∠BOC =∠EOC =100°,∴∠AOE =360°﹣3×100°=60°,∴∠ABE =12∠AOE =30°.故选:B.【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将Rt∆ABC绕直角项点C顺时针旋转90°,得到∆A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.9.C【解析】分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.解答:解:从小到大排列此数据为:30、1、1、1、32、34、35,数据1出现了三次最多为众数,1处在第4位为中位数.所以本题这组数据的中位数是1,众数是1.故选C.10.B【解析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.11.A根据二次函数的平移规律即可得出.【详解】解:221y x =-+向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为()2212y x =---故答案为:A .【点睛】本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.12.C【解析】【分析】【详解】解:A .2a 与2不是同类项,不能合并,故本选项错误;B .应为()236b b -=,故本选项错误;C .235·c c c =,正确;D .应为()2222m n m n mn -=+-,故本选项错误.故选C .【点睛】本题考查幂的乘方与积的乘方;同底数幂的乘法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】一组数据中出现次数最多的数据叫做众数,由此可得出答案.【详解】∵一组数据1,3,5,x ,1,5的众数和中位数都是1,∴x=1,故答案为1.【点睛】本题考查了众数的知识,解答本题的关键是掌握众数的定义.14.5根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【详解】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则=,解得x=3,所以另一段长为18-3=15,因为15÷3=5,所以是第5张.故答案为:5.【点睛】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.15.1.【解析】解:∵平移后解析式是y=x﹣b,代入y=5x得:x﹣b=5x,即x2﹣bx=5,y=x﹣b与x轴交点B的坐标是(b,0),设A的坐标是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案为1.点睛:本题是反比例函数综合题,用到的知识点有:一次函数的平移规律,一次函数与反比例函数的交点坐标,利用了转化及方程的思想,其中利用平移的规律表示出y=x平移后的解析式是解答本题的关键.16.1 3【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.17.6【解析】【分析】利用正方形的性质和勾股定理可得AC的长,由角平分线的性质和平行线的性质可得∠CAE=∠E,易得CE=CA,由FA⊥AE,可得∠FAC=∠F,易得CF=AC,可得EF的长.【详解】解:∵四边形ABCD为正方形,且边长为3,∴2∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴2,∵FA⊥AE,∴∠FAC+∠CAE=90°,∠F+∠E=90°,∴∠FAC=∠F,∴2,∴22218.2【解析】试题解析:∵x a y与3x2y b是同类项,∴a=2,b=1,则ab=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.有触礁危险,理由见解析.【解析】试题分析:过点P作PD⊥AC于D,在Rt△PBD和Rt△PAD中,根据三角函数AD,BD就可以用PD 表示出来,根据AB=12海里,就得到一个关于PD的方程,求得PD.从而可以判断如果渔船不改变航线继续向东航行,有没有触礁危险.试题解析:有触礁危险.理由:过点P作PD⊥AC于D.设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°.∴BD=PD=x .在Rt △PAD 中,∵∠PAD=90°-60°=30°∴AD=330x x tan =︒∵AD=AB+BD 3∴3+131-() ∵63)<18∴渔船不改变航线继续向东航行,有触礁危险.【点睛】本题主要考查解直角三角形在实际问题中的应用,构造直角三角形是解题的前提和关键. 20.(1)证明见解析;(2)CD =3【解析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC ,根据中点的定义得出AE=BE ,然后由ASA 判断出△AED ≌△EBC ;(2)根据全等三角形对应边相等得出AD=EC ,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD 是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明 :∵AD ∥EC∴∠A=∠BEC∵E 是AB 中点,∴AE=BE∵∠AED=∠B∴△AED ≌△EBC(2)解:∵△AED≌△EBC ∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.试题解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.则有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=3AC.∵16+DE=DC,∴16+AC=3AC,解得:AC=83+8=DE.所以塔CD的高度为(83+24)米≈37.9米,答:塔CD的高度为37.9米.22.(1)详见解析;(2)72°;(3)【解析】【分析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴(恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.24.(1)x13,x1=13(1)x1=3,x1=13.【解析】【分析】(1)配方法解;(1)因式分解法解.【详解】(1)x 1﹣1x ﹣1=2,x 1﹣1x+1=1+1,(x ﹣1)1=3,x ﹣1=3± , x=13±,x 1=13+,x 1=1﹣3, (1)(x+1)1=4(x ﹣1)1.(x+1)1﹣4(x ﹣1)1=2.(x+1)1﹣[1(x ﹣1)]1=2.(x+1)1﹣(1x ﹣1)1=2.(x+1﹣1x+1)(x+1+1x ﹣1)=2.(﹣x+3)(3x ﹣1)=2.x 1=3,x 1=13. 【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.25.(1)A (,0)、B (3,0). (2)存在.S △PBC 最大值为2716(3)2m =1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m =22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m =或1m =-时,△BDM 为直角三角形. 26.见解析【解析】试题分析:证明简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB ≌△AEB 即可. 试题解析:∵AB=AC,点D 是BC 的中点,∴AD ⊥BC,∴∠ADB=90°.∵AE ⊥EB,∴∠E=∠ADB=90°.∵AB 平分∠DAE,∴∠BAD=∠BAE.在△ADB 和△AEB 中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB ≌△AEB(AAS),∴AD=AE.27.不等式组的整数解有﹣1、0、1.【解析】【分析】先解不等式组,求得不等式组的解集,再确定不等式组的整数解即可.【详解】4623x x x x +>⎧⎪⎨+≥⎪⎩①②, 解不等式①可得,x >-2;解不等式②可得,x≤1;∴不等式组的解集为:﹣2<x≤1,∴不等式组的整数解有﹣1、0、1.【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础, 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则求不等式组的解集是解答本题的关键.。
【联合体数学】2019-2020初三(下)一模试卷(含答案)
1. 4 的算术平方根是
A.2
B.-2
C.±2
D.± 2
2.2019 年江苏省粮食总产达 40 540 000 吨,居全国第四位.用科学记数法表示 40 540 000
是
A.4054×104
B.4.054×104
3.计算(-a2)3 的结果是
A.a5
B.-a5
C.4.054×107 C.a6
D.4054×107 D.-a6
x-1 x2+6x+9
17.(6 分)计算(2- )÷ x+1
x2-1
.
第2页 共7页【联合体一模试卷】
18.(6 分)解不等式组
x+3 2 ≥x+1,
并把解集在数轴上表示出来.
3+4(x-1)>-9,
-4 -3 -2 -1 0 1 2 3 4
19.(8 分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车 速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在 41 3 千米/时到 50 千米/时的车辆数占车辆总数的10.
为▲. 13.如图,将正六边形 ABCDEF 绕点 D 逆时针旋转 27°得正六边形 A′B′C′DE′F′,则∠1= ▲ °.
A
F
B
F′
A
A′ 1
O
B
E′ E
A
y
D
B′ A
C D
(第 12 题)
B′ C
D
C′
B
CO
B
x
(第 13 题)
(第 15 题)
(第 16 题)
k 14. 反比例函数 y=x的图像过点(-2,a)、(2,b),若 a-b=-6,则 ab= ▲ . 15. 如图,在 Rt△ACB 中,∠C=90°, BC=4,AB=5, BD 平分∠ABC 交 AC 于点 D,
2019年江苏省南京市联合体中考数学一模试卷及答案详解
2019年江苏省南京市联合体中考数学一模试卷
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(2分)的值等于()
A.3B.﹣3C.±3D .
2.(2分)下列计算中正确的是()
A.a2+a3=2a5B.(a2)3=a5C.(ab2)3=ab6D.a2•a3=a5
3.(2分)已知a 为整数,且满足<a <,则a的值为()
A.4B.3C.2D.1
4.(2分)已知反比例函数y =的图象经过点(1,3),若x<﹣1,则y的取值范围为()A.y>﹣3B.y<3C.﹣3<y<0D.0<y<3
5.(2分)如图,将△ABC绕点A旋转任意角度得到△AB'C',连接BB'、CC',则BB':CC'等于()
A.AB:AC B.BC:AC C.AB:BC D.AC:AB
6.(2分)如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD上的动点,且EF=4,G是EF的中点,下列结论正确的是()
A.AG⊥EF B.AG长度的最小值是4﹣2
C.BE+DF=4D.△EFC面积的最大值是2
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直
接填写在答题卡相应位置上)
第1 页共30 页。
江苏省南京市2019-2020学年中考数学一模考试卷含解析
江苏省南京市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .2.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 3.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( ) A .命题(1)与命题(2)都是真命题 B .命题(1)与命题(2)都是假命题 C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题4.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个5.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°6.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+ B .()2213y x =-+ C .()2313y x =-++D .()2313y x =--+7.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒8.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠ B .0m >C .0m ≥且1m ≠D .0m ≥9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒10.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =( )A .2:3B .4:9C .2:5D .4:2511.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣712.实数6 的相反数是 ( ) A .-6B .6C .16D .6-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).14.若|a|=20160,则a=___________.15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.16.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.17.若分式15x-有意义,则实数x的取值范围是_______.18.11201842-⎛⎫+- ⎪⎝⎭=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?20.(6分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.21.(6分)计算:025(3)tan 45π︒+--.化简:2(2)(1)x x x ---.22.(8分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.23.(8分)如图1,点P 是平面直角坐标系中第二象限内的一点,过点P 作PA ⊥y 轴于点A ,点P 绕点A 顺时针旋转60°得到点P',我们称点P'是点P 的“旋转对应点”.(1)若点P (﹣4,2),则点P 的“旋转对应点”P'的坐标为 ;若点P 的“旋转对应点”P'的坐标为(﹣5,16)则点P 的坐标为 ;若点P (a ,b ),则点P 的“旋转对应点”P'的坐标为 ; (2)如图2,点Q 是线段AP'上的一点(不与A 、P'重合),点Q 的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P 与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x 轴的交点坐标.24.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.25.(10分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.26.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.27.(12分)如图,已知抛物线y =x 2﹣4与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y =x+m 经过点A ,与y 轴交于点D .求线段AD 的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD ,求新抛物线对应的函数表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.2.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠D F,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.3.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax 2+bx ,x=0时,y=0,经过原点,不能得出结论. (1)∵P (a ,b )在y=上, ∴a 和b 同号,所以对称轴在y 轴左侧, ∴存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题. (2)∵函数y=的所有“派生函数”为y=ax 2+bx , ∴x=0时,y=0, ∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 考点:(1)命题与定理;(2)新定义型 4.B 【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=; ∴上述各式中计算结果为负数的有2个. 故选B. 5.A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°, ∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC , ∴∠BAE=25°, ∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°, ∴∠EAD+∠ACD=5°+70°=75°, 故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用. 6.D 【解析】 【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可. 【详解】解:根据图象,设函数解析式为()2y a x h k =-+ 由图象可知,顶点为(1,3) ∴()213y a x =-+,将点(0,0)代入得()20013a =-+ 解得3a =- ∴()2313y x =--+ 故答案为:D . 【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式. 7.B 【解析】 【分析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C . 【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C , ∴AC =A′C ,∴△ACA′是等腰直角三角形, ∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°, ∴∠B =∠A′B′C =65°. 故选B . 【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 8.A 【解析】 【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围. 【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.9.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.10.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.11.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3, 故选B .12.A【解析】【分析】根据相反数的定义即可判断.【详解】 6 的相反数是6故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.214a . 【解析】【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D ⊥AB'于D ,根据30°角所对的直角边等于斜边的一半得出C'D 12=AC'12=a ,然后根据S △AB'C'12=AB'•C'D 即可求解. 【详解】∵等边△ABC 的边长为a ,∴AB=AC=a ,∠BAC=60°.∵将△ABC 的边AB 绕着点A 顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a ,∠B'AB=α. ∵边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a ,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D ⊥AB'于D ,则∠D=90°,∠DAC'=30°,∴C'D 12=AC'12=a ,∴S △AB'C'12=AB'•C'D 12=a•12a 14=a 1. 故答案为:14a 1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积. 14.±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1. 15.1【解析】【分析】先根据同旁内角互补两直线平行知AB ∥CD ,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB ∥CD ,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系. 16.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(2102+,32-210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:(2102+,32-)或(2102-,32-). 17.【解析】 由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x .解:∵分式15x -有意义, ∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.18.1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法20.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.21.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算. (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值. 22.(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或5+17或5-17(舍去-2和5+17)故点P 的坐标为:(4,6)或(5-17,317-5).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a );(2)见解析;(3)直线PP'与x 轴的交点坐标(﹣3,0)【解析】【分析】(1)①当P (-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,AH=3P'H=23,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH-AH=16-53,即可得出结论;③当P (a ,b )时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP '=3x+3,即可得出结论.【详解】解:(1)如图1,①当P (﹣4,2)时,∵PA ⊥y 轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt △P'AH 中,P'H=12P'A=2, ∴AH=3P'H=23,∴OH=OA+AH=2+23,∴P'(﹣2,2+23),②当P'(﹣5,16)时,在Rt △P'AH 中,∠P'AH=30°,P'H=5, ∴P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH ﹣AH=16﹣53, ∴P (﹣10,16﹣53),③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣32a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB ⊥y 轴,PA ⊥y 轴,∴QB ∥PA ,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A ,∴PP'∥QQ';(3)设y PP '=kx+b',由题意知,3,∵直线经过点(3,6),∴b'=3,∴y PP'=3x+3,令y=0,∴x=3∴直线PP'与x30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.24.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D 不可能在EF 上,即∠FDB 不可能为直角;③假设∠BFD 为直角且FB=FD ,则∠FBD=∠FDB=45°,如图2,作FH ⊥BD 于点H ,则FH=PA ,即4﹣t=6﹣t ,方程无解,∴假设不成立,即△BDF 不可能是等腰直角三角形.25. (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】【分析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩, 答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180, ∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.26.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标.27.(1) ;(1) y =x 1﹣4x+1或y =x 1+6x+1.【解析】【分析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x 1﹣4=0得,x 1=﹣1,x 1=1,∵点A 位于点B 的左侧,∴A (﹣1,0),∵直线y =x+m 经过点A ,∴﹣1+m =0,解得,m =1,∴点D 的坐标为(0,1),∴AD ;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,y =x 1+bx+1=(x+2b )1+1﹣24b , 则点C′的坐标为(﹣2b ,1﹣24b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),∴直线CC′的解析式为:y =x ﹣4,∴1﹣24b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.【点睛】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.。
2019年江苏省南京市中考数学第一次联合测评试卷附解析
2019年江苏省南京市中考数学第一次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52°B .南偏东52°C .西偏北52°D .北偏西38°2.某人沿坡度为 26°的斜坡行进了 100 米,他的垂直高度上升了( )A .0100sin 6米B .0100cos 26米C .0100tan 26米D .0100tan 26米 3.若⊙O 的半径为6,如果一条直线和圆相切,P 为直线上的一点,则OP 的长度( )A .OP=6B .OP >6C .OP ≥6D .OP <6 4.下列各组数中成比例的是( ) A .3,4,5,6B .1,3,3,5C .1,4,4,2D .1,4,2,8 5.已知213y x x =−,226y x =−,当12y y =时,x 的值为( ) A .2x =或3x =B .1x =或6x =C .1x =−或6x =D .2x =−或3x =− 6.如果代数式32a−的值大于 一3 且小于 7,那么 a 的取值范围是( )A .0a <B .20a >C .020a <<D .20a o a <>或7.如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( )A .①B .②C .③D .①和②8.下列事件中,属于随机事件的是( )A .掷一枚普通正六面体骰子所得点数不超过 6B .买一张体育彩票中奖C .太阳从西边落下D .口袋中只装有 10个红球,从中摸出一个白球二、填空题9.把大小和形状一模一样的6张卡片分成两组,每组3张,分别标上1,2,3.将这两组卡片分别放入两个盒子中搅匀,再从中各随机抽取一张,试求取出的两张卡片数字之和为偶数的概率(要求用树状图或列表方法求解).10.已知⊙O的半径为5㎝,弦AB的长为8㎝,则圆心O到AB的距离为㎝.11.已知反比例函数y=-8x的图象经过点P(a+1,4),则a=_____.-312.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的条件是__________(•填一个你认为正确的条件).13.平行四边形的面积为S,边长为5,该边上的高为h,则S与h的关系为;当h=2时,S= ;当S=40时,h= .14.一个直棱柱有 16个顶点,则它的棱数是 .15.如图,在长方形ABCD中,AB=1,BC=2则AC=___________.16.当12s t=+时,代数式222s st t−+的值为.17.(23a4b7-19a2b6)÷(-13ab3)2=_ .18.若一个长方形的面积等于(3346mn m n+)cm2,其中长是(2223n m+)cm,则该长方形的宽是.三、解答题19.如图,某幢大楼顶部有一块广告牌CD,甲、乙两人分别在相距8m的A、B两处测得D 点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上.若BE=15m,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)20.如图所示是由小立方块所搭成几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数.请画出相应几何体的主视图和左视图.A B P Q M N21.如图,已知AB ∥CD ,AF= FB ,EC = EB ,试说明:(1)△OCF ∽△OAE ;(2)OC OF CD OC =(第 11 颧 )22.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.23.如图,已知PQ ∥MN ,夹在两条平行线间的线段AB 长为 3 cm ,∠ABM =60°.求PQ 与MN 之间的距离.D B A O C24.如图是一个食品包装盒的展开图.(1)请写出这个包装盒的多面体形捩的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积.25.解不等式组523483x xxx−<+⎧⎪+⎨≥−⎪⎩,并写出它的非负整数解.26.如图,在△ABC中,AB =AC,D 为 BC边上的一点,∠BAD = ∠CAD,BD = 6cm,求BC的长.27.如图是4个小正方形连在一起,试再拼接2个同样大小的正方形,使它可以折成正方体.请画出两种拼法:28.如图,∠1 =75°,请你添加一个条件,使直线 AB与直线 CD平行,并说明理由..29.利用计算器计算: 4413343− 1115(结果保留3个有效数字) 358−结果保留3个有效数字) 352结果保留3个有效数字)30.计算:2007200645()()54⨯−.45【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.D5.A6.C7.C8.B二、填空题9.510.9311.12.AD=BC (答案不惟一)13.S=5h ,10,814.2415. 516.41 17. 162−b a 18.2mn三、解答题19.解:∵AB=8,BE=15,∴AE=23.在R t △ADE 中,︒=∠45DAE ,∴DE=AE=23.在R t △BCE 中,︒=∠60CBE ,∴31560tan ·=︒=BE CE,∴395.223315≈≈−=−=DE CE CD .∴这块广告牌的高度约为3米. 20.如图.21.(1)∵AF= FB,∴∠A=∠B.∵ EC=EB ,∴∠B=∠OCF.∴∠A=∠OCF.∵∠AOE=∠COF ,∴△OCF ∽△OAE ;(2)∵AB ∥CD,∠A=∠D.∵∠A=∠OCF ,∠OCF=∠D.∵∠COF=∠COD , ∵△OCF ∽△ODC ,∴OC OF CD OC =22.解:△ABC ≌△DCB .证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,∴∠ABC=∠DCB . 在∆ABC 与∆DCB 中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB .(注:答案不唯一)23. 32cm . 24.(1)直六棱柱 (2)6ab25.-2≤x<3,x=0,l ,226.∵∠BAD=∠CAD ,∴AD 是∠BAC 的平分线.∵AB=AC ,∴△ABC 是等腰三角形.∴AD 是△ABC 的BC 边上的中线,∴BD=CD=12BC . ∵BD=6cm ,∴BC=12(cm) 27.答案不唯一,如28.不唯一,如∠2=105°,理由略29.(1)21 (2)-7 (3)0. 856 (4)-0.721 (5)0.29630.45。
南京市2019中考一模数学试卷含答案
初三学情调研试卷(Ⅰ)数 学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算结果为负数的是A .-1+2B .|-1|C .(-2)2D .-2-12.计算a 5·(-1a)2的结果是A .-a 3B .a 3C .a 7D .a 103.若a <22<b ,其中a 、b 为两个连续的整数,则ab 的值为A .2B .5C .6D .124.如图是一几何体的三视图,这个几何体可能是A .三棱柱B .三棱锥C .圆柱D .圆锥5.如图,已知a ∥b ,∠1=115°,则∠2的度数是A .45°B .55°C .65°D .85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图像的交点坐标与其相应的二元一次方程组的解之间的关系.请通过此经验推断:在同一平面直角坐标系中,函数y =5x 2-3x +4与y =4x 2-x +3的图像交点个数有A .0个B .1个C .2个D .无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案主视图左视图俯视图(第4题)a b12(第5题)直接填写在答题卡...相应位置....上) 7.若式子x -2在实数范围内有意义,则x 的取值范围是 . 8.若a -b =3, a +b =-2,则a 2-b 2= .9.据统计,2016年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880 000人. 将4 880 000用科学记数法表示为 .10.若△ABC ∽△A'B'C',相似比为1:3,则△ABC 与△A'B'C'的面积比为 . 11.已知圆锥的底面半径为1cm ,母线长为3cm ,则其侧面积为 cm 2(结果保留π).12.已知关于x 的方程x 2+mx -3=0的一个根是1,则它的另一个根是 .13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.请你根据表中数据选一人参加比赛,最合适的人选是 .14.在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数y =k 2x的图像一个交点的坐标是(-2,3),则它们另一个交点的坐标是 .15.如图,在正十边形A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10中,连接A 1A 4、A 1A 7,则∠A 4A 1A 7= °.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.A5A6A7A8A910A1A2A3 A4(第15题)三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(6分)先化简,再求值:(1a -1b )÷a 2-b 2ab,其中a =2+1,b =2-1.18.(6分)解不等式组⎩⎪⎨⎪⎧ x +92≥4,2x -3<0,并写出不等式组的整数解.19.(7分)如图,在四边形ABCD 中,AB ∥CD ,点E 、F 在对角线AC 上,且∠ABF =∠CDE ,AE =CF .(1)求证:△ABF ≌△CDE ;(2)当四边形ABCD 满足什么条件时,四边形BFDE 是菱形?为什么?20.(8分)“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A 、D 、C 、E 在同一条直线上,CD =30cm ,DF =20cm ,AF =25cm ,FD ⊥AE 于点D ,座杆CE =15cm ,且∠EAB =75°. (1)求AD 的长;(2)求点E 到AB 的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.(7分)甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.图①图②(第20题)MFE DCBA(1)甲同学观看《最强大脑》的概率是 ;(2)求甲、乙两名同学观看同一节目的概率.22.(8分)“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2016年10月1日加入SDR (特别提款权),以后出国看世界更加方便.为了解某区6 000名初中生对“人民币加入SDR ”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR ”知晓情况频数分布表某区抽取学生对“人民币加入SDR ”知晓情况扇形统计图非常了解 26%比较了解基本了解不了解(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.(8分)某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.(9分)货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h 后休息,直至与货车相遇后,以原速度继续行驶.设货车出发x h后,货车、轿车分别到达离甲地y1km和y2 km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km25.(8分)数学活动课上,小君在平面直角坐标系中对二次函数图像的平移进行了研究. 图①是二次函数y =(x -a )2+a3(a 为常数)当a =-1、0、1、2时的图像.当a 取不同值时,其图像构成一个“抛物线簇”.小君发现这些二次函数图像的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为 ;(2)如图②,当a =0时,二次函数图像上有一点P (2,4).将此二次函数图像沿着(1)中发现的直线平移,记二次函数图像的顶点O 与点P 的对应点分别为O 1、P 1.(第25题)若点P1到x轴的距离为5,求平移后二次函数图像所对应的函数表达式.26.(10分)如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE27.(11分)问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,P A=PC.点P可能为△ABC 的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x ≥2 8.-6 9.4.88×106 10.1: 9 11.3π 12.-3 13.丁 14.(2,-3) 15.54° 16.1433三、解答题(本大题共11小题,共计88分)17.(本题6分)解:原式=(b -a ab )·ab(a +b )(a -b )································································· 2分=-1a +b. ···················································································· 4分当a =2+1,b =2-1时,原式=- 1 (2+1)+(2-1)=- 1 22=- 24. ···································· 6分18.(本题6分)解:解不等式①,得x ≥-1. ···································································· 2分解不等式②,得x <32. ······································································· 4分所以不等式组的解集是-1≤x <32. ························································ 5分不等式组的整数解为-1、0、1. ·························································· 6分19.(本题7分)解:(1)∵AB ∥CD ,∴∠BAC =∠DCA .∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE .又∵∠ABF =∠CDE ,∴△ABF ≌△CDE . ····································································· 3分(2)当四边形ABCD 满足AB =AD 时,四边形BEDF 是菱形. ·················· 4分连接BD 交AC 于点O ,由(1)△ABF≌△CDE 得AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴□ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴□BEDF是菱形.······································································ 7分20.(本题8分)解:(1)在Rt△ADF中,由勾股定理得,AD=AF 2-FD2=252-202=15(cm). ······································· 3分(2)AE=AD+CD+EC=15+30+15=60(cm). ···································· 4分过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=EHAE, ··················································· 6分∴EH =AE ·sin ∠EAH =AB ·sin75°≈ 60×0.97=58.2(cm ).答:点E 到AB 的距离为58.2 cm . ·················································· 8分21.(本题7分)解:(1)13 . ·························································································· 2分(2)分别用A ,B ,C 表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:一共有9种可能的结果,它们是等可能的,其中符合要求的有3种. P (甲、乙两名同学观看同一节目)= 39 = 13.答:甲、乙两名同学观看同一节目的概率为 13. ································· 7分22.(本题8分)解:(1)100,20. ··················································································· 2分(2)72. ·························································································· 4分(3)6 000×80%=4 800人.答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.···· 8分23.(本题8分)解法一:设这种台灯的售价上涨x元,( 600-10x ) ( 40+x-30)=10 000, ················································· 4分解得x1 =10,x2=40,·································································· 6分∴当x=10时,40+x=50,当x=40时,40+x=80; ························ 7分解法二:设这种台灯的售价为x元,[600-10(x-40)] (x-30)=10 000,·················································· 4分解得x1 =50,x2=80,·································································· 7分答:当这种台灯的售价定为50或80元时,每个月的利润恰为10 000元.··········· 8分24.(本题9分)解:(1)求出点坐标D ( 4,300 ).······························································ 2分点D是指货车出发4h后,与轿车在距离A地300 km处相遇.·············· 3分(2)求出点坐标E ( 6.4,0 ).······························································· 4分设DE 所在直线的函数表达式为y =kx +b ,将点D ( 4,300 ),E ( 6.4,0)代入y =kx +b 得:⎩⎪⎨⎪⎧4k +b =300,6.4k +b =0, 解得 ⎩⎪⎨⎪⎧b =800,k =-125, ∴DE 所在直线的函数表达式为y =-125x +800. ····························· 7分(3) 2或5. ····················································································· 9分25.(本题8分)解:(1)y = 13x . ··················································································· 2分(2)点O 1的坐标为 ( 3,1) 或 (-27,-9) ············································· 4分平移后的二次函数的表达式为y =(x -3)2 +1或y =(x +27)2 -9. ·········· 8分26.(本题10分)证明:(1)连接FO ,∵ OF =OC ,∴ ∠OFC =∠OCF .∵CF 平分∠ACE ,∴∠FCG =∠FCE .∴∠OFC =∠FCG .E∵ CE 是⊙O 的直径,∴∠EDG =90°,又∵FG ∥ED ,∴∠FGC =180°-∠EDG =90°,∴∠GFC +∠FCG =90°∴∠GFC +∠OFC =90°,即∠GFO =90°,∴OF ⊥GF , ···················································································· 4分又∵OF 是⊙O 半径,∴FG 与⊙O 相切. ··········································································· 5分(2)延长FO ,与ED 交于点H , 由(1)可知∠HFG =∠FGD =∠GDH =90°,∴四边形FGDH 是矩形.∴FH ⊥ED ,∴HE =HD .又∵四边形FGDH 是矩形,FG =HD ,(第26题)DGCBA(第26题)∴HE=FG=4.∴ED=8. ·························································································7分∵在R t△OHE中,∠OHE=90°,∴OH=OE2-HE2=52-42=3.∴FH=FO+OH=5+3=8. ·······························································9分S四边形FGDH=12(FG+ED)·FH=12×(4+8)×8=48. ································ 10分27.(本题11分)解:(1)画对1个巧妙点给一分. ······························································· 2分(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,∵AD=AB,AB=AC,BD=BC,∴△ADB≌△ABC.同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE =∠AED =36°=∠BAD ,∴∠BDM =∠BDA -∠MDA =36°,∠BMD =∠ADM +∠DAM =72°=∠ABD ,∴DB =DM . ············································································· 5分 ∵∠DBM =∠ABD ,∠AED =∠BAD ,∴△DAM ∽△DEA ,∴DM DA =DA DE,DA 2 =D M ·DE , ∵DM =DB ,∴DA 2 =D B ·DE . ··················································· 7分(3)第一种如图①或图②(只需画一个即可),∠BAC =60°.B A CPC第二种如图③,∠BAC =36°; 第三种如图④,∠BAC =108°; 第四种如图⑤,∠BAC =120°.以上共四种:60°、36°、108°、120°. ········································ 11分(第27题) 图⑤ 图④ 图③ (第27题) 图② 图① B AC PB ACP CB P。
2019年江苏省南京市中考数学模拟考试试题附解析
2019年江苏省南京市中考数学模拟考试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,以Rt ABC △的直角边AC 所在的直线为轴,将ABC △旋转一周,所形成的几何体的俯视图是( )2.已知⊙O 的半径为6cm ,如果一条直线和圆心O 的距离为5cm ,那么这条直线和这个圆的位置关系为( ) A .相离B .相交C .相切D .相切或相离3.计算:tan 245°-1= .( ) 4.不等式组201x x −<⎧⎨≥⎩的解集为( ) A .1≤x<2 B .x ≥1 C .x<2 D .无解 5.若点A (m ,n )在第三象限,则点B (m −,n )在( )A . 第一象限B .第二象限C .第三象限D . 第四象限 6.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是( ) A .m+1B .2mC .2D .m+27.结果为2a 的式子是( )A .63a a ÷B .24−⋅a aC .12()a −D .42a a −8.把△ABC 先向左平移1 cm ,再向右平移2 cm ,再向左平移3 cm 。
再向右平移4 cm , ……,经这样移动l00次后,最后△ABC 所停留的位置是( ) A .△ABC 左边50 cm B .△ABC 右边50 cm C .△ABC 左边l mD .△ABC 右边l m9.已知∠AOB=150°,0C 平分∠AOB ,OD 在∠AOB 的内部,且∠AOD=13∠AOB ,则∠COD= ( ) A .15°B .25°C .35°D .45°10.如图,已知AD=BD ,C 为AD 中点,以下等式不正确的是( )A .DC=13CBB .CB=34ABC .AD=23BCD .CB=13(AB+AC )二、填空题11.如图,以△ABC 两边AB ,AC 向外作正三角形△ABD ,△ACE ,四边形ADFE 是平行四边形,当∠BAC= 时,□ADFE 是矩形.12.在:①有两边和一角对应相等的两个三角形全等;②两边和其中一边上的高对应相等的两个三角形全等;③斜边相等的两个等腰直角三角形全等中,正确的命题是 . 13. 一元二次方程20ax bx c ++=(0a ≠)的求根公式是x = ,(24b ac − 0) 14.若代数式31−x 有意义,则实数x 的取值范围是 .15.若12−=+b a ,1−=ab ,则22b ab a ++= .16.已知一次函数y x a =−+与y x b =+的图象相交于点(m ,8),则a+b= .17.两个装有乒乓球的盒子,其中一个装有2个白球1个黄球,另一个装有1个白球2个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为 .18.已知||2x ≤,且x 为整数,那么x 为 .三、解答题19.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测旗杆AB 的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m ,小明的影长为1.2m ,请你帮小明计算出旗杆的长.20.如图,张斌家居太阳光住的甲楼 AB 面向正北,现计划在他家居住的楼前修建一座 乙楼 CD ,楼高约为 l8m ,两楼之间的距离为 21m ,已知冬天的太阳高度最低时,光线与水平线的夹角为 30°.(1)试求乙楼 CD 的影子落在甲楼 AB 上的高 BE 的长;(2)若让乙楼的影子刚好不影响甲楼,则两楼之间的距离至少应是多少?21.求当23a =−,2b =时,代数式2242009a b a +−+的值.22.若y 是x 的一次函数,当x=2时,y=2,当x=一6时,y=6. (1)求这个一次函数的关系式; (2)当x=8时,函数y 的值; (3)当函数y 的值为零时,x 的值; (4)当1≤y<4时,自变量x 的取值范围.23.如图,∠AOB=60°,AO=10,点P 在OB 上,根据以下条件,分别求出OP 的长(或范围).(1)△AOP 是等边三角形; (2)△AOP 是直角三角形; (3)△AOP 是钝角三角形.24.某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:户 数 3 2 1 3 1 每户平均人数(人) 2 3 4 3 5 每户平均产生垃圾 的数量(kg)2.53.54.55.56.5(1)在这一天中,这10户居民平均每户产生多少kg 垃圾?(结果精确到0.1 kg) (2)在这一天中,这10户居民平均每人产生多少kg 垃圾?(结果精确到0.1 kg)25.如图所示,在甲、乙两地之间要修一条公路,从甲地测得公路的走向是北偏东55°(即∠α),如果甲、乙两地同时开工,那么在乙地公路按是多少度施工时,才能使公路准确接通?26.写一个多项式,再把它分解因式(要求:多项式含有字母m 和n ,系数、次数不限,并能先用提取公因式法再用公式法分解).27.为加快西都大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程. 如 果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成. 现在甲、乙两队先共同施工 4个月,剩下的由乙队单独施工,则刚好如期完成. 问原来规定修好这条公路需多长时间?28.解下列方程:(1)223x x =;(2)2(1)40x +−=;(3)2690x x −+=;(4)22(2)(21)x x +=+29.同时抛掷两枚普通的骰子. 把朝上的点数之和作为结果. 则所得的结果有几种可能性?如果掷出的结果是“8 点”,则甲胜,掷出的结果是“9 点”.则乙胜,他们的赢的机会相同吗?为什么?30.如图所示,历史上最有名的军师诸葛孔明,率精兵与司马仲对阵,孑L明一挥羽扇.军阵瞬时由图①变为图②.其实只移动了其中3“骑”而已,请问如何移动?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.4.A5.D6.D7.B8.B9.B10.D二、填空题11. 150°12.②③13.14.3>x 15.224−16.1617. 5918. -2,-1,0, 1, 2三、解答题 19.(1)必须测出旗杆的影长 AC 和小明的影长DF.(2) ∵EF ∥BC,DE ∥AB ,∴∠EFD=∠BCA ,∠EDF=∠BAC=90°, ∴△ABC ∽△DEF ,∴AB DE AC DF =,∵4 1.6161.23AB ⨯==m ∴旗杆高为163m. 20.(1)tan 30o CG GE =,21CG ==(18BE DG ==−m(2)tan 30o CD DF =18DF=,∴18DF ⋅=答:(1)乙搂落在甲楼上的影子长(18−m ;(2)两楼之间的距离至少是18 m .21.201022.(1)132y x =−+;(2)-1;(3)6;(4)-2<x ≤423.(1)OP=10 (2)OP=5或20 (3)0<OP<5或 OP>2024.(1)4.2 kg ;(2)1:4 kg25.125°26.)2)(2(42−+=−n n m m mn (答案不唯一) .27.12 个月28.(1)10x =,232x =;(2)11x =,23x =−;(3)123x x ==;(4)11x =−,21x = 29.它们的结果有36种可能;不同,甲赢的机会大,理由略30.略。
联合体数学2019年南京联合体一模数学试卷与答案
B . ( ) = a 5a 2C . () = ab 6ab 2 x 1【联合体】2019 年中考模拟卷(一)数学一、选择题(本大题共 6 小题,每小题 2 分,共 12 分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1、A .3B .-3 C .±32、下列运算结果正确的是D . A . a 6÷ a 3= a 233D . a 2a 3 = a 53、已知 a 为整数,且满足a a 的值为A .4B .3C .2D .14、已知反比例函数 y =kx的图像经过点 (1,3) ,若 x <-1,则 y 的取值范围为 A . y > - 3 B . y <3 C . -3<y <0 D . 0<y <3 、如图,将△5 ABC 绕点 A 旋转任意角度得到△ AB 'C ' ,连接 BB ' 、CC ' ,则 BB ': CC ' 等于 A . AB : ACB . BC : ACC . AB : BCD . AC : AB B'CAD F C'GABB EC(第5题)(第6题)6、如图,在边长为 4 的正方形 ABCD 中,点 E ,F 分别是 BC 、CD 上的动点,且 EF =4,G 是 EF 中点,下列结论正确的是A . AG ⊥ EF C . BE + DF = 4B . AG 长度的最小值是 4 2 - .△D EFC 面积的最大值是 2二、填空题(本大题共 10 小题,每题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7、在-3、4、-2、5 四个数中,任意两个数之积的最小值为________.8、2018 年江苏省实现 GDP 约 92500 亿元.用科学记数法表示 92500 是________.9、若式子 xx -1在实数范围内有意义,则 x 的取值范围是________.10、计算 的结果是________.11、已知关于 x 的方程 x 2 + mx - 2 = 0 的两个根为 x 1 、 2 ,若 x 1 + x 2 - xx 2 = 6 ,则 m = ______.17、(7 分)计算 m + 2 + m - 2 ⎭ . ⎪ ÷ 3 18、(7 分)解不等式组 ⎨ x x -1⎪⎩ 3 2 <1.12、点 (m , y 1) ,(m +1, y 2 ) 都在函数 y = kx + b 的图像上,若 y 1 - y 2 = 3 ,则 k = _____________. 13数可能为 70;④成绩的极差可能为 40.其中所有正确结论的序号是________. 14、如图,将边长为 2 的正六边形 ABCDEF 绕顶点 A 顺时针旋转 60°,则旋转后所得图形与正六边形 ABCDEF 重叠部分的面积为________. E DA ED FFCABBC(第14题) (第15题)(第16题)15、如图,在矩形 ABCD 中, AB = 4 , BC = 6 , E 为 AD 中点,∆CED 的外接圆与 BE 交于点 F ,则 BF 的长度为____________. 16、如图, AB 是 O 的弦,若 O 的半径长为 6, AB = 6 2 O 上取一点 C ,使得AC = BC 的长度为____________.三、解答题(本大题共 11 小题,共 88 分,请在答题卡指定区域内作答,解答时应写出文 字说明、证明过程或演算步骤)⎛ ⎫ m + 1⎝2m - 4⎧x + 2<5,⎪ -并把不等式组的解集在数轴上表示出来.-4 -3 -2 -1 01 2 3 4(19、(7 分)某区对参加 2019 年中考的 3000 名初中毕业生进行了一次视力抽样调查,绘制出如下频数分布表和频数分布直方图。
2019年江苏省南京市联合体中考数学一模试卷(附解析)
2019年江苏省南京市联合体中考数学一模试卷(附解析)一、选择题(本大题共6小题,共12.0分)1.√9的值等于()A. 3B. −3C. ±3D. √32.下列计算中正确的是()A. a2+a3=2a5B. (a2)3=a5C. (ab2)3=ab6D. a2⋅a3=a53.已知a为整数,且满足√5<a<√10,则a的值为()A. 4B. 3C. 2D. 14.已知反比例函数y=kx的图象经过点(1,3),若x<-1,则y的取值范围为()A. y>−3B. y<3C. −3<y<0D. 0<y<35.如图,将△ABC绕点A旋转任意角度得到△AB'C',连接BB'、CC',则BB':CC'等于()A. AB:ACB. BC:ACC. AB:BCD. AC:AB6.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD上的动点,且EF=4,G是EF的中点,下列结论正确的是()A. AG⊥EFB. AG长度的最小值是4√2−2C. BE+DF=4D. △EFC面积的最大值是2二、填空题(本大题共10小题,共20.0分)7.在-3、4、-2、5四个数中,任意两个数之积的最小值为______.8.2018年江苏省实现GDP约92500亿元.用科学记数法表示92500是______.9.如果代数式xx−1有意义,那么x的取值范围是______.10.计算√12+√6×√12的结果是______.11.已知关于x的方程x2+mx-2=0的两个根为x1、x2,若x1+x2-x1x2=6,则m=______.12.点(m,y1),(m+1,y2)都在函数y=kx+b的图象上,若y1-y2=3,则k=______.13.某校九年级(1)班40名同学期末考试成绩统计表如下.成绩x(单位:分)60≤x<7070≤x<8080≤x<9090≤x≤100人数414166下列结论:①成绩的中位数在80≤x<90;②成绩的众数在80≤x<90;③成绩的平均数可能为70;④成绩的极差可能为40.其中所有正确结论的序号是______.14.如图,将边长为2的正六边形ABCDEF绕顶点A顺时针旋转60°,则旋转后所得图形与正六边形ABCDEF重叠部分的面积为______.15.如图,在矩形ABCD中,AB=4,BC=6,E为AD的中点,△CED的外接圆与BE交于点F,则BF的长度为______.16.如图,AB是⊙O的弦,若⊙O的半径长为6,AB=6√2,在⊙O上取一点C,使得AC=8√2,则弦BC的长度为______.三、计算题(本大题共1小题,共7.0分)17.计算:(m+2+3m−2)÷m+12m−4四、解答题(本大题共10小题,共81.0分)18.解不等式组{x+2<5x3−x−12<1并把不等式组的解集在数轴上表示出来.19.20.某区对参加2019年中考的3000名初中毕业生进行了一次视力抽样调查,绘制出如下频数分布表和频数分布直方图.某区2019年初中毕业生视力抽样频数分布表视力x频数/人频率4.0≤x<4.3500.254.3≤x<4.6300.154.6≤x<4.9600.304.9≤x<5.2a0.255.2≤x<5.510b请根据图表信息回答下列问题:(1)在频数分布表中,a的值为______,b的值为______;(2)将频数分布直方图补充完整;(3)若视力在4.9以上(含4.9)均为正常,根据以上信息估计全区初中毕业生中视力正常的学生有多少人?21.在课外活动时间,小明、小华、小丽做“互相传球”游戏(球从一人随机传给另一人),球从一人传到另一人就记为一次传球.现从小明开始传球.(1)经过三次传球后,求球仍传到小明处的概率;(2)经过四次传球后,下列说法:①球仍传到小明处的可能性最大;②球传到小华处的可能性最大;③球传到小华和小丽处的可能性一样大.其中所有正确结论的序号是______.A.①③B.②③C.①②③22.如图所示,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是点E,F,且BE=CF,求证:AD是△ABC的角平分线.23.【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见图).地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费150×0.95+50×0.9+60×0.8=235.5元.【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元,但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?24.甲、乙两艘快艇同时从A港口沿直线驶往B港口,甲快艇在整个航行的过程中速度v海里/小时与航行时间t小时的函数关系如图①所示(图中的空心圈表示不含这一点),乙快艇一直保持匀速航行,两快艇同时到达B港口.(1)A、B两港口之间的距离为______海里;(2)若甲快艇离B港口的距离为s1海里,乙快艇离B港口的距离为s2海里,请在图②中分别画出s1、s2与t之间的函数图象.(3)在整个行驶过程中,航行多少小时时两快艇相距5海里?25.如图,有两座建筑物AB与CD,从A测得建筑物顶部D的仰角为16°,在BC上有一点E,点E到B的距离为24米,从E测得建筑物的顶部A、D的仰角分别为37°、45°.求建筑物CD的高度.(参考数据:tan16°≈0.30,tan37°≈0.75)26.已知二次函数y=mx2-2mx(m为常数,且m≠0).(1)求证:不论m为何值,该函数的图象与x轴有两个公共点.(2)将该函数的图象向左平移2个单位.①平移后函数图象所对应的函数关系式为______;②若原函数图象顶点为A,平移后的函数图象顶点为B,△OAB为直角三角形(O为原点),求m的值.27.如图,在▱ABCD中,连接AC,⊙O是△ABC的外接圆,⊙O交AD于点E.(1)求证CE=CD;(2)若∠ACB=∠DCE.②求证CD与⊙O相切;②若⊙O的半径为5,BC长为4√5,则AE=______.28.如图①,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF,连接AF、BE交于点G,连接CE、DF交于点H.(1)求证四边形EGFH为平行四边形.(2)提出问题:在AD、BC边上是否存在点E、F,使得四边形EGFH为矩形?小明从特殊到一般探究了问题.【特殊化】如图②,若∠ABC=90°,AB=2,BC=6.在AD、BC边上是否存在点E、F,使得四边形EGFH为矩形?若存在,求出此时AE的长度;若不存在,说明理由.【一般化】如图③,若∠ABC=60°,AB=m,BC=n.在AD、BC边上是否存在点E、F使得四边形EGFH为矩形?根据点E、F存在(或不存在)的可能情况,写出对应的m、n满足的条件,存在时直接写出AE的长度.(用含m、n的代数式表示)答案和解析1.【答案】A【解析】解:∵=3,故选:A.此题考查的是9的算术平方根,需注意的是算术平方根必为非负数.此题主要考查了算术平方根的定义,一个正数只有一个算术平方根,0的算术平方根是0.2.【答案】D【解析】解:A、a2和a3不是同类项,不能合并,故本选项错误;B、(a2)3=a6,原式计算错误,故本选项错误;C、(ab2)3=a3b6,原式计算错误,故本选项错误;D、a2•a3=a5,原式计算正确,故本选项正确.故选:D.结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法运算,然后选择正确选项.本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法等知识,掌握运算法则是解答本题的关键.3.【答案】B【解析】解:∵2<<3,3<<4,又<a <,a 为整数,∴a的值为3.故选:B.估算出与的范围,进而求出整数a的值.本题考查了估算无理数的大小,利用逼近法估算出与的范围是解题的关键.4.【答案】C【解析】解:∵反比例函数y=的图象经过点(1,3),∴3=,得k=3,∴反比例函数的解析式为y=,∴在每个象限内,y随x的增大而减小,当x=-1时,y=-3,∵x<-1,∴y>-3,又∵x<-1时,反比例函数的图象在第三象限,∴y<0,∴当x<-1时,y的取值范围时-3<y<0,故选:C.根据反比例函数的图象经过点(1,3),可以求得k的值,然后根据反比例函数的性质即可求得当<-1时,y的取值范围.本题考查反比例函数图象上点的坐标特征、反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.5.【答案】A【解析】解:∵△ABC绕点A旋转任意角度得到△AB'C',∴∠B′AB=∠C′AC,AB′=AB,AC′=AC,∴△ABB′∽△ACC′,∴=.故选:A.利用旋转的性质得∠B′AB=∠C′AC,AB′=AB,AC′=AC,则可判断△ABB′∽△ACC′,然后利用相似三角形的性质可对各选项进行判断.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.6.【答案】B【解析】解:A选项:假设AG⊥EF,∵G为EF中点,∴AE=AF,则△ABE≌△AFD,则BE=DF.假设不成立,所以A选项错误;B选项:连接CG,∵G为Rt△EFC的中点,∴CG=2是定值.当A、G、C三点共线时,AG最短,此时AC是对角线为4,所以AG最短为4-2,B选项正确;C选项:假设BE+DF=4,则BE+DF=DC,则BE=FC,假设不成立,所以C选项错误;D选项:过C点作CH⊥EF于H点,由于EF=4是定值,只要CH最大则△EFC面积最大.∵CH≤CG,∴当CH=CG时,△EFC面积最大×4×2=4.所以D选项错误.故选:B.对于A选项和C选项,先假设选项内容成立,再进行推理验证假设是否成立;B选项连接CG,∵G为Rt△EFC的中点,∴CG=2是定值,当A、G、C三点共线时,AG最短;D选项过C点作CH⊥EF于H点,由于EF=4是定值,只要CH最大则△EFC面积最大,求解CH最大值即可判断.本题主要考查了正方形的性质、直角三角形斜边中线的性质,解题的关键是从所给选项入手逐一排除.7.【答案】-15【解析】解:(-3)×4=-12,(-3)×(-2)=6,(-3)×5=-15;4×(-2)=-8,4×5=20,(-2)×5=-10,∵-15<-12<-10<-8<6<20,∴在-3、4、-2、5四个数中,任意两个数之积的最小值为-15.故答案为:-15.首先求出任意两个数的积是多少,然后根据有理数的大小比较法则比较即可.此题主要考查了有理数的乘法的运算方法,要熟练掌握.8.【答案】9.25×104【解析】解:用科学记数法表示92500是9.25×104.故答案为:9.25×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.【答案】x≠1【解析】解:∵有意义,∴x-1≠0,解得x≠1.故答案为:x≠1.先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是分式有意义的条件,即分式的分母不为0.10.【答案】3√3【解析】解:原式=2+=2+=3.故答案为.先根据二次根式的乘法法则运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.【答案】-4【解析】解:依题意得:x1+x2=-m,x1x2=-2.所以x1+x2-x1x2=-m-(-2)=6所以m=-4.故答案是:-4.利用根与系数的关系求出两根之和与两根之积,代入所求式子中计算即可求出值.此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=-,x1•x 2=.12.【答案】-3【解析】解:将(m,y1),(m+1,y2)分别代入函数y=kx+b,可得y1=mk+b,y2=k(m+1)+b,∵y1-y2=3,∴mk+b-k(m+1)-b=3,∴k=-3,故答案为:-3.将(m,y1),(m+1,y2)分别代入函数y=kx+b,可得y1=mk+b,y2=k(m+1)+b,再根据y1-y2=3,即可得到k的值.本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.直线上任意一点的坐标都满足函数关系式y=kx+b.13.【答案】①②④【解析】解:∵共有40名同学,最中间的数是第20和21个数的平均数,∴成绩的中位数在80≤x<90,故①正确;∵成绩在80≤x<90最多,共有16人,∴成绩的众数在80≤x<90,故②正确;这40名同学的平均成绩不能计算,故③不正确;成绩的极差可能为100-60=40,故④正确;故答案为:①②④.根据中位数、众数、平均数和极差的概念分别进行解答,即可得出答案.本题考查了中位数、众数、平均数和极差的概念,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.14.【答案】2√3【解析】解:如图所示:将边长为2的正六边形ABCDEF绕顶点A顺时针旋转60°,则旋转后所得图形与正六边形ABCDEF重叠部分是一个菱形,由边长为2的两个等边三角形组成,∴重叠部分的面积=2××2×=2;故答案为:2.根据题意得出旋转后所得图形与正六边形ABCDEF重叠部分是一个菱形,由边长为2的两个等边三角形组成,由三角形面积公式即可得出结果.本题考查了正多边形的性质、旋转的性质、等边三角形的性质以及三角形面积公式;熟练掌握旋转的性质,熟记正六边形的性质是解题关键.15.【答案】3.6【解析】解:如图,连接CF,在矩形ABCD中,∠ADC=90°,∠A=90°∵△CED的外接圆与BE交于点F,∴∠CFE+∠ADC=180°,∴∠CFE=∠CFB=90°,∵AB=4,BC=AD=6,E为AD的中点,∴BE=,∴cos∠AEB=,∵AD∥BC,∴∠AEB=∠CBF,∴cos∠CBF=,∴BF=3.6.故答案为:3.6.连接CF,根据圆内接四边形对角互补可得∠CFE=∠CFB=90°,因为cos∠CBF=cos∠AEB=,在Rt△BFC中,利用锐角三角函数即可得出BF的长.本题考查圆内接四边形的性质,锐角三角函数的定义.解题的关键是掌握圆内接四边形对角互补的性质.16.【答案】8±2√2【解析】解:如图所示:连接OA、OB,作BD⊥AC于D,∵OA=OB=6,AB=6,∴OA2+OB2=AB2,∴△OAB是直角三角形,∠AOB=90°,∴∠ACB=∠AOB=45°,∵BD⊥AC,∴△BCD是等腰直角三角形,∴BD=CD,BC=BD,设BD=CD=x,则AD=8-x,在Rt△ABD中,由勾股定理得:x2+(8-x)2=(6)2,解得:x=4±2,∴BC=(4±2)=8±2;故答案为:8±2.连接OA、OB,作BD⊥AC于D,由勾股定理的逆定理证出△OAB是直角三角形,∠AOB=90°,由圆周角定理得出∠ACB=∠AOB=45°,得出△BCD是等腰直角三角形,得BD=CD,BC= BD,设BD=CD=x,则AD=8-x,在Rt△ABD中,由勾股定理得出方程,解方程求出x=4±2,即可得出BC的长.本题考查了圆周角定理、勾股定理和勾股定理的逆定理、等腰直角三角形的判定与性质等知识;熟练掌握圆周角定理,由勾股定理得出方程是解题关键.17.【答案】解:原式=(m+2)(m−2)+3m−2÷m+12(m−2)=(m+1)(m−1)m−2•2(m−2)m+1=2(m-1)=2m-2.【解析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:{x+2<5①x3−x−12<1②由①得:x<3,由②得:x>-3,∴不等式组的解集为:-3<x<3,在数轴上表示不等式组的解集为:.【解析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.本题考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.19.【答案】50 0.05【解析】解:(1)总人数=50÷0.25=200(人),∴a=200×0.25=50(人),b==0.05,故答案为50,0.05.(2)直方图如图所示:(3)3000×=900(人),估计全区初中毕业生中视力正常的学生有900人.(1)求出总人数即可解决问题.(2)根据第四组人数画出直方图即可.(3)利用样本估计总体的思想解决问题即可.本题考查频数分布表,频数分布直方图,样本估计总体的思想等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】A【解析】解:(1)设小明、小华、小丽分别记为甲、乙、丙;画树状图如下:由树状图知,从甲开始,经过三次传球后共有8种等可能结果,其中球传到甲处的有2种结果,所以球传到甲处的概率为=;(2)由树状图知,从甲开始,经过四次传球后共有16种等可能结果,其中球传到甲处的有6种结果,所以球传到甲处的概率为若从甲开始踢,则球传到甲处的概率为=;传到乙的概率均为,传到丙的概率均,所以若经过四次传球后,小明处的可能性最大,球传到小华和小丽处的可能性一样大.故答案为:A.(1)根据题意画出树状图,得出所有的可能情况数,找出球传到甲处的情况数,即可求出所求的概率;(2)根据题意画出树状图,得出所有的可能情况数,即可求出所求的概率.此题考查了列表法与画树状图,用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】证明:∵DE⊥AB,DF⊥AC,∴△BDE△DCF是直角三角形.在Rt △BDE 与Rt △DCF 中, {BE =CF BD=DC,∴Rt △BDE ≌Rt △DCF (HL ), ∴DE =DF ,又∵DE ⊥AB ,DF ⊥AC , ∴AD 是△ABC 的角平分线. 【解析】首先可证明Rt △BDE ≌Rt △DCF (HL ),再根据三角形角平分线的逆定理求得AD 是△ABC 的角平分线即可.此题主要考查了角平分线的性质与判定,直角三角形全等的判定.要证边相等,想办法证明边所在的三角形全等,是常用的方法之一,要熟练掌握并灵活运用.22.【答案】解:设甲二月份乘坐地铁的消费金额是x 元,乙二月份乘坐地铁的消费金额是y 元,依题意,得:{150×0.95+0.9(x −150)+0.95y =283.5x+y=300, 解得:{y =120x=180.答:甲二月份乘坐地铁的消费金额是180元,乙二月份乘坐地铁的消费金额是120元. 【解析】设甲二月份乘坐地铁的消费金额是x 元,乙二月份乘坐地铁的消费金额是y 元,根据甲、乙两个成人二月份无储值卡乘坐地铁消费金额及采用新规持储值卡消费金额,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.【答案】150【解析】解:(1)30×1+60×(3-1)=150(海里);(2)如图所示:(3)根据题意可知:,s 2=50t ;两快艇相距5海里时, 50t-30t=5或50t-(60t-30)=5, 解得t=或,所以在整个行驶过程中,航行小时或小时时两快艇相距5海里.(1)根据图①可知甲快艇以30海里/时行驶了1小时,以60海里/时行驶了2小时,根据“路程=速度×时间”即可求解; (2)根据题意可知s 1与t 之间是分段函数,s 2与t 是正比例函数,据此解答即可; (3)根据s 1、s 2与t 之间的函数关系式列方程解答即可.本题为一次函数实际应用问题,考查了一次函数图象实际意义,应用了用方程思想解决函数问题.24.【答案】解:作AF ⊥CD 于F ,设CD =x 米, ∵∠DEC =45°, ∴EC =CD =x 米,在Rt △ABE 中,AB =BE •tan ∠AEB ≈18, 则CF =18, ∴DF =x -18,在Rt△AFD中,tan∠DAF=DFAF ,即x−18x+24=0.3,解得,x=36,答:建筑物CD的高度约为36米.【解析】作AF⊥CD于F,设CD=x米,根据正切的定义求出AB,用x表示出AF、DF,根据正切的定义列出方程,解方程得到答案.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】y=m(x+1)2-m【解析】解:(1)由题意知,b2-4ac=(-2m)2-4×m×0=4m2,∵m≠0,∴b2-4ac=4m2>0,∴不论m为何值,该函数的图象与x轴有两个公共点;(2)①将该函数的图象向左平移2个单位,平移后函数图象所对应的函数关系式为y=m(x+2)2-2m(x+2),整理,得:y=m(x+1)2-m;②∵y=mx2-2mx=m(x-1)2-m,∴原函数图象的顶点A的坐标为(1,-m),又平移后函数图象的顶点B的坐标为(-1,-m),点O的坐标为(0,0),∴OA=OB,∴∠AOB=90°,∵OA2=OB2=1+m2,AB2=4,∴2(1+m2)=4,解得m=±1.故答案为:y=m(x+1)2-m.(1)由b2-4ac=(-2m)2-4×m×0=4m2,且m≠0可得答案;(2)①根据函数平移的规律解答即可;②根据平移前后抛物线解析式求得点A,B坐标,据此得出OA=OB,从而知∠AOB=90°,再根据勾股定理知2(1+m2)=4,解之可得.本题是二次函数的综合问题,解题的关键是掌握抛物线与x轴的交点问题、函数图象平移规律、直角三角形的判定与勾股定理等知识点.26.【答案】4√55【解析】解:(1)∵四边形ABCD为平行四边形,∴∠B=∠D,∵∠DEC+∠AEC=90°,∠B+∠AEC=90°,∴∠DEC=∠B,∴∠DEC=∠D,∴CE=CD;(2)①如图1,连接CO并延长,交⊙O于M,连接EM,∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠ACB,∵∠ACB=∠DCE,∴∠DAC=∠DCE,∵∠DAC=∠M,∴∠DCE=∠M,∵CM为⊙O直径,∴∠MEC=90°,∴∠M+∠ECM=90°,∴∠DCE+∠ECM=90°,∴CD⊥CM,∴CD与⊙O相切;②如图2,设CM与⊙O交于点H,∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠BHC=∠DCM=90°,∴CH⊥AB,∴AH=BH,∴CA=CB,过点O作ON⊥BC于点N,则CN=BN=CB=2,在Rt△ONC中,OH==,∵∠OCN=∠BCH,∠ONC=∠CHB=90°,∴△CON∽△CBH,∴=,即=,∴BH=4,∴AB=2BH=8,∴CD=CE=8,∵==1,∠DCE=∠ACB,∴△DCE∽△ACB,∴=,∴=,∴DE=,∵AD=BC=4,∴AE=AD-DE=,故答案为:.(1)利用平行四边形的性质得到∠B=∠D,利用圆内接四边形的性质证得∠DEC=∠B,即可得到∠DEC=∠D,进一步可推出结论;(2)①连接CO并延长,交⊙O于M,连接EM,先证明∠DCE=∠DAC,进一步证明∠M=∠DCE,即可证明∠DCM=90°,可推出结论;②先证明CO⊥AB,推出△ABC为等腰三角形,设CM与⊙O交于点H,过点O作ON⊥BC于点N,求出ON的长度,再证△CON与△CBH相似,求出AB的长度,最后证△CAB与△CDE相似,通过相似比求出DE的长度,进一步求出AE的长度.本题考查了平行四边形的性质,切线的判定定理,相似三角形的判定与性质等,解答本题的关键是能够灵活运用平行四边形的性质.27.【答案】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形AECF、四边形EDFB为平行四边形,∴EH∥GF,GE∥FH,∴四边形EGFH为平行四边形;(2)解:存在,如图②所示,理由如下:∵四边形ABCD是矩形,∴AB=CD=2,∠ABC=∠ADC=∠BAD=90°,∴∠ABE+∠AEB=90°,四边形EGFH为矩形时,∠BEC=90°,则∠AEB+∠DEC=90°,∴∠ABE=∠DEC,∴△ABE∽△DEC,∴AECD=ABDE,即AE2=26−AE,解得:AE=3±√5;即在AD、BC边上存在点E、F,使得四边形EGFH为矩形,此时AE的长度为3±√5;(3)解:存在,如图③所示,理由如下:作AP⊥AD于P,CQ⊥AD于Q,则BP =CQ ,PQ =BC =AD , ∴AP =DQ , ∵AD ∥BC ,∴∠PAB =∠ABC =60°, ∴∠ABP =30°, ∴AP =12AB =12m ,∴BP =CQ =√3AP =√32m ,设AE =x ,则PE =x +12m ,AQ =n -x -12m , 同(2)得:△BPE ∽△EQC , ∴PE CQ =PBEQ ,即x+12m√32m =√32m n−x−12m,整理得:x 2+(m -n )x +m 2-mn 2=0,∵△=(m -n )2-4(m 2-mn 2)=n 2-3m 2,当△≥0,即n 2-3m 2≥0时,方程有解, 即m 、n 满足n ≥√3m 时,在AD 、BC 边上存在点E 、F 使得四边形EGFH 为矩形, 此时AE =n−m±√n2−3m 22.【解析】(1)由条件可证明四边形AECF 和四边形EDFB 为平行四边形,可得到EH ∥GF ,GE ∥FH ,可证明四边形EGFH 为平行四边形;(2)由矩形的性质得出AB=CD=2,∠ABC=∠ADC=∠BAD=90°,证出∠ABE=∠DEC ,得出△ABE ∽△DEC ,得出=,即可求出AE 的长;(3)作AP ⊥AD 于P ,CQ ⊥AD 于Q ,则BP=CQ ,PQ=BC=AD ,由直角三角形的性质得出AP=AB=m ,BP=CQ=AP=m ,设AE=x ,则PE=x+m ,AQ=n-x-m ,同(2)得:△BPE ∽△EQC ,得出=,得出方程整理得:x 2+(m-n )x+m 2=0,由判别式△=n 2-3m 2,当△≥0,即n 2-3m 2≥0时,方程有解,得出m 、n 满足的条件和AE 的长.本题是四边形综合题目,考查了平行四边形的判定和性质、矩形的判定与性质、相似三角形的判定与性质、一元二次方程的解法以及判别式的运用等知识;本题综合性强,证明三角形相似是解决问题的关键.。
2019年南京市中考一模数学试卷与答案试题试卷
D
F
F
C
O
A
B
B
C
A
B
(第14题)
(第15题)
(第16题)
15、如图,在矩形 ABCD 中, AB 4 , BC 6 , E 为 AD 中点,CED 的外接圆与 BE 交于 点 F ,则 BF 的长度为____________.
16、如图, AB 是 O 的弦,若 O 的半径长为 6, AB 6 2 ,在 O 上取一点 C ,使得 AC 8 2 ,则弦 BC 的长度为____________.
C. 3
D. 3
C. ab2 3 ab6
D. a2a3 a5
3、已知 a 为整数,且满足 5<a< 10 ,则 a 的值为
A.4
B.3
C.2
D.1
k 4、已知反比例函数 y
的图像经过点 1,3 ,若 x<-1,则 y 的取值范围为
x
A. y> 3
B. y<3
C. 3<y<0
D. 0<y<3
三、解答题(本大题共 11 小题,共 88 分,请在答题卡指定区域内作答,解答时应写出文
字说明、证明过程或演算步骤)
3 m 1
17、(7
分)计算
m
2
m
2
2m
4
.
x 2<5, 18、(7 分)解不等式组 x x 1 并把不等式组的解集在数轴上表示出来. 3 2 <1.
-4 -3 -2 -1 0 1 2 3 4
13、某校九年级(1)班 40 名同学期末考试成绩统计如下.
成绩 x (单位:分) 60 x 70 70 x 80
80 x 90 90 x 100
人数
4
14
【联合体数学】2019-2020学年南京联合体数学一模卷及答案
南京市2020年初中毕业生一模考试卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1. 4的算术平方根是A.2B.-2C.±2D.±22.2019年江苏省粮食总产达40 540 000吨,居全国第四位.用科学记数法表示40 540 000是A.4054×104B.4.054×104C.4.054×107D.4054×1073.计算()-a23的结果是A.a5B.-a5C.a6D.-a64.已知△ABC∽△DEF,△ABC与△DEF面积之比为.若BC=1,则EF的长是A.2B.2C.4D.165.下列整数中,与7-15最接近的是A.1B.2C.3D.46.已知一次函数y=kx+b的图像如图所示,则y=-2kx-b的图像可能是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7.使式子1+x-1有意义的x的取值范围是▲ .8.计算27-313的结果是▲ .(第6题)O x1:49.分解因式a (a -1)-a +1的结果是 ▲ .10.已知1是关于x 的方程x 2+mx -3=0的一个根,则另一个根为 ▲ ,m = ▲ .11. 若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差小,则 x 可以 为 ▲ .(例举一个满足条件的值)12.如图,四边形ABCD 是⊙O 的内接四边形,若⊙O 半径为4,且∠C =2∠A ,则BD ⌒的长为▲ .13.如图,将正六边形ABCDEF 绕点D 逆时针旋转27°得正六边形A ′B ′C ′DE ′F ′,则∠1= ▲ °.14. 反比例函数y =kx的图像过点(-2,a )、(2,b ),若a -b =-6,则ab = ▲ .15. 如图,在Rt △ACB 中,∠C =90°, BC =4,AB =5, BD 平分∠ABC 交AC 于点D ,则AD = ▲ .16.如图,在平面直角坐标系中,点A 的坐标是(2,1),点B 的坐标是(2,0) .作点B 关于OA 的对称点B ′,则点B ′的坐标是( ▲ , ▲ ).三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(2-x -1x +1)÷x 2+6x +9 x 2-1 .18.(6分)解不等式组⎩⎪⎨⎪⎧ x +32≥x +1,3+4(x -1)>-9,并把解集在数轴上表示出来.1-4 -3 -2 -1234ABB′Oyx(第16题)BCD O(第12题) AF (第13题)B C DEA′ B′C′ E′F′1 ABC(第15题)D19.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的310.(1)在这段时间内他们抽查的车有 ▲ 辆;(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是( ▲ )A .30.5~40.5B .40.5~50.5C .50.5~60.5D .60.5~70.5 (3)补全频数分布直方图;(4)如果全天超速(车速大于60千米/时)的车有200辆,则当天的车流量约为多少辆?20.(8分)甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作. (1)随机抽取1名,则恰是甲的概率是 ▲ ; (2)随机抽取2名,求甲在其中的概率.21.(7分)现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704 000立方米,求大小型号的挖掘机各多少台?车速(千米/时)33581220.5 30.5 40.5 50.5 60.5 70.5 80.5 (第19题)48 121620 022.(8分)一辆货车从A 地出发以每小时80km 的速度匀速驶往B 地,一段时间后,一辆轿车从B 地出发沿同一条路匀速驶往A 地.货车行驶3小时后,在距B 地160km 处与轿车相遇.图中线段表示货车离B 地的距离y 1与货车行驶的时间x 的关系. (1)AB 两地之间的距离为 ▲ km ; (2)求y 1与x 之间的函数关系式;(3)若两车同时到达各自目的地,在同一坐标系中画出轿车离B 地的距离y 2与货车行驶时间x 的函数图像,用文字说明该图像与x 轴交点所表示的实际意义.23.(8分)(1)如图①,在四边形ABCD 中,∠A =∠C =90°,AB =CD ,求证:四边形ABCD 是矩形;(2)如图②,若四边形ABCD 满足∠A =∠C >90°,AB =CD ,求证:四边形ABCD 是平行四边形.y ∕km3O160 (第22题)x ∕h图①ABCD图②ABCD24.(8分)如图,B 位于A 南偏西37°方向, 港口C 位于A 南偏东35°方向,B 位于C 正西方向. 轮船甲从A 出发沿正南方向行驶40海里到达点D 处,此时轮船乙从B 出发沿正东方向行驶20海里至E 处,E 位于D 南偏西45°方向. 这时,E 处距离港口C 有多远? (参考数据:tan37°≈0.75,tan35°≈0.70.)25. (9分)如图①,在矩形ABCD 中,AB =6,BC =9,点E 是BC 边上一动点,连接AE 、DE ,作△ECD 的外接⊙O ,交AD 于点F ,交AE 于点G ,连接FG . (1)求证△AFG ∽△AED ;(2)当BE 的长为 ▲ 时,△AFG 为等腰三角形; (3)如图②,若BE =1,求证:AB 与⊙O 相切.26. (10分)已知二次函数y =x 2-2mx +m 2+m -1(m 是常数).(1)求证:不论m 为何值,该函数的图像的顶点都在函数y =x -1的图像上. (2)若该函数的图像与函数y =x +b 的图像有两个交点,则b 的取值范围为( ▲ )(3)该函数图像与坐标轴交点的个数随m 的值变化而变化,直接写出交点个数及对应的m 的取值范围.A .b >0B .b >-1C .b >-54D .b >-2 )北(第24题)ABCDE37° 35°45°东图①图②ABCDFEOGA B CDF EOG27. (10分)【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线..的交点为等垂弦的分割点.如图①,AB 、CD 是⊙O 的弦,AB =CD ,AB ⊥CD ,垂足为E ,则AB 、CD 是等垂弦,E 为等垂弦AB 、CD 的分割点.【数学理解】(1)如图②,AB 是⊙O 的弦,作OC ⊥O A 、OD ⊥OB ,分别交⊙O 于点C 、D ,连接CD .求证: AB 、CD 是⊙O 的等垂弦.(2)在⊙O 中,⊙O 的半径为5,E 为等垂弦AB 、CD 的分割点,BE AE =13.求AB 的长度.【问题解决】(3)AB 、CD 是⊙O 的两条弦,CD =12AB ,且CD ⊥AB ,垂足为F .①在图③中,利用直尺和圆规作弦CD (保留作图痕迹,不写作法).②若⊙O 的半径为r ,AB =mr (m 为常数),垂足F 与⊙O 的位置关系随m 的值变化而变化,直接写出点F 与⊙O 的位置关系及对应的m 的取值范围.图①EABC DO图②EO图③ABO南京市2020年初中毕业生一模考试卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.x ≥1. 8.23. 9.(a -1)2. 10.-3,2.11.4(答案不唯一). 12.8π3.13.147.14.-9.15. 53.16.(65,85).三、解答题(本大题共11小题,共88分) 17.(本题6分)解:原式=(2x +2x +1-x -1x +1)·(x +1)(x -1)(x +3)2·················································· 2分=x +3x +1·(x +1)(x -1)(x +3)2········································································ 4分 =x -1x +3································································································ 6分 18.(本题6分)解:解不等式①,得x ≤1.······································································· 2分解不等式②,得x >-2. ···································································· 4分 ∴原不等式组的解集为-2<x ≤1. ··························································· 5分··········································································································· 6分 19.(本题8分)解:(1)40 ············································································· 2分 (2)B ····························································································· 4分 (3)图略 ························································································· 6分(4)200÷840=1000 ··········································································· 8分 20.(本题8分)解:(1)13. ························································································ 2分.(2)所有可能出现的结果有:(甲,乙)、(甲,丙)、(乙,甲)、(乙,丙)、(丙,甲)、(丙,乙)共6种,它们出现的可能性相同.所有的结果中,满足“选中甲”(记为事件A )的结果有4种,所以P (A )=46=23. ···································································· 8分1 2 4 -3 -2 -1 3 -421.(本题7分)解:设大型挖掘机x 台,则小型挖掘机(120-x )台.根据题意得:20[360x +200(120-x )]=704 000 ···················································· 4分 解得x =70,120-x =50 ······································································ 6分 答:大型挖掘机70台,小型挖掘机50台. ············································· 7分22. (本题8分) 解:(1)400;…………………………………………2分 (2)y 1=400-80x =-80x +400; …………………5分 (3)如图,线段y 2即为所求的图像;(虚线缺失扣1分) ………………………………………………………6分 货车行驶的时间为400÷80=5h ,则可求出y 2的函数表达式:y 1=120x -200,该图像与x 轴交点坐标为(53,0).……7分 它表示的实际意义:货车从A 地出发53小时后,轿车从B 地出发.………………………………………………………8分 23.(本题8分)(1)证明:如图①,连接BD ,∵∠A =∠C =90°,在Rt △ABD 和Rt △CDB 中, AB =CD ,BD =DB ,∴Rt △ABD ≌Rt △CDB (HL ). ··································································· 2分 ∴AD =CB ,∴四边形ABCD 是平行四边形, ······························································· 3分 ∵∠A =90°,∴四边形ABCD 是矩形. ·········································································· 4分(2)如图②,分别过点B 、D 作BE ⊥AD 于点E ,DF ⊥BC 于点F , ∵∠BAD =∠BCD , ∴∠BAE =∠DCF ,在△ABE 和△CDF 中,∠AEB =∠CFD =90°,∠BAE =∠DCF ,AB =CD ,∴△ABE ≌△CDF (AAS ), ··································································· 6分 ∴BE =DF ,AE =CF ,由(1)可得四边形EBFD 是矩形, ·························································· 7分 ∴ED =BF ,y ∕km3O160(第22题)x ∕hy 2540053(图①)ABCD(图②)ABC DEF∴AD =BC ,∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形. ······························································ 8分 24.(本题8分)解:如图,延长AD 交BC 于点F ,AF ⊥ BC . 设EF =x 海里.在Rt △DEF 中,∠DFE =90°,∵tan ∠EDF =EFDF ,∴tan45°=xDF ,∴ DF =x ,…………………………2分在Rt △ABF 中,∠DFE =90°,∵tan ∠BAF =BFAF,∴BF =AF tan37°,…………………………4分∴20+x ≈0.75(40+x ),∴x =40,…………………………6分∴AF =AD +DF =80.在Rt △AFC 中,∠AFC =90°,∵tan ∠CAF =CFAF ,∵tan35°=CFAF, ····················································································· 7分∴CF =AF tan35°≈80×0.70=56 ∴CE =EF +CF =40+56=96 ···································································· 8分 答:E 处距离港口C 约96海里.25.(本题9分)(1)证明:∵四边形FGED 是⊙O 的内接四边形, ∴∠FGE +∠ADE =180°. ··································································· 1分 ∵∠AGF +∠FGE =180°, ∴∠AGF =∠ADE . ··············································································· 2分 又∠GAF =∠DAE , ∴△AFG ∽△AED ; ················································································· 3分 (2)35、4.5、9-35;········································································· 6分 (3)证明:图②,过O 作OH ⊥AB 于点H ,反向延长OH 交CD 于点I , ∴∠AHI =90°,在矩形ABCD 中,∠BAD =∠ADC =90°,∴∠AHI =∠BAD =∠ADC =90°, ∴四边形AHID 为矩形,∴HI =AD =9,∠OID =90°,即OI ⊥CD ,∴DI =12CD =3,∵BE =1,BC =9,∴EC =8,∵∠BCD =90°,∴DE 为直径,OD 为半径, 在Rt △DEC 中,由勾股定理得DE =10.∴OD =5,在Rt △DIO 中,由勾股定理得∴IO =OD 2-DI 2=4………………7分北(第24题) AB C DE 37° 35° 45°东F 40 20 x x(图②) AB CD FE OGH I∴OH =HI -OI =9-4=5,…………………………………………………………………8分 ∴OH 是⊙O 的半径, 又OH ⊥AB ,∴AB 与⊙O 相切. ················································································ 9分 26.(本题10分)(1)证明:∵y =x 2-2mx +m 2+m -1=(x -m )2+m -1 ································································· 1分∴该函数的图像的顶点坐标为(m ,m -1), ·············································· 2分 将x =m 代入y =x -1得,y =m -1, ······················································ 3分 ∴不论m 为何值,该函数的图像的顶点都在函数y =x -1的图像上. ·············· 4分(2)C . ···························································································· 6分 (3)①当m >1时,该函数图像与坐标轴交点的个数为1; ····························· 7分②当m =1,m =-1+52,m =-1-52时,该函数图像与坐标轴交点的个数为2; 8分 ③当m <-1-52,-1-52<m <-1+52,-1+52<m <1时,该函数图像与坐标轴交点的个数为3. ···················································································· 10分27.(本题10分)(1)如图①,连接BC ,∵OC ⊥O A 、OD ⊥OB ,∴∠AOC =∠BOD =90°,∴∠AOB =∠COD ,∴AB =CD ,∵AC ︵=AC ︵∴∠ABC =12∠AOC =45°.同理∴∠BCD =12∠BOD =45°,∴∠AEC =∠ABC +∠BCD =90°, 即AB ⊥CD ,∵AB =CD ,AB ⊥CD ,∴ AB 、CD 是⊙O 的等垂弦. ·································································· 3分 (2)如图②,若点E 在⊙O 内,作OH ⊥AB ,垂足为H ,作OG ⊥CD ,垂足为G , ∵AB 、CD 是⊙O 的等垂弦,∴AB =CD ,AB ⊥CD ,∴AH =DG =12AB ,OA =OD ,∠AHO =∠DGO ,∴△AHO ≌△DGO ,∴OH =OG ,∴矩形OHEG 为正方形, ∴OH =HE .∵BE AE =13,又AH =BH ,∴AH =2BE =2OH , 在Rt △AOH 中,AO 2=AH 2+OH 2.即(2OH )2+OH 2=AO 2=25,解得OH =5,则AB =4HE =45; ··························································5分(图①)EO(图②)E OHG第 11 页 共 11 页 若点E 在⊙O 外,同理,AH =5,则AB =2AH =25.········································································································· 6分(3)①如图③,弦CD 即为所求; ······························································ 8分②当0<m <455时,点F 在⊙O 外;当m =455时,点F 在⊙O 上;455<m ≤2时, 点F 在⊙O 内 ······················································································ 10分(图③) A COB DD CDF F。
2019届江苏省南京市中考模拟数学试卷【含答案及解析】
2019届江苏省南京市中考模拟数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为( )A. 15×106B. 1.5×107C. 1.5×108D. 0.15×1082. -4的绝对值是()A. B. C. 4 D. ﹣43. 计算结果正确的是()A. (﹣2x2)3=﹣6x6B. x2•x3=x6C. 6x4÷3x3=2xD. x2+x3=2x54. 长度的各种线段,可以组成三角形的是()A. 1,2,3B. 1,5,5C. 3,3,6D. 3,5,1二、选择题5. 如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80° B.100° C.110° D.130°6. 下列数据是某班六位同学定点投篮(每人投10个)的情况,投进篮筐的个数为6,9,8,4,0,3,这组数据的平均数、中位数和极差分别是A.6,6,9 B.6,5,9 C.5,6,6 D.5,5,9三、填空题7. 的算术平方根为.8. 代数式有意义时,实数x的取值范围是__________.9. 分解因式:x2﹣y2﹣3x﹣3y=__________.10. 比较大小:2______5(填“>,<,=”).11. 化简:﹣=_______.12. 若一元二次方程有两个不相等的实数根,则c的值可以是(写出一个即可).13. 如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于.14. 如图,∠B=∠D=90°,BC=DC,∠1=40°,则∠2= 度.15. 如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm, AD为BC边上的高.动点P从点A 出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=______秒时,S1=2S2.四、解答题16. 如图,在正方形网格中有一个边长为4的平行四边形ABCD(Ⅰ)平行四边形ABCD的面积是____;(Ⅱ)请在如图所示的网格中,将其剪拼成一个有一边长为6的矩形,画出裁剪线(最多两条),并简述拼接方法____________________.17. 解不等式组:.18. 解方程:.19. 在一次“社会主义核心价值观”知识竞赛中,四个小组回答正确题数情况如图,求这四个小组回答正确题数的平均数.20. 如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?21. 如果,在△ABC中,AD是高,AE是∠BAC的平分线,∠BAC=54°,∠C=70°.求∠EAD的度数.22. 城区学校组织“书香谜缘”灯谜竞猜比赛.某校拟从3名男生(以A1、A2、A3表示)和2名女生(以B1、B2表示)中选取3人组队参赛.(1)若从5位备选学生中随机选取1人担任队长,则选取到男生的概率是;(2)若已知男生A1选取为队长,在其余4人中选取2人作为队员,请你用画树状图或列表的方法表示所有等可能的结果,并求出选取的两队员恰好是1男1女的概率.23. (2014•十堰)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:24. 医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%td25. 如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹);(2)连结AP,若AC=4,BC=8时,试求BP的长.26. 如图,AB切⊙O于点B,OA=5,tanA=,弦BC∥OA(1)求AB的长(2)求四边形AOCB的面积.27. 如图,二次函数y=﹣mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B.C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内点A在点D的左侧.(1)求二次函数的解析式;(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.28. 旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形、正三角形、正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线、标记的有关计算数据等)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】。
江苏省南京市联合体2019届中考一模数学试题及答案
2019年中考数学模拟试题(一)注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上)1.2-等于(▲)A.2B.-2C.±2D.±122有意义的x的取值范围是(▲)A.x>1B.x≥1C.x<1D.x≤13.计算(2a 2) 3的结果是(▲)A.2a 5B.2a6C.6a 6D.8a 64.如图所示几何体的俯视图是(▲)A.B.C.D.5.在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有(▲)①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6.如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰好落在∠BCD的平分线上时,CA1的长为(▲)A.3或4 2 B.4或32C.3或4D.32或42E DCBAA'( 第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上) 7.计算 (-1)3+( 14)-1= ▲ . 8.计算 23+13= ▲ . 9.方程3x -4 x -2=12-x的解为x = ▲ . 10.南京地铁三号线全长为44830米,将44830用科学记数法表示为 ▲ . 11.已知关于x 的方程x 2-m x +m -2=0的两个根为x 1、x 2,则x 1+ x 2-x 1x 2= ▲ .12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是 ▲ 岁.13.如图,正六边形ABCDEF 的边长为2,则对角线AC = ▲ .14.某体育馆的圆弧形屋顶如图所示,最高点C 到弦AB 的距离是20 m ,圆弧形屋顶的跨度AB 是80 m ,则该圆弧所在圆的半径为_____▲_____m .15.如图,将边长为6的正方形ABCD 绕点C 顺时针旋转30°得到正方形A ′B ′CD ′,则点A 的旋转路径长为 ▲ .(结果保留π)16.如图,A 、B 是反比例函数y = kx 图像上关于原点O 对称的两点,BC ⊥x 轴,垂足为C ,连线AC 过点D (0,-1.5),若△ABC 的面积为7,则点B 的坐标为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)化简: x -1 x +2 ÷(3x +2-1).18.(6分)解不等式组:⎩⎪⎨⎪⎧1- x +13≥0,3+4(x -1)>1.19.(8分)如图,E 、F 是四边形ABCD 的对角线AC 上两点,AE =CF ,DF ∥BE ,DF =BE .(1)求证:四边形ABCD 是平行四边形; (2)若AC 平分∠BAD ,求证:□ABCD 为菱形.(第19题)A BCD E F FED C B A ( 第13题 )C OB A (第14题)A B D A'D' B' (第15题)20.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是____▲______. (2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关..的概率. (3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)21.(8分)国家环保局统一规定,空气质量分为5级.当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2019年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了____▲___天的空气质量检测结果进行统计; (2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为____▲____°; (4)如果空气污染达到中度污染或者以上........,将不适宜进行户外活动,根据目前的统计,请你估计2019年该城市有多少天不适宜开展户外活动.(2019年共365天)22.(8分)已知P (-5,m )和Q (3,m )是二次函数y =2x 2+b x +1图像上的两点.(1)求b 的值;(2)将二次函数y =2x 2+b x +1的图像沿y 轴向上平移k (k >0)个单位,使平移后的图像与x 轴无交点,求k 的取值范围.23.(8分)如图,“和谐号”高铁列车的小桌板收起时近似看作与地面垂直,小桌板的支架底端与桌面顶端的距离OA =75厘米.展开小桌板使桌面保持水平,此时CB ⊥AO ,∠AOB =∠ACB =37°,且支架长OB 与桌面宽BC 的长度之和等于OA 的长度.求小桌板桌面的宽度BC .(参考数据sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)O C B A 空气质量等级天数统计图 空气质量等级天数占所抽取天数百分比统计图24.(8分)水池中有水20 m 3,12:00时同时打开两个每分钟出水量相等且不变的出水口,12:06时王师傅打开一个每分钟进水量不变的进水口,同时关闭一个出水口,12:14时再关闭另一个出水口,12:20时水池中有水56 m 3,王师傅的具体记录如下表.设从12:00时起经过t min 池中有水y m 3,右图中折线ABCD 表示y 关于t 的函数图像.(1)每个出水口每分钟出水 ▲ m 3,表格中a = ▲ ; (2)求进水口每分钟的进水量和b 的值;(3)在整个过程中t 为何值时,水池有水16 m 3 ?25.(9分)如图,四边形ABCD 是⊙O 的内接四边形,AC 为直径, ⌒ BD = ⌒AD ,DE ⊥BC ,垂足为E . (1)求证:CD 平分∠ACE ;(2)判断直线ED 与⊙O 的位置关系,并说明理由; (3)若CE =1,AC =4,求阴影部分的面积.26.(9分)某水果超市以8元/千克的单价购进1000千克的苹果,为提高利润和便于销售,将苹果按大小分两种规格出售,计划大、小号苹果都为500千克,大号苹果单价定为16元/千克,小号苹果单价定为10元/千克,若大号苹果比计划每增加1千克,则大苹果单价减少0.03元,小号苹果比计划每减少1千克,则小苹果单价增加0.02元.设大号苹果比计划增加x 千克. (1)大号苹果的单价为 ▲ 元/千克;小号苹果的单价为 ▲ 元/千克;(用含x 的代数式表示) (2)若水果超市售完购进的1000千克苹果,请解决以下问题: ① 当x 为何值时,所获利润最大? ② 若所获利润为3385元,求x 的值.(第25题) (第24题) min y 327.(10分)【回归课本】我们曾学习过一个基本事实:两条直线被一组平行线所截,所得的对应线段成比例.【初步体验】(1)如图①,在△ABC中,点D、F在AB上,E、G在AC上,DE∥FC∥BC.若AD=2,AE=1,DF=6,则EG=▲, FBGC=▲.(2)如图②,在△ABC中,点D、F在AB上,E、G在AC上,且DE∥BC∥FG.以AD、DF、FB 为边构造△ADM(即AM=BF,MD=DF);以AE、EG、GC为边构造△AEN(即AN=GC,NE=EG).求证:∠M=∠N.【深入探究】上述基本事实启发我们可以用“平行线分线段成比例”解决下列问题:(3)如图③,已知△ABC和线段a,请用直尺与圆规作△A′B′C′.满足:①△A′B′C′∽△ABC;②△A′B′C′的周长等于线段a的长度.(保留作图痕迹,并写出作图步骤)图③aAB CAB CD EGF图①图②AB CD EGFMN2019年中考数学模拟试题(一)参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)三、解答题(本大题共11小题,共88分)7.解:原式= x -1 x +2÷3-x -2x +2……………………………………………………………………………2分= x -1 x +2× x +21-x…………………………………………………………………………………4分 =-1 …………………………………………………………………………………………6分18.解:解不等式①,得x ≤2. …………………………………………………………………………2分解不等式②,得x >12.…………………………………………………………………………4分所以,不等式组的解集是12<x ≤2. …………………………………………………………6分19.证明:(1)∵DF ∥BE ,∴∠AFD =∠CEB , ……………………………………………………………1分 ∵AE =CF ,∴AF =CE .∵AF =CE ,DF =BE ,…………………………………………………………2分∴△ADF ≌△CBE . ……………………………………………………3分∴AD =BC ,∠DAF =∠BCE ,∴AD ∥BC ,∴四边形ABCD 是平行四边形. ………………………………………………4分 (2)∵AC 平分∠BAD ,∴∠DAC =∠BAC .…………………………………………………………………5分 ∵四边形ABCD 是平行四边形, ∴CD ∥AB ,∴∠DCA =∠BAC .∴∠DCA =∠DAC , ………………………………………………………………6分 ∴AD =DC ,…………………………………………………………………………7分 ∴□ABCD为菱形. ………………………………………………………………8分20.解:(1)31------------------------------------------------------------------------------------------------------------2分 (2)树状图或列表正确---------------------------------------------------------------------------------------------5分 将第一题中的三个选项记作A 1、B1、C1,第二题中去掉一个错误选项后的三个选项分别记作A2、B2、C2,其中A1、A2分别是两题的正确选项.列表如下:共有9种等可能的结果,其中,同时答对2题通关有1种结果, ∴P (同时答对两题)=19·······························……………………………………………………··········7分 (3)第一题··································………………………………………………………………·················8分21.解:(1)50; ·······································································································································2分 (2)5·································································4分(3)72;····················································································································································6分 (4)365×24+650=219天····························································································································8分22.解:(1)∵点P 、Q 是二次函数y =2x 2+bx +1图像上的两点,∴此抛物线对称轴是直线x =-1.·······························································································2分∴有-b2×2=-1.∴b =4.·········································································································4分(2)平移后抛物线的关系式为y=2x2+4x+1-k.∵平移后的图像与x轴无交点,∴△=16-8+8 k<0··················································································································6分解得k>1 (8)分23.解:设小桌板桌面宽度BC 的长为 x 厘米,则支架OB 的长为(75-x )厘米.延长CB 交OA 于点D ,由题意知,CD ⊥OA ,…………………………1分 在Rt △OBD 中,OD =OB cos37°=0.8(75-x )=60-0.8x ,………2分 BD =OB sin37°=0.6(75-x )=45-0.6x ,…………………………4分 所以CD =CB +BD =45+0.4x ,AD =15+0.8x ,所以tan37°=ADCD……………………………………………………………6分 即0.75=15+0.8x45+0.4x ,解之得,x =37.5答:小桌板桌面宽度BC 的长为37.5厘米. ……………………………………8分24.解:(1)1,8 …………………………………………………………………………2分 (2)设进水口每分钟进水x m 3,由题意得:8+(x -1)(14-6)+ x (20-14)=56解得x =4 ……………………………………………………………………3分 所以b =8+(4-1)×8=32 m 3 ……………………………………………4分(3)在0~6分钟:y =20-2t当y =16时,16=20-2t ,……………………………………………………5分 解得t =2…………………………………………………………………………6分 在6~14分钟:y =kt +b (k ≠0)把(6,8)(14,32)得:⎩⎪⎨⎪⎧6k +b =8,14k +b =32. 解得⎩⎪⎨⎪⎧k =3,b =﹣10.即y =3t -10当y =16时,16=3t -10,t =263………………………………………………8分则t =2和t =263水池有水16 m 3.25.解:(1)∵四边形ABCD 是⊙O 内接四边形,∴∠BAD +∠BCD =180°,∵∠BCD +∠DCE =180°,∴∠DCE =∠BAD ,………………………………………………………1分∵ ⌒ BD = ⌒AD ,∴∠BAD =∠ACD ,………………………………………………………………………2分 ∴∠DCE =∠ACD ,∴CD 平分∠ACE .………………………………………………………………3分 (2)ED 与⊙O 相切.………………………………………………………………………………………4分 理由:连接OD ,∵OC =OD ,∴∠ODC =∠OCD , ∵∠DCE =∠ACD ,∴∠DCE =∠ODC ,∴OD ∥BE ,∵DE ⊥BC ,∴OD ⊥DE ,∴ED 与⊙O 相切. …………………………………………………………6分 (3)∵AC 为直径,∴∠ADC =90°=∠E ,∵∠DCE =∠ACD ,∴△DCE ∽△ACD ,…………………7分 ∴CE CD =CD CA ,即1CD =CD4,∴CD =2,………………………………………………………………………8分 ∵OC =OD =CD =2,∴∠ DOC =60°,∴S 阴影=S 扇形-S △OCD =23π-3.…………………………9分OC BAD26.解:(1)16-0.03x ;10+0.02x ; ………………………………………………………………2分 (2)①设售完购进1000千克的苹果所获利润为y 元,由题意得:y =38000)02.010)(500()03.016)(500(=-+-+-+x x x x ………………………………····5分=﹣0.05x 2+x +5000 x =﹣b2a=10,y =5005.当x =10时,所获最大利润为5005元. ………………………………………………………····6分 ②由题意,列方程:33858000)02.010)(500()03.016)(500(=-+-+-+x x x x ……………7分 化简,整理得032300202=--x x ………………………………………………………………····8分 解得:190=x 或170-=x ………………………………………………………………………····9分 答:大号苹果比计划增加190千克或减少170千克时,才能确保这批苹果的利润为3385元.27.解:(1)3;2.……………………………………………………………………………………····2分 (2)证明:∵DE ∥FG ,∴AD AE = DF EG .………………………………………………………………………………………····3分 ∵DE ∥FG ∥BC , ∴DF EG =FB GC, ∴AD AE = DF EG =FB GC ,即AD AE = MD NE =AM AN,………………………………………………………····5分 ∴△AMD ∽△ANE , ……………………………………………………………………………····6分 ∴∠M =∠N . ………………………………………………………………………………····7分 (3)简要步骤:第一步:在射线DM 上截取△ABC 的三边.第二步:在射线DN 上截取DH =a ,连接HG ,作FI ∥C'E ∥HG ,第三步:以DC'、C'I 、IH 为边构造△A' B' C'.………………………………………………………………………………………………····10分MD(A') E F G N H IC'B'CA B。
江苏省南京市联合体2019年中考化学一模试卷(解析版)
江苏省南京市联合体2019年中考化学一模试卷一、选择题(本题共15小题,每小题只有一个选项符合题意.每小题2分,共30分)B4.(2分)(2018•南京校级一模)二氧化氮(NO2)中氮元素的化合价为()B7.(2分)(2018•南京校级一模)黄曲霉素(化学式为C17H12O6)广泛存在于变质的花生、玉米和谷物等农产品中,A.黄曲霉素有很强的毒性B.黄曲霉素中碳、氢、氧元素的质量比为17:12:6C.黄曲霉素是有机物D.1个黄曲霉素分子由35个原子构成考点:化学式的书写及意义;有机物与无机物的区别;元素质量比的计算..专题:化学用语和质量守恒定律.分析: A、根据题中信息进行分析解答.B、根据化合物中各元素质量比等于各原子相对原子质量总和的比进行分析解答.C、根据含有碳元素的化合物叫有机物进行分析;D、根据黄曲霉素的微观构成进行分析解答.解答:解:A、黄曲霉素有很强的毒性,故选项说法正确.B、黄曲霉素中碳、氢、氧三种元素的质量比为(12×17):(1×12):(16×6)=17:1:8,故选项说法错误.C、黄曲霉素中含有碳元素,符合有机物的概念,因此黄曲霉素属于有机物,故选项说法正确.D、1个黄曲霉素分子含有17个碳原子、12个氢原子和6个氧原子,因此1个黄曲霉素分子共由35个原子构成,故选项说法正确.故选B.点评:本题难度不大,考查同学们结合新信息、灵活运用化学式的含义与有关计算进行分析问题、解决问题的能力.8.(2分)(2018•南京校级一模)如图是某人体内几种体液的近似pH,其中呈酸性的是()A.胰液B.胆汁C.血浆D.胃液考点:溶液的酸碱性与pH值的关系..专题:常见的酸酸的通性.分析:根据pH的应用范围在0﹣14之间,当pH=7时水呈中性;pH<7时水呈酸性,pH愈小,酸性愈大;当pH >7时水呈碱性,pH愈大,碱性愈大,呈酸性既是pH小于7的溶液进行解答.解答:解:A、胰液pH是7.5>7,呈碱性,故错误;B、胆汁pH是7.2>7,呈碱性,故错误;C、血浆pH是7.4>7,呈碱性,故错误;D、胃液pH是1.1<7,呈酸性,故正确.故选:D.点评:本题难度不大,掌握溶液的酸碱性和溶液pH大小之间的关系等是正确解题的关键.9.(2分)(2018•咸宁)如图,硒被誉为“抗癌大王”.根据提供的硒的有关信息,下列说法中,正确的是()A.硒属于金属元素B.硒的原子序数是34C.硒的原子结构示意图中x=4D.硒的相对原子质量是78.96 g考点:元素周期表的特点及其应用;原子结构示意图与离子结构示意图..10.(2分)(2018•南京校级一模)有X、Y、Z三种金属,它们之间有如下关系:(1)X+Y(NO3)2═X(NO3)2+Y(2)Z+H2SO4═ZSO4+H2↑(3)X与稀H2SO4不反应12.(2分)(2018•南京校级一模)为了探究影响锌与稀硫酸反应剧烈程度的因素,某学习小组用相同的三块锌13.(2分)(2018•南京校级一模)A、B、C三种不含结晶水的固体物质的溶解度曲线如图,下列说法中错误的(括号内为杂质),操作方法正确的是()15.(2分)(2018•南京校级一模)如图中,“﹣”表示相连的物质间在一定条件下可以反应,“→”表示在一)D Fe CuCl二、(本题包括1小题,共9分)16.(9分)(2018•南京校级一模)某学习小组围绕“实验室制取气体”进行探究,请你参与完成下面的问题.(1)写出图中所标仪器的名称a.水槽.(2)写出用高锰酸钾制取O2的化学反应方程式2KMnO4K2MnO4+MnO2+O2↑.可选用AF (填字母)装置制取并收集CO2,其化学反应方程式是CaCO3+2HCl=CaCl2+H2O+CO2↑.(3)氨气是一种无色、有刺激性气味的气体,极易溶于水,氨水显碱性.实验室用加热氯化铵和熟石灰两种固体的混合物来制取氨气,同时生成氯化钙和水.①写出实验室制取氨气的化学反应方程式Ca(OH)2+2NH4Cl CaCl2+2NH3↑+2H2O .②实验室制取并收集干燥氨气,应选用的装置顺序为BDG (填字母).4K4Cl三、(本题包括2小题,共10分)17.(4分)(2018•南京校级一模)现有下列4种物质,选择相应物质的字母填空.A.石墨 B.小苏打 C.酒精 D.聚乙烯塑料(1) C 可用于作实验室燃料(2) A 可用于制轻轨电刷(3) D 可用于制造保鲜膜(4) B 可用于治疗胃酸过多.18.(6分)(2018•南京校级一模)水和空气是人类赖以生存的自然资源.(1)下列有关水和空气的叙述中正确的是BDA.人们饮用的纯净水中不含任何化学物质B.水是生命之源,保护水资源包括防止水体污染和节约用水两方面C.目前计入空气质量日报的主要污染物中已包括了二氧化碳D.充分利用太阳能、氢能等清洁能源可减少酸雨、温室效应等环境问题的发生(2)铁制品在空气中易锈蚀,其实质是铁与空气中的氧气、水(O2、H2O)等接触后发生了化学反应.(3)溶解了较多的可溶性钙和镁的化合物的水属于硬水,生活中一般可用煮沸的方法来降低水的硬度.(4)长江水经过沉淀、过滤、吸附、消毒等步骤,可初步净化为自来水.(5)实验室欲将50g质量分数为6%的氯化钠溶液稀释为3%的稀溶液,需加水的体积为50 mL.其主要步骤有:计算、量取、混匀、装瓶并贴上标签.四、(本题包括1小题,共5分)19.(5分)(2018•南京校级一模)元素周期表中部分元素的相关信息如下,回答下列问题:(1)12号元素的原子形成的离子是Mg2+(写离子符号),16号元素的原子最外层电子数为 6 ,地壳中含量最多的金属元素和非金属元素组成的化合物是Al2O3(写化学式).(2)金属元素的原子在化学反应中易失去电子(选填“得”或“失”),稀有气体元素的原子不易得失电子.(3)在元素周期表中,同一族的元素具有相似的化学性质.则下列各组元素具有相似化学性质的是ACD A.He和Ar B. He和Mg C.Li和Na D.F和Cl.五、(本题包括2小题,共16分)20.(5分)(2018•南京校级一模)如图:A﹣I是初中化学中的常见纯净物,“→”表示物质间的转化,参与转化的部分物质及反应条件已省略.A常温下为液态,A→B放出大量的热;B、C为碱,A、H、I为氧化物,E、F、G为单质.(1)A的化学式为H2O .(2)E→F、F→G的基本反应类型均为置换反应.(3)写出I的一种用途灭火、气体肥料.(4)写出符合B→C的化学反应方程式Ca(OH)2+Na2CO3=2NaOH+CaCO3↓.21.(11分)(2018•南京校级一模)煤、石油和天然气等化石燃料是目前人类使用的主要燃料,也是重要的化工原料.(1)化石燃料属于不可再生(选填“可再生”或“不可再生”)能源.工业上煤燃烧前进行粉碎的目的是增加燃料与氧气的接触面积,使燃料充分燃烧.(2)煤隔绝空气加强热得到的焦炭,是冶铁的重要原料.为了测定某赤铁矿中氧化铁的质量分数,化学兴趣小组的同学设计了三种实验方案(假设该赤铁矿中的杂质既不溶于水,也不参加化学反应).方案I 取8.00g赤铁矿粉,加入足量稀硫酸,完全反应后过滤,得到1.60g滤渣.则赤铁矿粉中氧化铁的质量分数为80% .方案Ⅱ如图1所示,取8.00g赤铁矿粉与过量的焦炭粉混合后加强热.完全反应后测得氢氧化钠溶液反应前后质量增加了1.32g.假设产生的二氧化碳被氢氧化钠溶液完全吸收,根据所学反应3C+2Fe2O34Fe+3CO2↑计算,赤铁矿粉中氧化铁的质量分数为40% .(写出解题过程)【实验反思】若考虑方案Ⅱ中硬质玻璃管内原有的空气对实验结果的影响,则会导致测出的氧化铁的质量分数偏大(选填“偏大”、“偏小”或“不变”).【实验分析】方案I测出的氧化铁的质量分数明显大于方案Ⅱ测出的结果,可能的原因是方案Ⅱ中,高温条件下,反应生成的二氧化碳和过量的碳反应生成了一氧化碳,导致氢氧化钠吸收的二氧化碳减少,从而导致计算出的氧化铁的质量分数偏小(写出一种即可)..装置中玻璃管内发生的现象是红棕色固体逐渐变成黑色固体.②此方案中CO还原氧化铁生成CO2的质量为 4.85 g.③此实验方案能(填“能”、“否”)准确地测量此赤铁矿粉中氧化铁的质量分数.:赤铁矿粉中氧化铁的质量分数为:×100%=80%.34Fe+3CO=,赤铁矿粉中氧化铁的质量分数为:×100%=40%,六、(本题包括1小题,共10分)22.(10分)(2018•南京校级一模)甲、乙两同学在学完酸的化学性质后,做了如下实验:【观察与讨论1】甲同学在做实验时观察到的明显现象是由浑浊变澄清.再滴加无色酚酞溶液,无明显现象(已知CaCl2溶液呈中性).【观察与讨论2】乙同学在做实验时开始没有观察到气泡产生,于是对碳酸钠能否与盐酸反应表示怀疑.甲同学通过查阅资料得知:在碳酸钠溶液中滴加少量稀盐酸,先发生反应Na2CO3+HCl═NaCl+NaHCO3,继续滴加稀盐酸,再发生反应NaHCO3+HCl ═NaCl+H2O+CO2↑.所以甲同学认为,乙同学实验时还应继续滴加盐酸,才能观察到有气泡产生.【观察与讨论3】甲同学先将废液缓慢倒入一洁净的废液杯中,乙同学在观察到气泡产生后,也将实验废液缓慢倒入该废液杯中,没有观察到明显现象.据此可以确定,甲同学的试管中废液含有的溶质一定有酚酞、CaCl2(写化学式),乙同学的试管中废液一定含有的离子Na+、Cl﹣(写离子符号)为了处理实验后产生的废液,甲、乙同学决定对废液杯中最终废液溶质的成分进行探究.【提出问题】最终废液中除酚酞外还含有什么溶质?【猜想与假设】猜想1:废液中含有CaCl2、NaCl (写化学式)两种溶质.猜想2:废液中含有CaCl2、NaCl、HCl (写化学式)三种溶质.猜想3:废液中含有NaHCO3、CaCl2、NaCl三种溶质.【活动与探究】甲、乙同学为了验证猜想,进行了如下实验:甲同学实验:取少量废液于试管中,向其中滴加盐酸,无气泡产生.乙同学实验:取少量废液于试管中,向其中加入少量氧化铜粉末,溶液逐渐由无色变蓝绿色,其发生的化学反应方程式为CuO+2HCl=CuCl2+H2O .【结论与反思】猜想 2 (填“1”或“2”或“3”)正确.【表达与交流】甲、乙同学经过实验确认了混合废液中溶质的成分.以下甲乙同学关于废液成分的观点,你赞成的有ACD .A.可以加入适量的石灰石或熟石灰对混合废液进行处理后排放B.取混合废液,滴加少量碳酸钠溶液,则一定能观察到白色沉淀C.取混合废液,滴加少量硝酸银溶液,则一定能观察到白色沉淀D.可以用碳酸钠溶液对废液成分中氯化钙的含量进行定量测定.。
2019年南京联合体中考数学一模拟数学试卷与评分标准(雨花栖霞江宁江北)
2019年初中毕业生学业考试模拟卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.9的值等于A .3B .-3C .±3D .±3 2.下列运算结果正确的是A .a 6÷a 3=a 2B .(a 2)3=a 5C .(ab 2)3=ab 6D .a 2a 3=a 53.已知a 为整数,且满足5<a <10,则a 的值为A .4B .3C .2D .14.已知反比例函数y =kx的图像经过点(1,3),若x <-1,则y 的取值范围为A .y >-3B .y <3C .-3<y <0D .0<y <3 5.如图,将△ABC 绕点A 旋转任意角度得到△AB'C',连接BB'、CC',则BB':CC' 等于A .AB :AC B .BC :ACC .AB :BCD .AC :AB6.如图,在边长为4的正方形ABCD 中,点E 、F 分别是BC 、CD 上的动点,且EF =4, G 是EF 的中点,下列结论正确的是A .AG ⊥EFB .AG 长度的最小值是42-2C .BE +DF =4D .△EFC 面积的最大值是2BCAB ´C ´(第5题) DAC FG(第6题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 7.在-3、4、-2、5四个数中,任意两个数之积的最小值为▲.8.2018年江苏省实现GDP 约92 500亿元.用科学记数法表示92 500是▲.9.若式子xx -1在实数范围内有意义,则x 的取值范围是▲.10.计算12+6×12的结果是▲. 11.已知关于x 的方程x 2+m x -2=0的两个根为x 1、x 2,若x 1+ x 2-x 1x 2=6,则m = ▲ . 12.点(m ,y 1),(m +1,y 2)都在函数y =kx +b 的图像上,若y 1-y 2=3,则k = ▲. 13.某校九年级(1)班40名同学期末考试成绩统计表如下.能为70;④成绩的极差可能为40.其中所有正确结论的序号是▲.14.如图,将边长为2的正六边形ABCDEF 绕顶点A 顺时针旋转60°,则旋转后所得图形与正六边形ABCDEF 重叠部分的面积为▲.15.如图,在矩形ABCD 中,AB =4,BC =6,E 为AD 的中点,△CED 的外接圆与BE 交于点F ,则BF 的长度为▲.16.如图,AB 是⊙O 的弦,若⊙O 的半径长为6,AB =62,在⊙O 上取一点C ,使得AC =82,则弦BC 的长度为▲.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算⎝⎛⎭⎫m +2+3m -2÷m +1 2m -4.18.(7分)解不等式组⎩⎪⎨⎪⎧x +2<5,x 3-x -12<1.并把不等式组的解集在数轴上表示出来.EB ADF ABCDEF(第14题)(第15题)(第16题)124-3 -2 -13-419.(7分)某区对参加2019年中考的3000名初中毕业生进行了一次视力抽样调查,绘制出如下频数分布表和频数分布直方图.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为▲,b 的值为▲; (2)将频数分布直方图补充完整;(3)若视力在4.9以上(含4.9)均为正常,根据以上信息估计全区初中毕业生中视力正常的学生有多少人?20.(8分)在课外活动时间,小明、小华、小丽做“互相传球”游戏(球从一人随机传给另一人),球从一人传到另一人就记为一次传球.现从小明开始传球. (1)经过三次传球后,求球仍传到小明处的概率;(2)经过四次传球后,下列说法:①球仍传到小明处的可能性最大;②球传到小华处的可能性最大;③球传到小华和小丽处的可能性一样大.其中所有正确结论的序号是(▲) A .①③ B .②③ C .①②③某区2019年初中毕业生视力抽样频数分布表某区2019年初中毕业生视力抽样频数分布直方图21.(7分)如图,在△ABC 中,D 是BC 的中点,DE ⊥A B ,DF ⊥AC ,垂足分别是点E 、F ,BE =CF .求证AD 是△ABC 的角平分线. 22.(6分)【阅读材料】南京市地铁公司规定:自2019年3月31日起,普通成人持储值卡乘坐地铁出行,每个自然月内,达到规定消费累计金额后的乘次,享受相应的折扣优惠(见下图). 地铁出行消费累计金额月底清零,次月重新累计.比如:李老师二月份无储值卡消费260元,若采用新规持储值卡消费,则需付费 150×0.95+50×0.9+60×0.8=235.5元. 【解决问题】甲、乙两个成人二月份无储值卡乘坐地铁消费金额合计300元(甲消费金额超过150元, 但不超过200元).若两人采用新规持储值卡消费,则共需付费283.5元.求甲、乙二月份乘坐地铁的消费金额各是多少元?E A B C F23.(9分)甲、乙两艘快艇同时从A 港口沿直线驶往B 港口,甲快艇在整个航行的过程.......中速度v 海里/小时与航行时间t 小时的函数关系如图①所示(图中的空心圈表示不含这一点),乙快艇一直保持匀速航行,两快艇同时到达B 港口. (1)A 、B 两港口之间的距离为▲海里;(2)若甲快艇离B 港口的距离为s 1海里,乙快艇离B 港口的距离为s 2海里,请在图②中分别画出s 1、s 2与t 之间的函数图像.(3)在整个行驶过程中,航行多少小时时两快艇相距5海里?24.(8分)如图,有两座建筑物AB 与CD ,从A 测得建筑物顶部D 的仰角为16°,在BC上有一点E ,点E 到B 的距离为24米,从E 测得建筑物的顶部A 、D 的仰角分别为37°、45°.求建筑物CD 的高度.(参考数据:tan16°≈0.30,tan37°≈0.75)25.(9分)已知二次函数y =mx 2-2mx (m 为常数,且m ≠0). (1)求证:不论m 为何值,该函数的图像与x 轴有两个公共点. (2)将该函数的图像向左平移2个单位. ①平移后函数图像所对应的函数关系式为▲ ;②若原函数图像顶点为A ,平移后的函数图像顶点为B ,△OAB 为直角三角形(O 为原点),求m 的值.①②26.(10分)如图,在 ABCD 中,连接AC ,⊙O 是△ABC 的外接圆,⊙O 交AD 于点E . (1)求证CE =CD ; (2)若∠ACB =∠DCE . ①求证CD 与⊙O 相切;②若⊙O 的半径为5,BC 长为45,则AE =▲.27.(10分)如图①,在 ABCD 中,点E 、F 分别在AD 、BC 上,且AE =CF ,连接A F 、BE 交于点G ,连接CE 、DF 交于点H . (1)求证四边形EGFH 为平行四边形.(2)提出问题:在AD 、BC 边上是否存在点E 、F ,使得四边形EGFH 为矩形?小明从特殊到一般探究了以下问题. 【特殊化】如图②,若∠ABC =90°,AB =2,BC =6.在AD 、BC 边上是否存在点E 、F ,使得四边形EGFH 为矩形?若存在,求出此时AE 的长度;若不存在,说明理由.【一般化】如图③,若∠ABC =60°,AB =m ,BC =n .在AD 、BC 边上是否存在点E 、F 使得四边形EGFH 为矩形?指出点E 、F 存在(或不存在)的可能情况,写出此时m 、n 满足的条件,并直接写出存在时AE 的长度.(用含m 、n 的代数式表示)BCDA②BCDA③A BCDFE①GH2019年初中毕业生学业考试模拟测试数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.-15. 8.9.25×104. 9.x ≠1. 10.33. 11.-4. 12.-3. 13.①④. 14.23. 15.3.6. 16.8+22或8—2 2.. 三、解答题(本大题共11小题,共88分) 17.(本题7分)解:原式=m 2-4+3m -2÷m +12(m -2)······························································· 3分=(m +1) (m -1)m -2·2(m -2) m +1 ············································································ 6分=2m -2 ·································································································· 7分 18.(本题7分)解:解不等式①,得x <3. ········································································· 2分解不等式②,得x >-3. ······································································ 4分 ∴原不等式组的解集为-3<x <3. ···························································· 6分 ·············································································································· 7分 19.(本题7分)解:(1)a =50,b=0.05; ········································································ 2分 (2)补图略; ····················································································· 4分 (3)0.3×3000=900. ············································································ 7分 20.(本题8分)解:(1)用a ,b ,c 分别表示小明,小华,小丽,所有可能出现的结果有:(b ,a ,c )、(b ,a ,b )、(b ,c ,a )、(b ,c ,b )、(c ,a ,b )、(c ,a ,c )、(c ,b ,a )、(c ,b ,c )共8种,它们出现的可能性相同.所有的结果中,满足“球仍传到小明处”(记为事件A )的结果有2种,所以P (A )= 28=14. ································································· 6分(2)A ···································································································· 8分 21.(本题7分)证明:∵DE ⊥A B ,DF ⊥AC ,∴∠DEB =∠DFC =90°. ············································································ 1分 ∵D 是BC 的中点,∴BD =DC . ····························································································· 2分 在Rt △EBD 和Rt △FCD 中,BE =CF ,BD =DC ,∴Rt △EBD ≌Rt △FCD , ··········································································· 4分 ∴ED =FD . ····························································································· 5分 ∵DE ⊥A B ,DF ⊥AC ,∴AD 是△ABC 的角平分线. ········································································ 7分 22. (本题6分)解:设甲二月份乘坐地铁消费的金额是x 元,乙二月份乘坐地铁消费的金额是y 元.根据题意列方程组得⎩⎪⎨⎪⎧x +y =300,150×0.95+0.9(x -150)+0.95y =283.5. ··································· 4分解得⎩⎪⎨⎪⎧x =180,y =120.答:甲二月份乘坐地铁消费的金额是180元,乙二月份乘坐地铁消费的金额是120元. ·············································································································· 6分 23.(本题9分) (1)150 ································································································· 2分 (2)如图 ································································································ 4分(3)当0≤t ≤1时,s 1所对应的函数关系式为s 1=– 30t +150; ·························· 5分 当1<t ≤3时,s 1所对应的函数关系式为s 1=– 60t +180; ································ 6分 当0≤t ≤3时,s 2所对应的函数关系式为s 2=– 50t +150; ································ 7分 当0≤t ≤1时,(– 30t +150) –(– 50t +150)=5;解得t =0.25小时; ····················· 8分 当1≤t ≤3时,(– 60t +180) –(– 50t +150)=5;解得t =2.5小时; 当航行0.25小时或2.5小时时,两快艇相距5海里. ······································· 9分 24.(本题8分)解:如图,过点A 作AF ⊥CD ,垂足为F .设CD =x m . 在Rt △ECD 中,∠DEC =45°,∵tan45°=CDCE , ························································································· 1分∴CE =CDtan45°=x . ···················································································· 2分在Rt △ABE 中,∠AEB =37°,∵tan37°=ABBE , ························································································· 3分∴AB =BE tan37°≈0.75×24=18 ··································································· 4分 ∴FC =AB =18∴DF =DC -FC =x -18在Rt △AFD 中,∠DAF =16°,∵tan16°=DFAF , ······················································································· 5分∴AF =DFtan16°≈x -18 0.3∴BC =AF =x -180.3············································································································ 6分 又∵BC =BE +EC ∴x -18 0.3=24+x ························································································ 7分 解得x =36答:建筑物CD 的高度为36米. ································································· 8分 25.(本题9分)(1)证明:当y =0时,mx 2-2mx =0, ························································· 1分 解得x 1=0,x 2=2. ················································································· 2分 ∴函数图像与x 轴的交点坐标为(0,0),(2,0).即不论m 为何值时,函数的图像与x 轴有两个公共点. ··································· 3分 (2)①y =mx 2+2mx 或y =m (x +1) 2-m ······················································· 5分 ②A (1,-m ),B (-1,-m ), ·································································· 7分 则OA 2=1+m 2,OB 2=1+m 2,AB 2=4,∴在Rt △OAB 中,OA 2+OB 2=AB 2,即1+m 2+1+m 2=4 ····························· 8分 ∴m =±1 ···························································································· 9分 26.(本题10分)(1)证明:∵四边形ABCD 是平行四边形, ∴∠D =∠B . ························································································· 1分 ∵⊙O 是四边形ABCE 的外接圆, ∴∠B +∠AEC =180°. ··········································································· 2分 ∵∠DEC +∠AEC =180°, ∴∠B =∠DEC . ····················································································· 3分 ∴∠D =∠DEC . ∴CE =CD . ····························································································· 4分 (2)证明:连接CO 并延长交⊙O 于点F ,∵在△ABC 和△DCE 中,∠B =∠D ,∠ACB =∠DCE . ∴∠DEC =∠BAC ···················································································· 5分 又∵∠DEC =∠D∴∠B =∠BAC ,即AC =BC ······································································· 6分 ∴CF 平分∠ACB∴∠BAF =∠BCF =∠ACF 又∵∠BAF +∠BAC =90°,AB ∥CD , ∴∠BAC =∠ACD∴∠ACF +∠ACD =∠DCF =90°,即CD ⊥CF , ·························································································· 7分 ∵点C 在⊙O 上 ∴CD 与⊙O 相切 ····················································································· 8分(3)455······························································································ 10分27.(本题10分)(1)∵四边形ABCD 是平行四边形; ∴AD =BC ,AD ∥BC . ∵AE =CF ; ∴ED =BF . ··························································································· 1分 ∵AE =CF ,AE ∥CF ;∴四边形AECF 是平行四边形. ·································································· 2分 ∴AF ∥EC .∵ED =BF ,ED ∥BF ;∴四边形EDFB 是平行四边形. ·································································· 3分 ∴BE ∥DF .∵AF ∥EC ,BE ∥DF ,∴四边形EGFH 是平行四边形. ································································· 4分 (2)如图1,以BC 为直径作⊙O ,⊙O 与AD 有两个不同公共点,即为所求点E ,5分由题意易证△BAE ∽△EDC ,∴AB ED =AE CD ,26-AE =AE2,AE =3±5. ·········· 6分(3)以BC 为直径作⊙O ,⊙O 的半径是n 2,①如图2,当0<n <3m 时,⊙O 与AD 无公共点,没有符合条件的点E ; ········· 7分 ②如图3当n =3m 时,⊙O 与AD 有1个公共点,即为所求的点E ,AE =12(3-1)m (也可写为AE =12(n -m )或AE =(12-36)n ); ······························ 8分③如图4当3m <n <2m 时,⊙O 与AD 有2个公共点,即为所求的点E ,AE =12(n -m -n 2-3m 2)或AE =12(n -m +n 2-3m 2); ···································· 9分④如图5,图6当n ≥2m 时,符合条件的点E 有1个,AE =12(n -m +n 2-3m 2).10分DBBBB图2图1图4图5 ⑥ 图6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市联合体2019年中考数学一模试卷含答案解析一、选择题:本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上1.2的算术平方根是()A.4 B.±4 C.D.2.计算(﹣ab2)3的结果是()A.a3b5B.﹣a3b5C.﹣a3b6D.a3b63.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形4.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组6.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1二、填空题:本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上7.﹣3的相反数是;﹣3的倒数是.8.计算﹣的结果是.9.在函数中,自变量x的取值范围是.10.2019年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为.11.某公司全体员工年薪的具体情况如表:则该公司全体员工年薪制的中位数比众数多万元.12.已知关于x的方程x2﹣3x+1=0的两个根为x1、x2,则x1+x2﹣x1x2= .13.如图,在△ABC中,DE∥BC,AB=2BD,则= .14.如图,在⊙O的内接五边形ABCDE中,∠B+∠E=222°,则∠CAD= °.15.如图,在△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC交AC于点D,则点D到AB的距离为.16.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.三、解答题:本大题共11小题,共计88分17.(6分)解不等式组,并把解集在数轴上表示出来.18.(6分)化简:÷.19.(8分)写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:.求证:.证明:20.(8分)小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A、B、C三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率.21.(8分)某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.如图,在四边形ABCD中,AD=CD=8,AB=CB=6,点E、F、G、H分别是DA、AB、BC、CD的中点.(1)求证:四边形EFGH是矩形;(2)若DA⊥AB,求四边形EFGH的面积.23.(9分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.24.(8分)一艘船在小岛A的南偏西37°方向的B处,AB=20海里,船自西向东航行1.5小时后到达C处,测得小岛A在点C的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?)(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)25.(9分)已知二次函数y=﹣x2+mx+n.(1)若该二次函数的图象与x轴只有一个交点,请用含m的代数式表示n;(2)若该二次函数的图象与x轴交于A、B两点,其中点A的坐标为(﹣1,0),AB=4,请求出该二次函数的表达式及顶点坐标.26.(9分)如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.27.(9分)已知⊙O的半径为5,且点O在直线l上,小明用一个三角板学具(∠ABC=90°,AB=BC=8)做数学实验:(1)如图①,若A、B两点在⊙O上滑动,直线BC分别与⊙O、l相交于点D、E.①求BD的长;②当OE=6时,求BE的长;(2)如图②,当点B在直线l上,点A在⊙O上,BC与⊙O相切于点P时,则切线长PB= .参考答案与试题解析一、选择题:本大题共6小题,每小题2分,共12分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填在答题卡上1.2的算术平方根是()A.4 B.±4 C.D.【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:2的算术平方根为.故选C.【点评】本题考查了算术平方根:若一个正数的平方等于a,那么这个数叫a的算术平方根,记作(a≥0).2.计算(﹣ab2)3的结果是()A.a3b5B.﹣a3b5C.﹣a3b6D.a3b6【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:(﹣ab2)3=﹣a3b6.故选:C.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限 B.第二、三象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】设反比例函数解析式为y=(k≠0),由反比例函数图象上点的坐标特征可得出k=a2,分情况讨论即可得出结论.【解答】解:设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选A.【点评】本题考查了反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是用a的值表示k的值.本题属于基础题,难度不大,解决该题型题目时,由点在函数图象上得出反比例函数系数k的取值范围是关键.5.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【考点】全等三角形的判定.【分析】要使△ABC≌△DEF的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.已知A(x1,y1)是一次函数y=﹣x+b+1图象上一点,若x1<0,y1<0,则b的取值范围是()A.b<0 B.b>0 C.b>﹣1 D.b<﹣1【考点】一次函数图象上点的坐标特征;一次函数的性质.【分析】先根据题意判断出函数图象经过的象限,进而可得出结论.【解答】解:∵一次函数y=﹣x+b+1中,k=﹣1<0,∴函数图象经过二、四象限.∵x1<0,y1<0,∴函数图象经过第三象限,∴b+1<0,即b<﹣1.故选D.【点评】本题考查的是一次函数图象上点的坐标特征,熟知一次函数的图象与系数的关系是解答此题的关键.二、填空题:本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把正确答案直接填在答题卡相应的位置上7.﹣3的相反数是 3 ;﹣3的倒数是﹣.【考点】倒数;相反数.【分析】根据倒数以及相反数的定义即可求解.【解答】解:﹣3的相反数是3;﹣3的倒数是﹣.故答案是:3,﹣.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.8.计算﹣的结果是.【考点】二次根式的加减法.【分析】先把各二次根式化为最简二次根式,再合并同类项即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.9.在函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,就可以求解.【解答】解:根据题意得:1﹣x≠0,解得x≠1.故答案为:x≠1.【点评】本题考查的知识点为:分式有意义,分母不为0;10.2019年春节放假期间,夫子庙游客总数达到1800000人,将1800000用科学记数法表示为 1.8×106.【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:将1800000用科学记数法表示为 1.8×106,故答案为:1.8×106.【点评】本题考查了科学记数法,科学记数法的表示方法:a×10n,确定n的值是解题关键,n是整数数位减1.11.某公司全体员工年薪的具体情况如表:则该公司全体员工年薪制的中位数比众数多0.5 万元.【考点】众数;中位数.【分析】先根据中位数和众数的定义分别求出该公司全体员工年薪制的中位数与众数,再相减即可.【解答】解:一共有25个数据,将这组数据从小到大的顺序排列后,处于中间位置的那个数是4万元,那么由中位数的定义可知,这组数据的中位数是4万元;众数是一组数据中出现次数最多的数,在这一组数据中3.5万元是出现次数最多的,故众数是3.5万元;所以中位数比众数多4﹣3.5=0.5万元.故答案为0.5.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.12.已知关于x的方程x2﹣3x+1=0的两个根为x1、x2,则x1+x2﹣x1x2= 2 .【考点】根与系数的关系.【分析】根据根与系数的关系可得出“x1+x2=﹣=3,x1•x2==1”,将其代入x1+x2﹣x1x2中即可得出结论.【解答】解:∵关于x的方程x2﹣3x+1=0的两个根为x1、x2,∴x1+x2=﹣=3,x1•x2==1,∴x1+x2﹣x1x2=3﹣1=2.故答案为:2.【点评】本题考查了根与系数的关系,解题的关键是找出“x1+x2=3,x1•x2=1”.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.如图,在△ABC中,DE∥BC,AB=2BD,则= .【考点】相似三角形的判定与性质.【分析】由条件可以求出AD:AB=2;3,再由条件可以得出△ADE∽△ABC,最后由相似三角形的性质就可以得出结论.【解答】解:∵AB=2BD,AD+BD=AB,∴AD+AB=AB,∴AD=AB,∵在△ABC中,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:.【点评】本题主要考查了相似三角形的性质,熟练掌握相似三角形面积的比等于相似三角形面积的平方是解题的关键.14.如图,在⊙O的内接五边形ABCDE中,∠B+∠E=222°,则∠CAD= 42 °.【考点】圆周角定理.【分析】连接CE,根据圆内接四边形对角互补可得∠B+∠AEC=180°,进而求出∠CED的度数,再根据同弧所对的圆周角相等可得∠CED=∠CAD即可.【解答】解:如图,连接CE,∵五边形ABCDE是圆内接五边形,∴四边形ABCE是圆内接四边形,∴∠B+∠AEC=180°,∵∠B+∠AED=222°,∴∠CED=42°,∴∠CAD=∠CED=42°,故答案为:42.【点评】本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.15.如图,在△ABC中,∠C=90°,BC=3,AC=4,BD平分∠ABC交AC于点D,则点D到AB的距离为.【考点】角平分线的性质.【分析】根据勾股定理求出AB的长,根据角平分线的性质得到DE=DC,根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=3,AC=4,∴AB==5,作DE⊥AB于E,∵BD平分∠ABC交AC于点D,∠C=90°,DE⊥AB,∴DE=DC,△ABC的面积=△ABD的面积+△DBC的面积,即×AC×BC=×AB×DE+×BC×CD,解得,DE=,故答案为:.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.16.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为32 .【考点】抛物线与x轴的交点.【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【解答】解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,∴当y=0时,则﹣x2﹣2x+3=0,解得x=﹣3或x=1,则A,B的坐标分别为(﹣3,0),(1,0),AB的长度为4,从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.根据对称性,可得BE=CF=4÷2=2,则EF=8利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4则顶点坐标为(﹣1,4),即阴影部分的高为4,S阴=8×4=32.【点评】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.三、解答题:本大题共11小题,共计88分17.解不等式组,并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】对不等式2﹣x>0,移项得x<2,对不等式两边乘以6,然后再移项、合并同类项解出不等式的解,再根据不等式组解集的口诀:大小小大中间找,来求出不等式组的解.【解答】解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.不等式组的解集在数轴上表示如下:【点评】主要考查了一元一次不等式组解集的求法,利用不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解),来求解.18.化简:÷.【考点】分式的混合运算.【分析】利用分式的混合运算顺序求解即可.【解答】解:÷=×,=•×,=﹣.【点评】本题主要考查了分式的混合运算,解题的关键是通分及约分.19.写出下列命题的已知、求证,并完成证明过程.命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)已知:在△ABC中,AB=AC .求证:∠B=∠C .证明:【考点】等腰三角形的性质.【分析】根据图示,分析原命题,找出其条件与结论,然后根据AB=AC,结合全等三角形的性质,从而得出结论.【解答】解:已知:在△ABC中,AB=AC,求证:∠B=∠C,证明:过点A作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,∵∴Rt△ABD≌Rt△ACD(HL),∴∠B=∠C.【点评】本题主要考查了全等三角形的判定与性质,正确得出Rt△ABD≌Rt△ACD是解题关键.20.小明和小红、小兵玩捉迷藏游戏,小红、小兵可以在A、B、C三个地点中任意一处藏身,小明去寻找他们.(1)求小明在B处找到小红的概率;(2)求小明在同一地点找到小红和小兵的概率.【考点】列表法与树状图法.【分析】(1)由题意可知有三处可以藏身,所以小明在B处找到小红的概率为其中的三分之一;(2)根据题意画树状图,然后根据树状图求得所有等可能的结果与小明在同一地点找到小红和小兵的情况,然后根据概率公式求解即可.【解答】解:(1)∵小红、小兵可以在A、B、C三个地点中任意一处藏身,∴小明在B处找到小红的概率=;(2)画树形图得:由树形图可知小明在同一地点找到小红和小兵的概率==.【点评】此题考查了树状图法与列表法求概率.树状图法与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.21.某校课外活动小组采用简单随机抽样的方法,对本校九年级学生的睡眠时间(单位:h)进行了调查,并将所得数据整理后绘制出频数分布直方图的一部分(如图).设图中从左至右前5个小组的频率分别是0.04,0.08,0.24,0.28,0.24,第2小组的频数为4.(2019•南京校级一模)如图,在四边形ABCD中,AD=CD=8,AB=CB=6,点E、F、G、H分别是DA、AB、BC、CD的中点.(1)求证:四边形EFGH是矩形;(2)若DA⊥AB,求四边形EFGH的面积.【考点】中点四边形;矩形的判定.【分析】(1)连接AC、BD,交于点O,运用三角形中位线定理可证到四边形EFGH是平行四边形,要证四边形EFGH是矩形,只需证EF⊥FG,由于EF∥BD,FG∥AC,只需证DB⊥AC,只需运用线段垂直平分线性质定理的逆定理就可解决问题;(2)要求矩形EFGH的面积,只需求出EF、FG的值,只需求出BD、AC,运用勾股定理就可求出BD,运用面积法就可求出AO,从而求出AC,问题得以解决.【解答】解:(1)连接AC、BD,交于点O,如图.∵点E、F、G、H分别是DA、AB、BC、CD的中点,∴EF∥BD∥GH,EH∥AC∥FG,EF=GH=BD,EH=FG=AC,∴四边形EFGH是矩形.∵AD=CD,AB=CB,∴点D、B都在线段AC的垂直平分线上,∴DB垂直平分AC,∴DB⊥AC,OA=OC.∵EF∥DB,∴EF⊥AC.∵FG∥AC,∴EF⊥FG,∴▱EFGH是矩形;(2)∵DA⊥AB,AD=8,AB=6,∴DB=10.∴EF=BD=5.∵S△BAD=AB•AD=BD•AO,∴AO===,∴OC=,AC=,∴FG=AC=, ∴S 矩形EFGH =FG•EF=×5=24.【点评】本题主要考查了三角形中位线定理、矩形的判定与性质、线段垂直平分线性质定理的逆定理、勾股定理等知识,运用线段垂直平分线性质定理的逆定理证到DB 垂直平分AC 是解决第(1)小题的关键.23.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【考点】分式方程的应用.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x ,则甲公司的人数为(1+20%)x ,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.【点评】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.一艘船在小岛A 的南偏西37°方向的B 处,AB=20海里,船自西向东航行1.5小时后到达C 处,测得小岛A 在点C 的北偏西50°方向,求该船航行的速度(精确到0.1海里/小时?)(参考数据:sin37°=cos53°≈0.60,sin53°=cos37°≈0.80,tan37°≈0.75,tan53°≈1.33,tan40°≈0.84,tan50°≈1.19)【考点】解直角三角形的应用-方向角问题.【分析】根据题意,可以得到∠ABD和∠ACD的度数,由于AB=20,从而可以求得BD、AD、CD的长,从而可以求得该船航行的速度.【解答】解:作AD⊥BC于点D,如右图所示,由已知可得,∠ADB=90°,∠ABD=90°﹣37°=53°,AB=20,∴BD=AB•cos53°=20×0.6=12,AD=AB•sin53°=20×0.8=16,又∵∠ADC=90°,∠ACD=90°﹣50°=40°,AD=16,∴CD=≈19.05∴该船航行的速度是:(12+19.05)÷1.5=20.7海里/小时,即该船航行的速度是20.7海里/小时.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答问题.25.已知二次函数y=﹣x2+mx+n.(1)若该二次函数的图象与x轴只有一个交点,请用含m的代数式表示n;(2)若该二次函数的图象与x轴交于A、B两点,其中点A的坐标为(﹣1,0),AB=4,请求出该二次函数的表达式及顶点坐标.【考点】抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式.【分析】(1)由二次函数的图象与x轴只有一个交点,所以△=0,由此即可解决问题.(2)求出点B坐标有两种情形,分别利用方程组解决问题即可.【解答】解:(1)∵二次函数的图象与x轴只有一个交点,∴△=m2+4n=0,∴n=﹣m2.(2)∵A(﹣1,0),AB=4,∴B(3,0)或(﹣5,0).将A(﹣1,0),B(3,0)代入y=﹣x2+mx+n得,解得,∴二次函数为y=﹣x2+2x+3,顶点为(1,4),将A(﹣1,0),B(﹣5,0)代入y=﹣x2+mx+n得,解得,∴二次函数为y=﹣x2﹣6x﹣5,顶点为(﹣3,4).【点评】本题考查二次函数与x轴交点问题、待定系数法确定函数解析式等知识,解题的关键是熟练掌握二次函数的有关性质,学会分类讨论的思想,不能漏解,属于中考常考题型.26.如图①,C地位于A,B两地之间,甲步行直接从C地前往B地,乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的2.5倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80 m/min,乙的速度为200 m/min;(2)在图②中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960 m.【考点】一次函数的应用.【分析】(1)根据函数图象中点(30,2400),利用“速度=路程÷时间”可算出甲的速度,再根据甲乙速度间的关系可得出乙的速度;(2)根据乙的速度,以及A、C两地及B、C两地间的距离,利用“时间=路程÷速度”可找出函数图象经过点(0,0)、(3,600)、(6,0)、(18,2400),按照顺序连接两点即可得出结论;(3)设甲乙两人相遇的时间为xmin,结合(2)y2与x的函数图象可知,乙相当于比甲晚出发6分钟,依照“路程=速度×时间”可列出关于x的一元一次方程,解方程即可得出结论;(4)结合函数图象可知:最值只有可能出现在两种情况下,乙刚到A地时或乙到B地时,分别求出两种情形下两人间的距离,再作比较即可得出结论.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.(4)∵乙的速度>甲的速度,∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,3×(80+200)=840(m);当x=18时,甲乙两人间距为:2400﹣80×18=960(m).∵960>840,∴甲乙两人相距的最远距离为960m.故答案为:960.【点评】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系直接计算;(2)找出拐点坐标;(3)依照数量关系列出关于x的方程;(4)找出极值,再比较极值的大小,确定最值.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.27.已知⊙O的半径为5,且点O在直线l上,小明用一个三角板学具(∠ABC=90°,AB=BC=8)做数学实验:(1)如图①,若A、B两点在⊙O上滑动,直线BC分别与⊙O、l相交于点D、E.①求BD的长;②当OE=6时,求BE的长;(2)如图②,当点B在直线l上,点A在⊙O上,BC与⊙O相切于点P时,则切线长PB= 4 .【考点】切线的性质.【分析】(1)①连接AD,根据90°圆周角所对的弦是直角可知AD是圆O的直径,在△ABD中,依据勾股定理可求得BD 的长;②连接OD,过点O作OF⊥BD,垂足为F.由垂径定理可求得FD、BF的长,然后在△FOE中,依据勾股定理可求得EF的长,从而可求得BE的长.(2)如图②中,连接PO,并延长交⊙O于点Q,连接AQ,AP,利用△PAQ∽△ABP,得=,求出PA2=80,在RT△PAB中利用勾股定理求出PB即可.【解答】解:(1)①如图1所示:连接AD.∵∠ABD=90°,∴AD是圆O的直径.∴AD=10.在Rt△ABD中,BD==6.②如图1所示:过点O作OF⊥BD,垂足为F.∵OF⊥BD,BD=6,∴BF=FD=3.在Rt△ODF中,OF==4.在Rt△OFE中,EF==2.∴BE=FB+EF=3+2.(2)如图②中,连接PO,并延长交⊙O于点Q,连接AQ,AP,∵BC是⊙O的切线,PQ是直径∴∠CPO=∠CBA=∠PAQ=90°,∴PQ∥AB,∴∠PAB=∠APQ,∵∠PAQ=∠PBA=90°,∴△PAQ∽△ABP,∴=,∴PA2=80,在RT△PAB中,PB===4.故答案为4.【点评】本题主要考查的是垂径定理、圆周角定理、勾股定理的应用,掌握此类问题的辅助线的作法是解题的关键,学会利用相似三角形的性质解决问题,属于中考常考题型.中考数学模拟试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.计算4 + 6÷(﹣2)的结果是 (▲)A .-5B .-1C .1D .52.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为 (▲)A .1.05×10﹣5B .0.105×10﹣4C .1.05×105D .105×10﹣73.计算a 5·(-1a)2的结果是 (▲)A .-a 3B .a 3C .a 7D .a 104.无理数10介于整数 (▲)A .4与5之间B .3与4之间C .2与3之间D .1与2之间5.二次函数y=x 2+2x ﹣m 2+1的图像与直线y=1的公共点个数是 (▲)A .0B .1C .2D .1或26.在如图直角坐标系内,四边形AOBC 是边长为2的菱形,E 为边OB 的中点,连结AE 与对角线OC 交于点D ,且∠BCO=∠EAO ,则点D 坐标为 (▲).A .(33,23) B .(1,21)C .(23,33) D .(1,33)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应.....位置..上) 7.﹣2的绝对值是 ▲ ,﹣2的相反数是 ▲ .8.若式子1+1x+2在实数范围内有意义,则x 的取值范围是 ▲ .9.分解因式3a 2-3的结果是 ▲ . 10.计算8-13×6的结果是 ▲ . 11.直线y=12x 与双曲线y=kx在第一象限的交点为(a ,1),则k= ▲ . 12.已知方程x 2-mx -3m =0的两根是x 1、x 2,若x 1+x 2=1,则 x 1x 2= ▲ .13.如图,若正方形EFGH 由正方形ABCD 绕图中某点顺时针旋转90°得到,则旋转中心应该是 ▲ 点.。