人教版初中数学八年级上册第十五章《分式》测试题(含答案)

合集下载

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、衡阳市某生态示范园计划种植一批梨树,原计划总产值30万kg,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万kg,种植亩数减少了10亩,则原来平均每亩产量是多少万kg?设原来平均每亩产量为x万kg,根据题意,列方程为()A. B. C. D.2、化简是()A. mB.﹣mC.D.-3、在正数范围内定义一种运算☆,其规则为a☆b=+,根据这个规则x☆(x+1)=的解为()A.x=B.x=1C.x=- 或1D.x= 或-14、下列计算正确的是()A.()﹣2=9B. =﹣2C.(﹣2)0=﹣1D.|﹣5﹣3|=25、如果把中的x与y都扩大到原来的20倍,那么这个式子的值( )A.不变B.扩大到原来的10倍C.扩大到原来的20倍D.缩小到原来的6、某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个,设B型包装箱每个可以装x件文具,根究题意列方程为()A. = ﹣12B. = +12C. = ﹣12 D. = +127、下列等式成立的是()A. B. C. D.8、纳米是非常小的长度单位,1nm=10﹣9m,那么,1mm3的空间可以放多少个1nm3的物体(不计物体之间的间隙)()A.10 18B.10 ﹣9C.10 ﹣18D.10 99、下列计算正确的是()A.a 2•a 3=a 6B.(﹣2xy 2)3=﹣8x 3y 5C.2a ﹣3=D.(﹣a)3÷(2a)2=﹣ a10、若分式的值为0,则x的值是()A.2B.﹣2C.﹣4D.011、下列等式成立的是A. B. C. D.12、将方程变形正确的是()A.9+B.0.9+C.9+D.0.9+ =3﹣10x13、下列变形从左到右一定正确的是()A. B. C. D.14、商家常将单价不同的A,B两种糖混合成“什锦糖”出售,记“什锦糖”的单价为:A,B两种糖的总价与A,B两种糖的总质量的比.现有两种“什锦糖”:一种是由相同kg数的A种糖和B种糖混合而成的“什锦糖”甲,另一种是由相同金额数的A种糖和B种糖混合而成的“什锦糖”乙.若B种糖比A种糖的单价贵40元/kg,“什锦糖”甲比“什锦糖”乙的单价贵5元/kg,则A种糖的单价为( )A.50元/kgB.60元/kgC.70元/kgD.80元/kg15、20160的值为()A.0B.1C.2016D.﹣2016二、填空题(共10题,共计30分)16、化简:=________.17、分式方程= 的解是________.18、计算:|π﹣3.14|0﹣+(﹣)﹣2+2sin45°=________.19、已知当x=2时分式无意义,则n的值为________.20、若分式的的值为5,则x、y扩大2倍后,这个分式的值为________.21、计算:= ________;(3ab2)﹣2= ________.22、使分式的值为零的条件是x=________.23、若方程有增根,则它的增根是________,m=________;24、(________)25、计算:=________.三、解答题(共5题,共计25分)26、计算:|﹣|+ sin45°﹣()﹣1﹣(π﹣3)0.27、先化简,再求值:÷(1﹣),其中a=﹣2.28、小明化简(﹣)÷后说:“在原分式有意义的前提下,分式的值一定是正数”,你同意小明的说法吗?请说明理由.29、8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.30、解方程:参考答案一、单选题(共15题,共计45分)1、A2、B3、B4、A5、A6、A7、B8、A9、D10、A11、A12、D13、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、在中分式的个数有()A.2个B.3个C.4个D.5个2、把0.00000156用科学记数法表示为 ( ).A. B. C. D.3、化简的结果是()A. B. C. x+1 D. x﹣14、使式子有意义的x的取值范围是()A.x≤1B.x≤1且x≠-2C.x≠-2D.x<1且x≠-25、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是:()A. - =B. - =C. - =D. -=6、长度单位1纳米=10-9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是( )A.10.1×10 -8米B.1.01×10 -7米C.1.01×10 -6米D.0.101×10 -6米7、计算a÷a×的结果是()A.aB.1C.D.a 28、下列变形不正确的是()A. B. C.D.9、化简的结果是()A. B. C. D.10、把分式的x,y的值都扩大为原来的4倍,则分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.不确定11、的结果是( ).A. B. C. D.12、下列计算正确的是()A.(﹣3x)3=﹣27x 3B.(x ﹣2)2=x 4C.x 2÷x ﹣2=x 2D.x ﹣1•x ﹣2=x 213、代数式的家中来了几位客人:、、、、,其中属于分式家族成员的有()A.1个B.2个C.3个D.4个14、若分式的值为0,则x的值为()A.2B.-2C.±2D.-715、分式方程有增根,则的值为()A.0和3B.1C.1和D.3二、填空题(共10题,共计30分)16、的最简公分母是________,通分的结果为________.17、比较大小:________ .(填“>”“=”或“<”)18、计算________.19、计算:的结果是(结果化为最简形式)________.20、使函数在实数范围内有意义的条件是________.21、分式的值为负数,则a的取值范围是________.22、化简=________.23、分式与的和为2,则x的值为________.24、若分式方程的解为正数,则a的取值范围是________.25、下列式子:①;②;③;④,正确的有________(填上序号).三、解答题(共5题,共计25分)26、先化简,再求值:,其中a=2.27、已知,求分式的值.28、x满足什么条件时下列分式有意义:﹣.29、先化简再求值:,其中a=2,b=﹣1.30、某超市老板到批发市场选购A、B两种品牌的儿童玩具,每个A品牌儿童玩具进价比B品牌每个儿童玩具进价多2.5元.已知用200元购进A种儿童玩具的数量是用75元购进B种儿童玩具数量的2倍.求A、B两种品牌儿童玩具每个进价分别是多少元?参考答案一、单选题(共15题,共计45分)1、C2、D3、A4、B5、B6、B8、B9、A10、B11、D12、A13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

人教版初中八年级数学上册第十五章《分式》经典测试(含答案解析)

一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .28B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600A解析:A【分析】 先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 3.已知2,1x y xy +==,则y x x y +的值是( ) A .0B .1C .-1D .2D 解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.4.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14B 解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义,∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可.5.如图,若a 为负整数,则表示2a 111a a 1⎛⎫÷- ⎪-+⎝⎭的值的点落在( )A .段①B .段②C .段③D .段④C 解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数,则1101a 2<<-.故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.下列各式计算正确的是( )A .()23233412ab a b -=- B .()222(2)2224x xy y x y xy x --++=+-C .()2422842a ba b b -÷=- D .()325339a b a b -=- A解析:A【分析】根据单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式运算法则判断即可.【详解】 A 、()23233412a b a b -=-,故这个选项正确;B 、()222(2)2224x xy y x y xy x --++=--,故这个选项错误;C 、()24222842a b a b b -÷=-,故这个选项错误;D 、()3263327a b a b -=-,故这个选项错误; 故选:A .【点睛】本题考查了单项式乘单项式,幂的乘方,单项式除单项式,单项式乘多项式,重点是掌握相关的运算法则.7.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4B .3C .2D .1D 解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.8.2a ab b a++-的结果是( ). A .2a- B .4a C .2b a b -- D .b a- C 解析:C【分析】根据分式的加减运算的法则计算即可.【详解】 222()()a a b a b a b a b b a a b a b a b+-++=-=-----. 故选:C【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.9.如果关于x 的不等式组0243(2)x m x x -⎧>⎪⎨⎪-<-⎩的解集为1x >,且关于x 的分式方程1322x m x x -+=--有非负整数解,则符合条件的所有m 的取值之和为( ) A .8-B .7-C .15D .15- B解析:B【分析】解出不等式组,求出不等式组的解集,确定m 的取值范围,再解出分式方程,找到分式方程的非负整数解,进而求出m 的值即可.【详解】 解:0243(2)x m x x -⎧>⎪⎨⎪-<-⎩①②,解不等式①得:x m >,解不等式②得:1x >,不等式组的解集为1x >,∴1m ;1322x m x x -+=-- 方程两边同时乘以()2x -得:()132x m x --=-; 解得:52m x +=, ∴25m x =-,1m ,∴251x -≤,∴3x ≤,分式方程有非负整数解且20x -≠,∴x 的值为:0,1,3,此时对应的m 的值为:5-,3-,1,∴符合条件的所有m 的取值之和为:()5317-+-+=-.故选:B .【点睛】本题考查了分式方程的解以及不等式的解集,求得m 的取值范围以及求出分式方程的解是解题的关键.10.使分式2221x x x ---的值为0的所有x 的值为( ) A .2或1- B .2-或1 C .2 D .1C解析:C【分析】先根据分式为零的条件列出不等式组,然后再求解即可.【详解】解:∵2221x x x ---=0 ∴222=010x x x ⎧--⎨-≠⎩,解得x=2. 故答案为C .【点睛】本题主要考查了分式为零的条件,根据分式为零的条件列出不等式组是解答本题的关键.二、填空题11.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数,∴12x A JX B →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.12.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 13.若分式方程13322a x x x--=--有增根,则a 的值是________.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.14.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 15.分式2222,39a b b c ac的最简公分母是______.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2. 故答案为:9ab 2c 2.【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 16.计算:()222333a b a b --⋅=_______________.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b----+-=== 故答案为:3a b. 【点睛】 本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.17.甲、乙二人做某种机械零件,已知甲每小时比乙少做8个,甲做160个所用的时间比乙做160个所用的时间多1小时,设甲每小时做x 个零件,列方程为________.【分析】设甲每小时做x 个零件根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可【详解】解:设甲每小时做个零件则乙每小时做个零件依题意得:即故答案为:【点睛】本题考查了由实际问 解析:16016018x x -=+ 【分析】设甲每小时做x 个零件,根据甲做160个所用的时间比乙做160个所用的时间多1小时得出方程解答即可.【详解】解:设甲每小时做x 个零件,则乙每小时做(8)x +个零件,依题意,得:16016018x x -=+, 即16016018x x -=+. 故答案为:16016018x x -=+. 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.18.已知1112a b -=,则ab a b-的值是________.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 19.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.20.若关于x 的分式方程11222mx x x-=---无解,则m =______.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】 本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键.21.某商店购进 A B 、两种商品,购买1个A 商品比购买1个B 商品多花10元,并且花费300元购买A 商品和花费100元购买B 商品的数量相等(1)求购买一个A 商品和一个B 商品各需要多少元(2)商店准备购买A B 、两种商品共80个,若A 商品的数量不少于B 商品数量的4倍,并且购买A B 、商品的总费用不低于1000元且不高于1060元,那么商店有哪几种购买方案? 解析:(1)购买一个A 商品需要15元,购买一个B 商品需要5元;(2)商店有3种购买方案,方案①:购进A 商品66个,B 商品14个;方案②:购进A 商品65个,B 商品15个;方案③:购进A 商品64个,B 商品16个【分析】(1)设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,列出分式方程求解;(2)设购买B 商品m 个,则购买A 商品()80m -个,根据题意列出不等式组求出m 的范围,取整数解.【详解】解:()1设购买一个B 商品需要x 元,则购买一个A 商品需要()10x +元,依题意, 得:30010010x x=+, 解得:5x =,经检验, = 5x 是原方程的解,且符合题意, 1015x ∴+=,答:购买一个A 商品需要15元,购买一个B 商品需要5元;()2设购买B 商品m 个,则购买A 商品()80m -个,依题意,得:()()804158051000158051060m m m m m m ⎧-≥⎪-+≥⎨⎪-+≥⎩,解得:1416m ≤≤, m 为整数,14m ∴=或15或16,∴商店有3种购买方案,方案①:购进A 商品66个,B 商品14个,方案②:购进A 商品65个,B 商品15个,方案③:购进A 商品64个,B 商品16个.【点睛】本题考查分式方程的应用和不等式的应用,解题的关键是掌握根据题意列分式方程和不等式的方法.22.解方程(1)22211x x x =-+. (2)2127111x x x +=+--. 解析:(1)无解;(2)2x =【分析】(1)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案; (2)先把分式方程化为整式方程,然后解方程,再进行检验,即可得到答案;【详解】(1)解:原方程可变形为()()()21111x x x x =+-+, 方程两边同乘最简公分母()()11x x x +-,得21x x =-.解得:1x =-.检验:把1x =-代入最简公分母()()11x x x +-,得()()()()11111110x x x +-=--+--=,因此,1x =-是增根,从而原方程无解.(2)原方程可变形为:()()1271111x x x x +=+-+- 方程两边同乘最简公分母()()11x x +-,得()1217x x -++=解得,2x =检验:把2x =代入最简公分母()()11x x +-,得()()113130x x +-=⨯=≠因此,2x =是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的步骤,注意解分式方程需要检验.23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 解析:(1)y x -;(2)5x =. 【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解方程:(1)3311x x x +=-- (2)23425525x x x +=-+- 解析:(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.25.某快餐店欲购进A ,B 两种型号的餐盘,每个A 种型号的餐盘比每个B 种型号的餐盘费用多5元,且用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同.(1)问A ,B 两种型号的餐盘单价为多少元?(2)若该快餐店决定在成本不超过1900元的前提下购进A ,B 两种型号的餐盘100个,则最多购进A 种型号餐盘多少个?解析:(1)A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元;(2)最多购进A 种型号餐盘80个【分析】(1)设A 型号的餐盘单价为x 元,则B 型号的餐盘单价为(x ﹣5)元,根据用120元购进的A 种型号的餐盘与用90元购进的B 种型号的餐盘的数量相同这个等量关系列出方程即可;(2)设购进A 种型号餐盘m 个,结合“该快餐店决定在成本不超过1900元的前提购进A 、B 两种型号的餐盘100个”列出不等式并解答.【详解】解:(1)设A 种型号的餐盘单价为x 元,则B 种型号的餐盘单价为(5x -)元, 由题意可列方程120905x x =-, 解得20x .经检验,20x 是原分式方程的解,则520515x -=-=.答:A 种型号的餐盘单价为20元,B 种型号的餐盘单价为15元.(2)设购进A 种型号餐盘m 个,则购进B 种型号餐盘()100m -个.依题意可得()20151001900m m +-≤,解得80m ≤.答:最多购进A 种型号餐盘80个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力. 26.秋冬来临之际,天气开始慢慢变冷,某商家抓住商机,在十一月份力推甲、乙两款儿童棉服.已知十一月份甲款棉服的销售总额为8400元,乙款棉服的销售总额为9000元,乙款棉服的单价是甲款棉服单价的1.2倍,乙款棉服的销售数最比甲款棉服的销售数量少6件.(1)求十一月份甲款棉服的单价是多少元?(2)十二月份,为了加大推销力度,该商家将甲款棉服的单价在十一月份的基础上下调了%a ,结果甲款棉服的销量比十一月份多卖了24件;乙款棉服的单价在十一月份的基础上下调3%2a ,结果乙款棉服的销量比十一月份多卖了50件.要使十二月份的总销售额不低于22200元,求a 的最大值,解析:(1)十一月份甲款棉服的单价是150元;(2)20【分析】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意列方程即可得到结论;(2)根据不等量关系,列出关于a 的不等式,即可得到结论.【详解】(1)设十一月份甲款棉服的单价是x 元,则十一月份乙款棉服的单价是1.2x 元,根据题意得,8400900061.2x x-=, 解得:x =150,经检验:x =150是原方程的根, 答:十一月份甲款棉服的单价是150元;(2)由题意得:150(1-%a )(8400÷150+24)+1.2×150(1-3%2a )(8400÷150-6+50)≥22200,解得:a≤20,∴a 的最大值为20.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,正确的理解题意,列出方程和不等式,是解题的关键.27.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.解析:【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+xy ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升,第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +. 解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.28.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 解析:1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、方程的解的情况为()A. B. C. D.2、如果把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.缩小2倍C.不变D.扩大4倍3、计算的结果为()A. B. C.﹣1 D.24、若分式的值是0,则的值是()A. B. C. D.5、函数中的自变量的取值范围是()A. B. C. 且 D. 且6、某工地调来144人参加挖土和运土,已知3人挖出的土1人恰好能全部运走.怎样调配劳动力才使挖出来的土能及时运走且不窝工(停工等待).为解决此问题,可设派x人挖土,其他人运土.列方程为①;②144-x=;③x+3x=144;④.上述所列方程,正确的有()A.1个B.2个C.3个D.4个7、下列各式中,无论取何值,分式都有意义的是()。

A. B. C. D.8、计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a 5﹣aB.2a 5﹣C.a 5D.a 69、若关于y的不等式组至少有两个整数解,且关于x的分式方程有非负整数解,求符合条件的所有整数a的值之和为A.14B.15C.16D.1710、如果的值为0,则代数式+x的值为()A.0B.2C.-2D.±211、分式可变形为()A. B. C. D.12、A,B两地相距80千米,一辆大汽车从A地开出2小时后,又从A地开出一辆小汽车,已知小汽车的速度是大汽车速度的3倍,结果小汽车比大汽车早40分钟到达B地,求两种汽车每小时各走多少千米.设大汽车的速度为xkm/h,则下面所列方程正确的是()A. =40B. =2.4C.D.13、下列代数式变形正确的是()A. B. C.D.14、下列各分式中,是最简分式的是()A. B. C. D.15、若a = 0.32 , b = - 3- 2, c= ,d= ,则( ).A.a<b<c<dB.b<a<d<cC.a<d<c<bD.c<a<d<b二、填空题(共10题,共计30分)16、若分式方程有增根,则m的值是________17、若代数式在实数范围内有意义,则x的取值范围是________.18、关于x的分式方程的解为正数,则m的取值范围是________.19、下列分式化简运算中,每一步运算都在后面列出了依据,所列依据错误的是________ 只填写序号计算:解:原式同分母分式的加减法法则合并同类项法则提公因式法等式的基本性质20、分式的值为0,则x=________.21、不改变分式的值,把分子分母的系数化为整数:=________ .22、要使分式有意义,x的取值应满足________.23、计算:|-3|+(π+1)0- =________.24、分式、、的最简公分母是________.25、计算:________.三、解答题(共5题,共计25分)26、先化简,再求值:(1+ )÷,其中a=4.27、先化简:﹣,再选取一个适当的m的值代入求值.28、为中华人民共和国成立70周年献礼,某灯具厂计划加工6000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.5倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.29、先化简,再求值:÷(1+ ),其中x= ﹣1.30、先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、C5、B6、C7、D8、D9、B10、C11、D12、C13、D14、A15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、某施工队承接了60公里的修路任务,为了提前完成任务,实际每天的工作效率比原计划提高了25%,结果提前60天完成了这项任务.设原计划每天修路公里,根据题意列出的方程正确的是()A. B. C.D.2、若分式的值为零,则x的值为( )A.3B.3或-3C.-3D.03、如果等式(2a﹣1)a+2=1成立,则a的值可能有()A.4个B.1个C.2个D.3个4、某校为进一步开展“阳光体育”活动,购买了一批篮球和足球.已知购买足球数量是篮球的2倍,购买足球用了4000元,购买篮球用了2800元,篮球单价比足球贵16元.若可列方程表示题中的等量关系,则方程中x表示的是()A.足球的单价B.篮球的单价C.足球的数量D.篮球的数量5、式子成立的条件是()A. ≥3B. ≤1C.1≤≤3D.1<≤36、计算|﹣2|-1的结果是()A.2B.C.-2D.7、若代数式+有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠18、把分式中的值都扩大为原来的倍,那么新分式的值是原分式的值的()A.一半B.一倍C.两倍D.四倍9、下面各分式:,,,,其中最简分式有()个.A.4B.3C.2D.110、化简÷,其结果是().A. B.2 C.﹣2 D.11、为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化米,则所列方程正确的是()A. B. C. D.12、下列计算中,正确的是()A. B. C.D.13、计算•的结果为()A.6xyzB.12xyzC.﹣6xyzD.6x 2yz14、计算4﹣2的结果是()A.-8B.-C.-D.15、分式方程的解是()A. B. C. D.二、填空题(共10题,共计30分)16、计算的结果是________.17、若式子有意义,则实数x的取值范围是________.18、若﹣2有意义,则a的取值范围是________.19、若分式的值为0,则x的值等于________20、若分式方程=﹣的解是x=3,则a=________.21、从这七个数中,随机取出一个数,记为,那么使关于的方程有整数解,且使关于的不等式组有解的概率为________.22、关于x的方程=3的根为x=1,则a=________.23、当________时,分式的值为0.24、化简=________25、若分式的值为零,则________.三、解答题(共5题,共计25分)26、先化简,再求值:(x﹣1+ )÷,其中x的值从不等式﹣1≤x <2.5的整数解中选取.27、化简分式(+ )÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.28、先化简(1﹣)÷,再从|m|≤2中选一个合适的整数代入求值.29、先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.30、下列式子,, x﹣, x3﹣,,﹣,,﹣,其中分式的个数是m,求使分式无意义的p的值.参考答案一、单选题(共15题,共计45分)1、D3、D4、D5、D6、D7、D8、A9、D10、C11、A12、D13、A14、D15、C二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、下列运算正确的是()A. B. C. D.2、下面计算正确的是()A.a 4-a 4=a 0B.a 2÷a -2=a 4C.a 2÷a -2=a 0D.a 4×a 6=a 243、一艘轮船在静水中的最大航速为,它以最大航速沿河顺流航行所用时间,和它以最大航速沿河逆流航行所用时间相等,设河水的流速为,则可列方程为()A. B. C. D.4、若分式有意义,则的取值范围是()A. B. C. D.5、若关于x的方程+ =3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣6、函数中自变量x的取值范围是()A.x≥-1B.x≤-1C. x≠-1D. x=-17、绵阳到某地相距n千米,提速前火车从绵阳到某地要t小时,提速后行车时间减少了0.5小时,提速后火车的速度比原来速度快了()A. B. C. - D. -8、当x=1时,下列分式的值为0的是()A. B. C. D.9、下列三个分式、、的最简公分母是()A.4(m﹣n)xB.2(m﹣n)x 2C.D.4(m﹣n)x 210、若实数a、b满足(a+b)(2a+2b﹣1)﹣1=0,则a+b=()A.1B.-C.1或﹣D.211、方程的解是()A.-3B.3C.4D.-412、下列方程不是分式方程的是()A. B. C. D.13、若关于的分式方程有增根,则的值是( )A. B. C. D.14、下列代数式中,属于分式的是().A.5 xB.C.D.15、把分式中x,y的值都扩大4倍,那么下列说法中正确的是()A.分式值不变B.分式的值扩大4倍C.分式的值缩小4倍D.分式的值缩小8倍二、填空题(共10题,共计30分)16、计算:=________.17、从有理数-3、-2、、-1、、0、、1、、2、3中,任意取一个数作为的值,使得关于的方程有实数解,且二次函数与轴有交点,则满足条件的所有的值的积是________.18、已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是________km/h.19、若分式的值为零,则x的值为________.20、分式方程+ =1的解为________.21、方程的解是________.22、是最小正整数,是最大负整数,是绝对值最小的有理数,则________.23、如果m2﹣m﹣3=0,那么代数式的值是________.24、化简﹣的结果是________25、计算:=________.三、解答题(共5题,共计25分)26、计算:.27、先化简,再求值:()÷,其中x=﹣1.28、列方程解应用题:某校为了满足同学们体育锻炼的需要,准备购买跳绳和足球若干.已知足球的单价比跳绳的单价多35元,用400元购得的跳绳数量和用1100元购得的足球数量相等.求跳绳和足球的单价各是多少元.29、先化简,再求值:,其中a=1+ .30、当x满足什么条件时,下列分式有意义.(1)(2)(3)(4).参考答案一、单选题(共15题,共计45分)2、B3、C4、D5、B6、C7、C8、D9、D10、C11、B12、D13、C14、C15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、24、25、三、解答题(共5题,共计25分)27、28、29、。

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)

人教版八年级数学上册第十五章《分式》单元测试题(含答案)一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·a a 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D .无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零.10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= . 12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.人教版八年级上册第十五章分式单元检测(含答案)一、单选题1.在5x ,38a ,2π,1x a -中,属于分式的个数为( ) A .0个B .1个C .2个D .3个 2.下列分式为最简分式的是( )A .11a a --B .235xy y xy -C .22m n n m +-D .22a b a b++ 3.下列各式中,变形不正确的是( )A .2233x x=-- B .66a a b b -=- C .3344x x y y -=- D .5533n n m m --=- 4.计算322b b 1·a a b⎛⎫⎛⎫÷ ⎪ ⎪⎝⎭⎝⎭的值为 ( ) A .222b a B .6ab 2 C .8a D .15.计算:22m-1m -1m m÷的结果是 ( ) A .m m 1+ B .1m C .m-1 D .1m-16.若111u v f+=,则用u 、v 表示f 的式子应该是( ) A .u v uv + B .uv u v + C .v u D .u v7.若234a b c ==,则2222232a bc c a ab c-+--的值是( ) A .13 B .13- C .12 D .12- 8.纳米材料多被应用于建筑、家电等行业,实际上,纳米(nm)是一种长度的度量单位:1纳米=0.000000001米,用科学记数法表示0.12纳米应为( )A.0.12×10-9米B.0.12×10-8米C.1.2×10-10米D.1.2×10-8米 9.计算20140的结果是( )A .1B .0C .2014D .﹣1 10.当m 为何值时,方程会产生增根( ) A.2 B.-1 C.3 D.-311.下列各式中,是分式方程的是( )A.x+y=5B.C.D.12.已知一汽船在顺流中航行46千米和逆流中航行34千米,共用去的时间,正好等于它在静水中航行80千米用去的时间,且水流速度是2千米/时,求汽船在静水中的速度,若设汽船在静水中速度为x 千米/时,则所列方程正确的是( ) A.+= B.+= C.=- D.=+二、填空题13.当x =_________时,分式242x x -+的值为0. 14.当x =__________时,分式3x x-无意义. 15.若a+b=1,且a ∶b=2∶5,则2a-b=____________.16.计算:(12)﹣2+(﹣2)3﹣20110=__________.三、解答题17.解方程:(1)233011x x x +-=--;(2)1433162x x -=--. 18.计算:①()223·14a aa a a ----; ②211a a a ---; ③225611x x x x x+⎛⎫-÷ ⎪--⎝⎭ 19.22322222244(82)25356a b ab b b a b b ab a b ab a ++-÷⋅---+,其中12a =-,14b =. 20.某书商去图书批发市场购买某本书,第一次用12000元购书若干本,并把该书按定价7元/本出售,很快售完,由于该书畅销,书商又去批发市场采购该书,第二次购书时,每本书批发价已比第一次提高了20%,他用15000元所购书数量比第一次多了100本. (1)求第一次购书的进价是多少元一本?第二次购进多少本书?(2)若第二次购进书后,仍按原定价7元/本售出2000本时,出现滞销,书商便以定价的n 折售完剩余的书,结果第二次共盈利100m 元(n 、m 为正整数),求相应的n 、m 的值.答案1.C 2.D 3.D 4.C 5.A 6.B 7.C 8.C 9.A10.C 11.D 12.B 13.2 14.315.-1 716.﹣517.(1)x=0;(2)23 x=.18.①11aa-+;②11a-;③-5x19.242a ba b+-+,020.(1)第一次购书的进价为5元/本,且第二次买了2500本;(2)当n=4时,m=4;当n=6时,m=11;当n=8时,m=18人教版八年级上数学第十五章分式单元测试(解析)一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=32.下列等式成立的是( )A.+=B.=C.=D.=-3.下列运算结果为x-1的是( )A.1-B.·C.÷D.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.96.计算÷-的结果为( )A. B. C. D.a7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.10.当x= 时,分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .12.计算:÷= .13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-114.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件.15.计算(x+1)的结果是.16.若a2+5ab-b2=0,则-的值为.三、解答题(共52分)17.(4分)化简:-.18.(5分)计算:÷.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)20.(6分)先化简,再求值:÷·,其中a=-,b=.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么?23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?第十五章分式答案解析满分:100分;限时:60分钟一、选择题(每小题3分,共24分)1.若代数式在实数范围内有意义,则实数x的取值范围是( )A.x<3B.x>3C.x≠3D.x=3答案 C 由分式有意义的条件得x-3≠0,解得x≠3.故选C.2.下列等式成立的是( )A.+=B.=C.=D.=-答案 C +=,所以A错误;=不成立,所以B错误;==,所以C正确;=-,所以D错误,故选C.3.下列运算结果为x-1的是( )A.1-B.·C.÷D.答案 B 选项A的运算结果为,选项B的运算结果为x-1,选项C的运算结果是,选项D的运算结果为x+1.故选B.4.化简+的结果是( )A.m+nB.n-mC.m-nD.-m-n答案 A +=-==m+n,故选A.5.当x=6,y=3时,代数式·的值是( )A.2B.3C.6D.9答案 C ·=·=.当x=6,y=3时,原式==6.6.计算÷-的结果为( )A. B. C. D.a答案 C ÷-=÷-=×-=-=,故选C.7.甲、乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( )A.甲、乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与v有关答案 B 设从A地到B地的距离为2s,∵甲的速度v保持不变,∴甲所用时间为,∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为+=+,∵s>0,v>0,∴+>,故甲先到达B地.8.(2016黑龙江龙东中考)关于x的分式方程=3的解是正数,则字母m的取值范围是( )A.m>3B.m<3C.m>-3D.m<-3答案D解分式方程,得x=-3-m,∵方程的解为正数,∴-3-m>0,解得m<-3,∵x+1≠0,∴x≠-1,∴-3-m≠-1,解得m≠-2,∴m<-3,故选D.二、填空题(每小题3分,共24分)9.某种电子元件的面积大约为0.000 000 69平方毫米,将0.000 000 69这个数用科学记数法表示为.答案 6.9×10-7解析0.000 000 69=6.9×10-7.10.当x= 时,分式的值为0.答案 2解析分式的值为0,则即所以当x=2时,原分式的值为0.11.某市为治理污水,需要铺设一段全长600 m的污水排放管道.铺设120 m后,为加快施工速度,后来每天比原计划增加20 m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m管道,那么根据题意,可列方程: .答案+=11解析根据题意,可列方程为+=11.12.计算:÷= .答案解析原式=a4b2c-2÷=a4b2c-2÷=b6c-2=.13.如图15-4-1,点A、B在数轴上,它们所对应的数分别是-4、,且点A、B到原点的距离相等,则x= .图15-4-1答案解析由题意,得=4,解得x=,经检验,x=是方程=4的解.14.甲、乙二人做某种机械零件,已知甲是技术能手,每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做个零件. 答案9解析设甲每小时做x个零件,则乙每小时做(x-3)个零件,根据题意可得=,解得x=9.经检验,x=9是方程的解,且符合题意.因此甲每小时做9个零件.15.计算(x+1)的结果是.答案x解析(x+1)=(x+1)=(x+1)=x.16.若a2+5ab-b2=0,则-的值为.答案 5解析由a2+5ab-b2=0,得b2-a2=5ab,∴-===5.三、解答题(共52分)17.(4分)化简:-.解析原式=-=-==1.18.(5分)计算:÷.解析原式=·=·=·=.19.(6分)(2016山东菏泽中考)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)解析设A4薄型纸每页的质量为x克,则厚型纸每页的质量为(x+0.8)克.根据题意,得×=.解得,x=3.2.经检验,x=3.2是原分式方程的根,且符合题意.答:A4薄型纸每页的质量为3.2克.20.(6分)先化简,再求值:÷·,其中a=-,b=.解析÷·=··=··=.当a=-,b=时,原式==-6.21.(7分)解分式方程:(1)(2016广西贵港中考)+1=-;(2)(2016湖北天门中考)=-1.解析(1)去分母,得x-3+x-2=-3,移项,得x+x=-3+3+2,合并同类项,得2x=2,系数化为1,得x=1,经检验,x=1为原分式方程的根,∴分式方程的解为x=1.(2)两边同时乘(x+1)(x-1),得3(x-1)=x(x+1)-(x+1)(x-1),解得x=2. 检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴原方程的解为x=2.22.(6分)(2015四川广元中考)先化简:÷,然后解答下列问题:(1)当x=3时,求代数式的值;(2)原代数式的值能等于-1吗?为什么? 解析原式=·=·=.(1)当x=3时,原式=2.(2)不能.理由:如果=-1,那么x+1=-x+1,则x=0,当x=0时,原代数式中的除式=0,矛盾, ∴原代数式的值不能等于-1.23.(8分)(2016辽宁铁岭中考)先化简,再求值:÷-,其中a=(3-)0+-.解析 原式=÷- =×- =- =,∵a=(3-)0+-=1+3-1=3,∴原式===-.24.(10分)(2016新疆乌鲁木齐中考)某商场用24 000元购入一批空调,然后以每台3 000元的价格销售,因天气炎热,空调很快售完;商场又以52 000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.(1)商场第一次购入的空调每台进价是多少元?(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售? 解析 (1)设第一次购入的空调每台进价是x 元,依题意,得=2×,解得x=2 400,经检验,x=2 400是原方程的解.答:第一次购入的空调每台进价为2 400元.(2)第一次购进空调的数量为24 000÷2 400=10台,总收入为3 000×10=30 000元, 第二次购进空调的数量为52 000÷(2 400+200)=20台,不妨设打折售出y 台空调, 则总收入为(3 000+200)·(20-y)+(3 000+200)·0.95y=(64 000-160y)元.两次空调销售的总利润为[30 000+(64 000-160y)]-(24 000+52 000)=(18 000-160y)元, 依题意,得18 000-160y≥(24 000+52 000)×22%,解得y≤8.答:最多可将8台空调打折出售.人教版八年级上第十五章《分式》单元检测卷(含答案)一、选择题(每题3分,共30分)1.(2019·常州)若代数式x +1x -3有意义,则实数x 的取值范围是( )A .x =-1B .x =3C .x ≠-1D .x ≠3 2.如果把xy x y+中的x 与y 都扩大10倍,那么这个代数式的值() A .不变 B .扩大20倍C .扩大10倍D .缩小为原来的110 3.计算22x y y y x x -⎛⎫÷⋅ ⎪⎝⎭的结果是() A .2x y B .y x C .2x y - D .-x4.已知a =2-2,b =1)0,c =(-1)3,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a5.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可以用科学记数法表示为( )A .3.7×10-5克B .3.7×10-6克C .3.7×10-7克D .3.7×10-8克6.若(244a -+12a-)⋅w =1,则w =( ) A .a +2(a ≠-2) B .-a +2(a ≠2)C .a -2(a ≠2)D .-a -2(a ≠-2)7.分式方程11x --21x +=211x -的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解 8.若分式22-x 与1互为相反数,则x 的值为( ) A .2B .-2C .1D .-19.(2019·十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x 米,则根据题意所列的方程是( )A.6000x -6000x +20=15 B.6000x +20-6000x =15 C.6000x -6000x -15=20 D.6000x -15-6000x=20 10.已知关于x 的方程22x m x +-=3的解是正数,则m 的取值范围为( ) A .m <-6B .m >-6C .m >-6且m ≠-4D .m ≠-4二、填空题(每题3分,共18分)11.如果分式11x x +-的值为0,那么x 的值为______. 12.某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本.求文学书的单价.设这种文学书的单价为x 元,则根据题意,所列的方程是______.13.计算:(-2xy -1)-3=______.14.(2019·绥化)当a =2018时,代数式⎝⎛⎭⎫a a +1-1a +1÷a -1(a +1)2的值是________. 15.若(x -y -2)2+│xy +3│=0,则(3x x y --2x x y -)÷1y的值是. 16.(2019·齐齐哈尔)关于x 的分式方程2x -a x -1-11-x=3的解为非负数,则a 的取值范围为_____________.三、解答题(共52分)17.(12分)(1)计算1-2a b a b -+÷222244a b a ab b -++;(2) (2019·枣庄)先化简,再求值:x 2x 2-1÷⎝⎛⎭⎫1x -1+1,其中x 为整数且满足不等式组⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2.18.(12分)解方程:(1)32x x ++22x -=3;(2)241x -+21x x +-=-1.19.(8分)先化简2249xx--÷(1-13x-),再从不等式2x-3<7的正整数解中选一个使原式有意义的数代入求值.20.(8分)(2019·黄冈)为了对学生进行革命传统教育,红旗中学开展了“清明节祭扫”活动.全校学生从学校同时出发,步行4000米到达烈士纪念馆.学校要求九(1)班提前到达目的地,做好活动的准备工作.行走过程中,九(1)班步行的平均速度是其他班的1.25倍,结果比其他班提前10分钟到达.分别求九(1)班、其他班步行的平均速度.21.(12分)一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1)乙队单独做需要多少天才能完成任务?(2)现将该工程分成两部分,甲队做其中一部分工程用了x天,乙队做另一部分工程用了y天,若x,y都是正整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?参考答案1.D2.A3.D4.B5.D6.D7.D8.D9.A 10.C 11.-112.45.1240200=-xx 13.-338xy 14.201915.-23 16.a ≤4且a ≠3 17.(1)-b a b+. (2)由⎩⎪⎨⎪⎧x -1>1,5-2x ≥-2得2<x ≤72. ∵x 为整数,∴x =3,∴x 2x 2-1÷⎝⎛⎭⎫1x -1+1=x 2()x +1()x -1÷1+x -1x -1=x 2()x +1()x -1×x -1x =x x +1=34. 18.(1)x =4.(2)x =31.19.答案不唯一,略20.解:设其他班步行的平均速度为x 米/分,则九(1)班步行的平均速度为1.25x 米/分.依题意,得4000x -40001.25x=10,解得x =80, 经检验,x =80是原方程的解,且符合题意,∴1.25x =100.答:九(1)班步行的平均速度为100米/分,其他班步行的平均速度为80米/分.21. (1)乙队单独做需要100天才能完成任务.(2)甲、乙两队实际分别做了14天和65天.。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、函数的自变量的取值范围是()A. B. 且 C. D. 且2、下列代数式是分式的是( )。

A. B. C. D.3、如果,那么x的值为()A.2或-1B.0或1C.2D.-14、生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×10 7B.3.2×10 8C.3.2×10 ﹣7D.3.2×10 ﹣85、计算a12÷a4(a≠0)的结果是()A.a 3B.a ﹣8C.a 8D.a ﹣36、某文化旅游节期间,几名同学包租一辆面包车前去游览,面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少分摊了3元车费,设实际参加游览的同学共x人,则所列方程为()A. B. C. D.7、下列计算正确的是( )A. + =B. - =C. - =1D.- =8、如果把中的与都扩大3倍,那么这个代数式的值()A.扩大9倍B.扩大3倍C.缩小到原来的D.不变9、使分式有意义的x的取值范围是()A.x≠3B.x>3C.x<3D.x=310、若分式的值为零,则x的值为()A.3B.3或﹣3C.0D.-311、无论取什么数,总有意义的分式是()A. B. C. D.12、计算的结果为()A. B. C. D.13、速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x个字,根据题意列方程,正确的是()A. =B. =C. =D.=14、当x=1时,下列分式的值为0的是()A. B. C. D.15、如果把分式中的m和n都扩大3倍,那么分式的值( )A.扩大6倍B.缩小3倍C.不变D.扩大3倍二、填空题(共10题,共计30分)16、当x=________时,分式的值为0.17、分式方程的解为________.18、计算:|2016﹣|0﹣()﹣1+32=________.19、=________20、将代数式化为只含有正整数指数幂的形式________.21、小成每周末要到距离家5千米的体育馆打球,他骑自行车前往体育馆比乘汽车多用10分钟,乘汽车的速度是骑自行车速度的2倍.设骑自行车的速度为x千米/时,根据题意列方程为________.22、若分式的值等于0,则a的值为________.23、当x=________时,分式无意义.24、 =________;25、计算:÷(-18ax3)=________三、解答题(共5题,共计25分)26、先化简,再求值:(1﹣)÷,其中x= ﹣2.27、是脱贫攻坚、全面建设小康社会关键年.为响应党的号召,蓬溪县中职校向一所希望小学赠送文具1080件,现用A、B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个.问B型包装箱每个可以装多少件文具?28、已知,求的值.29、若分式﹣1的值是正数、负数、0时,求x的取值范围.30、先化简,然后a在﹣1,1,2三个数中任选一个合适的数代入求值.参考答案一、单选题(共15题,共计45分)1、B2、B3、C4、C5、C6、A7、D8、B10、D11、A12、C13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、若分式的值为0,则x的值为()A.﹣1B.1C.﹣2D.22、下列关于x的方程中,是分式方程的是()A. B. C. D.3、为预防禽流感,学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为()A. B. C.D.4、若a,b为两个有理数,且b=,则a+b的值为()A.±6B.3C.3或5D.55、下列运算正确的是()A.()﹣1=﹣B.6×10 7=6000000C.(2a)2=2a 2D.a 3•a 2=a 56、某工厂现在平均每天比原计算多生产30台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同,设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =7、若,则()A.-1B.C.1D.8、己知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤-lB.a≤-2C.a≤1且a≠-2D.a≤-1且a≠-29、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.10、分式的最简公分母是()A. x ( x+2)( x-2)B.( x 2-2 x)( x 2-4)C.( x+2)( x-2)D.x(x-2)(x-4)11、化简的结果是( )A.(x+1) 2B.(x-1) 2C.D.12、如果分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍13、使分式有意义的的取值范围是()A. B. C. D.14、下列式子中,错误的是()A. B. C. D.15、小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设小玲步行的平均速度为x米/分,根据题意,下面列出的方程正确的是()A. - =30B. - =30C. -=30 D. - =30二、填空题(共10题,共计30分)16、计算(1﹣)(x+1)的结果是________.17、计算: 的结果是________.18、世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076g,用科学记数法表示是________g.19、化简:________.20、若,则x的取值范围是________ .21、计算:÷=________.22、如果关于x的分式方程有增根,那么m的值为________.23、当________时,方程无解.24、若在实数范围内有意义,则x的取值范围是________.25、已知分式,当x=2时,分式无意义,则a=________;当a为a<6的一个整数时,使分式无意义的x的值共有________个.三、解答题(共5题,共计25分)26、化简求值:,其中.27、我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.今年文学书和科普书的单价与去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?28、先化简,再求值:•(﹣)+ ,其中a=2,b=﹣3.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.求一台A型空气净化器和一台B型空气净化器的进价各为多少元?30、参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、D6、A7、A8、B9、B10、A11、B12、C13、A14、B15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、下列式子是分式的是A. B. C. D.2、下列函数中,自变量的取值范围是x≥3的是()A. B. C.y=x-3 D.3、化简的结果()A.x+yB.x-yC.y-xD.-x-y4、下列各式(1﹣x),,,+x,,其中分式共有()个.A.2B.3C.4D.55、下列各式中,运算正确的是()A.a 6÷a 3=a 2B.C.D.6、已知,则的值是()A. B.﹣ C.2 D.﹣27、老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是()A.甲B.乙C.丙D.丁8、九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()A. B. C. D.9、下列计算中,正确的是()A. B. C. D.10、分式,,的最简公分母是()A. B. C. D.11、下列计算正确的是 ( )A. B. C. D.12、某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A. B. = C.D.13、解分式方程时,去分母后变形正确的是()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3D.2-(x+2)=3(x-1)14、下列各式中,正确的是()A. =B. =C. =D. =-15、下列各式:中,是分式的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、分式有意义的条件是________.17、计算:________.18、若关于 x 的方程无解,则 m=________.19、若分式的值为零,则x的值为________.20、代数式有意义时,x应满足的条件是________.21、计算=________22、如果,那么代数式的值是________.23、计算:=________.24、计算:(﹣2)﹣1﹣|﹣3|=________.25、计算:________.三、解答题(共5题,共计25分)26、解方程:.27、化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.28、现有甲、乙两个空调安装队分别为A、B两个公司安装空调,甲安装队为A 公司安装66台空调,乙安装队为B公司安装60台空调,甲、乙两队安装空调所用的总时间相同.已知甲队比乙队平均每天多安装2台空调,求甲、乙两个安装队平均每天各安装空调的台数.29、某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?30、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、A5、C6、D7、B8、C9、D10、C11、B12、D13、D14、C15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、若二次根式有意义,且关于x的分式方程+2=有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣42、下列计算正确的是()A. B. C. D.3、分式方程的解为()A. B. C. D.无解4、下列运算正确的是()A. B.(﹣3a)2=3a 2 C.2a+2a=4a D.a 3•a 2=a 65、下列运算,正确的是A. B. C. D.6、在下面的计算中,正确的是()A. B. C. D.7、下列计算正确的是()A.(﹣3x) 2=9x 2B.(﹣x) ﹣1=C. ﹣=4D.(﹣x 2) 3=x 58、如果a2+2a﹣1=0,那么代数式(a﹣)•的值是()A.﹣3B.﹣1C.1D.39、已知关于x的方式方程的解是非负数,那么a的取值范围是()A.a>1B.a≥1且a≠3C.a≥1且a≠9D.a≤110、已知分式的值为0,那么x的值是()A.-2B.-1C.1D.1或-211、当a=﹣1时,分式()A.等于零B.等于1C.等于﹣1D.没有意义12、小兰画了一个函数的图象如图,那么关于x的分式方程的解是()A. B. C. D.13、计算:•的结果是()A. B. C. D.14、某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x天,则下面所列方程正确的是()A. B. C. D.15、化简÷的结果是()A.mB.C.m-1D.二、填空题(共10题,共计30分)16、分式方程:的解为________.17、市场上的红茶由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买15吨纯净水.由于今年以来茶产地连续大旱,茶原液收购价上涨50%,纯净水价也上涨了10%,导致配制的这种茶饮料成本上涨40%,问这种茶饮料中茶原液与纯净水的配制比例为________.18、若关于的分式方程无解,则________.19、计算:________.20、若分式的值为零,则x=________.21、若关于的分式方程的解为正整数,则满足条件的正数的值为________.22、已知方程x+ (c是常数,c≠0)的解是c或,那么方程x+(a是常数,且a≠0)的解是________或________.23、约分:=________.24、计算:________.25、计算-2-4的结果是________.三、解答题(共5题,共计25分)26、解方程:=0.27、已知a是锐角,且sin(a+15°)= ,计算﹣4cosα﹣(π﹣3.14)0+tanα+ 的值.28、已知分式:A= ,B= ,其中x≠±2.学生甲说A与B相等,乙说A与B互为倒数,丙说A与B互为相反数,她们三个人谁的结论正确?为什么?29、为了改善社区环境,某社区计划对3600平方米的区域进行绿化,社区委员会对甲乙两个工程队考查发现,甲队每天能完成的绿化面积是乙队每天能完成绿化面积的倍,如果两队各自独立完成社区的绿化任务,甲队比乙队少用10天,求甲乙两个工程队每天各能完成多少绿化面积.30、先化简,后求值:,其中x满足x2﹣x﹣2=0.参考答案一、单选题(共15题,共计45分)1、D2、D4、C5、D6、D7、A8、C9、C10、A11、A12、A13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、若代数式有意义,则实数x的取值范围是()A.x>0B.x≥0C.x>0且x≠2D.x≥0且x≠22、下列各式:其中分式共有()个.A.1B.2C.3D.43、下列运算正确的是A.a+a=a 2B.a 6÷a 3=a 2C.(π﹣3.14)0=0D.4、要使分式有意义,则x的取值范围为()A.x>1B.x≥1C.x≠1D.x=15、若分式的值为0,则()A. B. C. D.6、计算﹣÷(﹣)的结果是()A. B. C. D.7、温州市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0.2万棵,结果提前5天完成任务,设原计划每天植树x 万棵,根据题意可列方程()A. B. C. D.8、若数a使关于x的分式方程+ =4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10B.12C.14D.169、若分式的值为零,那么x的值为A.0B.±1C.-1D.110、下列各式:,,a+b,(x+3)÷(x﹣1),﹣m2,,其中分式共有()A.3个B.4个&nbsp;C.5个D.6个11、在、、中分式有().A.1个B.4个C.3个D.2个12、下列计算正确的是()A. B. C. D.13、关于x的方程无解,则m的值为()A.0B.-7C.-5D.514、如图,数轴上、两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处,按照这样的规律继续跳动到点(,是整数)处,问经过这样2020次跳动后的点与点的距离是()A. B. C. D.15、若解关于的方程时产生增根,那么的值为( )A.1B.2C.0D.-1二、填空题(共10题,共计30分)16、函数中,自变量的取值范围是________.17、填空:,则空为________,________.18、若分式方程=a 无解,则a的值为________.19、函数中自变量x的取值范围是________.20、若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的正整数a的值为________.21、分式,,的最简公分母是________,通分时,这三个分式的分子分母依次乘以________,________,________.22、关于x的分式方程无解,则m的值是________23、计算m÷n•= ________;化简=________.24、当x________时,式子有意义;当x________时,分式的值为零.25、若式子有意义,则实数x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中x= +1.27、先化简再求值:(x﹣)÷(1+),其中x=tan45°+2sin45°.28、“母亲节”前夕,某商店根据市场调查,用 3000 元购进第一批盒装花,上市后很快售完,接着又用 5000 元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的 2 倍,且每盒花的进价比第一批的进价少5 元.求第一批盒装花每盒的进价是多少元?29、某校师生去离校15km的千果园参观,张老师带领服务组与师生队伍同时出发,服务组的行进速度是师生队伍的1.2倍,以便提前30分钟到达做好准备,求服务组与师生队伍的行进速度.30、新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成200万只医用外科口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天生产口罩的数量是乙厂每天生产口罩数量的2倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问甲、乙两厂每天各生产多少万只口罩?参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、C5、B6、D7、A8、B9、D10、A11、D12、B13、C14、A15、A二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、计算,结果正确的是()A. B. C. D.2、下列计算正确的是()A.(π﹣1)0=1B. =C.()﹣2=D. + =3、使代数式有意义的x的取值范围是()A.x≠-2B.x<3且x≠-2C.x≤3且x≠2D.x≤3且x≠-24、要使分式有意义,则x的取值范围是()A.x≠1B.x>1C.x<1D.x≠﹣15、已知分式(a,b为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 c d分式的值无意义 1 0 ﹣1A.a=1B.b=8C.c=D.d=6、化简的结果是()A. B. C. D.7、要使分式无意义,则x的取值是()A.3B.0C.1D.8、在代数式,,,中,分式共有()A.1个B.2个C.3个D.4个9、若分式的值为0,则x的值为()A.0B.1C.-1D.10、计算:()A.1B.-1C.4D.-411、下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A.1个B.2个C.3个D.4个12、计算的结果是()A.-2B.-4C.-6D.-713、若分式方程有增根,则m的值是()A.﹣1或1B.﹣1或2C.1或2D.1或﹣214、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D.=15、当分式方程=1+中的a取下列某个值时,该方程有解,则这个a是()A.0B.1C.-1D.-2二、填空题(共10题,共计30分)16、=________。

17、使分式有意义的x的范围是 ________ 。

18、观察下列各式:= ﹣;= ﹣;= ﹣;…请利用你所得结论,化简代数式:+ + +…+ (n≥3且n为整数),其结果为________.19、函数y= 中,自变量x的取值范围是________.20、计算,的符合题意结果为________.21、若分式有意义,则________.22、某单位全体员工在植树节义务植树240棵.原计划每小时植树m棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了________小时完成任务(用含m的代数式表示).23、计算:________.24、代数式的值为2,则x=________。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、分式方程的解为( )A.x=1B.x=2C.x=4D.x=32、若分式有意义,则的取值范围是()A. B. C. D.3、化简÷,其结果是().A. B.2 C.﹣2 D.4、A、B两地相距千米,一艘轮船从A地顺流行至B地,又立即从B地逆流返回A地,共用9小时,已知水流速度为千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程为()A. B. C. D.5、计算的值是()A. B. C. D.6、下列计算正确的是()A. B. C.D.7、若是分式方程的根,则的值为()A.6B.-6C.4D.-48、下列运算正确的是()A. B. C. D.9、如果把分式中的和都扩大5倍,那么分式的值是()A.扩大5倍B.扩大10倍C.不变D.缩小5倍10、代数式中是分式的有()A.1个B.2个C.3个D.4个11、式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1C.D.12、分式方程的解是()A.x=﹣2B.x=1C.x=2D.x=313、若分式的值为零,则等于A.2B.C.D.014、化简的结果是()A.x+1B.x﹣1C.﹣xD.x15、化简的结果是()A.x+1B.C.x﹣1D.二、填空题(共10题,共计30分)16、分式方程的解为________.17、已知,则m=________ .18、计算|﹣2|+()﹣1×(π﹣)2﹣=________.19、已知a﹣3=2,b﹣5=3,用“<”来比较a、b的大小:________.20、代数式有意义,x应满足的条件是________21、在函数中,自变量x的取值范围是________.22、若分式的值为0,则x的值为________.23、约分:①=________;②=________.24、要使分式有意义,则x的取值范围是________.25、计算:﹣()﹣1=________.三、解答题(共5题,共计25分)26、计算:(2017﹣)0×﹣()﹣1﹣4cos45°.27、以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有不符合题意?如果有不符合题意,写出正确的解答过程.28、小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是36千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.29、某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?30、解方程:参考答案一、单选题(共15题,共计45分)1、D2、B3、C5、A6、C7、A8、D9、C10、B11、A12、D13、B14、D15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章 分式 含答案

人教版八年级上册数学第十五章分式含答案一、单选题(共15题,共计45分)1、计算的结果是()A.x 2﹣1B.x﹣1C.x+1D.12、等于()A. B.4 C. D.-43、下列运算中,正确的是( )A.x 2007+x 2008=x 4015B.2009 0=0C.D.(-)·(-) 2=-34、式子有意义的x的取值范围是()A. x≥﹣且x≠1B. x≠1C.D. x>﹣且x≠15、若分式有意义,则实数x的取值范围是( )A.一切实数B.C.D. 且6、﹣()]=中,在()内填上的数是()A. B. C. D.7、2-2等于()A. B.- C.4 D.-48、使分式有意义的x的取值范围是()A.x≠1B.x≠﹣1C.x<1D.x>19、分式的值为零,则x的值为()A.3B.﹣3C.±3D.任意实数10、若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠-1D.a≠011、在代数式、、6x2y、、、、中,分式有().A.4个B.3个C.2个D.1个12、下列各运算中,计算正确的是()A. B. C. D.13、在,,-0.7xy+y3,,中,分式有()A.2个B.3个C.4个D.5个14、若把分式中的x和y都扩大2倍,那么分式的值()A.扩大2倍B.不变C.缩小2倍D.缩小4倍15、下列分式中,是最简分式的是()A. B. C. D.二、填空题(共10题,共计30分)16、分式与的最简公分母是________,方程的解是________.17、为推进垃圾分类,推动绿色发展,某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为l40万元.若设甲型机器人每台万元,根据题意,列方程为________.18、分式和的最简公分母是________19、计算:=________20、关于x的分式方程=﹣2解为正数,则m的取值范围是________.21、一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为________22、计算:=________23、要使分式有意义,则x的取值范围是________.24、已知方程,如果设,那么原方程可以变形为________.25、分式方程的解是________.三、解答题(共5题,共计25分)26、解方程:27、今年初,新型冠状病毒肺炎侵袭湖北,武汉是重灾区,某爱心人士两次购买N95口罩支援武汉,第一次花了500000元,第二次花了770000,购买了同样的N95口罩,已知第二次购买的口罩的单价是第一次的1.4倍,且比第一次多购进了10000个,求该爱心人士第一次购进口罩的单价.28、先化简,再求值:÷(﹣),其中x= ﹣1.29、先化简后求值:,其中.30、某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、A5、C6、D7、A9、A10、C11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.解:(1) + + +…+
=1- + - + - +…+ -
=1-
= ;
(2)①∵ + =
= ,
∴ ,
解得 .
∴A和B的值分别是 和- ;
②∵ = • - •
= •( - )- ( - )
∴原式= • - • + • - • +…+ • - •
= • - •
= -
= .
故 且 .
故答案为 且 .
18.解:(1)去分母得:2x﹣5=3(2x﹣1),解得:x=﹣ ,
经检验x=﹣ 是分式方程的解;
所以原方程的解是x=﹣ ;
(2)去分母得:2x﹣1﹣x+1=0,解得:x=0,
经检验x=0是增根,所以分式方程无解.
19解:设 ,则 , , .
所以 .
20解:原式=[ + ]÷ =( + )•x=x﹣1+x﹣2=2x﹣3
10.计算(a2)3+a2·a3-a2÷a-3的结果是( )
A.2a5-aB.2a5- C.a5D.a6
11.已知关于x的分式方程 =1的解是负数,则m的取值范围是( )
A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2
12.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是( )
八年级上册《第15章分式》单元同步测验卷
一、单选题
1.代数式 中的x取值范围是( )
A.x B.x C.x D.
2.下列各式:2个C.3个D.4个
3.若分式 中的x和y都扩大10倍,那么分式的值()
A.扩大10倍B.是原来的
C.是原来的 D.不变
4.已知 ,则分式 的值()
A. B. C. D.
5.若 ,则()中的式子是( )
A. B. C. D.
6.计算 的结果是()
A. B. C. D.
7.化简分式 过程中开始出现错误的步骤是()
A.①B.②C.③D.④
8.分式方程 的解为()
A. B. C. D.
9.下列计算正确的是()
A. B.
C. D.
A. =2B. =2
C. =2D. =2
二、填空题
13.若分式 的值为0,则 的值为______.
14.方程 的解是_____.
15.计算 的结果是_____.
16.已知 = + ,则实数A=_____.
17.关于 的分式方程 的解为正数,则 的取值范围是_____.
三、解答题
18.(1)解方程: + =3;(2)解方程: =0 .
试着把上面和式的每一项都裂成两项,注意观察其中的规律,求出上面的和,并直接写出 的值.

求:A、B的值:
求: 的值.
参考答案
1.C2.C3.D4.B5.B6.A7.B8.A9.D10.D11.D12.A
13.1.14.x=2.15. 16.1
17.解:去分母得: ,
解得: ,

解得: ,
当 时, 不合题意,
经检验,x=90是原方程的解.
∴乙队单独完成需90天.
(2)设甲、乙合作完成需y天,则有 ,
解得,y=36;
①甲单独完成需付工程款为:60×3.5=210(万元).
②乙单独完成超过计划天数不符题意,
③甲、乙合作完成需付工程款为:36×(3.5+2)=198(万元).
答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
24.按要求完成下列题目.
求: 的值.
对于这个问题,可能有的同学接触过,一般方法是考虑其中的一般项,注意到上面和式的每一项可以写成 的形式,而 ,这样就把 一项 分 裂成了两项.
19.已知 ,求 的值.
20.先化简,再求值: ,且x为满足﹣3<x<2的整数.
21.化简分式( + )÷ ,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.
22.先化简,再求值:(1﹣ )÷ ,其中a=2+ .
23.在我市某一城市美化工程招标时,有甲、乙两个工 程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.
由于x≠0且x≠1且x≠﹣2,
所以x=﹣1,
原式=﹣2﹣3=﹣5
21.解:原式=[ ﹣ ]÷
=( ﹣ )•
= •
=a+3,
∵a≠﹣3、2、3,
∴a=4或a=5,
则a=4时,原式=7.
22.解:原式=
=
=
当a=2+
原式= .
23.解:(1)设乙队单独完成需x天.
根据题意,得: .
解这个方程得:x=90.
相关文档
最新文档