唐山市丰南区2017-2018学年七年级下期末考试数学试题(含答案)

合集下载

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下期末考试数学试卷有答案

2017—2018学年七年级下学期数学期末考试数学(时间:120分钟满分:120分)一、选择题(本题有10小题,每小题3分,共30分) 1.27的立方根是( )A .3B .±3C .± 3D . 3 2.下列各点中,在第二象限的是( )A .(-1,3)B .(1,-3)C .(-1,-3)D .(1,3) 3.下列式子正确的是( )A .9=±3B .38=-2 C .(-3)2=-3 D .-25=54.要调查城区某所初中学校学生的平均体重,选取调查对象最合适的是( ) A .选该校100名男生 B .选该校100名女生;C .选该校七年级的两个班的学生D .在各年级随机选取100名学生。

5.如图,已知AE ∥BC ,AC ⊥AB ,若∠ACB =50°,则∠F AE 的度数是( ) A .50° B .60° C .40° D .30°6.若关于x 的不等式(2-m )x <1的解为x >12-m,则m 的取值范围是( ) A .m >0 B .m <0 C .m >2 D .m <27.我国古代问题:以绳测井,若将绳三折测之(注:绳儿折即把绳平均分成几等分),绳多四尺;若将绳四折测之,绳多一尺,绳长、井深各几何?( ) A .36,8 B .28,6 C .28,8 D .13,38.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,梁湖风景区某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为( )A .120mB .130mC .140mD .150m9.一个点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动:(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第63秒时,这个点所在位置的坐标是( )A .(7,0)B .(0,7)C .(7,7)D .(6,0)10.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们共有( )种租住方案.BAFEC第5题图第8题图yx O1231 2 3 第9题图AA .4B .2C .3D .1二、填空题(共6小题,每小题3分,满分18分)11.计算:25+3-8=________;12.点M (2,-1)向上平移3个单位长度得到的点的坐标是________;13.在对45个数据进行整理的频数分布表中,各组的频数之和等于________;14.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打________折。

17-18第二学期期末测试七年级数学答案

17-18第二学期期末测试七年级数学答案

2017~2018学年度第二学期期末学业水平调研测试七年级数学及答案说明:1、本试卷共4页,共25小题,考试时间为100分钟,满分120分.2、考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的考生号,并用2B 铅笔把对应号码的标号涂黑,在指定位置填写学校,姓名,试室号和座位号.3、选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.4、非选择题必须在指定区域内,用黑色字迹的签字笔或钢笔作答,如需改动,先划掉原来答案,然后再写上新答案;不准使用铅笔或涂改液,不按以上要求作答的答案无效.5、考生务必保持答题卡的整洁,不折叠答题卡,考试结束后,只交回答题卡.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选选项涂黑.1、如图,直线a ,b 与直线l 相交,则下列说法错误的是( ) A 、1∠与2∠互为对顶角 B 、1∠与3∠互为邻补角 C 、1∠与4∠是一对同旁内角 D 、2∠与4∠是一对内错角2、计算 4的值,结果是( )A 、2B 、-2C 、±2D 、2±3、在平面直角坐标系中,第二象限的点P 到x 轴的距离为3,到y 轴的距离为4,则点P 的坐标是( )A 、(3,4)B 、(-3,4)C 、(4,3)D 、(-4,3) 4、如图,点O 是直线AB 外的点,点C ,D 在AB 上,且AB OC ⊥,若5=OA ,4=OB ,2=OC ,3=OD ,则点O 到直线AB 的距离是( )A 、5B 、4C 、2D 、35、已知关于x ,y 的二元一次方程53=+y kx 有一组解为⎩⎨⎧==12y x ,则k 的值为( )A 、1B 、2C 、3D 、4lba 3 12 4第1题图OA第4题图BEAD第10题图OBEA CD 第14题图6、已知1-<a ,则下列不等式中,错误的是( ) A 、33-<a B 、33<-a C 、12<+a D 、32>-a7、经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其它占10%,用扇形图描述以上统计数据,则公交车对应的扇形的圆心角的度数是( )A 、︒216B 、︒120C 、︒108D 、︒60 8、下列说法正确的是( )A 、无限小数都是无理数B 、无理数都是无限小数C 、带根号的数都是无理数D 、无理数能写成分数形式 9、下列说法错误的是( )A 、在同一平面内,过一点有且只有一条直线与已知直线垂直B 、连接直线外一点与直线上各点的所有线段中,垂线段最短C 、在同一平面内,不重合的两条直线互相平行D 、经过直线外一点,有且只有一条直线与这条直线平行10、如图,在三角形ABC 中,点D 是AB 上的点,由条件AC DE ⊥于点E ,DE ∥BC 得出的下列结论中,不正确的是( )A 、CDE BCD ∠=∠B 、︒=∠90ACBC 、B ADE ∠=∠D 、DCE BDC ∠=∠二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11、7-的相反数是 . 12、计算:=-+3)32( . 13、不等式1152<+x 的解集是 .14、如图,直线AB 与CD 相交于点O ,OA 平分COE ∠,若︒=∠30AOE ,则DOE ∠的度数是 .15、在直角坐标系中,线段CD 是由线段AB 平移得到,点A (-3,-2)的对应点为C (2,1),则点B (-1,2)的对应点D 的坐标是 .第18题图1PBAB A CD第18题图216、如图,8块相同的长方形地砖拼成一个长方形,则每块长方形地砖的面积是 2cm .答案:一、选择题 C A D C A B C B C D二、填空题 11、7 12、2 13、3<x 14、︒120 15、(4,5) 16、675 三、解答题(一)(本大题3小题,每小题6分,共18分) 17、计算:53325161643-+-+.34533534+=-++=(评分说明:计算364占1分,计算25161-,533-各占2分,答案正确占1分)18、画图题:(1)如图1,已知点P 是直线AB 外一点,用三角尺画图:过点P 作AB PM ⊥,垂足为M ; (2)如图2,已知直线AB 与CD ,请画出直线EF ,使EF 与直线AB 、CD 都相交,在所构成的八个角中,用数字表示其中的一对同位角.解:(1)评分说明:准确画出图形给3分,其中会过点P 作直线、用直角画出垂直线、标注垂足各占1分;(2)共3分.其中画出EF ,用数字表示同位角,写出结果各占1分.19、已知四个点的坐标,A (-3,-2),B (2,-2),C (3,1),D (-2,1). (1)在直角坐标系中描出A ,B ,C ,D 四个点;(2)连结AB 、CD ,写出线段AB ,CD 的位置关系和数量关系.解:(1)略 4分(准确描出一个点1分)(2)AB ∥CD,CD AB =; 6分(每个结论占1分)第16题图四、解答题(二)(本大题3小题,每小题7分,共21分) 20、解方程组:⎩⎨⎧=-=+112312y x y x .解:①+②得,124=x , 2分3=x , 3分把3=x 代入①得,123=+y ,1-=y , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分或由①得,y x 21-=③, 1分 代入②得,112)21(3=--y y , 3分 解得1-=y , 4分 把1-=y 代入③得,3)1(21=-⨯-=x , 6分∴这个方程组的解是⎩⎨⎧-==13y x . 7分21、解不等式组:⎪⎩⎪⎨⎧-<--≥+-x x x x 6)1(31324,并求该不等式组的正整数解.解:不等式x x ≥+-324的解是2≤x , 2分 不等式x x -<--6)1(31的解是1->x , 4分 ∴不等式组的解是21≤<-x , 6分 ∴不等式组的正整数解是1,2. 7分22、某校为了解该校七年级同学对排球、篮球和足球三种球类运动项目的喜爱情况(每位同学必须且只须选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后,绘制成如下表和不完整的统计图表.(1)填空:=m ,=n ,=p ; (2)补全条形统计图;(3)若七年级学生总人数为900人,请你估计七年级学生喜爱足球运动项目的人数.解:(1)50=m ,14=n ,%20=p ; 3分 (2)略 5分 (3)900×20%=180(人) 7分五、解答题(三)(本大题3小题,每小题9分,共27分)23、某养牛场每天可用的饲料不超过1000kg ,原有30头大牛和15头小牛,1天要用饲料675kg ;一周后又购进12头大牛和5头小牛,这时1天要用饲料940kg .(1)求每头大牛和每头小牛1天各用饲料多少kg ?(2)一段时间后,大牛已全部上市出售,原来的小牛也长成大牛,需要再购进大牛和小牛若干头继续饲养.经测算,养牛场养牛数刚好80头,且尽量多养大牛将获得最大效益,问养牛场应购进多少头大牛和小牛才获得最大效益?解:(1)设每头大牛1天用饲料x kg ,每头小牛1天用饲料y kg , 1分依题意得,⎩⎨⎧=+=+94020426751530y x y x , 3分解得,⎩⎨⎧==520y x , 5分 答:每头大牛1天用饲料20kg ,每头小牛1天用饲料5kg ; 6分 (2)设最多购进m 头大牛,第24题图BA CD123依题意得,1000)60(5)20(20≤-++m m , 7分 解得,20≤m , 8分答:最多购进20头大牛,此时需购进40头小牛,使养牛数刚好80头牛并获得最大效益, 9分24、(1)在下面括号内,填上推理的根据,并完成下面的证明:如图,在四边形ABCD 中,BD 平分ABC ∠,31∠=∠.求证:AD ∥BC . 证明:∵BD 平分ABC ∠,∴21∠=∠( ), 又∵31∠=∠(已知),∴∠ ∠= ( ), ∴AD ∥BC ( );(2)请根据本题给出的图形举出反例,判定命题“相等的角是对顶角”是假命题;(3)命题“在四边形ABCD 中,AB ∥CD ,AD ∥BC ,那么C A ∠=∠”是真命题吗?如果是,写出推理过程(要求写出每一步的推理依据),如果不是,请举出反例.解:(1)分别填写:角平分线的定义、32∠=∠、等量代换、内错角相等,两直线平行 每个1分,共4分(2)BD 平分ABC ∠,21∠=∠,但它们不是对顶角, 5分 ∴命题“相等的角是对顶角”是假命题; 6分 (3)命题是真命题,证明如下: ∵AB ∥CD ,∴︒=∠+∠180C ABC (两直线平行,同旁内角互补), 7分 ∵AD ∥BC ,∴︒=∠+∠180A ABC (两直线平行,同旁内角互补), 8分 ∴C A ∠=∠(等角的补角相等). 9分 若证明过程正确给2分,但推理根据没有写或有写错的,全部扣1分25、如图,在直角坐标系中,点O 为坐标原点,直线AB 与两条坐标轴交于点A 、B ,OB OA <,过OB 的中点C 作直线CD 交AB 于点D ,使1∠=∠CDB ,过点D 作AB DE ⊥交x 轴于点E ,交y 轴于点F .已知直线AB 上的点的坐标是二元一次方程2443=+y x 的解.(1)写出点A 、B 、C 的坐标;(2)证明:OB CD ⊥(要求写出每一步的推理依据);(3)若点D 、E 的坐标都是方程734=-y x 的解,求四边形OADE 的面积. 解:(1)A (0,6),B (8,0),C (4,0); 3分 (2)∵OAB ∠=∠1(对顶角相等), 4分 又1∠=∠CDB (已知),∴CDB OAB ∠=∠(等量代换), ∴CD ∥y 轴(同位角相等,两直线平行), 5分 ∴︒=∠=∠90AOB DCB (两直线平行,同位角相等), ∴OB DC ⊥(垂直的定义); 6分 (3)由OB DC ⊥,得点D 的横坐标为4, 7分 ∴D (4,3),E (47,0), ∴425478=-=EB , 8分 ∴四边形OADE 的面积81173425216821=⨯⨯-⨯⨯=S . 9分。

2017-2018年河北省唐山市路南区七年级(下)期末数学试卷(解析版)

2017-2018年河北省唐山市路南区七年级(下)期末数学试卷(解析版)

2017-2018学年河北省唐山市路南区七年级(下)期末数学试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数中是无理数的是()A.πB.2C.D.3.142.(2分)若点A(﹣2,n)在x轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(2分)如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.a>b D.﹣3a>﹣3b 4.(2分)下列调查中,比较适合用全面调查(普查)方式的是()A.某灯具厂节能灯的使用寿命B.全国居民年人均收入C.某校今年初中生育体中考的成绩D.全国快递包装产生的垃圾数量5.(2分)如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°6.(2分)不等式a>2a成立的条件是()A.不存在这样的a B.a<0C.a=0D.a>07.(2分)有如下命题,其中假命题有()①负数没有平方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是0.A.0个B.1个C.2个D.3个8.(2分)一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A.x≤1B.x>3C.x≥3D.1≤x<39.(2分)为了解某地2万名考生的数学成绩情况,从中抽取500名考生数学成绩的数据进行分析,以下说法正确的是()A.这500名考生是样本B.2万名考生是总体C.样本容量是500D.每位考生是个体10.(2分)已知,如果x与y互为相反数,那么()A.k=0B.C.D.11.(2分)将一三角尺与一两边平行的纸条按如图所示放置,下列结论:其中,正确的有()①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.A.1个B.2个C.3个D.4个12.(2分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数,设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.二、填空题(本大题共6个小题;每题3分,共18分.)13.(3分)16的算术平方根是.14.(3分)不等式2x>3的最小整数解是.15.(3分)在平面直角坐标系中,点P′是由点P(2,3)先向左平移3个单位,再向下平移2个单位得到的,则点P′的坐标是.16.(3分)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.17.(3分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成组.18.(3分)已知关于x的不等式组的整数解共有4个,则m的取值范围是.三、解答题(本大题共7个小题;共58分)19.(8分)计算:(1)﹣+|1﹣|+2(2)已知是二元一次方程x+ay=5的解,求a的值.20.(6分)在平面直角坐标系中,已知A,B两点的坐标分别为(0,a),(a,b),其中a,b满足关系式(3a﹣2b)2+=0,求A,B两点的坐标.21.(6分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,∠ECB应为多少度,可使所修路段CE∥AB?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮他补充完整.解:由已知平行,得∠1=∠A=67°(两直线平行,)∴∠CBD=23°+67°=°,当∠ECB+∠CBD=°时,可得CE∥AB.()所以∠ECB=°此时CE⊥BC.()22.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=,b=;(2)在扇形统计图中,“排球”所在的扇形的圆心角为度;(3)全校有多少名学生选择参加乒乓球运动?23.(8分)若不等式组的解集为﹣1≤x≤2,(1)求a、b的值(2)解不等式ax+b<0,并把它的解集在下面的数轴上表示出来.24.(10分)某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.25.(12分)某市救灾物资储备仓库共存储了A,B,C三类救灾物资,下面的统计图是三类物资存储量的不完整统计图.(1)求A类物资的存储量,并将两个统计表补充完整;(2)现计划租用甲、乙两种货车共8辆,一次性将A、B两类物资全部运往某灾区.已知甲种货车最多可装A类物资10吨和B类物资40吨,乙种货车最多可装A、B类物资各20吨,则物资储备仓库安排甲、乙两种货车有几种方案?请你帮助设计出来.2017-2018学年河北省唐山市路南区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)下列实数中是无理数的是()A.πB.2C.D.3.14【解答】解:2,,3.14是有理数,π是无理数,故选:A.2.(2分)若点A(﹣2,n)在x轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由点A(﹣2,n)在x轴上,得n=0.点B(n+1,n﹣1)的坐标即为(1,﹣1),点B(n+1,n﹣1)在四象限,故选:D.3.(2分)如果a<b,那么下列不等式成立的是()A.a﹣b>0B.a﹣3>b﹣3C.a>b D.﹣3a>﹣3b【解答】解:a<bA、a﹣b<0,故A选项错误;B、a﹣3<b﹣3,故B选项错误;C、a<b,故C选项错误;D、﹣3a>﹣3b,故D选项正确.故选:D.4.(2分)下列调查中,比较适合用全面调查(普查)方式的是()A.某灯具厂节能灯的使用寿命B.全国居民年人均收入C.某校今年初中生育体中考的成绩D.全国快递包装产生的垃圾数量【解答】解:A、调查某灯具厂节能灯的使用寿命具有破坏性,适合抽样调查;B、调查全国居民年人均收入数据数量大,适合抽样调查;C、调查某校今年初中生育体中考的成绩数据量少,全面调查所得数据更加准确,适合全面调查;D、调查全国快递包装产生的垃圾数量,数据的数量大,适合抽样调查;故选:C.5.(2分)如图,直线a∥b,直线l与a,b分别交于点A,B,过点A作AC⊥b于点C,若∠1=50°,则∠2的度数为()A.130°B.50°C.40°D.25°【解答】解:∵直线a∥b,∴∠ABC=∠1=50°,又∵AC⊥b,∴∠2=90°﹣50°=40°,故选:C.6.(2分)不等式a>2a成立的条件是()A.不存在这样的a B.a<0C.a=0D.a>0【解答】解:不等式a>2a成立的条件是a<0,故选:B.7.(2分)有如下命题,其中假命题有()①负数没有平方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是0.A.0个B.1个C.2个D.3个【解答】解:①负数没有平方根,是真命题;②两直线平行,同位角相等,是假命题;③对顶角相等,是真命题;④如果一个数的立方根是这个数本身,那么这个数是0或±1,是假命题;故选:C.8.(2分)一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A.x≤1B.x>3C.x≥3D.1≤x<3【解答】解:根据数轴得:,则此不等式组的解集为x>3,故选:B.9.(2分)为了解某地2万名考生的数学成绩情况,从中抽取500名考生数学成绩的数据进行分析,以下说法正确的是()A.这500名考生是样本B.2万名考生是总体C.样本容量是500D.每位考生是个体【解答】解:A、这500名考生的数学成绩是样本,此选项错误;B、2万名考生的数学成绩是总体,此选项错误;C、样本容量是500,此选项正确;D、每位考生的数学成绩是个体,此选项错误;故选:C.10.(2分)已知,如果x与y互为相反数,那么()A.k=0B.C.D.【解答】解:已知,解得,∵x与y互为相反数,∴﹣=0,即k=﹣.故选:C.11.(2分)将一三角尺与一两边平行的纸条按如图所示放置,下列结论:其中,正确的有()①∠1=∠2;②∠3=∠4;③∠2+∠4=90°;④∠4+∠5=180°.A.1个B.2个C.3个D.4个【解答】解:∵直尺的两边互相平行,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∵三角板的直角顶点在直尺上,∴∠2+∠4=90°,∴四个结论均正确.故选:D.12.(2分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数,设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.【解答】解:设这个两位数的个位数字为x,十位数字为y,根据题意得:,故选:D.二、填空题(本大题共6个小题;每题3分,共18分.)13.(3分)16的算术平方根是4.【解答】解:∵42=16,∴=4.故答案为:4.14.(3分)不等式2x>3的最小整数解是2.【解答】解:解不等式得:x>,则最小整数解是:2.故答案为2.15.(3分)在平面直角坐标系中,点P′是由点P(2,3)先向左平移3个单位,再向下平移2个单位得到的,则点P′的坐标是(﹣1,1).【解答】解:点P′是由点P(2,3)先向左平移3个单位,再向下平移2个单位得到的点P′的坐标是(2﹣3,3﹣2),即(﹣1,1),故答案为:(﹣1,1).16.(3分)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=90°.【解答】解:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为:90°.17.(3分)一个容量为80的样本最大值为143,最小值为50,取组距为10,则可以分成10组.【解答】解:143﹣50=93,93÷10=9.3,所以应该分成10组.故答案为:10.18.(3分)已知关于x的不等式组的整数解共有4个,则m的取值范围是3<m ≤4.【解答】解:∵不等式组的整数解共有4个,∴不等式组的整数解为0、1、2、3,则3<m≤4,故答案为:3<m≤4三、解答题(本大题共7个小题;共58分)19.(8分)计算:(1)﹣+|1﹣|+2(2)已知是二元一次方程x+ay=5的解,求a的值.【解答】解:(1)原式=3﹣2+=3;(2)把代入二元一次方程x+ay=5,可得:1﹣2a=5,解得:a=﹣2.20.(6分)在平面直角坐标系中,已知A,B两点的坐标分别为(0,a),(a,b),其中a,b满足关系式(3a﹣2b)2+=0,求A,B两点的坐标.【解答】解:∵(3a﹣2b)2+=0,∴解得:∴A,B两点的坐标分别为:(0,2),(2,3).21.(6分)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,由B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,从C点继续修建CE段,∠ECB应为多少度,可使所修路段CE∥AB?试说明理由.此时CE与BC有怎样的位置关系?以下是小刚不完整的解答,请帮他补充完整.解:由已知平行,得∠1=∠A=67°(两直线平行,同位角相等)∴∠CBD=23°+67°=90°,当∠ECB+∠CBD=180°时,可得CE∥AB.(同旁内角互补,两直线平行)所以∠ECB=90°此时CE⊥BC.(垂直定义)【解答】解:由已知平行,得∠1=∠A=67°(两直线平行,同位角相等),∴∠CBD=23°+67°=90°,当∠ECB+∠CBD=180°时,可得CE∥AB.(同旁内角互补,两直线平行)所以∠ECB=90°,此时CE⊥BC(垂直定义),故答案为:同位角相等;90;180;同旁内角互补,两直线平行;90;垂直定义.22.(8分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取10%进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的a=24,b=18;(2)在扇形统计图中,“排球”所在的扇形的圆心角为54度;(3)全校有多少名学生选择参加乒乓球运动?【解答】解:(1)抽取的人数是36÷30%=120(人),则a=120×20%=24,b=120﹣30﹣24﹣36﹣12=18.故答案是:24,18;(2)“排球”所在的扇形的圆心角为360°×=54°,故答案是:54;(3)全校总人数是120÷10%=1200(人),则选择参加乒乓球运动的人数是1200×30%=360(人).23.(8分)若不等式组的解集为﹣1≤x≤2,(1)求a、b的值(2)解不等式ax+b<0,并把它的解集在下面的数轴上表示出来.【解答】解:(1)∵解不等式①得:x≥,解不等式②得:x≤b,∴不等式组的解集为≤x≤b,∵不等式组的解集为﹣1≤x≤2,∴=﹣1,b=2,即x=﹣2,b=2;(2)代入得:﹣2x+2<0,﹣2x<﹣2,x>1,在数轴上表示为:.24.(10分)某电器超市销售每台进价分别为190元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入一进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5300元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标,若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:.答:A、B两种型号电风扇的销售单价分别为240元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:190a+170(30﹣a)≤5300,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5300元;(3)依题意有:(240﹣190)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.25.(12分)某市救灾物资储备仓库共存储了A,B,C三类救灾物资,下面的统计图是三类物资存储量的不完整统计图.(1)求A类物资的存储量,并将两个统计表补充完整;(2)现计划租用甲、乙两种货车共8辆,一次性将A、B两类物资全部运往某灾区.已知甲种货车最多可装A类物资10吨和B类物资40吨,乙种货车最多可装A、B类物资各20吨,则物资储备仓库安排甲、乙两种货车有几种方案?请你帮助设计出来.【解答】解:(1)根据扇形统计图的特点可知A所占的比例为:1﹣50%﹣37.5%=12.5%,∵物资总量为:320÷50%=640吨,∴A类物资的存储量为:640×12.5%=80吨,∴补全的条形统计图和扇形统计图如下所示:(2)由(1)可知,该存储库有A类物资80吨,B类物资240吨,设将A、B两类物资全部运出需租用甲种货车x辆,则解得4≤x≤8,则x=4,5,6,7,8,所以存储仓库有5种运输方案可以安排,设计方案分别为:①甲车4辆,乙车4辆;②甲车5辆,乙车3辆;③甲车6辆,乙车2辆;④甲车7辆,乙车1辆;⑤甲车8辆,乙车0辆.。

2017-2018学年七年级数学期末试卷(含答案)

2017-2018学年七年级数学期末试卷(含答案)

2017-2018学年七年级数学期末试卷(全卷三个大题,共24个小题,满分120分,考试时间120分钟)一.选择题(共8个小题,每小题只有一个正确选项,每小题4分,共32分)1.下列图形中不是轴对称图形的是( )A .B .C .D .2.甲、乙、丙三地海拔高度分别为-100米、-300米、500米,那么最高的地方比最低的地方高( ) A .400米B .600米C .200米D .800米3.下列整式中,属于多项式的是( )A. b a 2-B. ab 2-C. 2-D. a 4.全球每分钟约有9350000吨污水排入江河湖海,9350000用科学计数法记为( )A. 410935⨯ B. 5105.93⨯ C. 61035.9⨯ D. 710935.0⨯ 5.下列运算结果正确的是( )A.22523a b a b -= B.623x x x ÷=C.236(2)8x x =D.222()a b a b -=-6.有两根长分别是20厘米和30厘米的木棒,若不改变木棒的长度,要钉成一个三角形框架,则应在下列木棒中选取( )厘米的木棒。

A.10 B.20 C.50 D.607.如图,已知AD=AE ,添加下列条件仍无法证明△ABE ≌△ACD 的是( ) A .AB=ACB .∠ADC=∠AEBC .∠B=∠CD .BE=CD8.下列调查中,适合普查的事件是( ) A .调查华为手机的使用寿命B .调查我国七年级学生的心理健康情况C .调查我班学生身高的情况D .调查中央电视台《朗读者》节目的收视率二.填空题(共6个小题,每小题3分,共18分)9. 5的相反数是 。

10.关于x 的方程06=+ax 的解是3-=x ,则a 11.已知∠A=70°,则∠A 的补角是 度。

12. 如图,直线AB 、CD 相交于点O ,EO ⊥CD , 若∠AOC =35°,则∠BOE 是 度。

2017-2018年河北省唐山市丰南区七年级(下)期末数学试卷(解析版)

2017-2018年河北省唐山市丰南区七年级(下)期末数学试卷(解析版)

2017-2018学年河北省唐山市丰南区七年级(下)期末数学试卷一、精心选一选(本大题共12小题,每小题2分,共24分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内1.(2分)在,3.14,2,,0,1.2626626662…中,无理数的个数是()A.1个B.2个C.3个D.4个2.(2分)如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q3.(2分)下列命题是假命题的是()A.负数有立方根B.在同一平面内,如果a⊥b,b⊥c,那么a∥cC.一定是正数D.如果一个数的算术平方根是它本身,那么这个数是1或04.(2分)为了解某校七年级300名学生对“世界读书日”的知晓情况,从中随机抽取了80名学生进行调查在这次调查中,样本是()A.80名学生B.每一名学生对“世界读书日”的知晓情况C.300名学生对“世界读书日”的知晓情况D.所抽取的80名学生对“世界读书日”的知晓情况5.(2分)不等式组的解集在数轴上表示为()A.B.C.D.6.(2分)如图所示,l1绕点O至少旋转多少度才能与l2平行()A.38°B.42°C.80°D.138°7.(2分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.58.(2分)如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°9.(2分)用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.10.(2分)如果m是任意实数,则点P(m﹣4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限11.(2分)已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.212.(2分)已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣1≤a≤0B.﹣1<a≤0C.0≤a≤1D.0<a≤1二、细心填一填(本大题共8小题,每小题3分,共24分)把答案直接写在题中的横线上13.(3分)49的平方根是.14.(3分)不等式组的解集是.15.(3分)如图AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=32°,那么∠EOD的度数是16.(3分)QQ好友的等级会用一些图标来表示,如图是小明同学的两个好友的等级示例,小明想知道一个太阳和一个月亮所表示的等级.若设一个太阳表示x等级,一个月亮表示y等级,可列方程组为.17.(3分)若关于x、y的二元一次方程组的解是,则a b的值为.18.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有人.19.(3分)一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足.20.(3分)如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.三、专心解一解(本题满分52分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21.(4分)解方程组22.(4分)解方程组:23.(4分)规定:=ad﹣bc,例如=2×5﹣3×4=﹣2,如果有>0,求x 的取值范围,并把解集在数轴上表示出来.24.(4分)求的非负整数解25.(6分)如图,点A、B分别在直线EF和DF上,且∠1+∠C=180°,且∠2=∠3.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE,垂足为E,∠1=40°,求∠4的度数.26.(7分)为了了解学生参加社团活动的情况,从2013年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图1、图2是部分调查数据的统计图(参加社团的学生每人只报一项).根据统计图提供的信息解决下列问题:(1)求图2中“科技类”所在扇形的圆心角α的度数?(2)该市2016年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2017年共有50000名学生,请你估计该市2017年参加社团的学生人数?27.(11分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.28.(12分)如图,AB⊥x轴,AC⊥y轴,垂足分别为B、C,且OB=10,OC=8,动点P 从点C出发以每秒3个单位长度的速度沿线段CA向端点A匀速运动;同时动点Q从点B出发以每秒5个单位长度的速度沿射线BO匀速运动,当动点P与端点A重合时,动点P、Q都停止运动,设运动时间为t秒.(1)写出点A的坐标;(2)t为何值时,△POQ的面积为12?并直接写出此时动点P、Q的坐标?2017-2018学年河北省唐山市丰南区七年级(下)期末数学试卷参考答案与试题解析一、精心选一选(本大题共12小题,每小题2分,共24分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内1.(2分)在,3.14,2,,0,1.2626626662…中,无理数的个数是()A.1个B.2个C.3个D.4个【解答】解:无理数有:2+,1.2626626662……,共2个,故选:B.2.(2分)如图,在数轴上有M、N、P、Q四点,其中某一点表示无理数,这个点是()A.M B.N C.P D.Q【解答】解:∵≈1.414,∴1.4<<1.5,∴无理数对应的点是P.故选:C.3.(2分)下列命题是假命题的是()A.负数有立方根B.在同一平面内,如果a⊥b,b⊥c,那么a∥cC.一定是正数D.如果一个数的算术平方根是它本身,那么这个数是1或0【解答】解:A、负数有立方根是真命题;B、在同一平面内,如果a⊥b,b⊥c,那么a∥c,是真命题;C、可以等于0,是假命题;D、如果一个数的算术平方根是它本身,那么这个数是1或0,是真命题;故选:C.4.(2分)为了解某校七年级300名学生对“世界读书日”的知晓情况,从中随机抽取了80名学生进行调查在这次调查中,样本是()A.80名学生B.每一名学生对“世界读书日”的知晓情况C.300名学生对“世界读书日”的知晓情况D.所抽取的80名学生对“世界读书日”的知晓情况【解答】解:∵为了解某校七年级300名学生对“世界读书日”的知晓情况,从中随机抽取了80名学生进行调查在这次调查中,∴样本是所抽取的80名学生对“世界读书日”的知晓情况.故选:D.5.(2分)不等式组的解集在数轴上表示为()A.B.C.D.【解答】解:由x﹣1≥0,得x≥1,由4﹣2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.6.(2分)如图所示,l1绕点O至少旋转多少度才能与l2平行()A.38°B.42°C.80°D.138°【解答】解:∵l1∥l2,∴∠AOB=∠OBC=42°,∴80°﹣42°=38°,即l1绕点O至少旋转38度才能与l2平行.故选:A.7.(2分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2B.3C.4D.5【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.8.(2分)如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A.80°B.82°C.83°D.85°【解答】解:∵∠3=10°,∴∠AEC=10°,∴∠BEC=180°﹣10°=170°,∵EN平分∠CEB,∴∠2=85°,∵FM∥AB,∴∠F=∠2=85°,故选:D.9.(2分)用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒.则下列方程组中符合题意的是()A.B.C.D.【解答】解:设用x张制作盒身,y张制作盒底,根据题意得:,故选:C.10.(2分)如果m是任意实数,则点P(m﹣4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵(m+1)﹣(m﹣4)=m+1﹣m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选:D.11.(2分)已知方程组的解满足x﹣y=m﹣1,则m的值为()A.﹣1B.﹣2C.1D.2【解答】解:方法1:,解得,∵满足x﹣y=m﹣1,∴﹣﹣=m﹣1,解得m=﹣1;方法2:方程两边分别相减就可以得到36x﹣36y=﹣72则x﹣y=﹣2所以m﹣1=﹣2所以m=﹣1.故选:A.12.(2分)已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣1≤a≤0B.﹣1<a≤0C.0≤a≤1D.0<a≤1【解答】解:不等式组整理得:,即a≤x≤2,由不等式组整数解有3个,得到﹣1<a≤0,故选:B.二、细心填一填(本大题共8小题,每小题3分,共24分)把答案直接写在题中的横线上13.(3分)49的平方根是±7.【解答】解:49的平方根是±7.故答案为:±7.14.(3分)不等式组的解集是x>﹣2.【解答】解:如图所示,,故不等式组的解集为:x>﹣2.故答案为:x>﹣2.15.(3分)如图AB∥CD,AF交CD于点O,且OF平分∠EOD,如果∠A=32°,那么∠EOD的度数是64o【解答】解:∵AB∥CD,∠A=32°,∴∠DOF=∠A=32°,∵OF平分∠EOD,∴∠EOD=2∠FOD=64°,故答案为:64°.16.(3分)QQ好友的等级会用一些图标来表示,如图是小明同学的两个好友的等级示例,小明想知道一个太阳和一个月亮所表示的等级.若设一个太阳表示x等级,一个月亮表示y等级,可列方程组为.【解答】解:由题意得:,故答案为:.17.(3分)若关于x、y的二元一次方程组的解是,则a b的值为1.【解答】解:∵关于x、y的二元一次方程组的解是,∴,解得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.18.(3分)将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,则该班共有60人.【解答】解:∵各组人数在频数分布直方图中的小长方形高的比依次为1:2:5:3:1,人数最多的一组有25人,∴各组人数分别为5人、10人、25人、15人、5人,∴总人数为:5+10+25+15+5=60(人),故答案为:60.19.(3分)一件商品进价120元,标价a元,要按标价打6折销售,利润不会少于10%,标价a要满足不低于220元.【解答】解:设商品的标价a元,则售价为0.6a元,由题意,得0.6a﹣120≥10%×120,解得:a≥220故答案为:不低于220元.20.(3分)如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=32.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB+S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.三、专心解一解(本题满分52分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21.(4分)解方程组【解答】解:,①×4﹣②,得:x=2,将x=2代入①,得:2﹣2y=3,解得:y=﹣,∴方程组的解为.22.(4分)解方程组:【解答】解:原方程组整理为,②﹣①得3n=﹣6n=﹣2,把n=﹣2代入②中,得4m+6=7m=∴方程组的解为.23.(4分)规定:=ad﹣bc,例如=2×5﹣3×4=﹣2,如果有>0,求x 的取值范围,并把解集在数轴上表示出来.【解答】解:由题意得2x﹣(3﹣x)>0,去括号得:2x﹣3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1.解集在数轴上表示为:.24.(4分)求的非负整数解【解答】解:解不等式x﹣5≤,得:x≤,解不等式4(x+1)<7x+10,得:x>﹣2,∴原不等式组的解集为﹣2<x≤,∴非负整数解为0,1,2,3.25.(6分)如图,点A、B分别在直线EF和DF上,且∠1+∠C=180°,且∠2=∠3.(1)请你判断AD与EC的位置关系,并说明理由;(2)若DA平分∠BDC,CE⊥AE,垂足为E,∠1=40°,求∠4的度数.【解答】解:(1)AD∥EC,∵∠1+∠C=180°∴AD∥EC;(2)∵DA平分∠BDC∴∠1=∠3,∵∠2=∠3∴∠1=∠2=40°,∵CE⊥AE∴∠E=90°∵AD∥EC∴∠F AD=90°,∴∠4=90°﹣40o=50o.26.(7分)为了了解学生参加社团活动的情况,从2013年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图1、图2是部分调查数据的统计图(参加社团的学生每人只报一项).根据统计图提供的信息解决下列问题:(1)求图2中“科技类”所在扇形的圆心角α的度数?(2)该市2016年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2017年共有50000名学生,请你估计该市2017年参加社团的学生人数?【解答】解:(1)360o×(1﹣15%﹣25%﹣10%﹣30%)=360o×20%=72o(2)(600+550)×(10%+30%)=460答:2017年参加体育类与理财类社团的学生共有460人;(3)50000×=28750答:估计该市2017年参加社团的学生有28750人.27.(11分)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【解答】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.28.(12分)如图,AB⊥x轴,AC⊥y轴,垂足分别为B、C,且OB=10,OC=8,动点P 从点C出发以每秒3个单位长度的速度沿线段CA向端点A匀速运动;同时动点Q从点B出发以每秒5个单位长度的速度沿射线BO匀速运动,当动点P与端点A重合时,动点P、Q都停止运动,设运动时间为t秒.(1)写出点A的坐标;(2)t为何值时,△POQ的面积为12?并直接写出此时动点P、Q的坐标?【解答】解:(1)∵OB=10,OC=8,∴点A的坐标为(10,8);(2)当点Q在线段BO上时,S△POQ=×(10﹣5t)×8=12,10﹣5t=3,t=,此时P(,8),Q(3,0);当点Q在BO的延长线上时,S△POQ=×(5t﹣10)×8=12,5t﹣10=3,t=,此时P(,8),Q(﹣3,0).。

2017-2018年度七年级期末数学试题(含答案)

2017-2018年度七年级期末数学试题(含答案)

12017——2018学年度下学期七 年 级 数 学 期 末 试 题数学试题共6页,包括六道大题,共26道小题。

全卷满分120分。

考试时间为120分钟。

考试结束后,将本试题和答题卡一并交回。

注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在 条形码区域内。

2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题上答 题无效。

一、单项选择题(每小题2分,共12分)1.在数2,π,38-,0.3333…中,其中无理数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个 2.已知:点P (x ,y )且xy=0,则点P 的位置在( )(A) 原点 (B) x 轴上 (C) y 轴上 (D) x 轴上或y 轴上 3.不等式组211420x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )4.下列说法中,正确的...是( ) (A)图形的平移是指把图形沿水平方向移动 (B)“相等的角是对顶角”是一个真命题 (C)平移前后图形的形状和大小都没有发生改变 (D)“直角都相等”是一个假命题 5.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已 知中学生被抽到的人数为150人,则应抽取的样本容量等于( )(A) 1500 (B) 1000 (C) 150 (D) 500 6.如图,点E 在AC 的延长线上,下列条件能判断AB ∥CD 的是( ) ①∠1=∠2 ②∠3=∠4 ③∠A=∠DCE ④∠D+∠ABD=180° (A) ①③④ (B) ①②③ (C) ①②④ (D) ②③④二、填空题(每小题3分,共24分)7.请写出一个在第三象限内且到两坐标轴的距离都相等的点的坐标 . 8.-364的绝对值等于 . 9.不等式组20210x x -≤⎧⎨->⎩的整数解是 .10.如图,a ∥b ,∠1=55°,∠2=40°,则∠3的度数是 °.11.五女峰森林公园门票价格:成人票每张50元,学生票每张25元.某旅游团买30张门票花 了1250元,设其中有x 张成人票,y 张学生票,根据题意列方程组是 . 12.数学活动中,张明和王丽向老师说明他们的位置(单位:m ): 张明:我这里的坐标是(-200,300); 王丽:我这里的坐标是(300,300).则老师知道张明与王丽之间的距离是 m .13.比较大小:215- 1(填“<”或“>”或“=” ). 14.在某个频数分布直方图中,共有11个小长方形,若中间一个长方形的高等于其 它10个小长方形高之和的41,且样本容量是60,则中间一组的频数是 . 学校 年 班 姓名: 考号:21 3 4 AB CDE (第6题)(第10题)2三、解答题(每小题5分,共20分) 15.计算:2393-+-.16.解方程组24824x y x y -=⎧⎨+=-⎩ ① ②.17.解不等式11237x x--≤,并把它的解集表示在数轴上.18.已知:如图,AB ∥CD ,EF交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=50°,求∠BHF 的度数.四、解答题(每小题7分,共28分)19.如图,已知∠1=∠2,∠3=∠4,求证:BC ∥EF .完成推理填空: 证明:因为∠1=∠2(已知),所以AC ∥ ( ) , 所以∠ =∠5 ( ) ,又因为∠3=∠4(已知),所以∠5=∠ (等量代换),所以BC ∥EF ( ) .20.对于x ,y 定义一种新运算“φ”,x φy =ax +by ,其中a ,b 是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.21.已知一个正数..的平方根是m+3和2m-15. (1)求这个正数是多少?(2)5+m 的平方根又是多少?22.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?七年级数学试题 第3页 (共6页)七年级数学试题 第2页 (共6页) HGF E DC BA七年级数学试题 第4页 (共6页)七年级数学试题 第3页 (共6页)3五、解答题(每小题8分,共16分)23.育人中学开展课外体育活动,决定开设A :篮球、B :乒乓球、C :踢毽子、D :跑步四种 活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生 进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为________ ,其所在扇形统计图中对应的 圆心角度数是 ______度; (2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?24.在平面直角坐标系中,O 为坐标原点,A(-2,3),B (2, 2). (1)画出三角形OAB ; (2)求三角形OAB 的面积;(3)若三角形OAB 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+4,y 0-3),请画出三角 形OAB 平移后得到的三角形O 1A 1B 1,并写出点O 1、A 1 、B 1的坐标.六、解答题(每小题10分,共20分)25.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A 、B 两种旅游纪念品.若购进A 种 纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件, 需要800元.(1)求购进A 、B 两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案? (3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?26.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于C 、D 两点,点P 在直线CD 上. (1)试写出图1中∠APB 、∠P AC 、∠PBD 之间的关系,并说明理由;(2)如果P 点在C 、D 之间运动时,∠APB ,∠P AC ,∠PBD 之间的关系会发生变化吗?答: .(填发生或不发生);(3)若点P 在C 、D 两点的外侧运动时(P 点与点C 、D 不重合,如图2、图3),试分别写出∠APB ,∠P AC ,∠PBD 之间的关系,并说明理由.学校 年 班 姓名: 考号:七年级数学试题 第5页 (共6页)七年级数学试题 第6页 (共6页)xO 2 1 3 4 5 6 -1 -21-3 -4 12 3 4 -1 -2 -3Ay5 25. 解:(1)设小李生产1件A 产品需要x min, 生产1件B 产品需要y min. 依题意得⎩⎨⎧=+=+852335y x y x .……………………………2分 解得⎩⎨⎧==2015y x . ∴小李生产1件A 产品需要15min ,生产1件B 产品需要20min. ………………………4分(2)1556元 . ……………………………6分 1978.4元 . ……………………………8分 (3)-19.2x +1978.4 . ……………………………10分 26. 解:(1)① x …………1分 3(100-x ) …………2分 ②依题意得 2(100)16243(100)340x x x x +-≤⎧⎨+-≤⎩. ………………………4分解得 3840x ≤≤.∵x 是整数,∴x =38或39或40 .………………………6分 有三种生产方案:方案一:做竖式纸盒38个,做横式纸盒62个; 方案二:做竖式纸盒39个,做横式纸盒61个;方案三:做竖式纸盒40个,做横式纸盒60个.………………………7分 (2)设做横式纸盒m 个,则横式纸盒需长方形纸板3m 张,竖式纸盒需长方形纸板4(162-2m )张, 所以a =3m +4(162-2m ).∴290<3m +4(162-2m )<306 解得68.4<m <71.6∵m 是整数,∴m =69或70或71. ………………………9分 对应的a =303或298或293. ………………………10分。

2017-2018学年度人教版七年级下数学期末测评试卷有答案

2017-2018学年度人教版七年级下数学期末测评试卷有答案

期末测评( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( )4.下列各数1.414,√2,-13A.1.414B.√2D.0C.-135.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49. ( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11. ( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作.13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有人.14.若实数x满足等式( x+4 )3=-27,则x= .15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为.三、解答题( 共66分 )17. ( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x -1.5x 0.3+3x -2x4=6,x 2+x -13=24.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.20. ( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图22. ( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B 的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O1,B1的坐标.( 2 )三角形AOB的面积.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x米,乙队每天铺设y米.( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?24. ( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A,B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7 800万元,改扩建3所A类学校和1所B类学校共需资金5 400万元.( 1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?( 2 )该县计划改扩建A,B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A,B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?期末测评答案解析( 时间120分钟满分120分 )一、选择题( 每小题3分,共30分 )1.下列命题中,真命题是( A )A.互补两角若相等,则此两角都是直角B.直线是平角C.不相交的两条直线叫做平行线D.和为180°的两个角叫做邻补角2.( 2017·辽宁辽阳中考 )下列事件中适合采用抽样调查的是( D )A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对“天宫2号”零部件的检査D.对端午节期间市面上粽子质量情况的调查3.如图,若以解放公园为原点建立平面直角坐标系,则博物馆的坐标为( D )A.( 2,3 )B.( 0,3 )C.( 3,2 )D.( 2,2 ),0,其中是无理数的为( B )4.导学号14154138下列各数1.414,√2,-13A.1.414B.√2C.-1D.035.( 2017·黑龙江绥化中考 )如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB∥CD的是( C )A.∠2=35°B.∠2=45°C.∠2=55°D.∠2=125°6.( 2017·河南漯河郾城区期末 )如图,若图形A经过平移与下方图形拼成一个长方形,则正确的平移方式是( A )A.向右平移4格,再向下平移4格B.向右平移6格,再向下平移5格C.向右平移4格,再向下平移3格D.向右平移5格,再向下平移3格7.( 2017·河南校级模拟 )已知x>y,若对任意实数a,以下结论甲ax>ay;乙a2-x>a2-y;丙a2+x≤a2+y;丁a2x≥a2y.其中正确的是( D )A.甲B.乙C.丙D.丁8.在平面直角坐标系中,将点A( m-1,n+2 )先向右平移3个单位,再向上平移2个单位,得到点A',若点A'位于第二象限,则m,n的取值范围分别是( D ) A.m<0,n>0 B.m<1,n>-2C.m<0,n<-2D.m<-2,n>-49.导学号14154139( 2017·黑龙江龙东中考 )“双11”促销活动中,小芳的妈妈计划用1 000元在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( A )A.4种B.5种C.6种D.7种10.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( B )A.39B.36C.35D.34二、填空题( 每小题4分,共24分 )11.导学号14154140( 2017·山西太原期中 )如图,直线AB与CD相交于点O,且∠1+∠2=60°,∠AOD的度数为150°.12.早上8点钟时室外温度为2 ℃,我们记作( 8,2 ),则晚上9点时室外温度为零下3 ℃,我们应该记作( 21,-3 ).13.( 2017·江苏扬州江都区三模 )如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1 000人,则根据此估计步行上学的有400人.14.若实数x满足等式( x+4 )3=-27,则x=-7.15.( 2017·河南周口商水期末 )如图所示,同位角有a对,内错角有b对,同旁内角有c对,则a+b+c的值是14.16.( 2017·广西柳州校级期末 )如图,已知A1( 1,0 ),A2( 1,1 ),A3( -1,1 ),A4( -1,-1 ),A5( 2,-1 ),…,则点A2 017的坐标为( 505,-504 ).三、解答题( 共66分 )17.导学号14154141( 7分 )已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.2a+1的平方根是±3,3a+2b-4的立方根是-2,∴2a+1=9,3a+2b-4=-8,解得a=4,b=-8,∴4a-5b+8=4×4-5×( -8 )+8=64,∴4a-5b+8的立方根是4.18.( 8分 )( 2017·山东泰安肥城期末 )解方程组{0.3x-1.5x0.3+3x-2x4=6, x2+x-13=24.{2x-17x=24,①3x+2x=146,②②×2-①×3,得55y=220,解得y=4.把y=4代入①,得2x-68=24,解得x=46,原方程组的解为{x =46,x =4.19.( 8分 )( 2017·湖南常德中考 )求不等式组{4( 1+x )3-1≤5+x2,①x -5≤32( 3x -2 )②的整数解.①,得x ≤135,解不等式②,得x ≥-47,∴不等式组的解集为-47≤x ≤135. ∴不等式组的整数解是0,1,2.20.导学号14154142( 8分 )( 2017·山东临沂期中 )如图,已知直线AB ∥DF ,∠D+∠B=180°, ( 1 )求证DE ∥BC ;( 2 )如果∠AMD=75°,求∠AGC 的度数.AB ∥DF ,∴∠D+∠BHD=180°, ∵∠D+∠B=180°, ∴∠B=∠DHB , ∴DE ∥BC.DE ∥BC ,∠AMD=75°,∴∠AGB=∠AMD=75°, ∴∠AGC=180°-∠AGB =180°-75° =105°.21.( 8分 )( 2017·山东临沂中考 )为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x 名学生进行调查统计( 要求每名学生选出并且只能选出一个自己最喜爱的节目 ),并将调查结果绘制成如下统计图表学生最喜爱的节目人数统计表节目人数百分根据以上提供的信息,解答下列问题( 1 )a= ,b= ;( 2 )补全下面的条形统计图;( 3 )若该校共有学生1 000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.学生最喜欢的节目人数条形统计图解( 1 )2030( 2 )中国诗词大会的人数为20,补全条形统计图,如图所示学生最喜欢的节目人数条形统计图( 3 )根据题意,得1000×40%=400( 名 ),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.导学号14154143( 8分 )如图,三角形AOB是由三角形A1O1B1平移后得到的,已知点A的坐标为( 2,-2 ),点B的坐标为( -4,2 ),若点A1的坐标为( 3,-1 ).求( 1 )O 1,B 1的坐标.( 2 )三角形AOB 的面积.点O 1的横坐标为0+( 3-2 )=1;纵坐标为0+[-1-( -2 )]=1;点B 1的横坐标为-4+( 3-2 )=-3;纵坐标为2+[-1-( -2 )]=3;所以点O 1的坐标为( 1,1 ),点B 1的坐标为( -3,3 );( 1 )三角形AOB 的面积为12×1×2+12×1×2=2.23.( 9分 )( 2017·贵州六盘水中考 )甲乙两个施工队在六安( 六盘水—安顺 )城际高铁施工,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离.若设甲队每天铺设x 米,乙队每天铺设y 米. ( 1 )依题意列出二元一次方程组;( 2 )求出甲乙两施工队每天各铺设多少米?根据题意,得{x -x =100,5x =6x .( 2 ){x -x =100,5x =6x ,解得{x =600,x =500.答甲队每天铺设600米,乙队每天铺设500米.24.导学号14154144( 10分 )( 2017·山东东营中考 )为解决中小学班额问题,东营市各区县今年将改扩建部分中小学,某县计划对A ,B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7 800万元,改扩建3所A 类学校和1所B 类学校共需资金5 400万元. ( 1 )改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?( 2 )该县计划改扩建A ,B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11 800万元;地方财政投入资金不少于4 000万元,其中地方财政投入到A ,B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?设改扩建一所A 类和一所B 类学校所需资金分别为x 万元和y 万元,由题意,得{2x +3x =7800,3x +x =5400,解得{x =1200,x =1800.答改扩建一所A 类学校和一所B 类学校所需资金分别为1200万元和1800万元.( 2 )设今年改扩建A 类学校a 所,则改扩建B 类学校( 10-a )所,由题意,得{( 1200-300 )x +( 1800−500 )( 10−x )≤11800,300x +500( 10−x )≥4000,解得3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案方案一改扩建A类学校3所,B类学校7所;方案二改扩建A类学校4所,B类学校6所;方案三改扩建A类学校5所,B类学校5所.。

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018七年级数学下册期末试卷(有答案)(17).docx

2017-2018 学年七年级(下)期末数学试题一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分) 1.若分式 有意义,则 x 应满足的条件是()A .x ≠0B .x ≥ 3C .x ≠3D .x ≤32.下列各式中① ;② ; ③; ④(x ≥1); ⑤ ;⑥ 一定是二次根式的有()个.A .3B . 4C .5D .63.用科学记数法表示﹣ 0.0000027 记为( )A .﹣ 27×10﹣ 7B .﹣ 0.27×10﹣ 4C .﹣ 2.7×10﹣ 6D .﹣ 270× 10﹣8 4.分式的值为 0,则()A .x=2B . x=﹣2C .x=±2D .x=0 5.下列二次根式中,最简二次根式是( )A .B .C .D .6.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A .2.5B . 2C .D .7.下列计算正确的是( )A .2a 5 +a 5=2a 10B .3 ] 2(﹣ ) 6 6. 55 5﹣5C .[ (﹣ a )÷a=a =a =0=a =aD a8.如图是一个圆柱形饮料罐,底面半径是 5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为 a ,若直吸管在罐外部分还剩余 3,则吸管的总长度 b (罐壁的厚度和小圆孔的大小忽略不计)范围是( )A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤169.下列计算正确的是()A.B.C.D.10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣11.甲、乙两地之间的高速公路全长200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为.14.若 y=2++2,则 x﹣y=.15.若直角三角形的两边长为 6 和 8,则第三边长为.16.分解因式:﹣ 3x2y+6xy2﹣3y3=.17.若 5x=2,5y=3,则 53x﹣2y的值为.18.已知关于 x 的方程=3 的解是正数,则 m 的取值范围是.19.如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B 的面积分别为 1,2,3,4,则正方形 G 的面积为.20.算++⋯的:.+ +三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2) 6 +2x.22.解方程:(1)=1(2)= 1..已知x=,y=,求x2+xy+y2的.2324.已知 a2+b2+4a 6b+13=0,分解因式: x2+ax b.25.先化,再求:(1)6a2( 2a 1)(3a+2) +( a+2)( a 2),其中 a=(2)÷(x 2),其中 x=3.26.如,小用一方形片 ABCD行折,已知片 AB 8cm, BC 10cm.折叠点 D 落在 BC上的点 F (折痕 AE),求此 EC的度?27.某服装商一种季衫能市,就用8000元一批衫,面市后果然供不求,服装商又用 17600 元了第二批种衫,所数量是第一批数量的 2 倍,但价了8 元.商家售种衫每件定价都是100 元,最后剩下 10 件按 8 折售,很快售完.(1)两批进货的单价各是多少元?(2)在这两笔生意中,商家共盈利多少元?参考答案与试题解析一、选择题(将正确答案填写在下列表格中,每题 3 分,共 36 分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥ 3C.x≠3 D.x≤3【考点】 62:分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵ x﹣3≠0,∴x≠3.故选 C.2.下列各式中①;②;③;④(x≥1);⑤;⑥一定是二次根式的有()个.A.3 B. 4 C.5D.6【考点】 71:二次根式的定义.【分析】二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.【解答】解:①符合二次根式的定义,故正确.②无意义,故错误.③中的 a2≥0,符合二次根式的定义,故正确.④(x≥1)中的 x﹣1≥0,符合二次根式的定义,故正确.⑤是开 3 次方,故错误.⑥中的x2 2x 1=(x 1)2≥0,符合二次根式的定义,故正确.+ ++故选: B.3.用科学记数法表示﹣0.0000027记为()A.﹣ 27×10﹣7 B.﹣ 0.27×10﹣4C.﹣2.7×10﹣6 D.﹣ 270× 10﹣8【考点】 1J:科学记数法—表示较小的数.﹣ n【分析】绝对值小于 1 的负数也可以利用科学记数法表示,一般形式为 a× 10,与较大数的科个数所决定.﹣6【解答】解:﹣ 0.0000027=﹣ 2.7× 10,4.分式的值为0,则()A.x=2 B. x=﹣2 C.x=±2 D.x=0【考点】 63:分式的值为零的条件.【分析】根据分式的值为零的条件得到x2﹣4=0 且 x+2≠0,然后分别解方程与不等式易得x=2.【解答】解:∵分式的值为 0,∴x2﹣ 4=0 且 x+2≠ 0,解x2﹣4=0 得x=±2,而x≠﹣2,∴x=2.故选 A.5.下列二次根式中,最简二次根式是()A.B.C.D.【考点】 74:最简二次根式.【分析】 D 选项的被开方数中,含有能开得尽方的因数2; B、 C 选项的被开方数中含有分母;因此这三个选项都不是最简二次根式; A 它的因式的指数都是1,所以 D 选项符合最简二次根式的要求.【解答】解:∵ B、=,C、=,D、=2x,∴这三个选项都可化简,不是最简二次根式.故选 A.6.如图,矩形 OABC的边 OA 长为 2,边 AB 长为 1, OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B. 2C.D.【考点】 29:实数与数轴.【分析】本题利用实数与数轴的关系及直角三角形三边的关系(勾股定理)解答即可.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选 D.7.下列计算正确的是()A.2a5 +a5=2a10 B.3]2(﹣) 6 6.5 5 5﹣50C.[ (﹣ a)÷a=a=a =0=a =a D a【考点】 48:同底数幂的除法; 35:合并同类项; 47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式 =3a5,故 A 错误;(B)原式 =,故B错误;(D)原式 =1,故 D 错误;故选( C)8.如图是一个圆柱形饮料罐,底面半径是5,高是 12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤ b≤ 13 B.12≤ b≤15 C.13≤b≤16D. 15≤b≤16【考点】 KU:勾股定理的应用.【分析】如图,当吸管底部在O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高;当吸管底部在 A 点时吸管在罐内部分 a 最长,此时 a 可以利用勾股定理在Rt△ ABO中即可求出,进而【解答】解:如图,连接BO, AO,当吸管底部在 O 点时吸管在罐内部分 a 最短,此时 a 就是圆柱形的高,即a=12;当吸管底部在 A 点时吸管在罐内部分 a 最长,即线段 AB 的长,在Rt△ABO 中,AB===13,故此时 a=13,所以 12≤ a≤ 13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤ b≤ 16.故选: D.9.下列计算正确的是()A.B.C.D.【考点】 79:二次根式的混合运算.【分析】根据二次根式的加减运算,乘除运算,二次根式的化简,逐一检验.【解答】解: A、与不能合并,本选项错误;B、=÷=,本选项正确;C、5 与不能合并,本选项错误;D、==,本选项错误;10.把根式﹣ a化成最简二次根式为()A.B.C.D.﹣【考点】 74:最简二次根式.【分析】根据二次根式的性质,可得答案.【解答】解:﹣ a化成最简二次根式为,故选 A.11.甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了 20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意,下列方程正确的是()A.B.C.D.【考点】 B6:由实际问题抽象出分式方程.【分析】设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据“甲、乙两地之间的高速公路全长 200 千米,比原来国道的长度减少了20 千米.高速公路通车后,某长途汽车的行驶速度提高了 45 千米 / 时,从甲地到乙地的行驶时间缩短了一半”,可列出方程.【解答】解:设该长途汽车在原来国道上行驶的速度为x 千米 / 时,根据题意得=? .故选: D.12.如图,一只昆虫在棱长为20cm 的正方体的表面上爬行,则它从图中的顶点 A 爬到顶点 B 的最短距离为()A.40cm B.60cm C.D.【考点】 KV:平面展开﹣最短路径问题.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点 A 和 B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段 AB即为最短路线.展开后由勾股定理得: AB2=202+(20+20)2=5×202,故 AB==20cm.故选: C.二、填空题(每题 3 分,共 24 分)13.下列分式﹣,的最简公分母为a( a+b)( a﹣ b).【考点】 69:最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式﹣,的分母分别是a2﹣ab=a( a﹣ b),a2+ab=a(a+b),故最简公分母是 a(a+b)(a﹣b).故答案是: a(a+b)(a﹣b).14.若 y=2++2,则 x﹣y=.【考点】 72:二次根式有意义的条件.【分析】根据被开方数大于等于0 列式求出 x 的值,再求出 y 的值,然后相加即可得解.【解答】解:由题意得,x﹣5≥0,且 5﹣x≥ 0,解得 x≥ 5 且 x≤5,∴x=5,y=2,∴x﹣y=5﹣2= .故答案为:.15.若直角三角形的两边长为 6和 8,则第三边长为10 或 2.【考点】 KU:勾股定理的应用.【分析】分情况考虑:当较大的数8 是直角边时,根据勾股定理求得第三边长是10;当较大的数 8 是斜边时,根据勾股定理求得第三边的长是=2.【解答】解:①当 6 和 8 为直角边时,第三边长为=10;②当 8 为斜边, 6为直角边时,第三边长为=2 .故答案为: 10 或2 .223216.分解因式:﹣ 3x y+6xy ﹣3y =﹣3y(x﹣y).【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3y(x2﹣2xy+y2)=﹣3y(x﹣y)2,故答案为:﹣ 3y(x﹣y)217.若 5x=2,5y=3,则 53x﹣2y的值为.【考点】 48:同底数幂的除法; 47:幂的乘方与积的乘方.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解: 53x=23=8, 52y=32=9,53x﹣2y=53x÷52y=8÷ 9= ,故答案为:.18.已知关于 x 的方程=3 的解是正数,则m 的取值范围是m>﹣ 6 且 m≠﹣ 4.【考点】 B2:分式方程的解.【分析】首先求出关于x 的方程=3 的解,然后根据解是正数,再解不等式求出m 的取值范围.∵方程的解是正数,∴m+6>0 且 m+6≠2,解个不等式得m> 6 且 m≠ 4.故答案: m> 6 且 m≠ 4.19.如所示,所有四形都是正方形,所有的三角形都是直角三角形,其中正方形 D,C,A, B 的面分1,2,3,4,正方形 G 的面 10 .【考点】 KQ:勾股定理.【分析】根据勾股定理可知正方形A、B 的面之和等于正方形E的面,同法可求正方形F、G的面.【解答】解:正方形的面分A、B、C、D、 E、F、G.根据勾股定理可知: E=A+B=7, F=C+D=3,G=E+F=10,故答案 10.20.算+++⋯+的:1.【考点】 79:二次根式的混合运算.【分析】先分母有理化,然后合并即可.【解答】解:原式 =1+++⋯+=1.故答案1.三、解答(共 60 分)21.算(1)5x2y2 ?(xy3)x2y?(xy4)(2)﹣6+2x.【考点】 78:二次根式的加减法; 49:单项式乘单项式.【分析】(1)利用单项式乘以单项式及单项式除以单项式法则计算,即可得到结果;(2)根据二次根式的加减运算法则进行解答即可.【解答】解:(1)原式 =5×(﹣)x2+1y2+3﹣×(﹣)x2+1y1+4=﹣x3y5+x3 y5=;(2)原式 =×3﹣+2 =(2﹣3+2)=.22.解方程:(1)=1(2)=﹣ 1.【考点】 B3:解分式方程.【分析】(1)分式方程两边同乘( x﹣ 3)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边同乘( x2﹣4)去分母转化为整式方程,求出整式方程的解得到x 的值,检验即可.【解答】(1)解:两边同时乘以( x﹣ 3)得:( 1﹣ x)﹣ 1=x﹣3,整理得, 2x=3,解得: x= ,经检验 x=是原方程的解;2 2 2 (2)解:方程两边同时乘以( x ﹣4)得,﹣( x+2) +16=﹣x +4,整理得, 4x=8,经检验 x=2 是原方程的增根,故原方程无解..已知x=,y=,求x2+xy+y2的值.23【考点】 7A:二次根式的化简求值.【分析】根据题意求出x+y 和 xy 的值,根据完全平方公式把原式变形,代入计算即可.【解答】解:∵ x=,y=,∴x+y=,xy=×=1,则x2+xy+y2=x2+2xy+y2﹣xy=(x+y)2﹣xy=5﹣1=424.已知 a2+b2+4a﹣ 6b+13=0,分解因式: x2+ax﹣b.【考点】 AE:配方法的应用; 1F:非负数的性质:偶次方.【分析】先将已知等式配方,根据非负性求a、b 的值,代入要分解因式的多项式中,利用十字相乘法分解因式即可.【解答】解: a2+b2 +4a﹣6b+13=0,(a2+4a+4)+(b2﹣6b+9)=0,(a+2)2+(b﹣3)2=0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴x2+ax﹣b=x2﹣2x﹣ 3=(x+1)(x﹣3).25.先化简,再求值:(1)6a2﹣( 2a﹣1)(3a+2) +( a+2)( a﹣ 2),其中 a=﹣(2)÷(﹣x﹣2),其中x=﹣3.【考点】 6D:分式的化简求值; 4J:整式的混合运算—化简求值.【分析】(1)先去括号,再合并同类项,代入a 的值计算即可;(2)先算括号里面的,再约分,代入 x 的值计算即可.【解答】接:(1)原式 =6a2﹣ 6a2﹣4a+3a+2+a2﹣2a+2a﹣4,=a2﹣a﹣2,当 a=﹣时,原式=;(2)原式 =÷(﹣),=÷=?=,当 x=﹣3时,原式=.26.如图,小红用一张长方形纸片 ABCD进行折纸,已知该纸片宽 AB 为 8cm,长 BC为 10cm.折叠时顶点 D 落在 BC边上的点 F 处(折痕为 AE),求此时 EC的长度?【考点】 PB:翻折变换(折叠问题).【分析】由折叠的性质得 AF=AD=10cm,DE=EF,先在 Rt△ABF中运用勾股定理求 BF,再求 CF,设 EC=xcm,用含 x 的式子表示 EF,在 Rt△CEF中运用勾股定理列方程求 x 即可.【解答】解:∵四边形 ABCD是矩形,∴AB=CD=8cm,AD=CB=10cm,由折叠方法可知: AD=AF=10cm,DE=EF,设EC=xcm,则 EF=ED=(8﹣x)cm, AF=AD=10cm,在 Rt△ABF中, BF===6(cm),则CF=BC﹣BF=10﹣6=4(cm),222在 Rt△CEF中, CF+CE=EF,即 42+x2(﹣)2,= 8 x解得 x=3,即 EC=3cm.27.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用 17600 元购进了第二批这种衬衫,所购数量是第一批购进数量的 2 倍,但单价贵了8 元.商家销售这种衬衫时每件定价都是100 元,最后剩下 10 件按 8 折销售,很快售完.(2)在这两笔生意中,商家共盈利多少元?【考点】 B7:分式方程的应用.【分析】( 1)设第一批进货的单价为x 元/ 件,根据第二批这种衬衫所购数量是第一批购进数量的 2 倍,列出方程即可解决问题.(2)根据题意分别求出两次的利润即可解决问题;【解答】解:(1)设第一批进货的单价为x 元/ 件,由题意 2×=,解得 x=80,经检验, x=80 是原分式方程的解,且符合题意,答:第一次进货单价为80(元 / 件),第二次进货单价为88(元 / 件),(2)第一次进货=100(件),第二次进货量=200(件).总的盈利为:× 100+×+10=4200(元)答:商家总盈利为4200 元.。

2017-2018学年度第二学期期末考试.docx

2017-2018学年度第二学期期末考试.docx

2017— 2018 学年度第二学期期末考试七年级数学试题第Ⅰ卷(满分 100 分)一、选择题(共 10 小题,每小题 3 分,共 30 分)1. 下面的四个图形中,∠ 1 与∠ 2 是对顶角的是()2. 1的平方根是()4A.1B.1 C.1 D.1 216223. 点 P 在 y 轴上,位于原点的下方,距离坐标原点5 个单位长度,则点 P 的坐标是()A. ( -5 ,0)B.(0, -5 )C.( 0, 5)D.( 5,0)4.x 4x y3 方程组的解为y,其中一个方程是 ,另一个方程可以是()1A. 3x 4 y 16B.y x 3C.x 3y 8D.2 x y 6 y5. 一个不等式组中两个不等式的解集如图所示,则这个不等式组的解集是()A.0≤ x ﹤ 1B.0﹤ x ﹤ 1C.0≤ x ≤ 1D.0﹤ x ≤ 16. 我市七年级有 10000 名学生参加某项考试,为了了解这些学生的考试成绩,从中抽取了500 名考生的考试成绩进行统计分析 . 下列说法:①这 10000 名学生的考试成绩是总体;②每个学生的考试成绩是个体;③抽取的500 名考生的考试成绩是总体的一个样本;④样本容量是 10000.正确的有()个 .A.4B.3C.2D.1 7. 如图,以下说法错误的是( )A. 若∠ EAD=∠ B ,则 AD ∥ BCB. 若∠ EAD+∠ D=180°,则 AB ∥CDC.若∠ CAD=∠ BCA ,则 AB ∥ CDD.若∠ D=∠EAD ,则 AB ∥ CD 8. 下列说法正确的是()A. 若 ab 0 ,则点 P ( a , b )表示原点B. 点( -1 , a 2 )在第三象限C. 已知点 A ( 3, -3 )与点 B ( 3, 3),则直线 AB ∥ x 轴D. 若 ab 0 ,则点 P b)在第一、三象限( a ,9. 五边形的五个外角的度数之比 1:2:3:4:5 ,那么该五边形的最小的内角的度数是( )A.24 °B.36 °C.48°D.60°点,设车速为 x10. 一辆匀速行驶的汽车在11:20 距离A 地 ,到达A 地时时间已经过了 12(x),50kmkm/h则车速应满足的条件是()A.2 x50B.2x 50C.50 3 D.50 ≥ 333x 2x2二、填空题(共 6 小题,每小题 3 分,共 18 分)11. x 的 2 倍与 5 的和不小于 3,用不等式表示为 .12. 2x 3y 5 y 的值为 .已知 x , y 满足方程组4 y,则 xx 413. 一个长方形在平面直角坐标系中三个顶点的坐标为( -1 , -1 ),( -1 , 3),( -3 , -1 ),则第四个顶点的坐标为 .14. 如果 x 2 2 x ,那么 x 的取值范围是 .15. 某校学生来自甲,乙,丙三个地区,其人数比为2:3:7 ,如图所示的扇形图表示上述分布情况,其中甲所对应扇形的圆心角是° .16. 观察算式:3, 238 , 33 27 , 4364 , 53 125 , 63 216 , 73343 , 83 512 , 93 729 ,1 1103 1000 , 2038000 , 303 27000 , 403 64000 , 503125000 .319683 , 3110592 .三、解答题(共 5 题,共 52 分)17. (本题满分 10 分,每小题 5 分)解下列方程组或不等式组 .x y 35x2 4 x 1( 2)( 1)8 y141 x 1 7 3 x 3x2 218. (本题满分 10 分)某校开设了足球、篮球、乒乓球和羽毛球四个课外体育活动小组,有512 名学生参加,每人只参加一个组.为了了解学生参与的情况,对参加的人员分布情况进行抽样调查,并绘制了下面两幅不完整的统计图,请根据图中提供信息,解答下面问题:( 1)此次共抽查了多少名同学?( 2)将条形统计图补充完整;在扇形统计图中的括号中填写百分数;( 3)请估计该校参加篮球运动小组的学生人数19.(本题满分 10 分)如图 ,BE 平分∠ ABD,DE平分∠ BDC,且 BE⊥ ED,E 为垂足 , 求证 :AB ∥ CD.20.(本题满分 10 分)如图,把△ ABC向上平移 4 个单位长度,再向右平移 3 个单位长度得A1B1C1,其中A(-1,2),B(-3,-2),C( 4, -2 ).(1)在图上画出A1B1C1;(2)写出点A1,B1,C1的坐标;(3)请直接写出线段 AC在两次平移中扫过的总面积 .21.(本分 12 分)小要一种价 5 元的本,学校旁有甲、乙两个文具店正在做促活,甲商店的惠条件是:一次性超10 本,超的部分按价的70%售;乙商店的惠条件是:活期所有文具按价的85%售;(1)小要20 本本,他若甲商店,需花元,他若乙商店,需花元.(2)若小有120 元,他最多可多少本本?(3)分析小如果要 x 本本,到哪个商店省?第Ⅱ卷(满分50 分)四、填空题(共 4 小题,每小题 4 分,共 16 分)22.了解某校九年女生 1 分仰卧起坐的次数 , 从中随机抽了 50 名女生参加 , 并制成数分布直方(如). 如果被抽的女生中有90%的女生 1 分仰卧起坐的次数大于等于30 且小于 50,那么 1分仰卧起坐的次数在40~45 的数是 ______.23.如 , 点 A,B 定点 , 直 l ∥AB, P 是直 l 上一点。

2017-2018学年度第二学期期末考试七年级数学试题及答案

2017-2018学年度第二学期期末考试七年级数学试题及答案

火车站李庄2017—2018学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 得分 评卷人 C 1A 1ABB 1CD CB A D18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

2017-2018学年七年级下册数学期末试卷(含答案)二

2017-2018学年七年级下册数学期末试卷(含答案)二

43cb a21E DA七年级下册数学期末试卷一、 选择题(本大题共8小题,每小题4分,共32分,在每小题给出的四个选项中,只有一个是正确的.) 1、下面四个图形中,∠1与∠2为对顶角的图形是 ()A 、B 、C 、D 、2、调查下面问题,应该进行抽样调查的是 ( ) A 、调查我省中小学生的视力近视情况 B 、调查某校七(2)班同学的体重情况C 、调查某校七(5)班同学期中考试数学成绩情况D 、调查某中学全体教师家庭的收入情况3、点3(-P ,)2位于( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限4、如图是某机器零件的设计图纸, 在数轴上表示该零件长度(L)合格尺寸, 正确的是( ) A 、 B 、 C 、 D 、5、下列命题中,是假命题的是( ) A 、同旁内角互补 B 、对顶角相等 C 、直角的补角仍然是直角 D 、两点之间,线段最短6、下列各式是二元一次方程的是 ( ) A .03=+-z y x B. 03=+-x y xy C.03221=-y x D. 012=-+y x7、某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半. 若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x ,y 的是( ).A 、⎩⎨⎧x –y = 49y =2(x +1) B 、⎩⎨⎧x +y = 49y =2(x +1) C 、⎩⎨⎧x –y = 49y =2(x –1) D 、⎩⎨⎧x +y = 49y =2(x –1)8、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分.小明得分要超过120分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20-x. 根据题意得:( ) A 、10x-5(20-x)≥120 B 、10x-5(20-x)≤120 C 、10x-5(20-x)> 120 D 、10x-5(20-x)<120二、填空题(本大题共5小题,每小题4分,共20分)请把下列各题的正确答案填写在答案卷上.9、电影票上“6排3号”,记作(6,3),则8排6号记作__________ .10、⎩⎨⎧=-=+=962_________y x y ax a 时,方程组 ⎩⎨⎧-==18y x 的解为.11、如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可).12、为了了解某所初级中学学生对2008年6月1日起实施的“限塑令”是否知道,从该校全体学生1200 名中,随机抽查了80名学生,结果显示有2名学生“不知道”.由此,估计该校全体学生中对“限塑令”约 有 名学生“不知道”.13、甲地离学校4km ,乙地离学校1km ,记甲乙两地之间的距离为km d ,则d 的取值范围为 .三、解答题(本大题共5小题,每小题7分,共35分)14、解方程组1528y xx y =-⎧⎨+=⎩.15、解不等式1322x x -≥+,并把它的解集在数轴上表示出来.16、将一副直角三角尺如图放置,已知∠EAD =∠E =450 ,∠C =300 , AE BC ∥,求AFD ∠的度数.17、已知等腰三角形的周长是14cm .若其中一边长为4cm ,求另外两边长.0 10.1 09.9 0 9.9 10.10 9.9 10.1L =10±0.1ABC D F图2书画 电脑35% 音乐体育图121FEDCBAD图24-2 图24-1图24-4M18、如图,已知∠B =∠C .若AD ∥BC ,则AD 平分∠EAC 吗?请说明理由.四、解答题(本大题共3小题,每小题9分,共27分)19、△ABC 在如图所示的平面直角中, 将其平移后 得△A B C ''', 若B 的对应点B '的坐标是(-2, 2). (1) 在图中画出△A B C ''';(2) 此次平移可看作将△ABC 向_____平移了____个 单位长度, 再向___平移了___个单位长度得△A B C ''';(3) △ABC 的面积为____________.(△ABC 的面积可以看作一个长方形的面积减去一些小三角形的面积) 20、如图,在四边形ABCD 中,∠A=104°-∠2,∠ABC=76°+∠2,BD ⊥CD 于D ,EF ⊥CD 于F . 求证:∠1=∠2.请你完成下面证明过程.证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( ) 所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,( ) 所以 ∠1=∠DBC ,( ) 因为 BD ⊥DC ,EF ⊥DC ,( )所以 ∠BDC=90°,∠EFC=90°,( ) 所以 ∠BDC=∠EFC,所以 BD ∥ ,( ) 所以 ∠2=∠DBC ,( ) 所以 ∠1=∠2 ( ).21、某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍.计划在年内拆除旧校舍与建造新校 舍共5000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的70%,而拆除校舍则超过计划 的20%,结果拆、建的总面积恰好为5000平方米.(1)求原计划拆、建的面积各多少平方米?(2)若拆除旧校舍每平米需100元,建造新校舍每平米需500元.求实际拆、建的费用共多少元?五、解答题(本大题共3小题,每小题12分,共36分)22、育才中学现有学生2870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题: (1)图1中“电脑”部分所对应的圆心角为 度;(2)样本容量为 ;(3)在图2中,将“体育”部分的图 形补充完整;(4)估计育才中学现有的学生中,约有 人爱好“书画”.23、为了支援灾区学校灾后重建,我校决定再次向灾区捐助床架60个,课桌凳100套.现计划租甲、乙两种货车共8辆,将这些物质运往灾区,已知一辆甲货车可装床架5个和课桌凳20套, 一辆乙货车可装床架10个和课桌凳10套.(1)学校安排甲、乙两种货车可一次性把这些物资运到灾区有哪几种方案?(2)若甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元,则学校应选择哪种方案,使运输费最少?最少运费是多少?24、操作与探究 探索:在如图24-1至图24-3中,△ABC 的面积为a . (1)如图24-1, 延长△ABC 的边BC 到点D ,使CD=BC ,连结DA . 若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图24-2,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD=BC ,AE=CA ,连结DE .若△DEC 的面积为S 2,则S 2= (用含a 的代数式表示);(3)在图24-2的基础上延长AB 到点F ,使BF=AB ,连结FD ,FE ,得到△DEF (如图24-3).若阴影部分的面积为S 3,则S 3=__________(用含a 发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得 到△DEF (如图24-3),此时,我们称△ABC 向外扩展了一次.可以发 现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_____倍.七年级期末质量检查数学参考答案21FEDCBAEDCBA一、选择题1、C2、A3、B4、C5、A6、C7、D8、C 二、填空题9、 (8,6) 10、 1 11、13∠=∠,(或14∠=∠,或12180o ∠+∠=) 12、 30 13、3≤d ≤5三、解答题14、解:把①代入②,得 52(1)8x x +-= 2分 解得 2x = 4分 把2x =代入① , 1y =- 6分所以方程组的解为21x y =⎧⎨=-⎩7分15、解:1322x x -≥+ 164x x -≥+ 2分 55x -≥ 4分 1-≤x 5分 不等式得解集在数轴上表示如下: 7分16、解: 因为∠C =300,因为AE ∥BC ,所以∠EAC =∠C =300 , (3分) 因为∠E =450.所以∠AFD =∠E +∠EAC =450+300=750 .(6分) 所以∠AFD 为750. (7分)17、解:若4cm 长的边为底边,设腰长为xcm ,则4+2x =14,解得 x =5. (3分) 若4cm 长的边为腰,设底边为xcm ,则 2×4+x =14,解得 x =6. (6分)所以等腰三角形另外两边长分别为5cm 、5cm 或4 cm 、6 cm. (7分) 18、解:AD 平分∠EAC ,理由如下: 1分 ∵AD ∥BC ,(已知)∴∠B =∠EAD ,(两直线平行,同位角相等) 3分 ∠C =∠DAC ,(两直线平行,内错角相等) 5分 ∵∠B =∠C , (已知)∴∠EAD =∠DAC . (等量代换) 6分 ∴AD 平分∠EAC .(角平分线定义) 7分(说明:没注明理由不扣分) 四、解答题19、解:(1)图略. 3分 (2) 右 , 1 , 上 , 1 .( 或 上 , 1 , 右 , 1 . ) 7分 (3)△ABC 的面积为5.5. 9分 20、证明:因为∠A =104°-∠2,∠ABC =76°+∠2,( 已知 )所以 ∠A +∠ABC =104°-∠2+76°+∠2, ( 等式性质 )即 ∠A +∠ABC =180°所以 AD ∥BC ,(同旁内角互补,两直线平行) 所以 ∠1=∠DBC ,(两直线平行,内错角相等) 因为 BD ⊥DC ,EF ⊥DC ,(已知)所以 ∠BDC=90°,∠EFC=90°,( 垂直定义 ) 所以 ∠BDC=∠EFC,所以 BD ∥EF ,(同位角相等,两直线平行) 所以 ∠2=∠DBC ,(两直线平行,同位角相等) 所以 ∠1=∠2 (等量代换).21、解:(1)设原计划拆除旧校舍x 平方米,新建校舍y 平方米,由题意得: 1分5000(120%)70%5000x y x y +=⎧⎨++=⎩ 4分 解得30002000x y =⎧⎨=⎩6分(2)实际拆除与新建校舍费用共为3000×(1+20%)×100+2000×70%×500 7分 =1060000 8分 答:原计划拆除旧校舍3000平方米,新建校舍2000平方米,实际拆、建的费用共1060000元. 9分五、解答题 22、解:(1)126;(2)80; (3)如图所示; (4)287.(每小题3分,共12分)23.解:(1)设学校租甲种货车x 辆,则租乙种货车(8-x )辆, 1分依题意,得 510(8)602010(8)100x x x x +-≥⎧⎨+-≥⎩ , 3分解不等式组,得24x ≤≤, 5分 ∵ x 为正整数,∴ x 的值为2,3,4. 6分 ∴学校安排甲、乙两种货车可一次性把这些物资运到灾区有3种方案: 方案1:租甲种货车2辆,租乙种货车6辆; 方案2:租甲种货车3辆,租乙种货车5辆;方案3:租甲种货车4辆,租乙种货车4辆. 9分 (2)因为甲种货车每辆要付运输费1200元,乙种货车要付运输费1000元, 且甲、乙两种货车共租8辆,所以租甲种货车越少,运输费越少. 所以方案1:租甲种货车2辆,租乙种货车6辆运输费最少,此时运输费为1200×2+1000×6=8400(元). 12分 24、解:探索:(1)S 1=___a _____; (2)S 2= 2a ; (3)S 3=___6a ____.发现:扩展一次后得到的△DEF 的面积是原来 △ABC 面积的__7___倍.应用:两次扩展的区域花卉面积共为 480 m 2.(前面4空每空2分,最后1空4分,共12分)应用:2009年对中国人民来说是一个具有历史意义的年份.60年前, 中华人民共和国的成立揭开了中华民族的新纪元.为庆祝国庆60周年, 市园林部门决定利用时代广场原有的10m 2的△ABC 花卉,把△ABC 花卉 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展 成△MGH (如图24-4)的大型花卉.则这两次扩展的区域(即阴影部分)花卉面积共为 m 2.。

2017-2018学年第二学期七年级数学期末试题(含答案)

2017-2018学年第二学期七年级数学期末试题(含答案)

2017—2018学年度第二学期期末考试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列叙述中,正确的是 A .相等的两个角是对顶角 B .一条直线有且只有一条垂线C .连接直线外一点与这条直线上各点的所有线段中,垂线段最短D .同旁内角互补2.如图所示,直线a ,b 被直线c 所截,∠1与∠2是A .同位角B .内错角C .同旁内角D .邻补角3.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度 4.下列语言是命题的是A .画两条相等的线段B .等于同一个角的两个角相等吗?C .延长线段AO 到C ,使OC =OAD .两直线平行,内错角相等(第2题图) (第3题图)A .9B .±9C .3D .±36.下列计算结果正确的是A6± B3.6- CD .7.如果12x y =⎧⎨=-⎩和14x y =-⎧⎨=-⎩都是某个二元一次方程的解,则这个二元一次方程是A .x +2y =-3B .2x -y =2C .x -y =3D .y =3x -58.用加减法解方程组时,若要消去y ,则应A .①×3+②×2B .①×3-②×2C .①×5+②×3D .①×5-②×3 9.如果x ≤y ,那么下列结论中正确的是 A .4x ≥4y B .-2x +1≥-2y +1 C .x -2≥y +2D .2-x ≤2-y10.利用数轴求不等式组103x x -≤⎧⎨>-⎩的解集时,下列画图表示正确的是A .B .C .D .11.在调查收集数据时,下列做法正确的是A .电视台为了了解电视节目的收视率,调查方式选择在火车站调查50人B .在医院里调查老年人的健康状况C .抽样调查选取样本时,所选样本可按自己的喜好选取D .检测某城市的空气质量,适宜采用抽样调查的方式12.小宁同学根据全班同学的血型情况绘制了如图所示的扇形统计图,已知该班血型为A 型的有20人,那么该班血型为AB 型的人数为A .2人B .5人C .8人D .10人第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分. 13.命题“对顶角相等”的题设是 .14.为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可估计该山区金丝猴的数量约有 只. 15.一个容量为89的样本中,最大值是153,最小值是60,取组距为10,则可分成 组.16.-1.4144,2220.373π-g,,, 2.12112.其中 是无理数.(第12题图)17.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.18.如图,若棋盘的“将”位于点(0,0),“车”位于点(-4,0),则“马”位于点 .19.甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;而若两人同时同向而行,乙可在14小时后追上甲.设甲的速度为x 千米/时,乙的速度为y 千米/时,列出的二元一次方程组为 .20.某花店设计了若干个甲、乙两种造型的花篮,一个甲种花篮由15朵红花、25朵黄花和20朵紫花搭配而成;一个乙种花篮由10朵红花、20朵黄花和15朵紫花搭配而成.若这些花篮一共用了2900朵红花,4000朵紫花,则黄花一共用了 朵.21.不等式组10324x x x ->⎧⎨>-⎩的非负整数解是 .22.船在静水中的速度是24千米/小时,水流速度是2千米/小时,如果从一个码头逆流而上后,再顺流而下,那么这船最多开出 千米就应返回才能在6小时内回到码头. 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.请先阅读以下内容:,即23, ∴11<2,1的整数部分为1,12. 根据以上材料的学习,解决以下问题:已知a3的整数部分,b3的小数部分,求32()(4)a b -++的平方根. 24.解下列方程组(不等式组): (1)4(1)3(1)2,2;23x y y x y --=--⎧⎪⎨+=⎪⎩ (2)12(1)5;32122x x x --≤⎧⎪⎨-<+⎪⎩.25.某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图(如图),解答下列问题:(1)这次抽取了 名学生的竞赛成绩进行统计,其中m = ,n = ; (2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?(第17题图)(第18题图)26.某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[注:毛利润=(售价-进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,问该商场最多减少购进多少部国外品牌手机?27.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 60b -=,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O →C →B →A →O 的线路移动. (1)a = ,b = ,点B 的坐标为 ; (2)求移动4秒时点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.28.如图,已知直线AB∥CD ,∠A =∠C =100°,点E ,F 在CD 上,且满足∠DBF =∠ABD ,BE 平分∠CBF . (1)求证:AD ∥BC ; (2)求∠DBE 的度数;(3)若平移AD 使得∠ADB =∠BEC ,请直接写出此时∠ADB 的度数是 .(第28题图)(第27题图)2017—2018学年第二学期七年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13. 两个角是对顶角;14.120;15. 10;16.23π-,;17.110;18. (3,3);19.6642,141442x yy x+=⎧⎨-=⎩;20.5100 ;21.0;22.71.5.三、解答题:(共74分)23. 解:∵<<,……………………………………………………1分∴4<<5,…………………………………………………………………2分∴1<﹣3<2,…………………………………………………………………3分∴a=1,…………………………………………………………………………4分b=﹣4,………………………………………………………………………6分∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17 …………………………………………………………………………8分=16,…………………………………………………………………………9分∴(﹣a)3+(b+4)2的平方根是±4.………………………………………10分24. (1)解:化简,得………………………………………2分①×2+②得1122,x=③………………………………………3分2x=,………………………………………4分②①把2x =代入③,得3.y = ……………………………………5分所以这个方程组的解是23.x y =⎧⎨=⎩,……………………………………6分 (2)解:由①得:1﹣2x +2≤5 ………………………………………7分∴2x ≥﹣2即x ≥﹣1 ………………………………………8分 由②得:3x ﹣2<2x +1 ………………………………………9分∴x <3. ………………………………………10分∴原不等式组的解集为:﹣1≤x <3. ……………………………………12分25. 解:(1)200, ………………………………………3分70;0.12; ………………………………………7分(2)如图,…………………………………9分(3)1500×(0.08+0.2)=420, ……………………………………11分 所以该校安全意识不强的学生约有420人. …………………………………12分 26. 解:(1)设商场计划购进国外品牌手机x 部,国内品牌手机y 部,由题意得 0.440.214.8,0.060.05 2.7,x y x y +=⎧⎨+=⎩…………………………………4分解得 20,30.x y =⎧⎨=⎩…………………………………6分答:商场计划购进国外品牌手机20部,国内品牌手机30部. ………7分(2)设国外品牌手机减少a部,由题意得-++≤15.6 …………………………………10分a a0.44(20)0.2(303)解得a≤5 …………………………………12分答:该商场最多减少购进5部国外品牌手机. ……………………………13分27. (1)a= 4 ,b= 6 ,点B的坐标为(4,6);………………6分(2)∵P从原点出发以每秒2个单位长度的速度沿O→C→B→A→O的线路移动,∴2×4=8,……………………………………7分∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是8﹣6=2,…………8分∴点P的坐标是(2,6);……………………………………9分(3)由题意可知存在两种情况:第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,……………………………………11分第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,……………………………………12分故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.……………………………………13分28. 证明:(1)∵AB∥CD,∴∠A+∠ADC=180°,……………………………………2分又∵∠A=∠C∴∠ADC+∠C=180°,……………………………………4分∴AD∥BC;……………………………………6分(2)∵AB∥CD,∴∠ABC+∠C=180°………………………………8分又∠C=100°,∴∠ABC=180°﹣100°=80°,………………………………9分∵∠DBF=∠ABD,BE平分∠CBF,∴∠DBF=∠ABF,∠EBF=∠CBF,…………………10分∴∠DBE=∠ABF+∠CBF=∠ABC=40°;……………12分(3)∠ADB=60°.……………………………………14分。

唐山市滦南县2017-2018学年七年级下期末数学试卷(含答案)(新课标人教版七年级下数学试卷)

唐山市滦南县2017-2018学年七年级下期末数学试卷(含答案)(新课标人教版七年级下数学试卷)

2017-2018学年河北省唐山市滦南县七年级(下)期末数学试卷一、选择题(本题含16个小题,1-10题每题3分,11-16题每题2分,共42分在每小题给出的四个选项中,只有一项是符合题目要求的)1 •下列等式从左到右的变形,属于因式分解的是()A. 8a2b=2a?4abB. 4my- 2=2 (2my- 1)C. 4X2+8X-4=4x (x+2-)D.- ab3- 2ab2- ab=- ab (b2+2b)2.下列长度的三条线段能组成三角形的是()A. 2, 3, 5B. 7, 4,2C. 3,4, 8D. 3, 3, 43.计算(-a2b)3的结果是()A.- a6b3B. a6b C3a6b3D.- 3a6b3.4. 下列不等式变形正确的是()A.由a>b,得a- 2v b- 2B.由a>b,得| a| >| b|C.由a>b,得-2a v- 2bD.由a>b,得a2>b25. 如图,点P是直线a外的一点,点A、B、C在直线a上,且PB丄a,垂足是B,PA! PC,则下列不正确的语句是()A. 线段PB的长是点P到直线a的距离B. PA、PB PC三条线段中,PB最短C. 线段AC的长是点A到直线PC的距离D. 线段PC的长是点C到直线PA的距离6 .计算:1252- 50 X 125+252=()A. 10000B. 100C. 22500D. 1507.如图,已知a// b,直角三角板的直角顶点在直线a上,若/仁30°则/2等于()A. 30°B. 40°C. 50°D. 60°8. 多项式a2- 9与a2- 3a的公因式是()A. a+3B. a - 3C. a+1D. a - 19. 如图,已知△ ABC中,AD,AE, AF分别是三角形的高线,角平分线及中线,那么下A. AD丄BCB. BF=CFC. BE=ECD.Z BAE=Z CAE列结论错误的是()10•不等式组的解集在数轴上应表示为()A. B.C. D.11•已知,如果x与y互为相反数,那么()A. k=0B.C.D.12. 如图,在下列条件中,能判定AB//CD的有()①/仁/ 2;②/ BAD+Z ADC=180;③/ ABC=/ ADC;④Z 3=Z4.A. 1个B. 2个C. 3个D. 4个13. 已知a+b=4, ab=3,则代数式(a+2)(b+2)的值是()A. 7B. 9C. 11D. 1514. 如图,已知AB// CD, Z 仁115° Z 2=65° 则Z C等于()A. 40°B. 45°C. 50°D. 60°15. 若M? (3x-y2)=y4- 9x2,则多项式M 为()A.-(3x+y2)B.- y2+3xC. 3x+y2D. 3x —y216. 一副三角板有两个直角三角形,如图叠放在一起,则Z a的度数是()A. 165°B. 120°C. 150°D. 135°二、填空题(本题含4个小题,每小题3分,共12分)17. 如图,Z仁70°直线a平移后得到直线b,则Z 2—Z 3= _________ °18 .写出不等式5x+3v 3 (2+x)所有的非负整数解________ .19. __________________________________________________________ 在直角厶ABC中,Z C=90°,沿图中虚线剪去Z C,则Z 1+Z 2= __________________ .20. 若x2+2 (m —3)x+16是关于x的完全平方式,则m= ____ .三、解答题(本题含6个小题,共46分.解答应写出文字说明、证明过程或演算步骤)21. (6分)如图,在方格纸内将厶ABC水平向右平移4个单位得到△ A B'. C(1)画出△ A B';C'(2)画出AB边上的中线CD和高线CE (利用网格点和直尺画图)(3)A BCD的面积为 ____ .22. (7分)解不等式:-1,并把解集表示在数轴上.23. (7分)如图,在△ ABC中,CD丄AB,垂足为D,点E在BC上, EF丄AB,垂足为F. (1)CD与EF平行吗?为什么?(2)如果/仁/2,且/ 3=115°,求/ ACB的度数.24. (8分)为了响应市委和市政府绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:(1)求幸福商场甲、乙两种节能灯各购进了多少只?22、20仃-2018学年河北省唐山市滦南县七年级(下)期末数学试 卷参考答案、选择题(本题含16个小题,1-10题每题3分,11-16题每题2分,共42分在每小 题给出的四个选项中,只有一项是符合题目要求的) I.B ; 2. D ; 3. A ; 4.C ; 5. C ; 6. A ; 7.D ; 8. B ; 9. C ; 10. C ;II. C ; 12. B ; 13. D ; 14. C ; 15. A ; 16. A ;、填空题(本题含4个小题,每小题3分,共12 分) 18 . 0^;19. 270°20.- 1 或 7;三、解答题(本题含6个小题,共46分.解答应写出文字说明、证明过程或演算步骤)21、(3 ) A BCD 的面积为Ix4x4*yxlx3~xlx3-1=4 .仃.110;解:(1}如图所示「込A'BXT 即为所求;解:去分母・得:4(2x-l) s3(3x+2} -12 , 去括号”得:8x-4<9x+6-12 ‘移项■得:8x-9x<6^12 + 4 >合并同类项・得:-x<-2「系数化为1 •得:焙2「将解集義示在数轴上如下:^1 0 1 2~3 4 5^23、解:⑴ CD与EF平行・理由如下: vCD丄AE , EF丄AB ,-垂直于同一直线的两直线互相平行.--.CDl EF ;(2) vCDllEF ・AZ2=Z BCD,vzl = z2 *-zl=zBCD T/DG II BC「-■.zACB = z3 = 115°・24、解:(1 )设商场対进甲种节能灯x只.购迸乙种节能灯¥只‘根据题意得屮叶呦三逊[x+y-lQOb=6o善:商场购进甲种节能灯斗0只「购遊乙种节能灯6Q只・(2 ) 40x (40-30 ) +60x ( 50-35 ) =1300 (兀)・答:崗场共计茹利打00元25、解:{1}①如果白七< 0 r那么白< b :②如果a-b=O ,那么白=b ;®4flSa-b> 0 ,那么日 > b ;故答案是:€:=;〉;(2 }由(1 )归纳出:比较色b两数的犬少.如果a与b的差大于0 .则已大于b ;吕与b的差等于0 .(3) ( 3x<3x+7 ) - ( 4x<5x*8 ) =-x2 + 2x-l = - ( x-1) 2<0 , ..3X2-3X +7<4X2-5X +8. 26、解:(1 )如图1「/EA¥^zDAC r EC¥^zA匚B「. .ZCAG=丄wDAC , zACE = lzACB ,2 2SzCAG=x ’ zACE=y .\ ZB = 90c *AZ ACB+Z BAC=90&,.\2y+180-2x=90 ,x-y=45 ±G\ZCAG^zE + zACE r- zE=zCAG-zACE=x-y=45°r故答案为:45 ;(2 }如图1所示f HF平分NECB , AZECF=ly f2-ZE+ZEAF=zF+zECF.同理可得:Z E+2EAB=Z B+ Z ECB’/.45e + 2zEAF=90°+y ”.■.ZEAF^i2L^@ f把②代入①得:45& + ^p-=zF + ly・/.ZF = 67l5't *即ZAFC=67.5";(3)如图 2,设 zFAH 二a. •. AF 平分zEAB , /.zFAH = zEAF = a ,vzAFM = lzAFC = lx67.5c = 22.5° f3 3 vzE + zEAF = zAFC + zFCH , •e .45 + a=67.5 + zFCH •・・・ZFCH 二a ・22.5①.1 1 12 vzAHN = izAHC=| ( zB + zBCH )二扌(90 + 2ZFCH )=30+|zFCH r \ zFAH + zAFM = zAHN + zFPH ,-• a + 22.5 = 30+|zFCH + zFPH ,② 把①代入②得:ZFPH 二叶子5 , vzFCH = mzFAH + nzFPH r(2) 全部售完100只节能灯后,商场共计获利多少元? 25. (8 分)(1)①如果 a -b v 0,那么 a ______ b ;a-22 ・5 = ma +n ・a+22.5 ~3-②如果a - b=0,那么a ______ b;③如果a- b>0,那么a _______ b;(2)由(1)你能归纳出比较a与b大小的方法吗?请用文字语言叙述出来(3)用(1)的方法你能否比较3X2 3- 3x+7与4X2- 5x+8的大小?如果能,请写出比较过程.26. (10 分)如图,在△ ABC中,/ B=90°(1)分别作其内角/ ACB与外角/ DAC的平分线,且两条角平分线所在的直线交于点E(如图1).则/ E= _____ °;(2)分别作/ EAB与/ ECB的平分线,且两条角平分线交于点F (如图1).求/ AFC的度数;(3)在(2)的条件下,射线FM在/AFC的内部且/ AFM=Z AFC,设EC与AB的交点为H,射线HN在/ AHC的内部且/ AHN=Z AHC,射线HN与FM交于点P,若/ FAH, / FPH和/FCH满足的数量关系为/ FCH=m/ FAH F n/ FPH,请直接写出m, n的值.。

2017-2018七年级数学下册期末试卷(有答案)(1).docx

2017-2018七年级数学下册期末试卷(有答案)(1).docx

七年级(下)期末数学试卷一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.的平方根是()A.2 B.± 2 C.D.±3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 17.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成组.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=,◆ =.13.若x﹣y|+=0,则 xy 1的值为.|+14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为(只填序号)三、(本大题共两小题,每小题8 分,共 16 分)22﹣|﹣2)15.化简:()+ ﹣( +|16.解不等式组,把不等式组的解集在数轴上表示出来,并求出不等式组的整数解的和.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.18.如,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并明理由.五、(本大共两小,每小10 分,共 20 分)19.根据要求,解答下列(1)解下列方程(直接写出方程的解即可)①的解②的解③的解(2)以上每个方程的解中,x 与 y 的大小关系.(3)你构造一个具有以上外形特征的方程,并直接写出它的解.20.操作与探究:(1)数上的点 P 行如下操作:先把点P 表示的数乘以,再把所得数的点向右平移1 个位,得到点 P 的点 P′.点 A,B 在数上,段 AB 上的每个点行上述操作后得到段A′B,′其中点 A,B 的点分 A′, B′.如 1,若点 A 表示的数是 3,点 A′表示的数是;若点B′表示的数是 2,点 B 表示的数是;已知段AB上的点E上述操作后得到的点E′与点 E 重合,点 E 表示的数是.(2)如 2,在平面直角坐系xOy 中,正方形ABCD及其内部的每个点行如下操作:把每个点的横、坐都乘以同一个数 a,将得到的点先向右平移 m 个位,再向上平移 n 个位( m>0,n >0),得到正方形A′B′C及′其D′内部的点,其中点A,B 的点分A′,B′.已知正方形ABCD内部的一个点 F 上述操作后得到的点 F′与点 F 重合,求点 F 的坐.六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生6000 人,请你估计“活动时间不小于4 天”的大约有多少人?22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案与试题解析一、选择题(共 10 小题,每小题 4 分,满分 40 分)1.点 P( 4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】 D1:点的坐标.【分析】根据点在第一象限的坐标特点解答即可.【解答】解:因为点P(4,3)的横坐标是正数,纵坐标是正数,所以点P 在平面直角坐标系的第一象限.故选: A.2.的平方根是()A.2 B.± 2 C.D.±【考点】 22:算术平方根; 21:平方根.【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选 D.3.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.考察人们保护海洋的意识D.检查一枚用于发射卫星的运载火箭的各零部件【考点】 V2:全面调查与抽样调查.【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解: A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;故选: D.4.下列 4 个数中, 3.1415926,,π,,其中无理数是()A.3.1415926 B.C.πD.【考点】 26:无理数.【分析】无理数常见的三种类型:①开方开不尽的数,②无限不循环小数,③含有π的数.【解答】解: 3.1415926 是有理数,是有理数,π是无理数,=6 是有理数.故选 C.5.如图, BC⊥ AE于点 C,CD∥AB,∠ B=55°,则∠ 1 等于()A.35°B. 45°C.55°D.65°【考点】 JA:平行线的性质; KN:直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠ A=35°,然后利用平行线的性质得到∠1=∠ B=35°.【解答】解:如图,∵ BC⊥ AE,∴∠ ACB=90°.∴∠ A+∠B=90°.又∵∠ B=55°,∴∠ A=35°.又CD∥AB,∴∠1=∠A=35°.6.已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣ 2 C.1D.﹣ 1【考点】 92:二元一次方程的解.【分析】把 x 与 y 的值代入方程计算即可求出k 的值.【解答】解:把代入方程得: 2k﹣ 1=3,解得: k=2,故选 A7.不等式 2x≥ x﹣ 1 的解集在数轴上表示正确的是()A.B.C.D.【考点】 C6:解一元一次不等式; C4:在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:移项、合并同类项可得.【解答】解:移项,得: 2x﹣x≥﹣ 1,合并同类项,得: x≥﹣1,故选: A.8.如图,将周长为 8 的△ ABC沿 BC方向平移 1 个单位得到△ DEF,则四边形 ABFD的周长为()A.6 B. 8 C.10D.12【考点】 Q2:平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为8 个单位的△ ABC沿边 BC向右平移 1 个单位得到△ DEF,又∵ AB+BC+AC=8,8∴四边形 ABFD的周长 =AD+AB+BF+DF=1+AB+BC+1+AC=10.故选: C.9.20 位同学在植树节这天共种了52 棵树苗,其中男生每人种 3 棵,女生每人种 2 棵.设男生有 x 人,女生有 y 人,根据题意,列方程组正确的是()A.B.C.D.【考点】 99:由实际问题抽象出二元一次方程组.【分析】设男生有x 人,女生有 y 人,根据男女生人数为20,共种了 52 棵树苗,列出方程组成方程组即可.【解答】解:设男生有x 人,女生有 y 人,根据题意得,.故选: D.10.若不等式组无解,则实数a的取值范围是()A.a≥﹣ 1 B.a<﹣ 1 C. a≤ 1D. a≤﹣ 1【考点】 CB:解一元一次不等式组.【分析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出 a 的取值范围.【解答】解:,由①得, x≥﹣ a,由②得, x<1,∵不等式组无解,∴﹣ a≥ 1,解得: a≤﹣ 1.故选: D.二、填空题(每小题 5 分,共 20 分)11.有 30 个数据,其中最大值为40,最小值为 19,若取组距为 4,则应该分成 6 组.【考点】 V7:频数(率)分布表.【分析】根据组数 =(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:∵在样本数据中最大值与最小值的差为40﹣19=21,又∵组距为 4,∴组数 =21÷4=5.25,∴应该分成 6 组.故答案为: 6.12.小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则▲=17,◆ =9.【考点】 98:解二元一次方程组.【分析】根据二元一次方程组的解法即可求答案.【解答】解:将x=4 代入 3x﹣y=3∴12﹣y=3∴y=9将x=4,y=9 代入 2x+y∴2x+y=8+9=17故答案为: 17;913.若 | x﹣y|+=0,则 xy+1 的值为5.【考点】 23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】依据非负数的性质可求得x、 y 的值,然后代入计算即可.【解答】解:∵|x﹣ y=0,|+∴x﹣y=0,y﹣2=0,解得: x=2,y=2.∴x y+1=4+1=5.故答案为: 5.14.在平面直角坐标系中,对于任意两点A(x1,y1) B (x2, y2),规定运算:(1)A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当 x1=x2且 y1=y2时, A=B.有下列四个命题:①若有 A(1,2),B(2,﹣ 1),则 A⊕ B=(3,1), A⊙B=0;②若有 A⊕B=B⊕ C,则 A=C;③若有 A⊙B=B⊙ C,则 A=C;④( A⊕ B)⊕ C=A⊕( B⊕ C)对任意点 A、B、C 均成立.其中正确的命题为①②④(只填序号)【考点】 O1:命题与定理.【分析】①根据新定义的运算法则,可计算出A⊕ B=(3,1),A?B=0;②设 C(x3,y3),根据新定义得 A⊕B=(x1+x2,y1+y2),B⊕C=( x2+x3, y2+y3),则x1+x2=x2+x3, y1+y2 =y2+y3,于是得到 x1=x3,y1=y3,然后根据新定义即可得到 A=C;③由于 A⊙B=x1x2+y1y2, B⊙C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1=y3,所以 A ≠C;④根据新定义的运算法则,可得(A⊕ B)⊕ C=A⊕( B⊕ C)=( x1+x2+x3,y1+y2+y3).【解答】解:①∵ A( 1, 2),B(2,﹣ 1),∴A⊕B=(1+2,2﹣1),A⊙B=1×2+2×(﹣ 1),即 A⊕ B=(3,1),A⊙B=0,故①正确;②设 C(x3,y3),则 A⊕B=( x1+x2, y1+y2),B⊕C=(x2+x3,y2+y3),而A⊕ B=B⊕C,所以 x1+x2=x2+x3,y1+y2 =y2+y3,则 x1=x3,y1=y3,所以 A=C,故②正确;③A⊙B=x1x2+y1y2, B⊙ C=x2x3+y2y3,而A⊙ B=B⊙C,则 x1x2+y1y2=x2x3+y2y3,不能得到 x1=x3,y1 =y3,所以 A≠C,故③不正确;④因为( A⊕B)⊕ C=(x1+x2 +x3,y1+y2+y3),A⊕( B⊕ C) =( x1+x2+x3,y1+y2+y3),所以( A⊕B)⊕ C=A⊕( B⊕C),故④正确.综上所述,正确的命题为①②④.故答案为:①②④.三、(本大题共两小题,每小题8 分,共 16 分).化:()2+ ( 2+|2| )15【考点】 2C:数的运算.【分析】原式利用乘方的意,的代数意化,算即可得到果.【解答】解:原式 = +2+2=1 2.16.解不等式,把不等式的解集在数上表示出来,并求出不等式的整数解的和.【考点】 CB:解一元一次不等式;C4:在数上表示不等式的解集.【分析】先求出不等式的解集,在数上表示不等式的解集,求出整数解,即可得出答案.【解答】解:∵解不等式①得:x≤1,解不等式②,得x> 1,∴原不等式的解集是:1< x≤ 1,其解集在数上表示如所示:,∴不等式的整数解有1,0,1,2,∴原不等式的所有整数解的和是1+0+1+2=2.四、(本大共两小,每小8 分,共 16 分)17.察下列等式:①;②;③;④;⋯(1)猜想第⑤个等式;(2)用含 n(n 正整数)的式子表示你的律.【考点】 22:算平方根.【分析】(1)根据前面的等式得出律解答即可;(2)利用数字之化:22+1=5,32+1=10,⋯而得出律求出即可.【解答】解:(1)①;②;③;④,所以第⑤个等式应为,故答案为:;(2)用含自然数 n(n>1)的式子表达以上各式所反映的规律为:.18.如图,已知: AC∥FG,∠ 1=∠2,判断 DE与 FG的位置关系,并说明理由.【考点】 JB:平行线的判定与性质.【分析】首先根据平行线的性质得到∠1=∠ 3,再根据等量关系得到∠3=∠ 2,再根据平行线的判定得到 DE∥FG,从而得到 DE与 FG的位置关系.【解答】解: DE 与 FG是平行的,理由如下:∵AC∥FG,∴∠ 1=∠3.又∵∠ 1=∠ 2,∴∠ 3=∠2.∴DE∥FG.五、(本大题共两小题,每小题10 分,共 20 分)19.根据要求,解答下列问题(1)解下列方程组(直接写出方程组的解即可)①的解为②的解为③的解为(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y.(3)请你构造一个具有以上外形特征的方程组,并直接写出它的解.【考点】 97:二元一次方程组的解.【分析】( 1)观察方程组发现第一个方程的x 系数与第二个方程y 系数相等, y 系数与第二个方程 x 系数相等,分别求出解即可;(2)根据每个方程组的解,得到x 与 y 的关系;(3)根据得出的规律写出方程组,并写出解即可.【解答】解:(1)①的解为;②的解为;③的解为;(2)以上每个方程组的解中,x 值与 y 值的大小关系为x=y;(3),解为,故答案为:(1)①;②;③;(2)x=y20.操作与探究:(1)对数轴上的点 P 进行如下操作:先把点P 表示的数乘以,再把所得数对应的点向右平移1 个单位,得到点 P 的对应点 P′.点 A,B 在数轴上,对线段 AB 上的每个点进行上述操作后得到线段A′B,′其中点 A,B 的对应点分别为 A′,B′.如图 1,若点 A 表示的数是﹣ 3,则点 A′表示的数是0;若点B′表示的数是2,则点 B 表示的数是3;已知线段AB上的点E经过上述操作后得到的对应点E′与点 E 重合,则点 E 表示的数是.(2)如图 2,在平面直角坐标系xOy 中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数 a,将得到的点先向右平移 m 个单位,再向上平移 n 个单位( m>0,n> 0),得到正方形 A′B′C及′其D′内部的点,其中点 A,B 的对应点分别为 A′,B′.已知正方形 ABCD内部的一个点 F 经过上述操作后得到的对应点 F′与点 F 重合,求点 F 的坐标.【考点】 Q3:坐标与图形变化﹣平移;13:数轴; LE:正方形的性质; Q2:平移的性质.【分析】(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点 B 表示的数为 a,根据题意列出方程求解即可得到点 B 表示的数,设点 E 表示的数为 b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点 F的坐标为( x,y),根据平移规律列出方程组求解即可.【解答】解:(1)点 A′:﹣ 3×+1=﹣1+1=0,设点 B 表示的数为 a,则a+1=2,解得 a=3,设点 E 表示的数为 b,则b+1=b,解得 b= ;故答案为: 0,3,;(2)根据题意得,,解得,设点 F 的坐标为( x,y),∵对应点 F′与点 F 重合,∴x+ =x, y+2=y,解得 x=1,y=4,所以,点 F的坐标为( 1,4).六、(本大题共两小题,每小题12 分,共 24 分)21.我市教育行政部门为了了解七年级学生每学期参加综合实践活动的情况,随机抽样调查了某校七学生一个学期参加综合实践活动的天数,并用得到的数据绘制了如图两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中的 a 的值,并求出该校七年级学生总数;(2)分别求出活动时问为 5 天、 7 天的学生人数,并补全频数分布直方图;(3)求出扇形统计图中“活动时间为 4 天”的扇形所对圆心角的度数;(4)如果该市共有七年级学生 6000 人,请你估计“活动时间不小于 4 天”的大约有多少人?【考点】 V8:频数(率)分布直方图; V5:用样本估计总体; VB:扇形统计图.【分析】(1)根据扇形统计图各部分所占百分比之和为1 解答;(2)活动时问为 5 天、 7 天的学生人数,用总人数乘以百分比即可;(3)用 360°乘以活动时间为 4 天的百分比即可;(4)用样本估计总体,即可计算.【解答】解:(1)a=1﹣( 10%+15%+30%+15%+5%) =25%,七年级学生总数: 20÷10%=200(人).(2)活动时问为 5 天的学生数: 200×25%=50(人);活动时问为 7 天的学生数: 200×5%=10(人);补全频数分布直方图如图所示.(3)活动时间为 4 天的扇形所对的圆心角的度数是360°× 30%=108°.(4)该市七年级学生活动时间不小于 4 天的人数是 6000×(30%+25%+15%+5%) =4500(人).22. 2016 年 5 月 6 日,中国第一条具有自主知识产权的长沙磁浮线正式开通运营,该路线连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知 2 辆大型渣土运输车与 3 辆小型渣土运输车一次共运输土方31 吨, 5 辆大型渣土运输车与 6 辆小型渣土运输车一次共运输土方70 吨.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号的渣土运输车共20 辆参与运输土方,若每次运输土方总量不少于148 吨,且小型渣土运输车至少派出 2 辆,则有哪几种派车方案?【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.【分析】(1)根据题意可以得到相应的二元一次方程,从而可以求得一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨;(2)根据题意可以列出相应的关系式,从而可以求得有几种方案.【解答】解:(1)设一辆大型渣土运输车一次运输x 吨,一辆小型渣土运输车一次运输y 吨,,解得.即一辆大型渣土运输车一次运输8 吨,一辆小型渣土运输车一次运输 5 吨;(2)由题意可得,设该渣土运输公司决定派出大、小两种型号的渣土运输车分别为x 辆、 y 辆,,解得或或,故有三种派车方案,第一种方案:大型运输车18 辆,小型运输车 2 辆;第二种方案:大型运输车17辆,小型运输车3辆;第三种方案:大型运输车16辆,小型运输车4辆.七、(本题 14 分)23.如图 1,直线 MN 与直线 AB、CD分别交于点 E、F,∠ 1 与∠ 2 互补.(1)试判断直线 AB 与直线 CD的位置关系,并说明理由;(2)如图 2,∠BEF与∠ EFD的角平分线交于点 P,EP与 CD交于点 G,点 H 是 MN 上一点,且GH⊥EG,求证: PF∥GH;(3)如图 3,在( 2)的条件下,连接 PH,K 是 GH 上一点使∠ PHK=∠HPK,作 PQ平分∠ EPK,问∠ HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】 JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠ CFE 互补,所以易证AB∥CD;(2)利用( 1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即 EG⊥PF,故结合已知条件GH⊥EG,易证 PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠ 3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠ HPQ的大小不变,是定值45°.【解答】解:(1)如图 1,∵∠ 1 与∠ 2 互补,∴∠ 1+∠2=180°.又∵∠ 1=∠ AEF,∠ 2=∠ CFE,∴∠ AEF+∠ CFE=180°,∴AB∥CD;(2)如图 2,由( 1)知, AB∥CD,∴∠ BEF+∠ EFD=180°.又∵∠ BEF与∠ EFD的角平分线交于点P,∴∠ FEP+∠ EFP= (∠ BEF+∠ EFD)=90°,∴∠ EPF=90°,即 EG⊥ PF.∵GH⊥EG,∴PF∥GH;(3)∠ HPQ的大小不发生变化,理由如下:如图 3,∵∠ 1=∠2,∴∠ 3=2∠2.又∵ GH⊥ EG,∴∠ 4=90°﹣∠ 3=90°﹣ 2∠ 2.∴∠ EPK=180°﹣∠ 4=90°+2∠2.∵PQ 平分∠ EPK,∴∠ QPK= ∠EPK=45°+∠2.∴∠ HPQ=∠QPK﹣∠ 2=45°,∴∠ HPQ的大小不发生变化,一直是45°.20。

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷含答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.PM2.5也称为可入肺颗粒物,是指大气中直径小于或等于2.5微米的颗粒物.2.5微米等于 0.000 002 5米,把0.000 002 5用科学记数法表示为 A .2.5×106 B .0.25×10-5 C. 25×10-7 D .2.5×10-6 2. 已知a b <,则下列不等式一定成立的是 A .b a 2121<B .22a b -<-C .33->-b aD .44a b +>+3.下列计算正确的是A .2a +3a =6a B. a 2+a 3=a 5 C. a 8÷a 2=a 6 D. (a 3)4= a 74.⎩⎨⎧==3,1y x 是二元一次方程52=+ay x 的一个解,则a 的值为A. 1B.31C. 3D. -1 5.若把不等式x +2≤0的解集在数轴上表示出来,则正确的是A .B .C .D .6.下列因式分解正确的是A .4)2)(2(2-=-+x x x B .22)1(12x -=+-x x C .()222211a a a -+=-+D .()248224a a a a -=-7.小文统计了本班同学一周的体育锻练情况,并绘制了直方图①小文同学一共统计了60人;②这个班同学一周参加体育锻炼时间的众数是8; ③这个班同学一周参加体育锻炼时间的中位数是9; ④这个班同学一周参加体育锻炼时间的平均值为8.根据图中信息,上述说法中正确的是A. ①②B. ②③C.③④D. ①④8.将直尺和直角三角板按如图所示方式摆放,已知∠1=30°,则∠2的大小是A.30°B.45°C.60°D.65°9.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)0≤< 0.48x200<0.53200≤x400x>0.78400七月份是用电高峰期,李叔计划七月份电费支出不超过200元,直接写出李叔家七月份最多可用电的度数是A.100 B.396 C.397 D.40010用小棋子摆出如下图形,则第n个图形中小棋子的个数为A. nB. 2n C. n2D.n2+1二、填空题:(共6道小题,每小题3分,共18分) 11.因式分解:=__________________. 12.计算ab ab b a 44822÷-)(结果为_____________.13.一个角的补角等于这个角的3倍,则这个角的度数为_____________.14.已知x ,y 是有理数,且0106222=+-++y y x x , 则y x = .15.两个同样的直角三角板如图所示摆放,使点F ,B ,E ,C 在一条直线上,则有DF ∥AC ,理由是__________________.16.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为__________________.三、解答题(共10道小题,共52分,其中第17—24每小题5分,25,26每小题6分)17.计算:22-020173-)21()14.3-()1-(++π18.化简求值:已知250x x +-=,求代数式2(1)(3)(2)(2)x x x x x ---++-的值.19.完成下面的证明:2218x -如图,已知DE ∥BC ,∠DEB =∠GFC ,试说明BE ∥FG . 解:∵DE ∥BC∴∠DEB =______( ). ∵∠DEB =∠GFC∴______=∠GFC ( ).∴BE ∥FG ( ).20.解方程组⎩⎨⎧=-=+133232y x y x21.解不等式组()315112 4.2x x x x -+⎧⎪⎨--⎪⎩<,≥并求出它的非负整数解.22.某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄 26 42 57 健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄 23 25 26 32 33 37 39 42 48 52 健康指数 93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄 22 29 31 36 39 40 43 46 51 55 健康指数94908885827872766260根据上述材料回答问题:(1)扇形统计图中老年职工所占部分的圆心角度数为(2)小张、小王和小李三人中, 的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.23.已知:如图,DE 平分∠BDF ., ∠A =21∠BDF ,DE ⊥BF ,求证:AC ⊥BF24.列方程组解应用题新年联欢会上,同学们组织了猜谜活动,并采取每答对一题得分,每答错一题扣分记分方法。

2017-2018学年七年级下期末数学试卷(有答案)

2017-2018学年七年级下期末数学试卷(有答案)

2017-208学年七年级(下)期末数学试卷一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<15.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A. B.C.D.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.149.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤910.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(3分/题,共24分)11.(3分)4是的算术平方根.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为.13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有人.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m 的取值范围是.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是.18.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.20.(6分)解方程组.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=,b=c=;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.08123.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△ABO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.参考答案与试题解析一、选择题(2分/题,共20分)1.(2分)下列四个实数中是无理数的是()A.πB.1.414 C.0 D.【解答】解:1.414,0,是有理数,π是无理数,故选:A.2.(2分)下列调查中,适用采用全面调查(普查)方式的是()A.对玉坎河水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班50名同学体重情况的调查D.对为某类烟花爆竹燃放安全情况的调查【解答】解:A、对玉坎河水质情况的调查适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查无法进行全面调查,适合抽样调查,故B错误;C、某班50名同学体重情况适用于全面调查,故C正确;D、对于某类烟花爆竹燃放安全情况的调查,无法进行全面调查,故D错误;故选:C.3.(2分)如图,已知AB∥ED,∠ECF=65°,则∠BAF的度数为()A.115°B.65°C.60°D.25°【解答】解:∵AB∥ED,∴∠BAC=∠ECF=65°,∴∠BAF=180°﹣∠BAC=180°﹣65°=115°;故选:A.4.(2分)点P(2m+6,m﹣1)在第三象限,则m的取值范围是()A.m<﹣3 B.m<1 C.m>﹣3 D.﹣3<m<1【解答】解:根据题意,得:,解得:m<﹣3,故选:A.5.(2分)下列说法中不正确的是()A.0是绝对值最小的实数B.=C.任意一个实数的立方根都是非负数D.±3是9的平方根【解答】解:A、0是绝对值最小的有理数,故本选项错误;B、=,故本选项错误;C、正数的立方根是一个正数,负数的立方根是一个负数,零的立方根是零.故本选项正确;D、因为(±3)2=9,所以±3是9的平方根,故本选项错误;故选:C.6.(2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是()A.170万B.400 C.1万 D.3万【解答】解:∵为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,∴调查中的样本容量是3万.故选:D.7.(2分)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k 的值为()A.B.C.D.【解答】解:,①+②得:2x=12k,即x=6k,把①﹣②得:2y=﹣2k,即y=﹣k,把x=6k,y=﹣k代入2x+3y=6得:12k﹣3k=6,解得:k=,故选:B.8.(2分)如图,将周长为8的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.10 C.12 D.14【解答】解:∵△ABC沿BC方向平移2个单位得到△DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=8,∴AB+BC+AC=8,∴四边形ABFD的周长=8+2+2=12.故选:C.9.(2分)某商店销售“黄金一号”玉米种子,推出两种销售方案供采购者选择:方案一:每千克种子价格为4元,无论购买多少均不打折;方案二:购买3千克以内(含3千克)的价格为每千克5元,若一次性购买超过3千克的,则超过3千克的部分种子价格打7折.设购买的种子数量为x千克,若技术员小王选择了方案二比方案一更划算,则他购买种子数量x的范围是()A.x>9 B.x≥9 C.x<9 D.x≤9【解答】解:设购买的种子数量为x千克,根据题意列出不等式可得:4x>3×5+(x﹣3)×4×0.7,解得:x>9,故选:A.10.(2分)已知关于x,y的方程组,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③【解答】解:①当a=0时,原方程组为,解得,②把代入方程组的是方程组的解;③当a=﹣1时,原方程组为,解得,当时,代入方程组可求得a=2,把与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①②③.故选:D.二、填空题(3分/题,共24分)11.(3分)4是16的算术平方根.【解答】解:∵42=16,∴4是16的算术平方根.故答案为:16.12.(3分)点P在第二象限内,P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为(﹣2,1).【解答】解:P到x轴的距离是1,到y轴的距离是2,得|y|=1,|x|=2.由点P在第二象限内,得P(﹣2,1),故答案为:(﹣2,1).13.(3分)如图,已知CD平分∠ACB,DE∥AC,∠1=30°,则∠2的度数为60°.【解答】解:∵CD平分∠ACB,∠1=30°,∴∠ACB=2∠1=60°.∵DE∥AC,∴∠DEB=∠ACB=60°.故答案为:60°.14.(3分)某区对本区初中在校女生进行身高测量,身高在1.58~1.63m这一组的频数有300人,占全区女生人数的25%,则该区初中在校女生总共有1200人.【解答】解:300÷25%=1200(人).故答案为:1200.15.(3分)如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.16.(3分)定义一种法则“⊕”如下:a⊕b=,例如:1⊕2=2,若(﹣2m﹣5)⊕3=3,则m的取值范围是m≥﹣4.【解答】解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.17.(3分)已知不等式(a+1)x>2的解集是x<﹣1,则a的取值是﹣3.【解答】解:∵不等式(a+1)x>2的解集是x<﹣1,∴=﹣1,解得:a=﹣3,故答案为:﹣318.(3分)某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x米/秒,乙的速度是y米/秒.则列出的方程组是.【解答】解:①根据反向而行,得方程为30(x+y)=400;②根据同向而行,得方程为80(y﹣x)=400.那么列方程组.三、解答题(共56分)19.(6分)计算:﹣(1﹣)+|﹣|.【解答】解:﹣(1﹣)+|﹣|=﹣1+﹣=﹣120.(6分)解方程组.【解答】解:,①×2+②得:7x=21,解得:x=3,把x=3代入①得:y=﹣1,则方程组的解为.21.(6分)解不等式7+x≥2(2x﹣1),并把解集在如图的数轴上表示出来.【解答】解:去括号得,7+x≥4x﹣2,移项得,x﹣4x≥﹣7﹣2,合并同类项得,﹣3x≥﹣9,系数化为1得,x≤3,在数轴上表示如下:.22.(6分)某校数学兴趣小组成员刘明对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析(每个人的成绩各不相同),绘制成如下下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a=16,b=0.16c=50;(2)补全频数分布直方图;(3)如果要画该班上学期期末考试数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是144°(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有,我要继续努力.”他的说法正确吗?请说明理由.分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数2820a4c 频率0.04b0.400.320.081【解答】解:(1)∵调查的总人数c=20÷0.4=50,∴a=50×0.32=16,b=8÷50=0.16,故答案为:16、0.16、50;(2)补全直方图如下:(3)分数在69.5﹣79.5之间的扇形圆心角的度数是360°×0.4=144°,故答案为:144°;(4)正确,由表可知,比79分高的人数占总人数的比例为0.32+0.08=0.4=,∴他的说法正确.23.(6分)如图,A、B两点的坐标分别是A (﹣1,),B (﹣3,0)(1)求出△ABO的面积为;(2)将△A BO向下平移个单位,再向右平移3个单位,得到△A1B1O1,请写出A1、B1、O1三个点的坐标以及△A1B1O1的面积.【解答】解:(1)∵B (﹣3,0),∴OB=3,∵A (﹣1,),∴点A到OB的距离为,∴△ABO的面积=×3×=;故答案为:;(2)A1(2,0)、B1(﹣1,﹣)、O1(3,﹣),△A1B1O1的面积=.24.(8分)某地管理部门规划建造面积为4500平方米的集贸市场,市场内设独立商户和棚台交易摊位共90间,每间独立商户店面的平均面积为45平方米,月租费为1150元,每间棚台交易摊位的平均面积为31平方米,月租费为1000元,全部店面的建造面积不低于集贸市场总面积的80%(1)求建造独立商户店面至少多少间?(2)该地管理部门通过了解,独立商户店面的出租率为76%,棚台交易摊位的出租率为90%,为使店面的月租费最高,应建造独立商户店面多少间?此时,店面的月租费是多少?【解答】解:(1)设独立商户店面的数量为x间,则棚台交易摊位的为(90﹣x)间,由题意得:4500×80%≤45x+31(90﹣x),即1920≤8x+1600,∴40≤x≤55,(2)设月租金收入为W元,则W=400x×75%+360(80﹣x)×90%=﹣24x+25920,∵40≤x≤55,∵﹣24<0∴W随x的增大而减小,当x=40时,Wmax=24960元,∴最高月租金为24960元.25.(8分)如图所示,已知射线CB∥OA,∠C=∠OAB=110°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF,根据上述条件,解答下列问题:(1)证明:OC∥AB;(2)求∠EOB的度数;(3)若平行移动AB,那么∠OBC:∠OFC的值是否随之变化?若不变,求出这个比值;若变化,请说明理由.【解答】解:(1)∵CB∥OA,∠C=∠OAB=110°,∴∠COA=180°﹣∠C=180°﹣110°=70°,∴∠COA+∠OAB=180°,∴OC∥AB;(2)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×70°=35°;(2)不变,∵CB∥OA,∴∠OBC=∠B OA,∠OFC=∠FOA,∴∠OBC:∠OFC=∠AOB:∠FOA,又∵∠FOA=∠FOB+∠AOB=2∠AOB,∴∠OBC:∠OFC=∠AOB:∠FOA=∠AOB:2∠AOB=1:2.26.(10分)为奖励在演讲比赛中获奖的同学,大队辅导员王老师负责为获奖同学买奖品,要求每人一件.王老师到文具店看了商品后,决定在钢笔和笔记本中选择.如果买3个笔记本和2支钢笔,则需84元;如果买4个笔记本和3支钢笔,则需118元.(1)求笔记本和钢笔的单价分别为多少元?(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受7.5折优惠,①若买x(x>0)支钢笔需要花y1元,请你用含x的式子表示y1;②王老师决定买同一种奖品,并且数量超过10个,请你帮王老师判断买哪种奖品更省钱.【解答】解:(1)设笔记本的单价为m元/本,钢笔的单价为n元/支,根据题意得:,解得:.答:笔记本的单价为16元/本,钢笔的单价为18元/个.(2)①当0<x≤10时,y1=18x;当x>10时,y1=18×10+18×(x﹣10)=13.5x+45.综上所述:y1=.②设获奖的学生有a个,购买奖品的总价为w,根据题意得:w钢笔=13.5a+45,w笔记本=16a.当w钢笔>w笔记本时,有13.5a+45>16a,解得:x<18;当w钢笔=w笔记本时,有13.5a+45=16a,解得:x=18;当w钢笔>w笔记本时,有13.5a+45<16a,解得:x>18.答:当获奖的学生多于10个少于18个时,购买笔记本省钱;当获奖的学生等于10个时,购买笔记本和购买钢笔所花钱数一样多;当获奖学生多于18个时,购买钢笔省钱.。

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

人教版2017---2018学年度第二学期期末考试七年级数学试卷及答案

2017---2018学年度第二学期期末考试七年级数学试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.点P (2,1)在平面直角坐标系中所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限2.计算05的结果是A .0B .1C .50D .53.人体中成熟的红细胞平均直径为0.00077厘米,将数字0.00077用科学记数法表示为A .37.710-⨯B .47710-⨯C .37710-⨯D .47.710-⨯4.下列计算正确的是A .3362a a a ⋅=B .336a a a +=C .3521a a a ÷=D .()336a a =5.已知a b <,下列变形正确的是A .33a b -->B .3131a b -->C .33a b -->D .33a b >6.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°, 那么∠2的度数为 A .10°B .15°C .20°D .25°7.在下列命题中,为真命题的是A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直8.如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么a 的值为 A .1 B .2 C .3D .09.右图是某市 10 月 1 日至10 月 7 日一周内的“日平均气温变化统计图”.在“日平均气温”这组数据中,众数和中位数气温(℃)12分别是 A .13,13 B .14,14 C .13,14D .14,1310.如图,在平面直角坐标系xOy 中,点P (1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至 点P 2(-1,1),第3次向上跳动1个单位至 点P 3,第4次向右跳动3个单位至点P 4,第 5次又向上跳动1个单位至点P 5,第6次向左 跳动4个单位至点P 6,…….照此规律,点P 第100次跳动至点P 100的坐标是 A .(-26,50) B .(-25,50) C .(26,50) D .(25,50)二、填空题(本题共24分,每小题3分)11.如果把方程32x y +=写成用含x 的代数式表示y 的形式,那么y = . 12.右图中四边形均为长方形,根据图形,写出一个正确的等式: . 13.因式分解:34a a -= .14.如果∠1与∠2互余,∠3与∠2互余,∠1=35°,那么∠3 = 度.15.如果关于x ,y 二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足2x y +<,那么a 的取值范围是 .16.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两; 牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5只羊,值金8 两.问:每头牛、每只羊各值金多少两?”设每头牛值金 x 两,每只羊值金 y 两,可列方程组为 . 17.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FOD = 28°, 那么∠AOG = 度.18.学完一元一次不等式解法后,老师布置了如下练习:解不等式1532x -≥7x -,并把它的解集在数轴上表示出来.以下是小明的解答过程:解:第一步 去分母,得 ()15327x x --≥,第二步 去括号,得 153142x x --≥, 第三步 移项,得 321415x x -+-≥, 第四步 合并同类项,得 1x --≥, 第五步 系数化为1,得 1x ≥. 第六步 把它的解集在数轴上表示为:老师看后说:“小明的解题过程有错误!”问:请指出小明从第几步开始出现了错误,并说明判断依据.答: . 三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算:(1)()()212a a a ---; (2)()()()()643223x x x x -+++-.20.解下列方程组:ABCD EFGOABCDEF12(1)5,22;y x x y =-⎧⎨-=⎩ (2)233,327.x y x y -=⎧⎨-=⎩21.已知12x =,13y =,求()()()232x y x y x y x y xy +++--÷的值.22.解不等式组 ()41710853x x x x ⎧++⎪⎨--⎪⎩,<≤并写出它的所有非负整数....解.23.完成下面的证明:已知:如图,D 是BC 上任意一点,BE ⊥AD ,交AD 的延长线于点E ,CF ⊥AD ,垂足为F . 求证:∠1=∠2.证明:∵ BE ⊥AD (已知),∴ ∠BED = °( ). 又∵ CF ⊥AD (已知), ∴ ∠CFD = °. ∴ ∠BED =∠CFD (等量代换).∴ BE ∥CF ( ). ∴ ∠1=∠2( ).24.为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是 ;理由是: .A .对七年级(1)班的全体同学进行问卷调查;B .对七年级各班的语文科代表进行问卷调查;C .对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:① 在扇形统计图中,“其它”所在的扇形的圆心角等于 度; ② 补全条形统计图;③ 根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有 人.25.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A 型设备比购买一台B 型设备多2万元,购买2台A 型设备比购买人数806040漫画科普常识其他种类小说020其它40%小说30% 科普常识漫画3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.四、解答题(本题共13分,26题7分,27题6分)26.已知:△ABC和同一平面内的点D.(1)如图1,点D在BC边上,过D作DE∥BA交AC于E,DF∥CA交AB于F.①依题意,在图1中补全图形;②判断∠EDF与∠A的数量关系,并直接写出结论(不需证明).(2)如图2,点D在BC的延长线上,DF∥CA,∠EDF=∠A.判断DE与BA的位置关系,并证明.(3)如图3,点D是△ABC外部的一个动点,过D作DE∥BA交直线AC于E,DF∥CA 交直线AB于F,直接写出∠EDF与∠A的数量关系(不需证明).F图1 图2 图327.定义一种新运算“a b ☆”的含义为:当a b ≥时,a b a b =+☆;当a b <时,a b a b =-☆.例如:()()34341-=+-=-☆,()()111666222-=--=-☆.(1)填空:()43-=☆ ;(2)如果()()()()34283428x x x x -+=--+☆,求x 的取值范围;(3)填空:()()222325x x x x -+-+-=☆ ;(4)如果()()37322x x --=☆,求x 的值.三、解答题(本题共33分,19-20每题6分,21-24每题4分,25题5分) 19.计算(本小题满分6分) (1)()()212a a a ---;解:原式22212a a a a =-+-+,…………………………………………………………2分1.=…………………………………………………………………………………3分 (2)()()()()643223x x x x -+++-.解:原式2222449x x x =--+-,………………………………………………………2分28220.x x =---………………………………………………………………3分20.解下列方程组(本小题满分6分) (1)5,22;y x x y =-⎧⎨-=⎩①② 解:把①代入②得 ()252x x --=,……………………………………………………1分 解得 4.x =把4x =代入得① 54 1.y =-=………………………………………………………2分∴ 原方程组的解为41.x y =⎧⎨=⎩……………………………………………………………3分(2)233,327x y x y -=⎧⎨-=⎩①②. 解:由①得 699x y -= ③由②得 6414x y -= ④………………………………………………………………1分 ③-④得 94914y y -+=-,解得 1.y =………………………………………………………………………………2分 把1y =代入①得 233x -=, 解得 1.x =∴ 原方程组的解为31.x y =⎧⎨=⎩……………………………………………………………3分21.(本小题满分4分)解:()()()232.x y x y x y x y xy +++--÷2222222x xy y x y x =+++--,2.xy =……………………………………………………………………………………3分∴ 当12x =,13y =时,原式1112.233=⨯⨯=………………………………………………………………………4分22.(本小题满分4分)解:()4171085.3x x x x ⎧++⎪⎨--⎪⎩①,< ②≤ 由①得 2x ≥-,…………………………………………………………………………1分 由②得 72x <,…………………………………………………………………………2分∴ 原不等式组的解集是72.2x -≤<…………………………………………………………3分∴ 原不等式组的所有非负整数解为0,1,2,3. …………………………………………4分 23.(本小题满分4分)证明:略. ……………………………………………………………………………………4分24.(本小题满分4分)解:略. ………………………………………………………………………………………4分 25.(本小题满分5分) 解:(1)由题意,得 2,23 6.x y x y -=⎧⎨-=-⎩ ………………………………………………………2分解得12,10.x y =⎧⎨=⎩………………………………………………………………………3分(2)设治污公司决定购买A 型设备a 台,则购买B 型设备(10-a )台.由题意,得 ()121010105.a a +-≤解得 5.2a ≤所以,该公司有以下三种方案: A 型设备0台,B 型设备为10台; A 型设备1台,B 型设备为9台;A 型设备2台,B 型设备为8台. …………………………………………………4分(3)由题意,得 ()240200102040.a a +-≥解得: 1.a ≥所以,购买A 型设备1台,B 型设备9台最省钱. ……………………………5分四、解答题(本题共13分,26题7分,27题6分) 26.(本小题满分7分)解:(1)① 补全图形;………………………………………………………………………1分② ∠EDF =∠A . ……………………………………………………………………2分 (2)DE ∥BA . ……………………………………………………………………………3分证明:如图,延长BA 交DF 与G .∵ DF ∥CA , ∴ ∠2=∠3. 又∵ ∠1=∠2, ∴ ∠1=∠3.∴ DE ∥BA . ………………………………………………………………5分(3)∠EDF =∠A ,∠EDF +∠A =180°.…………………………………………7分 、27.(本小题满分6分)解:(1)7-;…………………………………………………………………………………1分 (2)由题意得 3428x x -+<,………………………………………………………2分解得 12.x <∴ x 的取值范围是12.x <………………………………………………………3分 (3)2-;………………………………………………………………………………4分1F A BC DEG23七年级数学试卷 第 11 页 共 11 页 (4)当3732x x --≥,即2x ≥时, 由题意得 ()()37322x x --=+,解得 6.x =…………………………………………………………………………5分 当3732x x --<,即2x <时,由题意得 ()()37322x x --=-,解得 125x =(舍). ∴ x 的值为6. ……………………………………………………………………6分 说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

七年级数学下学期期末试题答案新人教版

七年级数学下学期期末试题答案新人教版

河北省唐山市丰南区2017-2018学年七年级数学下学期期末试题答案一.选择题 1 2 3 4 5 6 7 8 9 10 11 12 BCCDCABDADAB二.填空题:13. 14. x>-2 15.64o16.17.-2 18.60 19.a ≥220 20.32三.解答题 21. (1)解:由①得x=3+2y ③――――――――――――――1分 把③代入②得3(3+2y )-8y=10解得y=――――――――――――2分 把y=代入③得x=2――――――――――――――3分∴原方程组的解为――――――――――――――4分(2)解:原方程组整理为――――――――――――1分 ②-①得3n=-6①②n=-2 ――――――――――――2分 把 n=-2代入②中,得4m+6=7 m=――――――――――――3分∴方程组的解为――――――――――――4分(3)根据题意得:2x-(3-x )>0 ――――――――――――2分2x-3+x >0 3x >3x >1 ――――――――――――3分数轴画正确,解集表示正确 ――――――――――――4分(4)解不等式①得 ――――――――――1分 解不等式②得――――――――――2分∴原不等式组的解集为∴非负整数解为0,1,2,3 ――――――――――4分 22.解:解:(1)AD ∥EC ―――――――――1分 ∵∠1+∠C=180o∴AD ∥EC ―――――――――2分 (2)∵DA 平分∠BDC∴∠1=∠3 ―――――――――3分 ∵∠2=∠3 ∴∠1=∠2=40o―――――――――4分∵CE ⊥AE ∴∠E=90o①②F32E CD BA 4 1∵AD∥EC∴∠FAD=90o ―――――――――5分∴∠4=90o-40o=50o ―――――――――6分23.(1)360o×(1-15%-25%-10%-30%)=360o×20%=72o――――――――――――2分(2)(600+550)×(10%+30%)=460答:2017年参加体育类与理财类社团的学生共有460人―――――――――4分(3)50000×=28750答:估计该市2017年参加社团的学生有28750人―――――――――7分24.解:设A、B两种型号电风扇的销售单价分别为x元、y元,依题意,得―――――1分―――――3分解得答:A、B两种型号电风扇的销售单价分别为250元、210元;―――――4分(2)设采购A种型号电风扇台,则采购B种型号电风扇(30-a)台.―――――5分依题意,得―――――6分解得.答:超市最多采购A种型号电风扇台时,采购金额不多于5400元―――――7分(1)依题意,有―――――9分解得――――――――――――――――10分∵∴不能实现利润1400元的目标―――――――――――11分25.解:(1)(10,8)―――――――――――2分(2)当点Q在线段BO上时S△POQ=×(10-5t)×8=12 ――――――――――4分10-5t=3t=――――――――――5分此时P()Q(3,0)――――――――――7分当点Q在BO的延长线上时S△POQ=×(5t-10)×8=12 ――――――――――9分5t-10=3t=――――――――――10分此时P(,8)Q(-3,0)――――――――――12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四点,其中某一点表示无理数,这个点是(
.在同一平面内,如果
.一定是正数
.不等式组的解集在数轴上表示为( )
.已知方程组的解满足
的不等式组的整数解共有
.不等式组的解集是 
和一个月亮所表示的等级.
的二元一次方程组的解是,则
21.解方程组
22.解方程组:
23.规定:=ad﹣bc,例如=2×5﹣3×4=﹣2,如果有>0,求x的取值范围,并把解集在数轴上表示出来.
24.求的非负整数解
25.(6分)如图,点A、B分别在直线EF和DF上,且∠1+∠C=180°,且∠2=∠3.
(1)请你判断AD与EC的位置关系,并说明理由;
(2)若DA平分∠BDC,CE⊥AE,垂足为E,∠1=40°,求∠4的度数.
26.(7分)为了了解学生参加社团活动的情况,从2013年起,某市教育部门每年都从
全市所有学生中随机抽取2000名学生进行调查,图1、图2是部分调查数据的统计图(参加社团的学生每人只报一项).根据统计图提供的信息解决下列问题:
F 32E C D
B A 41
种型号电风扇台,则采购
依题意,得
解得.
种型号电风扇台时,采购金额不多于)依题意,有―――――解得。

相关文档
最新文档