中考数学考前50天专练1-10
中考数学考前50天得分专练10
A DB C D中考数学考前50天得分专练10一、细心填一填,1.计算:3-= ;012⎛⎫-= ⎪⎝⎭;cos 45=.2.分解因式:2a a -=;化简:= ;计算:31(2)4a a ⎛⎫-=⎪⎝⎭. 3.若点(21)P k -,在第一象限,则k 的取值范围是 ;直线2y x b =+经过点(13),,则b = ;抛物线22(2)3y x =-+的对称轴为直线 .4.已知圆锥的底面直径为4cm ,其母线长为3cm ,则它的侧面积 为 2cm .5.如图,ABC △和DCE △都是边长为2的等边三角形,点B C E ,,在同一条直线上,连接BD ,则BD的长为 . 二、精心选一选,6.要了解一批电视机的使用寿命,从中任意抽取30台电视机进行试验,在这个问题中,30是( ) A .个体 B .总体 C .样本容量 D .总体的一个样本7.计算a b a bb a a +⎛⎫-÷ ⎪⎝⎭的结果为( ) A .a bb- B .a b b + C .a b a - D .a ba + 8.已知反比例函数2y x=,下列结论中,不正确...的是( ) A .图象必经过点(12), B .y 随x 的增大而减少 C .图象在第一、三象限内 D .若1x >,则2y <9.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是( ) A .长方体 B .圆柱体 C .球体 D .三棱柱10.下列说法中正确的有( )(2)函数y =x 的取值范围是1x >(3)8的立方根是2±(4)若点(2)P a ,和点(3)Q b -,关于x 轴对称,则a b +的值为5 A .1个 B .2个 C .3个 D .4个AE BCF D 1 2311.下列命题是真命题的有( )(1)一组数据21012--,,,,的方差是3(2)要了解一批新型导弹的性能,采用抽样调查的方式(3)购买一张福利彩票,中奖.这是一个随机事件(4)分别写有三个数字124--,,的三张卡片,从中任意抽取两张,则卡片上的两数之积为正数的概率为13A .1B .2个C .3个D .4个12.如图,已知梯形ABCD 中,AD BC ∥,AB CD AD ==,AC BD , 相交于O 点,60BCD ∠=,则下列说法正确的有( )(1)梯形ABCD 是轴对称图形 (2)2BC AD =(3)梯形ABCD 是中心对称图形(4)AC 平分DCB ∠ A .1 B .2个 C .3个 D .4个 三、耐心做一做,13.解不等式组255432x x x x -<⎧⎨-+⎩≥,. 14.已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作 DF DE ⊥交BC 的延长线于点F .求证:DE DF =.15. 2008年5月31日奥运会圣火传递活动在湖北武汉市内举行.我市红城中学校团委在学校七年级8个班中,开展了一次“迎奥运,为奥运加油”的有关知识比赛活动,得分最多的班级为优胜班级,比赛(1)请直接写出各班代表队得分数的平均数、众数和中位数;(2)学校决定:在本次比赛获得优胜的班级中,随意选取5名学生,免费送到武汉观看奥运圣火,小颖是七(7)班的学生,则她获得免费送到武汉观看奥运圣火的概率是多少?16.已知:如图,在ABC △中,AB AC =,以AB 为直径的O 交过点D 作DE AC ⊥于点E .求证:DE 是O 的切线.ADOCBC17.(本题满分8分)如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,20AB CD ==cm ,200BD =cm ,且AB CD ,与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?一、填空1.3;1;22 .a (a-1)22a - 3. K >1; 1; X=2 4. 6π5.二、选择6. C7.A8.B9.C 三.多选题10.B 、D 11.B 、C 、D 12.A 、B 、D 四、解答题13. 13.(本题满分6分)解不等式组25,543 2.x x x x -<⎧⎨-+⎩≥解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5 由不等式(2)得:x ≥3 所以:5>x ≥314.(本题满分7分)已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF ⊥DE 交BC 的延长线于点F .求证:DE=DF .A CB D解:∵四边形ABCD 是正方形,∴ AD=CD ,∠A=∠DCF=900又∵DF ⊥DE ,∴∠1+∠3=∠2+∠3 ∴∠1=∠2在Rt △DAE 和Rt △DCE 中, ∠1=∠2 AD=CD ∠A=∠DCF∴Rt △DAE Rt △DCE ∴DE=DF . 15解:(1)平均分:87.5分; 众数:90分; 中位数:90分(2) 七(7)的分数为100分,所以七(7)班为优胜班级。
中考数学九年级专题训练50题含答案
中考数学九年级专题训练50题含答案一、单选题1.若23a b =,则a b b +的值为( ) A .23 B .53 C .35 D .322.下列函数关系式中属于反比例函数的是( )A .3y x =B .3y x =-C .23y x =+D .3x y += 3.已知反比例函数k y x=(0k <)的图象上有两点()()1122,,,A x y B x y ,且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定 4.在函数y=中,自变量的取值范围是A .x≠B .x≤C .x ﹤D .x≥ 5.一个几何体的三视图如图,则该几何体是( )A .B .C .D .6.已知二次函数2y ax bx c =++的图象如图所示,有下列结论: ①11024a b c ++>; ①方程20ax bx c ++=的两根之积小于0;.①y 随x 的增大而增大;=+的图象一定不经过第四象限.其中正确的结论有()①一次函数y ax bcA.4个B.3个C.2个D.1个7.如图,在①O内有折线OABC,其中OA=8,AB=12,①A=①B=60°,则BC的长为()A.19B.16C.18D.208.如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则CO:C ′O的值为()A.1:2B.2:1C.1:4D.1:39.关于抛物线244=﹣,下列说法错误的是()y x x+A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=2D.当x>2时,y随x的增大而减小10.已知①O的半径为5cm,点P在直线l上,且点P到圆心O的距离为5cm,则直线l与①O()A.相离B.相切C.相交D.相交或相切11.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.ABBC=DEEFB.ABAC=DEDFC.EFBC=DEABD.OEEF=EBFC12.用5个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A.B.C.D.13.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.514.如图,在①O中,直径AB①弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.①A=12①BOD D.①A=12①ACD15.如图,在矩形ABCD中,AB=3,BC=4,点P在AD上,若将①ABP沿BP折叠,使点A落在矩形对角线AC上,则AA′的长为()A.95B.94C.185D.9216.如图,在Rt ABC中,90C∠=︒,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P 到边AB距离的最小值是().A.1B.4C.1.2D.2.417.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米18.如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数kyx=(k≠0,x<0)的图象上,点C的坐标为(2,2-),则k的值为()A.4B.2C.2-D.4-19.如图,四边形ABCD为半径为R的O的内接四边形,若AB R=,CD=,4AD,BC=O的直径为()=A.4B.C.8D.二、填空题20.如图,AB是①O的直径,BC与①O相切于点B,AC交①O于点D,若①ACB=50°,则①BOD=______度.21.如图,在长方体ABCD EFGH-中,棱BC与棱AE的位置关系是______.22.测得一种树苗的高度与树苗生长的年数有关的数据如下表所示(树高原高100 cm)假设以后每年树苗的高度的变化规律与表中相同,请用含n ( n 为正整数)的式子表示生长了n 年的树苗的高度为__________cm.23.如图:折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知AB=8,①B=300,则CD 的长是_______.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________ 25.如图,已知AB CD EF ∥∥,则下列四个结论①EF BE CD EC =;①AE BE ED EC =;①1EF EF AB CD+=中,正确的有__________(填正确结论序号).26.比的意义:两个数____又叫做两个数的比.“:”是比号,读作比;比号前面的数叫做比的____,比号后面的数叫做比的____.27.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)28.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.29.如图,ABC 是O 的内接三角形,点D 是BC 的中点,已知98AOB ∠=,120COB ∠=,则ABD ∠的度数是________度.30.如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.31.抛物线21212y x x =++与y 轴的交点是________,解析式写成2()y a x h k =-+的形式是________,顶点坐标是________.32.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将①ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin①ECF =__________.33.在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,)b ,则b 的取值范围是_____.34.如图,正比例函数y =kx 与反比例函数y =6x的图象有一个交点A (m ,3),AB ①x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数解析式是___.35.如图,已知点A (0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,①α=75°,则直线y x b =+的解析式为_________.36.在①ABCD 中,E 是AD 上一点,23AE DE =,连接BE 、AC 相交于F ,则下列结论:①23AE BC =;①ΔΔ425AEF CBF S S =;①52BF EF =;①Δ1031ABF CDEF S S =四边形,正确的是 __________.37.点C 是AB 的黄金分割点,4AB =,则线段AC 的长为__________.38.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是_______.39.如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是______.三、解答题40.如图1,在四边形ABCD 中,AB ①AD ,AB ①BC ,以AB 为直径的①O 与CD 相切于点E ,连接OC 、OD .(1)求证:OC ①OD ;(2)如图2,连接AC 交OE 于点M ,若AB =4,BC =1,求CM AM的值.41.已知ABC ①111A B C △,111A B C △①222A B C △,则ABC 与222A B C △有怎样的关系?为什么?42.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件.设这段时间内售出该商品的利润为y 元.(1)直接写出利润y 与售价x 之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?43.某商场销售一批工艺品,平均每天可售出20件,每件赢利45元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件工艺品每降价1元,商场平均每天可多售出4件.(1)设每件工艺品降价x 元,商场销售这种工艺品每天盈利y 元,求出y 与x 之间的函数关系式;(2)每件工艺品降价多少元时,才能使每天利润最大,最大利润为多少?44.某水库大坝的横截面是如图所示的四边形ABCD ,其中AB①CD .大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,渔船N 在俯角45β=︒,已知MN 所在直线与PC 所在直线垂直,垂足为点E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度为,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)45.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A 点的坐标为(O ,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块①OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?46.解方程:(1)()()3525x x x +=+(2)22310x x --=47.在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________.(2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.48.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系; (2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;①如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.49.已知抛物线214y x bx c =++与x 轴交于A ,B 两点(点A 在点B 左边),与y 轴交于点C.直线1y x42=-经过B,C两点.(1)求抛物线的解析式;(2)如图1,动点M,K同时从A点出发,点M以每秒4个单位的速度在线段AB上运动,点K AC上运动,当其中一个点到达终点时,另一个点也随之停止运动设运动的时间为()0t t>秒.①如图1,连接MK,再将线段MK绕点M逆时针旋转90︒,设点K落在点H的位置,若点H恰好落在抛物线上,求t的值及此时点H的坐标;②如图2,过点M作x轴的垂线,交BC于点D,交抛物线于点P,过点P作PN BC⊥于N,当点M运动到线段OB上时,是否存在某一时刻t,使PNC△与AOC相似.若存在,求出t的值;若不存在,请说明理由.参考答案:1.B 【分析】依据23a b =,可得a 23=b ,代入即可得出答案案. 【详解】①23a b =, ①3a =2b ,①a 23=b , ①2533b b a b b b ++==. 故选:B .【点睛】本题考查了比例的性质,解题时注意:内项之积等于外项之积.2.B【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选:B . 【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是k y x=(0k ≠) . 3.D【分析】分,A B 在同一象限,和不在同一象限,两种情况进行讨论求解即可.【详解】解:①k y x =(0k <), ①反比例函数的图象过二、四象限,在每一个象限内,y 随x 的增大而增大,当,A B 在同一象限时:①12x x <,①12y y <,①120y y -<,当,A B 不在同一象限时,①12x x <,①A 在第二象限,B 在第四象限,①120y y >>,①120y y ->;综上:12y y -的值无法确定;故选D .【点睛】本题考查比较反比例函数的函数值大小.熟练掌握反比例函数的性质,是解题的关键.注意,分类讨论.4.C【详解】 1-2x≥0且x-≠0 解得:x ﹤.故选C5.D【分析】根据主视图与左视图可以判断几何体的下部是柱体,上部为台体,再结合俯视图即可确定答案.【详解】由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选:D .【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.6.B【分析】根据二次函数的图象与性质依次判断即可求出答案.【详解】①由图象可知:x =2时,y >0,①y =4a +2b +c >0, 即a +12b +14c >0,故①正确; ①由图象可知:a >0,c <0,①ax 2+bx +c =0的两根之积为c a<0,故①正确; ①当x >−2b a时,y 随着x 的增大而增大,故①错误;①由图象可知:−2b a>0, ①b <0,①bc >0, ①一次函数y =ax +bc 的图象一定不经过第四象限,故①正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.D【分析】延长AO 交BC 于D ,根据①A 、①B 的度数易证得①ABD 是等边三角形,由此可求出OD 、BD 的长;过O 作BC 的垂线,设垂足为E ;在Rt①ODE 中,根据OD 的长及①ODE 的度数易求得DE 的长,进而可求出BE 的长;由垂径定理知BC=2BE ,由此得解.【详解】解: 延长AO 交BC 于D ,作OE①BC 于E ;①①A=①B=60°,①①ADB=60°;①①ADB 为等边三角形;①BD=AD=AB=12;①OD=4,又①①ADB=60°, ①DE=12OD=2;①BE=10;①BC=2BE=20;故选D . 【点睛】此题主要考查了等边三角形的判定和性质以及垂径定理的应用,解答此题的关键是正确做出辅助线,得到①ADB为等边三角形.8.A【分析】根据位似图形的性质知:BC①C′B′,则①BCO①①B′C′O′,根据该相似三角形的对应边成比例得到答案.【详解】解:如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则①ABC与①A′B′C′的相似比为1:2.①①ABC与①A′B′C′是位似图形,①BC∥C′B′,①①BCO①①B′C′O′.①CO:C′O=BC:B′C′=1:2.故选:A.【点睛】本题考查了位似图形的性质:两个图形的对应边平行,面积的比等于位似比的平方.9.D【分析】根据抛物线解析式求出顶点坐标和对称轴,利用二次函数的性质即可判断.【详解】解①a=1>0,①开口向上,故A正确;①22=﹣=(﹣),442y x x x①顶点坐标(2,0),对称轴x=2,①抛物线的顶点在x轴上,①与x轴有两个重合的交点,故B、C正确;①抛物线开口向上,对称轴为直线x=2,①当x>2时,y随x的增大而增大,故D错误.故选:D.【点睛】本题考查抛物线与x轴的交点以及二次函数的性质,解题的关键是熟练掌握配方法全等抛物线的顶点坐标,对称轴,属于中考常考题型.10.D【分析】直接根据直线与圆的位置关系即可得出结果;【详解】①①O的半径为5cm且点P到圆心O的距离为5cm,当OP的距离是圆心到直线的距离时,①点P在圆上,①直线l与①O相切,当OP的距离不是圆心到直线的距离时,得到直线与圆相交.故答案选D.【点睛】本题主要考查了直线与圆的位置关系,准确分析判断是解题的关键.11.D【分析】直接根据平行线分线段成比例定理进行判断即可得出结论.【详解】A、①直线a①直线b①直线c,①ABBC=DEEF,正确,故本选项不符合题意;B、①直线a①直线b①直线c,①ABAC=DEDF,正确,故本选项不符合题意;C、①直线a①直线b①直线c,①EFBC=DEAB,正确,故本选项不符合题意;D、不能证明OEEF=EBFC,错误,故本选项符合题意.故选D.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.12.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,1,故选D.【点睛】本题主要考查了三视图的知识,关键是找准俯视图所看的方向.13.D【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65、0.7、0.58、0.52、0.51、0.5,可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5,故选D.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.14.C【分析】根据垂径定理判断即可.【详解】连接DA,①直径AB①弦CD,垂足为M,①CM=MD,①CAB=①DAB,①2①DAB=①BOD,①①CAD=12①BOD.故答案选:C.【点睛】本题考查了垂径定理及其推论,解题的关键是熟练的掌握垂径定理及其推论.15.C【分析】在Rt ABC 中,由勾股定理求得AC ,根据折叠可得到BP 是AA '的垂直平分线,从而得到BP AA '⊥,2AA OA ''=,而由矩形ABCD 可知AB BC ⊥,从而可以得到90AOB ABC ∠=∠=,以及12901390∠+∠=∠+∠=,,进而可证得AOB ABC ~,由相似的性质求得线段长度.【详解】解:由题意知, AB BC ⊥,BP AA '⊥,2AA OA ''=,①90AOB ABC ∠=∠=,① 12901390∠+∠=∠+∠=,,①23∠∠=,①AOB ABC ∠=∠,23∠∠=,①AOB ABC ~, ①AB AO AC AB=,在Rt ABC 中,AC =, ①29=5AB AO AC =,182=5AA OA '=, 故答案选:C .【点睛】本题考查垂直平分线的判定和性质,相似三角形的判定和性质,矩形的性质,勾股定理,比较综合.16.C【分析】先依据勾股定理求得AB 的长,然后依据翻折的性质可知PF =FC ,故此点P 在以F 为圆心,以2为半径的圆上,依据垂线段最短可知当FP ①AB 时,点P 到AB 的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】解:如图所示:当PE ①A B .在Rt①ABC中,①①C=90°,AC=6,BC=8,①AB,由翻折的性质可知:PF=FC=2,①FPE=①C=90°.①PE①AB,①①PDB=90°.由垂线段最短可知此时FD有最小值.又①FP为定值,①PD有最小值.又①①A=①A,①ACB=①ADF,①①AFD①①AB C.①AF DFAB BC=,即4108DF=,解得:DF=3.2.①PD=DF-FP=3.2-2=1.2.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.B【分析】根据地形图上的等高线的比例尺和图上距离求得两点间的实际距离,再利用解直角三角形的知识求得山顶的海拔高度即可.【详解】解:①两点的图上距离为6厘米,例尺为1:50000,①两点间的实际距离为:6÷150000=3000米,①从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°,米,①点M的海拔为250米,①山顶P的海拔高度为=1732+250=1982米.故选B .【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形.18.D【分析】根据反比例函数的几何意义只要求出矩形OGAH 的面积也可,依据矩形的性质发现S 矩形OGAH =S 矩形OECF ,而S 矩形OECF 可通过点C (2,2-)转化为线段长而求得,再根据反比例函数的所在的象限,确定k 的值即可.【详解】解:如图,根据矩形的性质可得:S 矩形OGAH =S 矩形OECF ,①点C 的坐标为(2,-2),①OE=2,OF=2,①S 矩形OECF =OE•OF=4,设A (a ,b ),则OH=-a ,OG=b ,①S 矩形OGAH =OH•OG=-ab=4,又①点A 在函数k y x=(k≠0,x <0)的图象上, ①4k ab ==-;故选:D. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.C【分析】取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,先证得①AOB =60°及①COD =120°,可得AOD+①BOC =180°,再利用垂径定理可得①AOG+①BOF =90°,最后通过证①BOF①①OAG 得OF =AG =2,再利用勾股定理求解即可.【详解】解:如图,取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,①OA =OB =AB =R ,①①AOB 为等边三角形,①①AOB =60°,①OE①CD,CD =,①12CE CD R ==, 在Rt①COE 中,2sin CE COE CO R ∠===①①COE =60°,①①COD =2①COE =120°,①①AOD+①BOC =360°﹣①COD ﹣①AOB =180°,①OF①BC ,OG①AD ,①AG =12AD =2,BF =12BC =①AOG =12①AOD ,①BOF =12①BOC , ①①AOG+①BOF =12(①AOD+①BOC )=90° 又①①AOG+①OAG =90°,①①BOF =①OAG ,①①BOF =①OAG ,①BFO =①OGA =90°,OB =OA ,①①BOF①①OAG (AAS ),①OF =AG =2,在Rt①BOF中,4OB ==,①O 的直径=2OB =8,故选:C .【点睛】本题考查了垂径定理,等边三角形的判定及性质,解直角三角形,全等三角形的判定及性质和勾股定理,通过理清题目意思并作出正确的辅助线是解决本题的关键.20.80【分析】根据切线的性质得到①ABC=90°,根据直角三角形的性质求出①A,根据圆周角定理计算即可.【详解】解:①BC是①O的切线,①①ABC=90°,①①A=90°-①ACB=40°,由圆周角定理得,①BOD=2①A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21.异面【分析】棱BC与棱AE不在同一平面内,属于异面线段.【详解】解:棱BC与棱AE不在同一平面内,属于异面线段,故答案为:异面.【点睛】本题考查了认识立体图形,理解异面直线的意义是正确解题的前提.22.100+5n【分析】从上表可以看出,树每年长高5厘米.所以生长了n 年的树苗的高度为100+5n.【详解】解:根据题意有:生长了n 年的树苗的高度为100+5n故答案为100+5n.【点睛】本题的关键是算出树每年长高多少厘米.通过观察,分析、归纳并发现其中的规律.23.【详解】试题分析:根据题意,得①EAD=①B=30°,AE=BE=4.设DE=x,则AD=2x,根据勾股定理,得x2+16=4x2,解得x=.①DE=.考点:了翻折变化;角平分线的性质;勾股定理24.6【分析】根据根与系数的关系变形后求解.【详解】解:①x 1、x 2是方程x 2−2x−1=0的两根,①x 1+x 2=2,x 1×x 2=−1,①x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为6.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 25.①①【分析】~BEF BCD ∆∆根据相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可得三组三角形相似,然后依据相似三角形的性质:对应边成比例即可进行判断,得出结果.【详解】解:①∵EF CD ∥,∴~BEF BCD ∆∆, ∴EF BE CD BC=,故①错误; ①AB CD ∥,∴~AEB DEC ∆∆, ∴AE BE ED EC=,故①正确; ①AB EF ∥,∴~DEF DAB ∆∆, ∴EF DF AB BD=, 由①得:~BEF BCD ∆∆, ∴EF BF CD BD=, 1EF EF DF BF BD AB CD BD BD BD+=+==,故①正确; 综合可得:①①正确,故答案为:①①.【点睛】题目主要考查相似三角形的判定定理和性质,熟练掌握相似三角形的判定定理和性质是解题关键.26. 相除 前项 后项【解析】略27【分析】铅直高度BC 可得①ACB =90°,由勾股定理AC =AB 的坡比即可.【详解】解:①BC ①AC ,①①ACB =90°,在Rt △ABC 中,①AB =12米,BC =6米,由勾股定理=①自动扶梯AB 的坡比BC i AC ==.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.28.-1【分析】由已知中α,β是方程4x 2-4mx+m+2=0∥∥x∥R∥∥∥∥∥∥∥∥∥∥∥∥∥∥≥0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:①关于4x 2﹣4mx +m +2=0的两个实数根,①b 2﹣4ac =(-4m )2-4×4(m +2)≥0,①m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ①m ≥2或m ≤﹣1,①α+β=﹣44m -=m ,α•β=14(m +2), ①α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ①当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解, 29.101【分析】根据周角为360°,可求出①AOC 的度数,由圆周角定理可求出①ABC 的度数,关键是求①CBD 的度数;由于D 是弧BC 的中点,根据圆周角定理知①DBC =12①BAC ,而①BAC 的度数可由同弧所对的圆心角①BOC 的度数求得,由此得解.【详解】①①AOB =98°,①COB =120°①①AOC =360°-①AOB -①COB =142°,①①ABC =71°,①D 是弧BC 的中点,①①CBD =12①BAC ,又①①BAC =12①COB =60°,①①CBD =30°,①①ABD =①ABC +①CBD =101°,故答案为101度.【点睛】本题主要考查了圆心角、圆周角的应用能力,解此题的要点在于求①CBD 的度数.30.()3【分析】四边形ABCD 是菱形,由图象可得AC 和BD 的长,从而求出OC 、OB 和ACB ∠.当点P 在A D -段上运动且P 、Q 两点间的距离最短时,此时PQ 连线过O 点且垂直于BC .根据三角函数和已知线段长度,求出P 、Q 两点的运动路程之和.【详解】由图可知,2AC BD ==(厘米),①四边形ABCD 为菱形①11122OC AC OB BD ====(厘米) ①30ACB ∠=︒P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和2()S OC CQ =+①3cos 2CQ OC ACB =⋅∠==(厘米)①3232S ⎫==⎪⎭(厘米)故答案为3).【点睛】本题主要考查菱形的性质和三角函数.解题的关键在于从图象中找到菱形对角线的长度.31. ()0,1 21(2)12y x =+- ()2,1-- 【分析】令抛物线的x =0,即可求得与y 轴交点坐标;将等号右边配成完全平方式即可;根据抛物线的顶点式解析式即可求出其顶点坐标.【详解】令x =0,则y =1,即抛物线与y 轴的交点为(0,1);y =12 (x 2+4x )+1=12 (x 2+4x +4)−1=12(x +2)2−1, ①顶点坐标为(−2,−1).故答案填空为(0,1),y =12 (x +2)2−1,(−2,−1).【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与应用.32.45 【详解】过E 作EH①CF 于H ,则有①HEC+①ECH=90°,由折叠的性质得:BE=EF ,①BEA=①FEA ,①点E 是BC 的中点,①CE=BE ,①EF=CE ,①①FEH=①CEH ,①①AEB+①CEH=90°, ①①ECH=①AEB ,即①ECF=①AEB ,在矩形ABCD 中,①①B=90°,, ①sin①ECF=sin①AEB=AB AE=45 , 故答案为45.33.32b -≤≤-【分析】延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E ,即可求出CE 的长,设点A 的坐标为(x ,1),由题意可得1≤x ≤3,用x 和b 表示出AD 、BD 、AE ,然后证出①BDA ①①AEC ,列出比例式即可求出b 与x 的二次函数关系,然后根据x 的取值范围即可求出b 的取值范围.【详解】解:延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E①①AEC =90°①M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),①MN ①y 轴①CE =1,①DBA +①DAB =90°设点A 的坐标为(x ,1),由题意可得1≤x ≤3①AD =x ,BD =yA -yB =1-b ,AE =xC -xA =4-x①AB AC ⊥①①EAC +①DAB =90°①①DBA =①EAC①①BDA =①AEC =90°①①BDA ①①AEC ①=BD AD AE CE 即141-=-b x x 整理,得241=-+b x x =()223x --,b 是x 的二次函数,其中1>0①1≤x ≤3①当x =2时,b 最小,最小值为-3;当x =1时,b 最大,最大值为-2①-3≤b ≤-2故答案为:-3≤b ≤-2.【点睛】此题考查的是相似三角形的判定及性质和二次函数的应用,掌握相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.34.y =32x ﹣3. 【分析】可以先求出点A 的坐标,进而知道直线平移的距离,得出点B 的坐标,平移前后的k 相同,设出平移后的关系式,把点B 的坐标代入即可.【详解】①点A (m ,3)在反比例函数y =6x的图象, ①3=6m,即:m =2, ①A (2,3)、B (2,0)点A 在y =kx 上,①k =32①y =32x ①将直线y =32x 平移2个单位得到直线l , ①k 相等设直线l 的关系式为:y =32x +b ,把点B (2,0)代入得:b =﹣3, 直线l 的函数关系式为:y =32x ﹣3; 故答案为y =32x ﹣3. 【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k 值相等,是解决问题的关键. 35.5y x =+【分析】首先根据直线y=x+b (b >0)与x 轴、y 轴分别交于点C 、点B ,求出点C ,点B 的坐标各是多少;然后根据①α=75°,①BCA=45°,应用三角形的外角的性质,求出①BAC 的度数是多少,进而求出b 的值是多少即可.【详解】如图,,①直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,①点C的坐标是(-b,0),点B的坐标是(0,b),①①α=75°,①BCA=45°,①①BAC=75°-45°=30°,tan30=︒=解得b=5.故答案为y=x+5.【点睛】(1)此题主要考查了解直角三角形问题,要熟练掌握,解答此题的关键是要明确解直角三角形要用到的关系:①锐角直角的关系:①A+①B=90°;①三边之间的关系:a2+b2=c2.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.36.①①①【分析】根据平行四边形的性质可得AD BC∥,AD BC=进而可得AEF CBF∽△△,根据23AEDE=,即可求得25AEBC=,ΔΔ425AEFCBFSS=,52BFEF=进而判断①①①,根据三角形的面积和平行四边形的面积可得,分别用ABCDS表示出ABFS△与CDEFS四边形,进而求得其比值【详解】解:四边形ABCD是平行四边形∴AD BC∥,AD BC=∴AEF CBF∽△△AF AE EFCF BC BF∴==23AEDE=25AEAD∴=∴25AE AEBC AD==∴2425AEFCBFS AES BC⎛⎫==⎪⎝⎭。
中考数学考前50天得分专练15
中考数学考前50天得分专练(15)一、填空题(每空3分,满分33分)1.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字). 2.函数1y x =-中,自变量x 的取值范围是 . 3.如图,BAC ABD ∠=∠,请你添加一个条件: ,使OC OD =(只添一个即可).4.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm ,弧长是6πcm ,那么围成的圆锥的高度是 cm . 5.如图,某商场正在热销2008年北京奥运会的纪念品,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是 元.6.有一个正十二面体,12个面上分别写有1~12这12个整数,投掷这个正十二面体一次,向上一面的数字是3的倍数或4的倍数的概率是.7.在半径为5cm 的圆中,两条平行弦的长度分别为6cm 和8cm ,则这两条弦 之间的距离为 . 8.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是 .9.下列各图中, 不是正方体的展开图(填序号).10.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . 11.如图,菱形111AB C D 的边长为1,160B ∠=;作211AD B C ⊥于 点2D ,以2AD 为一边,做第二个菱形222AB C D ,使260B ∠=;① ② ③ ④第9题图 D OC B A 第3题图 O B A 第4题图5cm 第6题图 一共花了170元 第5题图1D B 3第11题图A C 2B 2C 3D 3 B 1D 2C 1 作322AD B C ⊥于点3D ,以3AD 为一边做第三个菱形333AB C D , 使360B ∠=; 依此类推,这样做的第n 个菱形n n n AB C D的边n AD 的长是.二、选择题(每题3分,满分27分)12.下列各运算中,错误的个数是( )①01333-+=- =③235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .413.用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( ) A .P 为定值,I 与R 成反比例 B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例14.为紧急安置100名地震灾民,需要同时搭建可容纳6人和4人的两种帐篷,则搭建方案共有( ) A .8种 B .9种 C .16种 D .17种 15.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,16.下列图案中是中心对称图形的是( )17.关于x 的分式方程15mx =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定18.5月23日8时40分,哈尔滨铁路局一列满载着2400吨“爱心”大米的专列向四川灾区进发,途中除3次因更换车头等原因必须停车外,一路快速行驶,经过80小时到达成都.描述上述过程的大致图象是( )A .B .C .D .第16题图第18题图19.已知5个正数12345a a a a a ,,,,的平均数是a ,且12345a a a a a >>>>,则数据123450a a a a a ,,,,,的平均数和中位数是( )A .3a a ,B .342a a a +, C .23562a a a +, D .34562a a a +, 20.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中:①EF AB∥且12EF AB =;②BAF CAF ∠=∠; ③12ADFE S AF DE = 四边形; ④2BDF FEC BAC ∠+∠=∠,正确的个数是( ) A .1 B .2 C .3D .4三、解答题 21.(本小题满分5分)先化简:224226926a a a a a --÷++++,再任选一个你喜欢的数代入求值.第20题图ttB.C .D .参考答案一、填空题,每空3分,满分33分(多答案题全对得3分,否则不得分) 1.92.710⨯2.3x ≤且1x ≠3.C D ∠=∠或ABC BAD ∠=∠或AC BD =或OAD OBC ∠=∠ 4.45.1456.127.1cm 或7cm 8.12 9.③10.6或10或1211.1n -⎝⎭二、选择题,每题3分,满分27分.12.C 13.B 14.A 15.A 16.B 17.C 18.D 19.D 20.B三、解答题21.解:224226926a a a a a --÷++++2(2)(2)2(3)2(3)2a a a a a +-+=++- ······················································································· (1分) 242633a a a a ++=-+++ ······································································································· (2分) 23a =+···························································································································· (3分) n 取3-和2以外的任何数,计算正确都可给分. ······················································· (5分)。
中考数学考前50天得分专练2试题
2021年中考数学考前50天得分专练2一、题一共12小题,每一小题3分,一共36分,一项符合题目要求的,不涂、错涂或者涂的代号超过一个,一律得0分〕1.2008-的相反数是〔 〕A .2008 B .2008- C .12008 D .12008-2.以“和谐之旅〞为主题奥运会火炬接力,传递总里程约为137000千米,这个数据用科学记数法可表示为〔 〕A .313.710⨯千米 B .413.710⨯千米C .513.710⨯千米D .613.710⨯千米3.在算式435--□中的□所在位置,填入以下哪种运算符号,计算出来的值最小〔 〕A .+B .-C .⨯D .÷4.一几何体的三视图如右,这个几何体是〔 〕A .圆锥B .圆柱C .三棱锥D .三棱柱5.我5月份某一周每天的最高气温统计如下: 那么这组数据〔最高气温〕的众数与中位数分别是〔 〕A .29,30 B .30,29 C .30,30D .30,316.以下运算中正确的选项是〔 〕A .336x y x =B .235()m m =C .22122x x-=D .633()()a a a -÷-=-7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=〔 〕A .180B .270C .360D .5408.以下曲线中,表示y 不是x 的函数是〔 〕9.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕A .菱形 B .梯形C .正三角形A .B .C .D .俯视图左视 主视〔第4题图〕ab MP N123〔第7题图〕D .正五边形10.把抛物线2y x =-向左平移1平移后抛物线的解析式为〔 〕A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .(y x =-中,90C ∠=,8AC =,6BC =,两等圆A ,B 局部〕的面积之和为〔 〕A .254π B .258π C .2516π D .2532π12.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动[即(00)(01)(11)(10)→→→→,,,,…],且每秒挪动一个单位, 那么第35秒时质点所在位置的坐标是〔 〕 A .(40),B .(50),C .(05),D .(55),二、细心填一填,试自己的身手!〔本大题一一共6结果直接填写上在答题卡相应位置上〕13.反比例函数ky x=的图像过点(23)-,,那么k = .14.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如下图〔满分是100分, 学生成绩取整数 段的频率是 .15.如图,AB AC =,120BAC ∠=,AB 的垂直平分线交BC 于点D ,那么ADC ∠= .16.不等式组84113422x x x x +<-⎧⎪⎨-⎪⎩≥的解集是 .2 〔第12题图〕ABCD〔第15题图〕〔第14题图〕15 成绩10017.在实数范围内定义运算“☆〞,其规那么为:22a b a b =-☆,那么方程(43)13x =☆☆的解为x = .18.四个全等的直角三角形围成一个大正方形,中间空出的局部是一个小正方形,这样就组成了一个“赵爽弦图〞〔如图〕.假如小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ, 那么sin θ= . 三、用心做一做,显显自己的才能! 19.〔此题满分是6分〕请你先将式子2200811211a a a a ⎛⎫-+ ⎪-+-⎝⎭化简,然后从1,2,3中选择一个数...作为a 的值代入其中求值.20.〔此题满分是8分〕它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤〔如下图〕:第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;〔第18题图〕第四步:过B 作EF AD ⊥交AD 的延长线于F ,请你根据以上作法,证明矩形DCEF 为黄金矩形,〔可取2AB =〕A BCD EFM N 〔第20题图〕参考答案一、选择题二、填空题13.6-14.0.415.6016.3x >17.6±18.35〔或者0.6〕说明:第14题答25不扣分;第17题只答对一题给2分. 三、解答题 19.解:原式2200811(1)1a a a a -+=÷-- ······················ 2分 220081(1)a a a a-=⨯- ····························· 3分 20081a =- ································· 4分 取2a =,原式2008=.〔取3a =,原式1004=〕 ·············· 6分 20.证明:在正方形ABCD 中,取2AB =N 为BC 的中点,112NC BC ∴== ····························· 2分在Rt DNC △中,ND === ············ 4分又NE ND =,1CE NE NC ∴=-=-, ························ 6分CE CD ∴= ····························· 7分 故矩形DCEF 为黄金矩形. ························· 8分励志赠言经典语录精选句;挥动**,放飞梦想。
中考数学考前50天得分专项专练1
中考数学考前50天得分专项专练1中考数学考前50天得分专项专练1只有一项是符合题目要求的.1.-一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,1的相反数是3A.3 B.-3 C.11 D.-332.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为A.8.99×105亿米3�� B.0.899×106亿米3��C.8.99×104亿米3�� D.89.9×103亿米33.下列图形中既是轴对称图形又是中心对称图形的是A. B. C. D.4.下列说法错误的是A.必然发生的事件发生的概率为1 B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1 D.不确定事件发生的概率为05.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是A.甲票10元�M张,乙票8元�M张 B.甲票8元�M张,乙票10元�M张C.甲票12元�M张,乙票10元�M张 D.甲票10元�M张,乙票12元�M 张6.下列三视图所对应的直观图是A. B. C. D.7.若A(a1,b1),B(a2,b2)是反比例函数y??与b2的大小关系是2图象上的两个点,且a1<a2,则b1xA.b1<b2�� B.b1 = b2�� C.b1>b2�� D.大小不确定8.初三・一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是A.12 B.10 C.9 D.89.如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则A.3S1 = 2S2�� B.2S1 = 3S2C.2S1 =3S2�� D.3S1 = 2S210.将一块弧长为? 的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为A.3 B.35 C.5 D.22A11.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A所在直线为折痕,折叠纸片,DB C使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =A.60? B.67.5? C.72? D.75?12.已知一次函数y = ax + b的图象过点(-2,1),则关于抛物线y = ax2-bx + 3的三条叙述:① 过定点(2,1),② 对称轴可以是x = 1,③ 当a<0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是A.0 B.1 C.2 D.3二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上.13.因式分解:2m2-8n2 = .14.如图,梯形ABCD中,AB∥CD,AD = CD,E、F分别是AB、BC的中点,若∠1 = 35?,则∠D = .15.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小明离他家的距离,则小明从学校回家的平均速度为 ____________千米�M小时.16.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶2,则线段AC的中点P变换后对应的点的坐标为.17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为. 18.若a、b、c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:① 以a2,b2,c2 的长为边的三条线段能组成一个三角形② 以a,b,c的长为边的三条线段能组成一个三角形③ 以a + b,c + h,h 的长为边的三条线段能组成直角三角形④ 以111,,的长为边的三条线段能组成直角三角形 abc其中所有正确结论的序号为.三、解答题19.(本题共2小题,每小题8分,共16分)(1)计算:(?)?()?12021?123?|tan45??3|.(2)化简:20.(本题满分12分)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:图1 图2(1)计算本班骑自行车上学的人数,补全图1的统计图;��(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);��(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).x3??1,并指出x的取值范围. x?1(x?1)(x?2)参考答案一、选择题:1.C 2.A 3.D 4.D 5.A 6.C 7.D 8.B 9.A 10.B 11.B 12.C 二、填空题:13.2(m + 2n)(m-2n) 14.110? 15.6 16.(2,三、解答题: 19.(1)2?3(2)337)或(-2,-) 17. 18.②③④ 22271,x的取值范围是x≠-2且x≠1的实数. x?120.(1)∵ 小明所在的全班学生人数为14÷28% = 50人,∴ 骑自行车上学的人数为50-14-12-8 = 16人;其统计图如图1.(2)乘公共汽车、骑自行车、步行、其它所占全班的比分别为14÷50,16÷50,12÷50,8÷50即28%,32%,24%,16%,它们所对应的圆心角分别是100.8?,115.2?,86.4?,57.6?,其统计图如图2.(3)小明所在的班的同学上学情况是:骑自行车的学生最多;通宿生占全班的绝大多数;住校或家长用车送的占少数.感谢您的阅读,祝您生活愉快。
九年级数学中考考前50天得分专练练习全国通用 试题03
轧东卡州北占业市传业学校一、填空题〔本大题每个空格1分,共18分.把答案填在题中横线上〕1.2-的相反数是 ,13-的绝对值是 ,立方等于64-的数是 .2.点(12)A -,是 ;点A 关于原点对称的点的坐标是 .3.假设30α=∠是 °,cos α= .4.在校园歌手大赛中,那么这组数据的平均数是 ,极差是 .5.扇形的半径为2cm ,面积是24cm 3π,那么扇形的弧长是 cm ,扇形的圆心角为 °.6.一次函数y kx b =+的图象经过点(02)A -,,(10)B ,,那么b = ,k = .7.如图,DE BC ∥,5AD =,3DB =,9.9BC =,50B =∠,那么ADE=∠ °,DE = ,ADEABCS S =△△ .8.二次函数2y ax bx c =++的局部对应值如下表:二次函数2y ax bx c =++图象的对称轴为x = ,2x =对应的函数值y = .二、选择题〔以下各题都给出代号为A ,B ,C ,D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后〔 〕内,每题2分,共18分〕9.在以下实数中,无理数是〔 〕A .13B .πC D .22710.在函数12y x =-+中,自变量x 的取值范围是〔 〕A .2x≠ B .2x -≤ C .2x≠-D .2x -≥11.以下轴对称图形中,对称轴的条数最少的图形是〔 〕A .圆 B .正六边形 C .正方形D .等边三角形12.袋中有3个红球,2个白球,假设从袋中任意摸出1个球,那么摸出白球的概率是〔 〕A .15B .25C .23D .13〔第7题〕B13..A 汽车的速度是40千米/时B .第12分时汽车的速度是0第3分到第6分,汽车行驶了120千米D .从第9的速度从60千米/时减少到0千米/时14.下面各个图形是由6个大小相同的正方形组成的,其中能沿正方形的边折叠成一个正方体的是〔 〕15.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是〔 〕 A .15号B .16号C .17号D .18号16.假设二次函数222y ax bx a =++-〔a b ,为常数〕的图象如下,那么a 的值为〔 〕A .2-B .C .1D17.如图,在8=,BC =相切的动圆与CA CB,A .4.75B .4.8C .5D . 三、解答题〔本大题共2小题,共18分.解容许写出演算步骤〕 18.〔本小题总分值10分〕化简: 〔1〕0222-+ 〔2〕24142x x ---. 19.〔本小题总分值8分〕解方程: 〔1〕341x x=-; 〔2〕2220x x +-=. 20.〔本小题总分值5分〕,如图,在ABCD 中,BAD ∠的平分线交BC 边于点E .〔第13题〕 时间/分36912 A . B . 〔第16题〕17题〕 AC求证:BE CD =.21.〔本小题总分值7分〕,如图,延长ABC △的各边,使得BF AC =,AED E F ,,,得到DEF △为等边三角形. 求证:〔1〕AEFCDE △≌△;〔2〕ABC △为等边三角形.参考答案一、填空题〔每个空格1分,共18分〕1.2,13,4-; 2.(12),,(12)-,;3.60;4.,0.3;5.43π,120;6.2-,2; 7.50,6.6,49;8.1,8-.二、选择题〔本大题共9小题,每题2分,共18分〕三、解答题〔本大题共2题,第18题10分,第19题8分,共18分.解容许写出演算步骤〕 18.解:〔1〕原式1134=+- ······························ 3分 74=-. ······························· 5分〔2〕原式42(2)(2)(2)(2)x x x x x +=--+-+ ······················ 2分42(2)(2)x x x --=-+······························ 3分(2)(2)(2)x x x --=-+······························ 4分12x =-+. ································· 5分〔第21题〕19.解:〔1〕去分母,得344x x =-. ·························1分解得,4x=.···································· 2分经检验,4x =是原方程的根.∴原方程的根是4x =. ································4分 〔2〕2(1)3x +=, ··································2分1x +=. ····································3分11x ∴=-21x =--. ··························· 4分21.证明:四边形ABCD 是平行四边形,AD BC ∴∥,AB CD =.DAE BEA ∴=∠∠. ································1分 AE 平分BAD ∠,BAE DAE ∴=∠∠.······················ 2分BAE BEA ∴=∠∠.································ 3分AB BE ∴=. ····································4分 又AB CD =,BE CD ∴=.···························· 5分 21.证明:〔1〕BF AC =,AB AE =,FA EC ∴=. ···············1分 DEF △是等边三角形,EF DE ∴=. ························ 2分又AE CD =,AEF CDE ∴△≌△.······················· 4分〔2〕由AEF CDE △≌△,得FEA EDC =∠∠,BCA EDC DEC FEA DEC DEF =+=+=∠∠∠∠∠∠,DEF △是等边三角形,60DEF ∴=∠,60BCA ∴=∠,同理可得60BAC=∠. ······················ 5分ABC ∴△中,AB BC =. ······························ 6分ABC ∴△是等边三角形.······························· 7分。
中考数学复习50个知识点专题专练:10 不等式
中考数学50个知识点专练10 不等式一、选择题1.小颖准备用21元钱买笔和笔记本,已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买多少支笔? ( )A .1支B .2支C .3支D .4支2.(2011·茂名)若函数y =m +2x的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是( )A .m >-2B .m <-2C .m >2D .m <23.(2010·南州)关于x 、y 的方程组⎩⎪⎨⎪⎧x -y =m +3,2x +y =5m 的解满足 x >y >0 ,则m 的取值范围是( )A. m >2B. m >-3 C .-3<m <2 D .m <3或m >24.一种灭虫药粉30千克,含药率是15%,现在要用含药率较高的同种灭虫药粉50千克和它混合,使混合后的含药率大于20%且小于35%,则所用药粉的含药率x 的范围是( )A .15%<x <23%B .15%<x <35%C .23%<x <47%D .23%<x <50% 5.(2011·烟台)如图,直线y 1=k 1x +a 与y 2=k 2x +b 的交点坐标为(1,2),则使y 1< y 2的x 的取值范围为( )A .x >1B .x >2C .x <1D .x <2二、填空题 6.(2011·泉州)在函数y =x +4中,自变量x 的取值范围是________.7.(2011·嘉兴)当x ________时,分式13-x有意义.8.(2011·陕西)若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.9.(2011·临沂)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载________捆材料.10.(2011·东营)如图,用锤子以相同的力将铁钉锤入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm ,如铁钉总长度是6 cm ,则a 的取值范围是________.三、解答题11.(2011·广州)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?12.(2011·绍兴)筹建中的城南中学需720套单人课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)现学校筹建组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.13.(2011·桂林)某校志愿者团队在重阳节购买了一批牛奶到“夕阳红”敬老院慰问孤寡老人,如果给每个老人分5盒;则剩下38盒,如果给每个老人分6盒,则最后一个老人不足5盒,但至少分得1盒.(1)设敬老院有x名老人,则这批牛奶共有多少盒?(用含x的代数式表示);(2)该敬老院至少有多少名老人?最多有多少名老人.14.(2011·潼南)潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬((1)求A、B两类蔬菜每亩平均收入各是多少元?(2)某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.15.(2010·桂林)某校初三年级春游,现在36座和42座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人;已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校初三年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.四、选做题16.(2011·江西)某数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°),现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB、AC上.活动一如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直. (A1A2为第1根小棒)数学思考(1)小棒能无限摆下去吗?答:__________;(填“能”或“不能”)(2)设AA1=A1A2=A2A3=1.①θ=________度;②若记小棒A2n-1A2n的长度为a n(n为正整数,如A1A2=a1,A3A4=a2,…), 求出此时a2,a3的值,并直接写出a n(用含n的式子表示).活动二如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第一根小棒,且A1A2=AA1.数学思考(3)若已经摆放了3根小棒,则θ1=______,θ2=______,θ3=________;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.。
中考数学考前50天得分专练6新人教版
福建省连江明智学校 中考数学 考前50天得分专练6 新人教版一、选择题(考生注意,本大题共10个小题,每题2分,共20分,在每个小题给出的四个选项中只有一项是符合题目要求的,请将正确答案的代号填在下表内) 1.下列计算正确的是( ) A.0(2)0-=B.239-=-C.93=D.235+=2.2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( )A.伦敦时间2008年8月8日11时 B.巴黎时间2008年8月8日13时 C.纽约时间2008年8月8日5时 D.汉城时间2008年8月8日19时3.下列交通标志中既是中心对称图形,又是轴对称图形的是( )4.怀化市2006年的国民生产总值约为333.9亿元,预计2007年比上一年增长10%,用科学计数法表示2007年怀化市的国民生产总值应是(结果保留3个有效数字)( ) A.103.6710⨯元 B.103.67310⨯元 C.113.6710⨯元 D.83.6710⨯元5.已知点(23)P -,关于y 轴的对称点为()Q a b ,,则a b +的值是( ) A.1 B.1- C.5 D.5-6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最.多.可由多少个这样的正方体组成?( ) A.12个 B.13个C.14个 D.18个7.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A.7cm B.17cm C.12cm D.7cm 或17cm8.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( )9.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有( ) ①6cm DE =②2cm BE =③菱形面积为260cm④410cm BD =A.1个 B.2个 C.3个 D.4个10.已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙 则( ) A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 二、填空题(本大题共10个小题,每小题2个,共20分) 11.函数13y x =-中,自变量x 的取值范围是 .12.分解因式:2a ab -=.13.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是 度. 14.方程组3520x y x y +=⎧⎨-=⎩的解是.15.两圆有多种位置关系,图中不存在的位置关系是 .16.已知方程230x x k -+=有两个相等的实数根,则k =.17.如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称 .18.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.19.如图:111A B C ,,分别是BC AC AB ,,的中点,2A ,2B ,2C 分别是11B C ,11A C ,11A B的中点这样延续下去.已知ABC △的周长是1,111A B C △的周长是1L ,222A B C △的周长是2n n n L A B C 的周长是n L ,则n L =.20.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是(结果保留根号)三、解答题21.先化简,再求值.(本题满分7分)3(2)(2)()a b a b ab ab -++÷-,其中2a =1b =-22.(本题满分7分)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE =一、选择题二、填空题。
中考数学考前50天得分专练42
中考数学考前50天得分专练(42)一.选择题(本大题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项填在相应的答案栏内,不选.多选.错选均不给分) 1.2-的绝对值是( ) A.2- B.2 C.21-D.212.已知两圆的半径分别为3和4,圆心距为8,那么这两个圆的位置关系是( )A.内切B.相交C.外切D.外离3.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )4.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( ) A.256)x 1(2892=- B.289)x 1(2562=-C.256)x 21(289=-D.289)x 21(256=-5.把抛物线2x y =向右平移2个单位得到的抛物线是( )A.2x y 2+= B.2x y 2-= C.2)2x (y += D.2)2x (y -=6.如图,C 是以AB 为直径的⊙O 上一点,已知AB=5,BC=3,则圆心O 到弦BC 的距离是( ) A.1.5 B.2 C.2.5 D.37.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A.甲的方差大于乙的方差,所以甲的成绩比较稳定;B.甲的方差小于乙的方差,所以甲的成绩比较稳定;C.乙的方差小于甲的方差,所以乙的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定; 8.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球比赛,1场是羽毛球比赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是( ) A.41 B.31 C.21 D.32 A.B. B第6题图ABCED 9.32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( )A.41B.39C.31D.29 10.如图,点O 在Rt △ABC 的斜边AB 上,⊙O 切AC 边于点E ,切BC 边于点D , 连结OE ,如果由线段CD.CE 及劣弧ED围成的图形(阴影部分)面积与△AOE 的面积相等, 那么ACBC 的值约为(π取3.14) ( )A.2.7B.2.5C.2.3D.2.1二.填空题(本大题有6小题,每小题5分,共30分,将答案填在题中横线上)11.分解因式:______________25x 2=- 12.如图,点C 在线段AB 的延长线上,︒=∠15DAC ,︒=∠110DBC ,则D ∠的度数是_____________13.在半径为5的圆中,︒30的圆心角所对的弧长为_________(结果保留π) 14.如图,点D.E 分别在△ABC 的边上AB.AC 上,且ABC AED ∠=∠,若DE=3,BC=6,AB=8,则AE 的长为___________15.汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心.已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;16.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;三.解答题(本大题有8小题,共80分,请务必写出解答过程) 17.(本题8分)计算:303221(27-+18.(本题8分)解方程:1x121x x 3=---32 3 5 733 9 11341315 17 19 A BD C EOA BDC19.(本题8分)如图,AB ∥CD(1)用直尺和圆规作C ∠的平分线CP ,CP 交AB 于点E(保留作图痕迹,不写作法)(2)在(1)中作出的线段CE 上取一点F ,连结AF.要使△ACF ≌△AEF ,还需要添加一个什么条件?请你写出这个条件(只要给出一种情况即可;图中不再增加字母和线段;不要求证明).20.(本题8分)如图,四边形ABCD 中,AB=AD ,CB=CD ,但AD ≠CD ,我们称这样的四边形为“半菱形”.小明说“‘半菱形’的面积等于两条对角线乘积的一半”.他的说法正确吗?请你判断并证明你的结论.21.(本题10分)如图,在平面直角坐标系中,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 在第象限,将△OAB 绕点O 按逆时针方向旋转至△OA ′B ′,使点B 的对应点B ′落在y 轴的正半轴上,已知OB=2,︒=∠30BOA (1)求点B 和点A ′的坐标;(2)求经过点B 和点B ′的直线所对应的一次函数解析式,并判断点A 是否在直线BB ′上.A B C DA CD参考答案11.)5)(5(-+x x 12.︒95 13.π65 14.4 15.500元.700元或600元.600元 16.51.2 三.解答题 17.(本题8分)解:原式=813-+=4- 18.(本题8分)解:方程两边都乘以)1(-x ,得:123-=+x x ,解得:23-=x 经检验:23-=x 是原方程的根; 19.(本题8分) 解:(1)作图略;(2)取点F 和画AF 正确(如图);添加的条件可以是:F 是CE 的中点;AF ⊥CE ;∠CAF=∠EAF 等.(选一个即可)20.(本题8分) 解:正确. 证明如下:方法一:设AC ,BD 交于O ,∵AB=AD ,BC=DC ,AC=AC , ∴△ABC ≌△ADE , ∴∠BAC=∠DAC AB=AD ,∴AO ⊥BDAO BD 21S ABD ⋅=∆,CO BD 21S BCD ⋅=∆CO BD 21AO BD 21S S S BCD ABD ABCD ⋅+⋅=+=∴∆∆四边形AC BD 21)CO AO (BD 21⋅=+=方法二:∵AB=AD ,∴点A 在线段BD 的中垂线上.又∵CB=CD ,∴点C 与在线段BD 的中垂线上,∴AC 所在的直线是线段BD 的中垂线,即BD ⊥AC ; 设AC ,BD 交于O ,∵AO BD 21S ABD ⋅=∆,CO BD 21S BCD ⋅=∆ CO BD 21AO BD 21S S S BCD ABD ABCD⋅+⋅=+=∴∆∆四边形AC BD 21)CO AO (BD 21⋅=+= CABDEPFA BCD O。
中考 数学专练10(统计与概率大题)(30题)(老师版)
2022中考考点必杀500题 专练10(统计与概率大题)(30道)1.(2022·浙江绍兴·一模)健康的体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.某初中学校为了提高学生体质健康,制定合理的校园阳光体育锻炼方案,随机抽查了部分学生最近两周参加体育锻炼活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)抽查的学生中锻炼8天的有______人.(2)本次抽样调查的众数为______,中位数为_______.(3)如果该校约有2000名学生,请你估计全校约有多少名学生参加体育锻炼的天数不少于7天? 【答案】(1)60人 (2)5天,6天(3)估计全校约有800名学生参加体育锻炼的天数不少于7天 【解析】 (1)解:12020600÷=%(人)600254051060⨯---⨯=(1-20%%%%)=600%(人)故抽查的学生中锻炼8天的有60人. (2)解:参加体育锻炼活动5天的人最多,故众数是5; 一共600人,最中间是第300个和301个, 从小到大排序后第300个和301个数都是6天, ∴中位数是6;(3)解:参加体育锻炼的天数不少于7天的人所占百分比是:%%%%,2510540++=⨯%=(人)200040800答:估计全校约有800名学生参加体育锻炼的天数不少于7天.【点睛】本题主要考查了概率统计的知识,包括扇形统计图和条形统计图的联系、众数和中位数的概念和用样本估计总体,牢固掌握以上知识点是做出本题的关键.2.(2022·浙江宁波·二模)第24届冬奥会于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的䢯选工作.某中学通过将冰雪运动 “早地化” 的方式积极开展了基础滑冰、早地滑雪、早地冰球、早地冰显四个运动项目,要求每一位学生都自主选择一个运动项目,为了了解学生选择冰雪运动项目的情况,随机抽取了部分学生进行调查, 并根据调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)这次随机抽取了_______名学生进行调查,并将条形统计图补充完整.(2)求扇形统计图中 “旱地冰壶” 部分的圆心角度数.(3)如果该校共有2400名学生,请你估计全校学生中喜欢基础滑冰项目有多少人?【答案】(1)50;条形统计图补充完整见解析(2)扇形统计图中 “旱地冰壶” 部分的圆心角度数为108︒(3)估计全校学生中喜欢基础滑冰项目有960人【解析】(1)解:在这次调查中,总人数为10÷20%=50(人),∴喜欢旱地滑雪项目的同学有50﹣20﹣10﹣15=5(人),补全图形如下:(2)旱地冰壶有15人,总人数50人,15÷50×360︒=108︒,∴“旱地冰壶” 部分的圆心角度数为108︒;(3)基础滑冰有20人,总人数50人,202400960⨯=(人),50∴估计全校学生中喜欢基础滑冰项目有960人.【点睛】本题考查条形统计图和扇形统计图的应用,数量掌握统计图的相关数据的关系与应用是解题的关键.3.(2022·湖北十堰·一模)为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中α∠的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______; (4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率. 【答案】(1)40人 (2)54°;作图见详解 (3)3600人 (4)12 【解析】 (1)12÷30%=40(人)∴本次抽样测试的学生人数是40人, 故答案为:40; (2) 63605440α∠=⨯︒=︒. 故答案为:54°;C 级的人数为4035%14⨯=(人), 故补全条形统计图如下:(3)818000360040⨯=(人)∴估计不及格的人数为3600人,故答案为:3600人;(4)根据题意列表如下:由表可知,共有12种等可能的结果,其中选中甲的有6种,∴P(选中甲) =612=12.【点睛】本题考查条形统计图与扇形统计图相关联,用样本估计总体,列表法或画树状图法求概率.根据条形统计图和扇形统计图得到必要的信息和数据是解题关键.4.(2021·陕西渭南·二模)中华人民共和国第十四届全运会将于2021年9月份在陕西举行,“全民全运同心同行”是本届全运会主题口号.某中学为加深对全运会的了解,组织学生玩抽卡片的游戏,游戏规则如下:a.如图,A、B、C、D四张卡片(形状、大小和质地都相同),正面分别写有“全民全运”“同心同行”“相约西安”“筑梦全运”;b.将这四张卡片背面朝上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张;c.若抽取的两张卡片能组成本届全运会主题口号“全民全运同心同行”,则获得一次成为“文明倡导者”的机会.(1)第一次抽取的卡片上写的是“全民全运”的概率为________;(2)请用列表法或画树状图法求乐乐抽取完两张卡片后,能获得成为“文明倡导者”机会的概率.【答案】(1)1 4(2)1 6【解析】(1)第一次抽取的卡片上写的是“全民全运”的概率为14;故答案为:14;(2)列表如下:由表知,共有12种等可能结果,其中抽取完两张卡片后,能获得成为“文明倡导者”机会的有2种结果,所以抽取完两张卡片后,能获得成为“文明倡导者”机会的概率是21 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2021·陕西渭南·二模)现代交通的发达虽然给人们带来了无尽的便利,但同时也增加了许多安全隐患.为了提高学生的安全意识,珍爱生命,某学校制作了8条安全出行警句,倡导全校1200名学生进行安全警句背诵系列活动,并在活动之后举办安全知识大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查他们安全警句的背诵情况,根据调查结果绘制成的统计图(部分)如图所示.大赛结束一个月后,再次抽查这部分学生安全警句的背诵情况,并根据调查结果绘制成统计表:请根据调查的信息,完成下列问题:(1)补全条形统计图,表格中m的值为_______;(2)求活动启动之初学生安全警句的背诵条数的平均数及中位数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校安全警句背诵系列活动的效果.【答案】(1)10;补图见解析(2)平均数为5,中位数为4.5(3)见解析【解析】(1)解:调查人数为6020120360÷=(人),背诵“4条”的人数为13512045360⨯=(人),补全条形统计图如图所示:大赛结束一个月后,背诵“4条”的人数为120101540252010m=-----=(人),故答案为:10;(2)解:将这120名学生活动启动之初的背诵情况从小到大排列处在中间位置的两个数的平均数为454.52+=,因此中位数是4.5,这120名学生活动启动之初的背诵情况的平均数为:1(153454205166137118)5 120⨯⨯+⨯+⨯+⨯+⨯+⨯=(条),答:活动启动之初学生安全警句的背诵条数的平均数为5,中位数为4.5;(3)解:从中位数上看,活动开展前的中位数是4.5条,活动开展后的中位数是6条,从背诵“6条及以上”人数的变化情况看,活动前是40人,活动后为85人,人数翻了一倍,从而得出活动的开展促进学生背诵能力的提高,活动开展的效果较好.【点睛】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确解答的关键.6.(2021·山东滨州·二模)为了进一步提高中学生的交通安全意识、文明意识,为“创建文明城市”工作的开展营造浓厚的宣传氛围,某区创新宣传方式,组织学生利用“参观体验+知识竞赛”新模式开展安全宣传活动,并取得了良好的效果.赛后区团委随机抽取了部分参赛学生的成绩,整理后按分数分组如下:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,并绘制出不完整的统计图.请你根据提供的信息,解决下列问题:(1)补全频数分布直方图和扇形统计图;(2)这次竞赛成绩的中位数落在组(填写字母);(3)某区共有2万名中学生,若竞赛成绩在80分以上(包括80分)为“优”,请你估计该区竞赛成绩为“优”的学生有多少人?(4)D组中成绩为100分的同学有三人(两男一女),现准备从他们中随机选出两位同学参加市竞赛,请用画树状图或列表法求刚好抽到两位男生的概率.【答案】(1)见解析(2)C(3)12000人(4)1 3【解析】(1)解:由C组人数和百分比可得本次调查的学生有:360÷40%=900(人),A组学生有:900﹣270﹣360﹣180=90(人),B组所占的百分比为:270÷900×100%=30%,补全的补全频数分布直方图和扇形统计图如图所示:(2)解:一共900名学生,则中位数是第450和第451名学生的平均数,∴A、B组共有90+180=270人,A、B、C组共有90+180+270=540人,∴第450和第451名学生在C组,∴这次竞赛成绩的中位数落在C组;(3)解:20000×(40%+20%)=12000(人),即估计该区竞赛成绩为“优”的学生有12000人.(4)解:将男生分别标记为A1,A2,女生标记为B1由表可知,共有6种等可能结果,其中刚好抽到两位男生的有2种结果,所以刚好抽到两位男生的概率为21 63 .【点睛】本题考查了频数分布直方图和扇形图的关联求值,中位数的概念,由样本估计总体,列表法求概率等知识;掌握图表所表达的数据意义是解题关键.7.(2022·陕西·武功县教育局教育教学研究室二模)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9小时,在备战中考的重要阶段,更要注重睡眠,提高学习效率.某校为了了解该校九年级学生每天的睡眠时间,随机调查了该校九年级部分学生,并将调查结果绘制成如下的统计图和统计表,根据图表中的信息,解答下列问题:(1)本次调查数据的中位数落在______组,表中m的值为______,扇形统计图中C组所在扇形的圆心角为______°;(2)求本次调查数据的平均数;(3)若该校共有600名九年级学生,请估计该校每天睡眠时间不少于9h的九年级学生有多少名?【答案】(1)B;10;90(2)8.5h(3)210名【解析】(1)÷=(人)解:被调查的学生人数为:1845%40故本次调查数据的中位数是这组数据从小到大排列后,第20个和第21个数的平均数故本次调查数据的中位数落在B组m=40-18-8-4=10扇形统计图中C 组所在扇形的圆心角为:10360=9040︒⨯︒ 故答案为:B ;10;90;(2) 解:()7.5188.589.3101148.5h 188104⨯+⨯+⨯+⨯=+++, ∴本次调查数据的平均数为8.5h .(3) 解:104600210188104+⨯=+++(名), ∴估计该校每天睡眠时间不少于9h 的九年级学生有210名.【点睛】本题考查了统计图表,中位数,扇形的圆心角,平均数的求法,用样本估计总体,解题的关键是仔细地审题,从图表中获取相关信息.8.(2022·陕西·武功县教育局教育教学研究室二模)此前,网络上出现了“东航失事原因锁定副驾驶”“黑匣子数据已经出来”等传言,严重误导社会公众认知,干扰事故调查工作,民航局表示:将依法追究造谣者法律责任,为了引导广大民众做“不信谣、不传谣、不造谣”的守法公民,某志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区做《抵制网络谣言·共建网络文明》的宜传活动,已知莹莹和晓晓都是该志愿者团队中的队员.(1)莹莹被分配到B 社区的概率为______;(2)请用列表法或画树状图的方法求莹莹和晓晓被分配到同一个社区的概率.【答案】(1)14(2)14【解析】(1)∴志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区,∴莹莹被分配到B 社区的概率为14. (2)根据题意列表如下:由表格可知,共有16种等可能的结果,其中莹莹和晓晓被分配到同一个社区的情况有4种,∴P(莹莹和晓晓被分配到同一个社区)41 164==.【点睛】此题考查了根据概率公式求解概率以及树状图或列表法求解概率,解题的关键是掌握概率公式以及树状图或列表法求解概率.9.(2022·江苏·徐州市新城实验学校一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.【答案】(1)120;见解析;(2)72(3)对“在线讲授”最感兴趣的学生人数是780人【解析】(1)总人数:4840%120÷=(人),“在线答题”人数:12036244812---=(人),补全条形统计图如图所示:(2)“观看微课”所占圆心角3607224120︒=︒=⨯, 故答案为:72;(3)本校对“在线授课”最感兴趣的人数260078036120⨯==(人), 答:该校对“在线授课”最感兴趣的学生人数为780人.【点睛】此题主要考查关联扇形统计图与条形统计图、用样本估计总体,利用数形结合的思想解答.解题关键是正确读懂统计图的信息以及明确题意.10.(2022·陕西·一模)一个不透明的袋子中装有1个黄球和若干个蓝球,这些球除颜色外重量、大小、表面光滑度等都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回;搅匀后再摸一个球,记下颜色后放回;不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到黄球的频率在一个常数附近摆动,这个常数是___________(精确到0.01),由此估出蓝球有___________个;(2)现从该袋中一次摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个黄球,1个蓝球的概率.【答案】(1)0.25;3(2)12【解析】(1)解:(1)随着摸球次数的越来越多,频率越来越靠近0.25,因此接近的常数就是0.25;设蓝球由x 个,由题意得:10.251x =+,解得:3x =, 经检验:3x =是分式方程的解;故答案为:0.25,3;(2)(2)画树状图得:∴共有12种等可能的结果,其中恰好摸到一个黄球,一个蓝球有6种情况,∴摸到一个黄球一个蓝球的概率为:61122=; 故答案为:12.【点睛】本题考查了利用频率估计概率、运用树状图法求概率以及概率公式的应用,估算出摸到黄球的概率成为解答本题的关键.11.(2022·辽宁锦州·一模)某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A,B,C,D表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?【答案】(1)50,40%(2)57.6︒(3)见解析(4)912名【解析】(1)本次随机抽取的学生有18÷36%=50(名).等级为优秀(A)的学生人数为50188420---=(名),∴其所占的百分比是20100%40% 50⨯=,故答案为:50,40%;(2)等级为合格(C)的学生所在扇形的圆心角度数是836057.650⨯︒=︒,故答案为:57.6︒;(3)由(1)可知等级为优秀(A )的学生人数为20名,即可补全统计图如下:(4)2018120091250+⨯=(名), 答:评价结果为良好及良好等级以上的学生大约共有912名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,由样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.(2022·浙江湖州·一模)为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?【答案】(1)60(2)18(3)C(4)440(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∴共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800211260+⨯=440(人),答:平均每日锻炼超过25分钟有440人.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.13.(2022·湖南岳阳·一模)为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)40;30;(2)见解析 (3)12【解析】(1)解:)获奖总人数为820%40÷=(人). 404816%100%30%40m ---=⨯=,即30m =;故答案为40;30; (2) 解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61 122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.14.(2022·福建三明·二模)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?【答案】(1)1 10(2)从平均收益的角度看,顾客选择方案二更有利【解析】(1)解:对于方案一,列表如下.由上表可知,共有20种等可能的结果,两次都摸到红球的结果数是2.故采用方案一摸球,两次都摸到红球的概率为21 2010=.(2)解:由(1)中表可知,采用方案一,两次都摸到红球的概率为110,摸到一次红球的概率为123205=,没有摸到红球的概率为63 2010=.平均收益为331510209.5 10510⨯+⨯+⨯=元.对于方案二,列表如下.由上表可知,共有25种等可能的结果,两次摸到红球的结果数是4,摸到一次红球的结果数是12,没有摸到红球的结果数是9.所以两次都摸到红球的概率为425,摸到一次红球的概率为1225,没有摸到红球的概率为925.平均收益为9124510209.8 252525⨯+⨯+⨯=元.∴9.89.5>,∴从平均收益的角度看,顾客选择方案二更有利.【点睛】本题考查列表法求概率,概率的实际应用,熟练掌握这些知识点是解题关键.15.(2022·重庆渝中·二模)某校党委为提高党员教师使用“学习强国”的积极性,4月份开展了一分钟答题挑战赛.规定:答对一道记1分.下列数据是分别从初中组和高中组随机抽取的10名党员教师的成绩(单位:分).初中组:6,13,7,9,8,11,9,13,9,6;高中组:6,9,5,12,8,11,8,9,14,8.通过以上数据得到如下不完整的统计表:根据以上信息,回答下列问题: (1)=a ______,b =______,c =______;(2)该校初中组和高中组党员教师人数分别为50人和60人,若答对9道题以上(包括9道)为优秀等级,请估计该校共有多少名党员教师获得优秀等级;(3)已知25.89s =初中组,求2s 高中组,并说明哪个组党员教师的成绩波动性较小. 【答案】(1)9.1,8.5,8; (2)60名;(3)26.6s =高中组,初中组. 【解析】 (1)解:初中组的平均数61379811913969.110a +++++++++==(分);将高中组的数据按照从小到大排列后,处于中间位置的两个数是8和9, ∴898.52+=(分), ∴8.5b =;∴高中组的数据中出现次数最多的数是8, ∴8c =. (2)解:∴初中组和高中组党员教师答对9道题以上(包括9道)的分别有6人和5人, ∴655060601010⨯+⨯=(名) ∴该校共有60名党员教师获得优秀等级. (3) 解:()()()()()()()222222226999259129893119149 6.610s ⎡⎤-+-⨯+-+-+-⨯+-+-⎣⎦==高中组∴25.89s =初中组,∴22s s 初中组高中组<,∴初中组党员教师的成绩波动性较小.【点睛】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体,熟练掌握平均数、中位数、众数、方差的计算方法是解题的关键.16.(2022·安徽合肥·二模)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?【答案】(1)90,见解析(2)48°(3)1600人【解析】(1)解:校长本次调查的学生总人数为=18÷20%=90(人),∴B.听教师录播课程的人数=90-24-18-12=36(人),补全条形统计图如图所示:(2)解:“D.线上讨论交流”对应的扇形圆心角的度数是123604890⨯=︒︒,∴扇形统计图中“D.线上讨论交流”对应的圆心角是48°;(3) 解:364000160090⨯=(人), ∴估计“B .听教师录播课程”约有1600人. 【点睛】本题考查了条形统计图和扇形统计图,利用样本估计总体的方法,解题的关键是从两个统计图中读取信息解题.17.(2022·天津河东·一模)疫情防控,人人有责,一方有难,八方支援,作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图∴和图∴.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数________和m 的值________; (2)求统计的捐款金额的平均数、众数和中位数. 【答案】(1)50,28(2)平均数是13.1,众数为10,中位数为12.5 【解析】 (1)95018%=,14100%28%50⨯= 故答案为:50,28 (2)观察条形统计图, ∴ 591016151420725413.150x ⨯+⨯+⨯+⨯+⨯==,∴ 这组数据的平均数是13.1. ∴ 在这组数据中,10出现了16次,出现的次数最多, ∴ 这组数据的众数为10.∴ 将这组数据按从小到大的顺序排列,其中处于中间的两个数分别是10,15, 有101512.52+=, ∴ 这组数据的中位数为12.5. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,求平均数、众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2022·河南濮阳·一模)某学校在学生中开展读书活动,学校为了解九年级学生每周平均课外阅读时间的情况,随机抽查了九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中的m 值为______;(2)求统计的这组数据的众数、中位数.(3)根据统计的样本数据,估计该校九年级400名学生中,每周平均课外阅读时间大于2h 的学生人数. 【答案】(1)25(2)众数:3h ,中位数:3h。
中考数学考前集训50题及参考答案详解
中考数学考前集训 50题1.若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( )A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形2.在Rt △ABC 中,∠C=90°,sinA=54,则tanB 的值为( ) A.34 B.43 C.53 D.54 3.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数xk y 12--=的图象上.下列结论中正确的是( )A.y 1>y 2>y 3B.y 1>y 3>y 2C.y 3>y 1>y 2D.y 2>y 3>y 14.将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )A.45°B.60°C.75°D.90°第4题图 第5题图 第7题图 5.如图,在Rt △ABC 中,AB=AC,AD ⊥BC,垂足为D,E 、F 分别是CD 、AD 上的点,且CE=AF .如果∠AED=62°,那么∠DBF=( )A.62°B.38°C.28°D.26° 6.设0<k <2,关于x 的一次函数y=kx+2(1﹣x ),当1≤x≤2时的最大值是( )A.2k ﹣2B.k ﹣1C.kD.k+1 7.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.428.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是( )A.21B.52C.73D.749.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 小明掷B 立方体朝上的数字为y 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线y=﹣x 2+4x 上的概率为( )A.181B.121C.91D.61 10.如图,延长RT △ABC 斜边AB 到点D,使BD=AB,连接CD,若tan ∠BCD=31,则tanA=( )A.23B.1C.31D.32第10题图 第12题图11.对于一次函数y=kx+k ﹣1(k≠0),下列叙述正确的是( )A.当0<k <1时,函数图象经过第一、二、三象限B.当k >0时,y 随x 的增大而减小C.当k <1时,函数图象一定交于y 轴的负半轴D.函数图象一定经过点(﹣1,﹣2)12.如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则( )A.S 1=21S 2B.S 1=27S 2C.S 1=S 2D.S 1=58S 2 13.如图,△ABC 内接于⊙O ,BC=8,⊙O 半径为5,则sinA 的值为( )A.53B.54C.43D.34第13题图 第14题图 第15题图14.太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是cm 310,则皮球的直径是( )A.35B.15C.10D.3815.如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转90°得△A′OB′.已知∠AOB=30°,∠B=90°,AB=1,则B′点的坐标为( )A.)21,23(B.)23,23(C.)23,21(D.)23,23( 16.如图,已知双曲线)0(<=k xk y 经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣6,4),则△AOC 的面积为( )A.12B.9C.6D.4第16题图 第17题图 第18题图17.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1、S 2,则S 1+S 2的值为( )A.60B.64C.68D.7218.如图,扇形AOB 的半径为1,∠AOB=90°,以AB 为直径画半圆,则图中阴影部分的面积为( )A.π41B.21-π C.21 D.2141+π 19.已知实数a,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a≠b ,则b a a b +的值是( ) A.7 B.﹣7 C.11 D.﹣1120.如图,正方形PQMN 的边PQ 在x 轴上,点M 坐标为(2,1),将正方形PQMN 沿x 轴连续翻转,则经过点(2015,2)的顶点是( )A.点PB.点QC.点MD.点N第20题图 第21题图 21.函数y=x 2+bx+c 与y=x 的图象如图所示,有以下结论:①b 2﹣4c >0;②b+c+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b-1)x+c <0.其中正确的个数为( )A.1B.2C.3D.422.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=6cm,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P′.设Q 点运动的时间为t 秒,若四边形QP′CP 为菱形,则t 的值为( )A.2B.2C.22D.323.已知二次函数y=x 2+bx+c 过点(0,﹣3)和(﹣1,2m ﹣2)对于该二次函数有如下说法: ①它的图象与x 轴有两个公共点;②若存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小,则m >0;若存在一个负数x 0,使得当x >x 0时,函数值y 随x 的增大而增大,则m <0;③若将它的图象向左平移3个单位后过原点,则m=﹣1;④若当x=2时的函数值与x=2012时的函数值相等,则当x=20时的函数值为﹣3. 其中正确的说法的个数是( )A.1B.2C.3D.424.分解因式:xy 2﹣25x= .25.若函数⎪⎩⎪⎨⎧>≤+=)2(2)2(22x x x x y ,则当函数值y=8时,自变量x 的值是 26.如图,在△ABC 中,∠B=50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC= .第26题图 第27题图 第28题图27.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 . 28.如图,PA 、PB 是⊙O 的切线,Q 为弧AB 上一点,过点Q 的直线MN 与⊙O 相切,已知PA=4,则△PMN 周长= .29.双曲线y 1、y 2在第一象限的图象如图,xy 41=过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,若S △AOB =1,则y 2的解析式是 .30.如图,直线l ∥x 轴,分别与函数)0(2>=x x y 和)0(<=x xk y 的图象相交于点A 、B ,交y 轴于点C ,若AC=2BC ,则k= .第30题图 第31题图 第32题图31.如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC ,并且AE=6,EF=8,FC=10,则正方形的边长为 .32.如图,已知点A (1,1),B (3,2),且P 为x 轴上一动点,则△ABP 周长的最小值为 . 33.如图,正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值是 .第33题图 第34题图 第35题图34.如图,在等边三角形ABC 中,AB=6,D 是BC 上一点,且BC=3BD ,△ABD 绕点A 旋转后得到△ACE ,则AE 的长度为 .35.如图,已知在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数xky (k≠0)在第一象限的图象经过OA 的中点B,交AC 于点D,连接OD.若△OCD ∽△ACO,则直线OA 的解析式为 .36.如图1,正方形ABCD 中,点P 从点A 出发,以每秒2厘米的速度,沿A→D→C 方向运动,点Q 从点B 出发,以每秒1厘米的速度,沿BA 向点A 运动,P 、Q 同时出发,当点P 运动到点C 时,两动点停止运动,若△PAQ 的面积y (cm 2)与运动时间x (s )之间的函数图象为图2,若线段PQ 将正方形分成面积相等的两部分,则x 的值为 .37.甲、乙两条轮船同时从港口A 出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会合,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A 与小岛C 之间的距离;(2)甲轮船后来的速度.38.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC=2∠ACD ;(2)AC 2=AB•AD .39.如图,AB 是⊙O 直径,∠DAC=∠BAC,CD ⊥AD,交AB 延长线于点P ,(1)求证:PC 是⊙O 的切线;(2)若tan ∠BAC=21,PB=2,求⊙O 半径.40.如图,已知在△ABC 中,AB=AC,以AB 为直径的⊙O 与边BC 交于点D,与边AC 交于点E,过点D 作DF ⊥AC 于F .(1)求证:DF 为⊙O 的切线;(2)若DE=25,AB=25,求AE 的长.41.如图,以△ABC 的一边AB 为直径作⊙O ,⊙O 与BC 边的交点D 恰好为BC 的中点,过点D 作⊙O 的切线交AC 边于点E .(1)求证:DE ⊥AC ;(2)连结OC 交DE 于点F ,若sin ∠ABC=43,求FCOF 的值.42.谷歌人工智能AlphaGo 机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石,某教学网站开设了有关人工智能的课程并策划了A ,B 两种网上学习的月收费方设小明每月上网学习人工智能课程的时间为小时,方案,的收费金额分别为A 元,y B 元.(1)当x≥50时,分别求出y A ,y B 与x 之间的函数关系式;(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?43.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是__________元;②月销量是__________件(直接写出结果)(2)若设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?44.如图,已知AB 是⊙O 的直径,点C 为圆上一点,点D 在OC 的延长线上,连接DA,交BC 的延长线于点E,使得∠DAC=∠B .(1)求证:DA 是⊙O 切线;(2)求证:△CED ∽△ACD;(3)若OA=1,sinD=31,求AE 的长.45.如图,某处有一座信号塔AB,山坡BC 的坡度为1:3,现为了测量塔高AB,测量人员选择山坡C 处为一测量点,测得∠DCA=45°,然后他顺山坡向上行走100米到达E 处,再测得∠FEA=60°.(1)求出山坡BC 的坡角∠BCD 的大小;(2)求塔顶A 到CD 的铅直高度AD .46.如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△AOB 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?47.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.48.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(3)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.49.已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.(1)求这条抛物线的解析式;(2)如图一,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;(3)如图二,设线段AC 的垂直平分线交x 轴于点E ,垂足为D ,M 为抛物线的顶点,那么在直线DE 上是否存在一点G ,使△CMG 的周长最小?若存在,请求出点G 的坐标;若不存在,请说明理由.50.如图,抛物线y=x 2﹣2mx ﹣3m 2(m 为常数,m >0),与x 轴相交于点A 、B ,与y 轴相交于点C ,(1)用m 的代数式表示:点C 坐标为 ,AB 的长度为 ;(2)过点C 作CD ∥x 轴,交抛物线于点D,将△ACD 沿x 轴翻折得到△AEM,延长AM 交抛物线于点N. ①求ANAM的值; ②若AB=4,直线x=t 交线段AN 于点P ,交抛物线于点Q ,连接AQ 、NQ ,是否存在实数t ,使△AQN 的面积最大?如果存在,求t 的值;如果不存在,请说明理由.答案详解1.【解答】解:已知:如右图,四边形EFGH 是矩形,且E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,求证:四边形ABCD 是对角线垂直的四边形. 证明:由于E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点, 根据三角形中位线定理得:EH ∥FG ∥BD ,EF ∥AC ∥HG ; ∵四边形EFGH 是矩形,即EF ⊥FG ,∴AC ⊥BD ,故选:C .2.【解答】解:由题意,设BC=4x ,则AB=5x ,AC=22BC AB -=3x ,∴tanB=4343==x x BC AC .故选B .3.【解答】解:∵k 2≥0,∴﹣k 2≤0,﹣k 2﹣1<0,∴反比例函数xk y 12--=的图象在二、四象限,∵点(﹣1,y 1)的横坐标为﹣1<0,∴此点在第二象限,y 1>0;∵(2,y 2),(3,y 3)的横坐标3>2>0,∴两点均在第四象限y 2<0,y 3<0, ∵在第四象限内y 随x 的增大而增大,∴0>y 3>y 2,∴y 1>y 3>y 2.故选:B .4.解答】解:如图,∠1=90°﹣60°=30°,所以,∠α=45°+30°=75°.故选C .5.【解答】解:∵AB=AC ,AD ⊥BC ,∴BD=CD .又∵∠BAC=90°,∴BD=AD=CD .又∵CE=AF ,∴DF=DE .∴Rt △BDF ≌Rt △ADE (SAS ).∴∠DBF=∠DAE=90°﹣62°=28°.故选C .6.【解答】解:原式可以化为:y=(k ﹣2)x+2,∵0<k <2,∴k ﹣2<0,则函数值随x 的增大而减小.∴当x=1时,函数值最大,最大值是:(k ﹣2)+2=k .故选:C .7.【解答】解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE ﹣DO=10﹣4=6, ∴S 四边形ODFC =S 梯形ABEO =21(AB+OE )•BE=21(10+6)×6=48.故选:A . 8.【解答】解:如图,C 1,C 2,C 3,C 4均可与点A 和B 组成直角三角形.P=74,故选:D .9.【解答】解:点P 的坐标共有36种可能,其中能落在抛物线y=﹣x 2+4x 上的共有(1,3)、(2,4)、(3,3)3种可能,其概率为121363=.故选B . 10.【解答】解:过B 作BE ∥AC 交CD 于E .∵AC ⊥BC ,∴BE ⊥BC ,∠CBE=90°.∴BE ∥AC . ∵AB=BD ,∴AC=2BE .又∵tan ∠BCD=31,设BE=x ,则AC=2x ,∴tanA=2323==x x AC BC ,故选A .11.【解答】解:A 、当0<k <1时,函数图象经过第一、三、四象限,所以A 选项错误; B 、当k >0时,y 随x 的增大而增大,所以B 选项错误;C 、当k <1时,函数图象一定交于y 轴的负半轴,所以C 选项正确;D 、把x=﹣1代入y=kx+k ﹣1得y=﹣k+k ﹣1=﹣1,则函数图象一定经过点(﹣1,﹣1),所以D 选项错误.故选:C .12.【解答】解:过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H .在Rt △ABG 中,AG=AB •sin40°=5sin40°,∠DEH=180°﹣140°=40°,在Rt △DHE 中,DH=DE •sin40°=8sin40°,S 1=8×5sin40°÷2=20sin40°,S 2=5×8sin40°÷2=20sin40°. 则S 1=S 2.故选:C .13.【解答】解:连接BO 并延长交⊙O 于D ,连接CD ,则∠BCD=90°,∠D=∠A , ∵⊙O 半径为5,∴BD=10,∴sinA=sinD=54108==BD BC ,故选B .14.解答】解:由题意得:DC=2R ,DE=103,∠CED=60°,∴可得:DC=DEsin60°=15.故选B .15.【解答】解:已知B ′A ′=BA=1,∠A ′OB ′=∠AOB=30°,OB ′=OB=3, 做B ′C ⊥x 轴于点C ,那么∠B ′OC=60°,OC=OB ′×cos60°=23,B ′C=OB ′×sin60°=3×23=23, ∴B ′点的坐标为(23,23).故选D .16【解答】解:∵OA 的中点是D ,点A 的坐标为(﹣6,4),∴D (﹣3,2), ∵双曲线y=xk经过点D ,∴k=﹣3×2=﹣6,∴△BOC 的面积=21|k|=3.又∵△AOB 的面积=21×6×4=12,∴△AOC 的面积=△AOB 的面积﹣△BOC 的面积=12﹣3=9.故选B .17.【解答】解:如图,设正方形S 2的边长为x ,根据等腰直角三角形的性质知,AC=2x ,x=2CD ,∴AC=2CD ,CD=4,∴EC 2=42+42,即EC=42, ∴S 2的面积为EC 2=32,∵S 1的边长为6,S 1的面积为6×6=36,∴S 1+S 2=32+36=68.故选:C .18.【解答】解:在Rt △AOB 中,AB=22OB OA +=2,S 半圆=21π×(2AB )2=41π, S △AOB =21OB ×OA=21,S 扇形OBA =436090ππ=,故S 阴影=S 半圆+S △AOB ﹣S 扇形AOB =21.故选C . 19.【解答】解:根据题意得:a 与b 为方程x 2﹣6x+4=0的两根,∴a+b=6,ab=4, 则原式=72)(2=-+abab b a .故选A20.【解答】解:第1次将正方形PQMN 沿x 轴翻转时,经过点(2,2)的点为点N , 第2次将正方形PQMN 沿x 轴翻转时,经过点(3,2)的点为点P , 第3次将正方形PQMN 沿x 轴翻转时,经过点(4,2)的点为点Q , 第4次将正方形PQMN 沿x 轴翻转时,经过点(5,2)的点为点M , 第5次将正方形PQMN 沿x 轴翻转时,经过点(6,2)的点为点N , 而2015﹣2=503×4+1,所以经过点(2015,2)的顶点是点P .故选A .21.【解答】解:∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4ac <0;故①错误; 当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确. 故选B . 22.【解答】解:连接PP ′交BC 于O ,∵若四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ=90°, ∵∠ACB=90°,∴PO ∥AC ,∴CBCOAB AP =, ∵设点Q 运动的时间为t 秒,∴AP=2t ,QB=t ,∴QC=6﹣t ,∴CO=3﹣2t,∵AC=CB=6,∠ACB=90°,∴AB=62,∴623262tt -=,解得:t=2,故选:B .23.【解答】解:∵二次函数y=x 2+bx+c 过点(0,﹣3)和(﹣1,2m ﹣2)∴代入可求得c=﹣3,b=﹣2m ,∴二次函数解析式为y=x 2﹣2mx ﹣3,令y=0可得x 2﹣2mx ﹣3=0,则其判别式△=4m 2+12>0,故二次函数图象与x 轴有两个公共点,∴①正确;∴二次函数的对称轴为x=m ,且二次函数图象开口向上,∴若存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小,则m >0;若存在一个负数x 0,使得当x >x 0时,函数值y 随x 的增大而增大,则m <0,∴②正确;由平移可得向左平移3个单位后其函数解析式为y=(x+3)2﹣2m (x+3)﹣3,把点(0,0)代入可得m=1, ∴③不正确;由当x=2时的函数值与x=2012时的函数值相等,代入可求得m=1007,∴函数解析式为y=x 2﹣2014x ﹣3, 当x=20时,代入可得y=400﹣4028﹣3≠﹣3,∴④不正确;综上可知正确的有两个,故选B . 24.【解答】解:原式=x (y+5)(y ﹣5).故答案为:x (y+5)(y ﹣5)25.【解答】解:把y=8代入函数⎪⎩⎪⎨⎧>≤+=)2(2)2(22x x x x y ,先代入上边的方程得x=6±,∵x ≤2,x=6不合题意舍去,故x=﹣6;再代入下边的方程x=4, ∵x >2,故x=4,综上,x 的值为4或﹣6.26.【解答】解:∵三角形的外角∠DAC 和∠ACF 的平分线交于点E ,∴∠EAC=21∠DAC ,∠ECA=21∠ACF ; 又∵∠B=47°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴21∠DAC+21∠ACF=21(∠B+∠2)+21(∠B+∠1)=21(∠B+∠B+∠1+∠2)=2805000+=115°(外角定理),∴∠AEC=180°﹣(21∠DAC+21∠ACF )=180°﹣115°=65°;故答案为:65.27.【解答】解:作OD ⊥AB 于D ,连接OA .∵OD ⊥AB ,OA=2,∴OD=21OA=1, 在Rt △OAD 中AD=322=-OD OA ,∴AB=2AD=23.故答案为:23.28.【解答】解:∵直线PA 、PB 、MN 分别与⊙O 相切于点A 、B 、Q ,∴MA=MQ ,NQ=NB , ∴△PMN 的周长=PM+PN+MQ+NQ=PM+MA+PN+NM=PA+PB=4+4=8.故答案为:8. 29.【解答】解:∵xy 41=,过y 1上的任意一点A ,作x 轴的平行线交y 2于B ,交y 轴于C ,∴S △AOC =21×4=2, ∵S △AOB =1,∴△CBO 面积为3,∴k=xy=6,∴y 2的解析式是:y 2=x 6.故答案为:y 2=x6. 30.【解答】解:设B 点坐标为(x ,y ),∵BC ∥x 轴,AC=2BC ,∴C 点坐标为(﹣2x ,y ), 故xkx =-22,解得k=﹣1.故答案是:﹣1. 31.【解答】解:解:连接AC ,∵AE 丄EF ,EF 丄FC ,∴∠E=∠F=90°, ∵∠AME=∠CMF ,∴△AEM ∽△CFM ,∴FM EM CF AE =,∵AE=6,EF=8,FC=10,∴53106==FM EM ,∴EM=3,FM=5,在Rt △AEM 中,AM=22EM AE +=35,在Rt △FCM 中,CM=5522=+FM CF , ∴AC=85,在Rt △ABC 中,AB=AC •sin45°=85×22=410,故答案为:410.32.【解答】解:做点B 关于x 轴的对称点B ′,连接AB ′,当点P 运动到AB ′与x 轴的交点时,△ABP 周长的最小值.∵A (1,1),B (3,2),′∴AB 52122=+, 又∵P 为x 轴上一动点,当求△ABP 周长的最小值时,∴AB ′=133222=+,∴△ABP 周长的最小值为:AB+AB ′=135+.故答案为:135+.33.【解答】解:作D 关于AE 的对称点D ′,再过D ′作D ′P ′⊥AD 于P ′, ∵DD ′⊥AE ,∴∠AFD=∠AFD ′,∵AF=AF ,∠DAE=∠CAE ,∴△DAF ≌△D ′AF , ∴D ′是D 关于AE 的对称点,AD ′=AD=4,∴D ′P ′即为DQ+PQ 的最小值,∵四边形ABCD 是正方形,∴∠DAD ′=45°,∴AP ′=P ′D ′,∴在Rt △AP ′D ′中,P ′D ′2+AP ′2=AD ′2,AD ′2=16,∵AP ′=P ′D',2P ′D ′2=AD ′2,即2P ′D ′2=16,∴P ′D ′=22,即DQ+PQ 的最小值为22,故答案为:22.34.【解答】解:∵在等边三角形ABC 中,AB=6,∴BC=AB=6,∵BC=3BD ,∴BD=31BC=2,∵△ABD 绕点A 旋转后得到△ACE ,∴△ABD ≌△ACE ,∴CE=BD=2.故答案为:2.35.【解答】解:设OC=a ,∵点D 在y=x k 上,∴CD=ak , ∵△OCD ∽△ACO ,∴OCACCD OC =,∴AC=k a CD OC 32=,∴点A (a ,k a 3), ∵点B 是OA 的中点,∴点B 的坐标为(2a ,ka 23),∵点B 在反比例函数图象上,∴k a a k223=,∴24a =2k 2,∴a 4=4k 2,解得,a 2=2k ,∴点B 的坐标为(2a,a ), 设直线OA 的解析式为y=mx ,则m •2a=a ,解得m=2,所以,直线OA 的解析式为y=2x .故答案为:y=2x .36.【解答】解:设正方形的边长为acm ,由题意知,点P 的运动路程为2xcm ,BQ=xcm ,当0<x ≤2a 时,y=21•AQ •AP=21(a ﹣x )•2x=﹣x 2+ax=﹣(x ﹣2a )2+42a ,则当x=2a 时,y 取得最大值,最大值为42a ,由题意可知,42a =9,解得:a=6或a=﹣6(舍),当y=9时,x=2a =3,故答案为:3.37.【解答】解:(1)作BD ⊥AC 于点D ,如图所示:由题意可知:AB=30×1=30海里,∠BAC=30°,∠BCA=45°,在Rt △ABD 中,∵AB=30海里,∠BAC=30°,∴BD=15海里,AD=ABcos30°=153海里, 在Rt △BCD 中,∵BD=15海里,∠BCD=45°,∴CD=15海里,BC=152海里, ∴AC=AD+CD=153+15海里,即A 、C 间的距离为(153+15)海里.(2)∵AC=153+15(海里),轮船乙从A 到C 的时间为131515315+=+,由B 到C 的时间为3+1﹣1=3,∵BC=152海里,∴轮船甲从B 到C 的速度为653215=(海里/小时).38.【解答】证明:(1)∵CD 是⊙O 的切线,∴∠OCD=90°,即∠ACD+∠ACO=90°.① ∵OC=OA ,∴∠ACO=∠CAO ,∴∠AOC=180°﹣2∠ACO ,即∠AOC+2∠ACO=180°, 两边除以2得:21∠AOC+∠ACO=90°.② 由①,②,得:∠ACD ﹣21∠AOC=0,即∠AOC=2∠ACD ; (2)如图,连接BC .∵AB 是直径,∴∠ACB=90°.在Rt △ACD 与Rt △ABC 中, ∵∠AOC=2∠B ,∴∠B=∠ACD ,∴Rt △ACD ∽Rt △ABC ,∴ACAD AB AC =,即AC 2=AB •AD .39.【解答】(1)证明:∵OA=OC ,∴∠OAC=∠OCA ,又∠DAC=∠BAC ,∴∠DAC=∠OCA ,∴OC ∥AD ,又CD ⊥AD ,∴∠OCP=90°,∴PC 是⊙O 的切线; (2)解:如图,连接BC ,∵PC 是⊙O 的切线,∴∠PCB=∠PAC ,∵∠BPC=∠CPA ,∴△PBC ∽△CPA ,∴PCPBAC CB PA PC ==, ∵tan ∠BAC=AC BC =21,∴PC 2=PB •PA ,PA=2PC ,∴PC 2=2PB •PC ,PC=2PB=4, 设⊙O 半径为x ,则OP=x+2,在RT △OPC 中,OP 2=OC 2+PC 2,即(x+2)2=x 2+42,解得x=3, ∴⊙O 半径为3.40.【解答】(1)证明:连接AD ,OD ;∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ; ∵AB=AC ,∴BD=DC .∵OA=OB ,∴OD ∥AC .∵DF ⊥AC ,∴DF ⊥OD . ∴∠ODF=∠DFA=90°,∴DF 为⊙O 的切线. (2)解:连接BE 交OD 于G ;∵AC=AB ,AD ⊥BC ,ED=BD ,∴∠EAD=∠BAD .∴弧DE=弧BD . ∴ED=BD ,OE=OB .∴OD 垂直平分EB .∴EG=BG . 又AO=BO ,∴OG=21AE .在Rt △DGB 和Rt △OGB 中, BD 2﹣DG 2=BO 2﹣OG 2∴2222)45()25(OG OB OG -=--解得:OG=43.∴AE=2OG=23.41.【解答】(1)证明:连接OD .∵DE 是⊙O 的切线,∴DE ⊥OD ,即∠ODE=90°. ∵AB 是⊙O 的直径,∴O 是AB 的中点.又∵D 是BC 的中点,.∴OD ∥AC . ∴∠DEC=∠ODE=90°.∴DE ⊥AC ; (2)解:连接AD .∵OD ∥AC ,∴CEODFC OF =.∵AB 为⊙O 的直径,∴∠ADB=∠ADC=90°. 又∵D 为BC 的中点,∴AB=AC .∵sin ∠ABC=43=AB AD ,故设AD=3x ,则AB=AC=4x ,OD=2x . ∵DE ⊥AC ,∴∠ADC=∠AED=90°.∵∠DAC=∠EAD ,∴△ADC ∽△AED .∴ADACAE AD =. ∴AD 2=AE •AC .∴x AE 49=.∴x CE 47=.∴78==CE OD CF OF .42.【解答】解:(1)当x ≥50时,y A 与x 之间的函数关系式为: y A =7+(x ﹣25)×0.6=0.6x ﹣8,当x ≥50时,y B 与x 之间的函数关系式为: y B =10+(x ﹣50)×0.8=0.8x ﹣30.(2)当x=60时,y A =0.6×60﹣8=28,y B =0.8×60﹣30=18, ∴y A >y B .故选择B 方式上网学习合算.44.【解答】(1)证明:∵AB 为⊙O 的直径,∴∠ACB=90°,∴∠CAB+∠B=90°, ∵∠DAC=∠B ,∴∠CAB+∠DAC=90°.∴AD ⊥AB . ∵OA 是⊙O 半径,∴DA 为⊙O 的切线;(2)解:∵OB=OC ,∴∠OCB=∠B .∵∠DCE=∠OCB ,∴∠DCE=∠B . ∵∠DAC=∠B ,∴∠DAC=∠DCE .∵∠D=∠D ,∴△CED ∽△ACD ;(3)解:在Rt △AOD 中,OA=1,sinD=31,∴OD=D OAsin =3,∴CD=OD ﹣OC=2.∵AD 2222=-OA OD ,又∵△CED ∽△ACD ,∴DECDCD AD =,∴DE=22=AD CD , ∴AE=AD ﹣DE=22﹣2=2.45.【解答】解:(1)依题意得:tan ∠BCD=3331=,∴∠BCD=30°; (2)方法1:作EG ⊥CD ,垂足为G .在Rt △CEG 中,CE=100,∠ECG=30°,∴EG=CE •sin30°=50,CG=CE •cos30°=503,设AD=x ,则CD=AD=x .∴AF=x ﹣50,EF=x ﹣503, 在Rt △AEF 中,EF AE =tan60°,∴335050=--x x .解得:x=503+50≈136.5(米). 答:塔顶A 到CD 的铅直高度AD 约为137米.方法2:∵∠ACD=45°,∴∠ACE=15°.∵∠AEF=60°,∴∠EAF=30°.∵∠DAC=45°,∴∠EAC=∠DAC ﹣∠EAF=15°,∴∠ACE=∠EAC .∴AE=CE=100. 在Rt △AEF 中,∠AEF=60°,∴AF=AE •sin60°=503(m ), 在Rt △CEG 中,CE=100m ,∠ECG=30°,∴EG=CE •sin30°=50m .∴AD=AF+FD=AF+EG=503+50≈136.5(米).答:塔顶A 到CD 的铅直高度AD 约为137米. 46.【解答】解:(1)设直线AB 的解析式为y=kx+b ,由题意,得⎩⎨⎧=+=086b k b ,解得⎪⎩⎪⎨⎧=-=643b k ,所以,直线AB 的解析式为y=﹣43x+6; (2)由AO=6,BO=8得AB=10,所以AP=t ,AQ=10﹣2t , ①当∠APQ=∠AOB 时,△APQ ∽△AOB .所以62106tt -=,解得t=1130(秒),②当∠AQP=∠AOB 时,△AQP ∽△AOB .所以621010tt -=,解得t=1350(秒); ∴当t 为1350秒或1130秒时,△APQ 与△AOB 相似;(3)过点Q 作QE 垂直AO 于点E .在Rt △AOB 中,sin ∠BAO=54=AB BO , 在Rt △AEQ 中,QE=AQ •sin ∠BAO=(10﹣2t )•54=8﹣58t , S △APQ =21AP •QE=21t •(8﹣58t )=﹣54t 2+4t=524,解得t=2(秒)或t=3(秒). ∴当t 为2秒或3秒时,△APQ 的面积为524个平方单位. 47.【解答】解:(1)过B 作BG ⊥DE 于G , Rt △ABH 中,i=tan ∠BAH=3331=,∴∠BAH=30°,∴BH=21AB=5;(2)∵BH ⊥HE ,GE ⊥HE ,BG ⊥DE ,∴四边形BHEG 是矩形. ∵由(1)得:BH=5,AH=53,∴BG=AH+AE=53+15, Rt △BGC 中,∠CBG=45°,∴CG=BG=53+15.Rt △ADE 中,∠DAE=60°,AE=15,∴DE=3AE=153.∴CD=CG+GE ﹣DE=53+15+5﹣153=20﹣103≈2.7m .答:宣传牌CD 高约2.7米. 48.【解答】解:(1)设每台空调的进价为m 元,则每台电冰箱的进价为(m+400)元, 根据题意得:mm 6400040080000=+,解得:m=1600经检验,m=1600是原方程的解, m+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x 台(x 为正整数),这100台家电的销售总利润为y 元, 则y=(2100﹣2000)x+(1750﹣1600)(100﹣x )=﹣50x+15000,… 根据题意得:⎩⎨⎧≤+-≤-13000150********x x x ,解得:3331≤x ≤40,∵x 为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台; ④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台; ⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y 随x 的增大而减小, ∴当x=34时,y 有最大值,最大值为:﹣50×34+15000=13300(元), 答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.50.【解答】解:(1)令x=0,则y=﹣3m 2,即C 点的坐标为(0,﹣3m 2),∵y=x 2﹣2mx ﹣3m 2=(x ﹣3m )(x+m ),∴A (﹣m ,0),B (3m ,0),∴AB=3m ﹣(﹣m )=4m ,故答案为:(0,﹣3m 2),4m ;(2)①令y=x 2﹣2mx ﹣3m 2=﹣3m 2,则x=0(舍)或x=2m ,∴D (2m ,﹣3m 2),∵将△ACD 沿x 轴翻折得到△AEM ,∴D 、M 关于x 轴对称,∴M (2m ,3m 2),设直线AM 的解析式为y=kx+b , 将A 、M 两点的坐标代入y=kx+b 得:⎪⎩⎪⎨⎧=+=+-2320m b mk b mk ,解得:⎪⎩⎪⎨⎧==2m b mk ,∴直线AM 的解析式为:y=mx+m 2,联立方程组:⎪⎩⎪⎨⎧--=+=22232mmx x y m mx y ,解得:⎩⎨⎧=-=0y m x (舍)或⎪⎩⎪⎨⎧==254m y m x ,∴N (4m ,5m 2),∴35==N M y y AN AM ; ②如图:∵AB=4,∴m=1,∴抛物线的解析式为y=x 2﹣2x ﹣3,直线AM 的解析式为y=x+1,∴P (t ,t+1),Q (t ,t 2﹣2t ,﹣3),N (4,5),A (﹣1,0),B (3,0) 设△AQN 的面积为S ,则: 8125)23(25)321)(14(21))((2122+--=++-++=--=t t t t y y x x S Q P A N ∴t=23,S 最大.。
九年级数学中考考前50天得分专练练习4全国通用 试题
轧东卡州北占业市传业学校436〕1.比1小2的数是〔〕A.3-B.2-D.12.结果为2a的式子是〔〕A.63a a÷C.12()a-D.42a a-3.如图,水平放置的以下几何体,主视图不是..长方形的是〔〕4.如图,直线y kx b=+交坐标轴于A B,两点,那么不等式0kx b+>的解集是〔〕A.2x>-B.3x>C.2x<-D.3x<5.如图,坡角为30的斜坡上两树间的水平距离AC为2m,那么两树间的坡面距离AB为〔〕A.4mD.6.A B C D E,,,,五个景点之间的路线如下列图.假设每条路线的里程(km)a及行驶的平均速度(km/h)b用()a b,表示,那么从景点A到景点C用时最少....的路线是〔〕A.A E C→→B.A B C→→C.A E B C→→→D.A B E C→→→7.如图,直线l上有三个正方形a,11,那么b的面积为〔〕A.B.C.D.A〔第4题图〕30ABC〔第5题图〕AFCDBE〔第9题图〕l〔第7题图〕〔120,60〕〔250,100〕〔180,60〕〔100,100〕ABED〔200,100〕〔80,40〕〔第6题图〕〔50,100〕A.4 B.6 C.16 D.558.为执行“两免一补〞,某地区2006年投入教育经费2500万元,预计2021年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么以下方程正确的选项是〔 〕A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++=9.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.以下四个判断中,不正确的选项是.......〔 〕A.四边形AEDF是平行四边形B.如果90BAC∠=,那么四边形AEDF是矩形C.如果AD 平分BAC ∠,那么四边形AEDF是菱形D.如果AD BC ⊥且AB AC =,那么四边形AEDF是菱形10.:m n ,是两个连续自然数()m n <,且q mn =.设p =p 〔〕A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,那么折痕AB 的长为〔〕A.2cmC.D.12.如图,在ABC △中,2ABAC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设BP x =,CQ y =,那么y 与x 之间的函数关系用图象大致可以表示为〔 〕的值是.14.素有“水晶之乡〞的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格和销〔第11题图〕B C〔第12题图〕A. x O C.D.售数量如下表:下次进货时,你建议该商店应多进价格为元的水晶项链.15.小明家离1.5km ,小明步行上学需min x ,那么小明步行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N 可以表示为1500y x=;,函数关系式1500y x=还可以表示许多不同情境中变量之间的关系,请你再列举1.例.:.16.正ABC △的边长为3cm ,边长为1cm 的正RPQ △的顶点R 与点A 重合,点P Q ,分别在AC ,AB 上,将RPQ △沿着边AB BC CA ,,顺时针连续翻转〔如下列图〕,直至点P 第一 次回到原来的位置,那么点P 运动路径的长为cm .〔结果保存π〕 17.当22x -<<时,以下函数中,函数值y 随自变量x 增大而增大的是〔只填写序号〕 ①2y x =;②2y x =-;③2y x=-;④268y x x =++. 18.右图是一山谷的横断面示意图,宽AA '为15m,用曲尺〔两直尺相交成直角〕从山谷两侧测量出1m OA =,3m OB =,0.5m O A ''=,3mO B ''=〔点A O O A '',,,在同一条水平线上〕那么该山谷的深h 为m .三、计算与求解19.〔本小题总分值6分〕计算:0212sin 45--.BQ()A R〔第16题图〕〔第18题图〕20.〔本小题总分值6分〕解方程:11322xx x-=---.参考答案一、选择题:CBBACD CBDACA 二、填空题:13.100; 14.50;15.体积为1 5003cm 的圆柱底面积为2cm x ,那么圆柱的高(cm)y 可以表示为1500y x=〔其它列举正确均可〕; 16.2π; 17.①④; 18.30. 三、计算与求解:19.原式11)2=-+·························· 3分11=+ ···························· 5分2=.·································· 6分20.解:方程两边同乘(2)x -,得1(1)3(2)x x =----. ············· 2分解这个方程,得2x =.·························· 4分检验:当2x=时,20x -=,所以2x =是增根,原方程无解.······· 6分。
2022中考数学基础题每天一练(含10份练习)
(2@6)@8
.
三、开心用一用
第 14 题
7.如图,已知 AB∥CD,AD 与 BC 相交于点 P,AB=4,CD=7,AD=10,则 AP
的长等于【 】
A
40
A.
11
40
B.
7
70
C.
11
70
D.
4
8.挂钟分针的长 10cm,经过 45 分钟,它的针尖转过的弧长是【 】
C
B P
第7题图
16、先化简,再求值: x2 6x 9 ·(x+3),其中 x= 5 . 2x 6
8.不等式组
x x
0 1
的解集的情况为(
)A.x<-1 B.x<0 C.-1<x<0
D.无解
三、开心用一用 19、如图,某海军基地位于 A 处,其正南方向 200 海里处有一个重要目标 B,在 B 的正东方向 200
海里处有一重要目标 C.小岛 D 位于 AC 的中点,岛上有一补给码头;小岛 F 位于 BC 上且恰 好处于小岛 D 的正南方向,一艘军舰从 A 出发,经 B 到 C 匀速巡航,一艘补给船同时从 D 出 发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰. (1)小岛 D 和小岛 F 相距多少海里? (2)已知军舰的速度是补给船速度的 2 倍,军舰在由 B 到 C 航行的途中与补给船相遇于 E 处,
A
y D
2
C
A
1
BB
C
第 14 题图
第 12 题图
O 第 15 题图
度. x
第 16 题图
13.2007 年 4 月 27 日,我国公布了第一批 19 座著名风景名胜山峰高程数据,其中“五岳”山峰
中考数学考前50天得分专练16试题
D CBAEH图22021年中考数学考前50天得分专练16一、选择题〔每一小题3分,一共42分〕1.以下计算正确的选项是〔 〕A .336+=B .632x x x ÷=C .33-=±D .224()a a a -=2.211a aa a--=,那么a 的取值范围是〔 〕A .0a ≤B .0a <C .01a <≤D .0a >3.数据0161x -,,,,的众数为1-,那么这组数据的方差是〔 〕A .2B .345C .2D .2654.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为〔 〕A . B . C . D .5.图1是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是〔 〕A .B .C .D .6.如图2,ABC △中,45ABC ∠=,4AC =,H 是高AD 和BE 的交点,那么线段BH 的长度为〔 〕A .6B .4C .23D .57.在反比例函数4y x=的图象中,阴影局部的面积不等于4的是〔 〕8.如图3,利用标杆BE 测量建筑物DC 的高度,假如标杆BE 长为,测得 1.6AB = 米,8.4BC =米.那么楼高CD 是〔 〕A . B . C .8米D .9.因为1sin 302=,1sin 2102=-, 1 3图1E ABC图3A .B .C .D .所以sin 210sin(18030)sin 30=+=-;因为2sin 452=, 2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜测,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=〔 〕A .12-B .22-C .32-D .3-10.以下方程中,有两个不等实数根的是〔 〕A .238x x =-B .2510x x +=-C .271470x x -+=D .2753x x x -=-+11.如图4,直线24y x =-+与x 轴,y 轴分别相交于A B ,两点,C 为OB 上一点,且12∠=∠,那么ABC S =△〔 〕A .1B .2C .3D .412.ABC △是半径为15的圆内接三角形,以A 为圆心,62为半径的A 与边BC 相切于D 点,那么AB AC 的值是〔 〕A .3102B .4C .52D .31013.小明从图5所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有〔 〕图4y B 1 2A C Ox图52- 1- 012 y x13x =图6AH B OC 1O1H 1A1CA .2个B .3个C .4个D .5个14.如图6,Rt ABC △中,90ACB ∠=,30CAB ∠=,2BC =,O H ,分别为边AB AC , 的中点,将ABC △绕点B 顺时针旋转120到11A BC △的位置,那么整个旋转过程中线段OH 所扫过局部的面积〔即阴影局部面积〕为〔 〕 A.7π3 B.4π3+ C .πD.4π3+ 二、填空题〔每一小题3分,一共18分〕15.在“222a ab b □□〞方框中,任意填上“+〞或者“-〞.可以构成完全平方式的概率是 .16.以下给出的一串数:2,5,10,17,26,?,50.仔细观察后答复:缺少的数?是 .17.如图7,正方体的棱长为2,O 为边AD 的中点,那么以1O A B ,,三点为顶点的三角形面积为 .18.在O 中,半径5r =,AB CD ,是两条平行弦,且8AB =,6CD =,那么弦AC 的长为 . 19.αβ,为方程2420x x ++=的二实根,那么31450αβ++= .20.如图8,在ABC △中,45BAC ∠=,AD BC ⊥于D 点, 64BD CD ==,,那么高AD 的长为 .三、解答题21.设12x x ,是关于x 的一元二次方程222420x ax a a +++-=的两实根,当a 为何值时,2212x x +有最小值?最小值是多少? DO ACB 1A 1B 1C 1D 图7CABD图8参考答案一、选择题〔每一小题3分,一共42分〕 1.D 2.C 3.B4.D5.A6.B7.B8.B9.C10.D 11.C 12.D 13.C 14.C二、填空题〔每一小题3分,一共18分〕15.1216.3717 18或者19.2 20.12三、解答题 21.解答:22(2)4(42)0a a a ∆=-+-≥12a ∴≤ ································· 1分又122x x a +=-,21242x x a a =+-···················· 2分 222121212()2x x x x x x ∴+=+-22(2)4a =-- ······························ 4分 12a ≤∴当12a =时,2212x x +的值最小 ······················· 5分 此时222121122422x x ⎛⎫+=--= ⎪⎝⎭,即最小值为12. ·· 6分。
【2014中考复习必备】数学考前50天配套练习考典11一次函数的图象与性质
一次函数的图象与性质 - 1 的图像不 经过( ) . . (A) 第一象限; (B) 第二象限; (C) 第三象限;
2 .已知一次函数 y = x + b 的图像经过第一、三、四象限,则 b 的值可 以是( ) . (A) - 1 ; (B)0 ; (C)1 ; (D)2 . 3. 已知正比例函数 y = ( k - 1) x , 函数值 y 随自变量 x 的值增大而减小, 那么 k 的取值范围是 . 4 . 与 直 线 y = - 2 x + 1 平 行 , 且 经 过 点 ( - 1,2) 的 直 线 的 表 达 式 是 . 5 . 若 将 直 线 y = 2x - 1 向 上 平 移 3 个 单 位 , 则 所 得 直 线 的 表 达 式 为 . 6 . 已 知 一 次 函 数 y k x b 的 图 像 经 过 点 A ( 1, - 5 ) ,且与直线 . y 3 x 2 平行,那么该一次函数的解析式为 7 . 写出一条经过第一、二、四象限,且过点( 0 , 3 )的直线的解析 . 8 .小亮从家步行到公交车站台,等公交车去学校.图 1 中的折线表示 小亮的行程 s ( 千米 ) 与所 花时间 t ( 分 ) 之间的函数 关系. 下列说法错误 的是 .. 式 ( ) . (A) 他离家 8 千米共用了 30 分; (C) 他步行的速度是 100 米 / 分; (B) 他等公交车时间为 6 分; (D) 公交车 的速度是 350 米 / 分.
图1 图2 图3 9 .若弹簧的总长度 y( cm )是所挂重物 x( kg )的一次函数,图像如 图 2 所示,那么不挂重物时,弹簧的长度是 cm . 10 .如图 3 ,一次函数 y k x b ( k < 0 )的图像经过点 A( 2 , 3 ) .如 果 y 3 ,那么 x 的取值范围是 .
中考数学考前50天得分专练2试题
2021年中考数学考前50天得分专练2一、题一共12小题,每一小题3分,一共36分,一项符合题目要求的,不涂、错涂或者涂的代号超过一个,一律得0分〕1.2008-数是〔 〕A .2008 B .2008- C .12008 D .12008-2谐之旅〞为主题奥运会火炬接力,传递总里程约为137000表示为〔 〕A .313.710⨯千米 B .413.710⨯千米C .513.710⨯千米D .613.710⨯千米3.在算式435--□中的□所在位置,填入以下哪种运算符号,计算出来的值最小〔 〕A .+B .-C .⨯D .÷4.一几何体的三视图如右,这个几何体是〔 〕A .圆锥B .圆柱C .三棱锥D .三棱柱5.我5月份某一周每天的最高气温统计如下: 那么这组数据〔最高气温〕的众数与中位数分别是〔 〕A .29,30 B .30,29 C .30,30D .30,316.以下运算中正确的选项是〔 〕A .336x y x =B .235()m m =C .22122x x-=D .633()()a a a -÷-=-7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=〔 〕A .180B .270C .360D .5408.以下曲线中,表示y 不是x 的函数是〔 〕9.以下图形中,既是轴对称图形又是中心对称图形的是〔 〕A .菱形 B .梯形C .正三角形A .B .C .D .左视 主视〔第4ab MP N123〔第7题图〕D .正五边形10.把抛物线2y x =-向左平移1平移后抛物线的解析式为〔 〕A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+D .(y x =-中,90C ∠=,8AC =,6BC =,两等圆A ,B 局部〕的面积之和为〔 〕A .254π B .258π C .2516π D .2532π12.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动[即(00)(01)(11)(10)→→→→,,,,…],且每秒挪动一个单位, 那么第35秒时质点所在位置的坐标是〔 〕 A .(40),B .(50),C .(05),D .(55),二、细心填一填,试自己的身手!〔本大题一一共6结果直接填写上在答题卡相应位置上〕13.反比例函数ky x=的图像过点(23)-,,那么k = .14.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如下图〔满分是100分, 学生成绩取整数 段的频率是 .15.如图,AB AC =,120BAC ∠=,AB 的垂直平分线交BC 于点D ,那么ADC ∠= .16.不等式组84113422x x x x +<-⎧⎪⎨-⎪⎩≥的解集是 .2 〔第12题图〕ABCD〔第15题图〕〔第14题图〕15 成绩10017.在实数范围内定义运算“☆〞,其规那么为:22a b a b =-☆,那么方程(43)13x =☆☆的解为x = .18.四个全等的直角三角形围成一个大正方形,中间空出的局部是一个小正方形,这样就组成了一个“赵爽弦图〞〔如图〕.假如小正方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ, 那么sin θ= . 三、用心做一做,显显自己的才能! 19.〔此题满分是6分〕请你先将式子2200811211a a a a ⎛⎫-+ ⎪-+-⎝⎭化简,然后从1,2,3中选择一个数...作为a 的值代入其中求值.20.〔此题满分是8分〕它给我们以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤〔如下图〕:第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ;〔第18题图〕第四步:过B 作EF AD ⊥交AD 的延长线于F ,请你根据以上作法,证明矩形DCEF 为黄金矩形,〔可取2AB =〕A BCD EFM N 〔第20题图〕参考答案一、选择题二、填空题13.6-14.0.415.6016.3x >17.6±18.35〔或者0.6〕说明:第14题答25不扣分;第17题只答对一题给2分. 三、解答题 19.解:原式2200811(1)1a a a a -+=÷-- ······················ 2分 220081(1)a a a a-=⨯- ····························· 3分 20081a =- ································· 4分 取2a =,原式2008=.〔取3a =,原式1004=〕 ·············· 6分 20.证明:在正方形ABCD 中,取2AB =N 为BC 的中点,112NC BC ∴== ····························· 2分在Rt DNC △中,ND === ············ 4分又NE ND =,1CE NE NC ∴=-=-, ························ 6分CE CD ∴= ····························· 7分 故矩形DCEF 为黄金矩形. ························· 8分。
中考数学考前50天得分专练12
2009年中考数学考前50天得分专练12一、选择题(本题满分20分,共10小题,每小题2分)1.实数a 、b 在数轴上的位置如图1所示,则a 与b 的大小关系是( )A .a > bB . a = bC . a < bD . 不能判断2.下列计算错误的是( )A .-(-2)=2 B=.22x +32x =52x D .235()a a =3.方程2x +1=0的解是( ) A .12 B . 12- C . 2 D .-24.如果点M 在直线1y x =-上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)5.如图2,直线l 截两平行直线a 、b ,则下列式子不一定成立的是() A .∠1=∠5 B. ∠2=∠4C . ∠3=∠5D . ∠5=∠2 6.下列说法正确的是( )A .抛一枚硬币,正面一定朝上;B . 掷一颗骰子,点数一定不大于6;C . 为了解一种灯泡的使用寿命,宜采用普查的方法;D . “明天的降水概率为80%”,表示明天会有80%的地方下雨. 7.下列图形中,是轴对称图形但不是中心对称图形的是( )A B C D8.如图3,在O 中,圆心角60BOC ∠=︒,则圆周角BAC ∠等于( ) A .60︒ B .50︒ C .40︒ D .30︒9.一次函数1y x =--不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限10.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )OCBA图3图254321l ba图1A .12 B .13 C . 16 D .18二、填空题(本题满分16分,共8小题,每小题2分)11.因式分解:24x -=____________12.某电视台为满足观众在北京奥运会期间收看不同比赛项目的要求,做了一个随机调查,结果如下表:如果你是电视台负责人,在现场直播时,将优先考虑转播 比赛. 13.函数11y x =-的自变量的取值范围是_________. 14.如图4,E 、F 是ABC ∆两边的中点,若EF =3,则BC = _______. 15.已知O 的半径是3,圆心O 到直线l 的距离是3,则直线l 与O的位置关系是 .16.已知四边形ABCD 中,90A B C ∠=∠=∠=︒,若添加一个条 件即可判定该四边形是正方形,那么这个条件可以是____________. 17.已知一圆锥的底面半径是1,母线长是4,它的侧面积是 ______.18.如图5,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠= __________度. 三、解答题:19.计算:201()2sin 3032--+︒+-20.解不等式组:718532x x x +<⎧⎨>-⎩①②FECBA图4CBA图5参考答案一、选择题(本题满分20分,共10小题,每小题2分)C D B C D B A D A C二、填空题(本题满分16分,共8小题,每小题2分)三、解答题19.原式=4-1+1+3 ··················· 4分=5 ··················· 6分20.解不等式① 得x < 1 ··············· 2分解不等式② 得x > -1 ················ 4分所以这个不等式组的解集为:-1<x<1 ··············· 6分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学考前50天得分专练1一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-31的相反数是 A .3 B .-3 C .31 D .-312.保护水资源,人人有责.我国是缺水国家,目前可利用淡水资源总量仅约为899000亿米3,用科学记数法表示这个数为A .8.99×105亿米3B .0.899×106亿米3C .8.99×104亿米3D .89.9×103亿米33.下列图形中既是轴对称图形又是中心对称图形的是A .B .C .D .4.下列说法错误的是A .必然发生的事件发生的概率为1B .不可能发生的事件发生的概率为0C .随机事件发生的概率大于0且小于1D .不确定事件发生的概率为05.学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,总计用了112元.已知每张甲票比乙票贵2元,则甲票、乙票的票价分别是A .甲票10元∕张,乙票8元∕张B .甲票8元∕张,乙票10元∕张C .甲票12元∕张,乙票10元∕张D .甲票10元∕张,乙票12元∕张 6.下列三视图所对应的直观图是A .B .C .D .7.若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是A .b 1<b 2 B .b 1 = b 2 C .b 1>b 2 D .大小不确定8.初三·一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x ,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是A .12B .10C .9D .89.如图,在正方形ABCD 的外侧,作等边△ADE ,BE 、CE 分别交AD 于G 、H ,设△CDH 、△GHE 的面积分别为S 1、S 2,则A .3S 1 = 2S 2B .2S 1 = 3S 2C .2S 1 =3S 2D .3S 1 = 2S 210.将一块弧长为π 的半圆形铁皮围成一个圆锥(接头忽略不计),则围成的圆锥的高为 A .3 B .23 C .5 D .2511.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD ,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ;(2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则∠AFE = A .60︒ B .67.5︒ C .72︒ D .75︒12.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是A .0B .1C .2D .3二、填空题:本大题共6个小题,每小题4分,共24分.将答案直接填写在题中横线上. 13.因式分解:2m 2-8n 2 = .ABCD14.如图,梯形ABCD 中,AB ∥CD ,AD = CD ,E 、F 分别是AB 、BC 的中点,若∠1 = 35︒,则∠D = .15.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为 ____________千米∕小时.16.如图,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 对应边的比为1∶2,则线段AC 的中点P 变换后对应的点的坐标为 .17.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 . 18.若a 、b 、c 是直角三角形的三条边长,斜边c 上的高的长是h ,给出下列结论:① 以a 2,b 2,c 2 的长为边的三条线段能组成一个三角形 ② 以a ,b ,c 的长为边的三条线段能组成一个三角形 ③ 以a + b ,c + h ,h 的长为边的三条线段能组成直角三角形④ 以a 1,b 1,c1的长为边的三条线段能组成直角三角形其中所有正确结论的序号为 . 三、解答题19.(本题共2小题,每小题8分,共16分)(1)计算:|345tan |32)31()21(10-︒-⨯+--.(2)化简:1)2)(1(31-+---x x x x ,并指出x 的取值范围.20.(本题满分12分)小明对本班同学上学的交通方式进行了一次调查,他根据采集的数据,绘制了下面的统计图1和图2.请你根据图中提供的信息,解答下列问题:图1 图2(1)计算本班骑自行车上学的人数,补全图1的统计图;(2)在图2中,求出“乘公共汽车”部分所对应的圆心角的度数,补全图2的统计图(要求写出各部分所占的百分比);(3)观察图1和图2,你能得出哪些结论?(只要求写出一条).中考数学考前50天得分专练2一、精心选一选,相信自己的判断!(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分) 1.2008-的相反数是( ) A .2008B .2008-C .12008D .12008-2.以“和谐之旅”为主题北京奥运会火炬接力,传递总里程约为137000千米,这个数据用科学记数法可表示为( ) A .313.710⨯千米 B .413.710⨯千米 C .513.710⨯千米D .613.710⨯千米3.在算式435--□中的□所在位置,填入下列哪种运算 符号,计算出来的值最小( )A .+B .-C .⨯D .÷ 4.一几何体的三视图如右,这个几何体是( ) A .圆锥 B .圆柱 C .三棱锥 D .三棱柱 5.我市5则这组数据(最高气温)的众数与中位数分别是( ) A .29,30 B .30,29 C .30,30 D .30,31 6.下列运算中正确的是( ) A .336x y x =B .235()m m =C .22122x x-= D .633()()a a a -÷-=- 7.如图a b ∥,M N ,分别在a b ,上,P 为两平行线间一点, 那么123∠+∠+∠=( )A .180B .270C .360D .5408.下列曲线中,表示y 不是x 的函数是( )9.下列图形中,既是轴对称图形又是中心对称图形的是( )A .菱形B .梯形C .正三角形D .正五边形10.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A .2(1)3y x =---B .2(1)3y x =-+- C .2(1)3y x =--+D .2(1)3y x =-++11.Rt ABC △中,90C ∠=,8AC =,6BC =,两等圆⊙A 、⊙B外切,那么图中两个扇形(即阴影部分)的面积之和为( )A .254πB .258πC .2516πD .2532π12.一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动[即(00)(01)(11)(10)→→→→,,,,…],且每秒移动一个单位, 那么第35秒时质点所在位置的坐标是( ) A .(40),B .(50),C .(05),D .(55),二、细心填一填,试自己的身手!(本大题共6小题,每小题3答题卡相应位置上) 13.反比例函数ky x=的图像过点(23)-,,则k = .14.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分, 学生成绩取整数),则成绩在90.5~95.5这一分数 段的频率是 .15.如图,AB AC =,120BAC ∠=,AB 的垂直平分线交BC 于 点D ,那么ADC ∠= .A .B .C .D .俯视图左 视 图主视图(第4题图) ab M P N 123 (第7题图)(第11题图) 012 3xy 1 2 3 … (第12题图)ABCD(第15题图)(第14题图)16.不等式组84113422x x x x +<-⎧⎪⎨-⎪⎩≥的解集是 .17.在实数范围内定义运算“☆”,其规则为:22a b a b =-☆,则方程(43)13x =☆☆的解为x = .18.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正 方形面积为1,大正方形面积为25,直角三角形中较小的锐角为θ, 那么sin θ= .三、用心做一做,显显自己的能力! 19.(本题满分6分)请你先将式子2200811211a a a a ⎛⎫-+ ⎪-+-⎝⎭化简,然后从1,2,3中选择一个数...作为a 的值代入其中求值.20.(本题满分8分)以协调,匀称的美感,现将同学们在教学活动中,折叠黄金矩形的方法归纳出以下作图步骤(如图所示):第一步:作一个任意正方形ABCD ;第二步:分别取AD BC ,的中点M N ,,连接MN ;第三步:以N 为圆心,ND 长为半径画弧,交BC 的延长线于E ; 第四步:过B 作EF AD ⊥交AD 的延长线于F , 请你根据以上作法,证明矩形DCEF 为黄金矩形,(可取2AB =)(第18题图)ABCD EFM N (第20题图)第12题中考数学考前50天得分专练3一、选择题(每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上.本题共8个小题,每小题3分,共计24分) 1.计算3(1)-的结果是 A .-1 B .1 C .-3 D .32.若使分式2xx -有意义,则x 的取值范围是 A .2x ≠ B .2x ≠- C .2x >-D .2x <3.某同学7次上学途中所花时间(单位:分钟)分别为10、9、11、12、9、10、10,这组数据的众数是 A .9 B .10 C .11 D .124.如图,在ABC ∆中,D 、E 分别是AB 、AC 边的中点,若6BC =,则DE 等于 A .5 B .4 C .3 D .25.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是A .362100x y x y +=⎧⎨+=⎩B .3642100x y x y +=⎧⎨+=⎩C .3624100x y x y +=⎧⎨+=⎩D .3622100x y x y +=⎧⎨+=⎩6.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为A .136000B .11200C .150D .1307.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是 A .1y <- B .1y ≤- C .1y ≤- 或0y >D .1y <-或0y ≥8.在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们把每个小正方形的顶点称为格点,以格点为顶点的图形称为格点图形.如上图中的△ABC 称为格点△ABC .现将图中△ABC 绕点A 顺时针旋转180︒,并将其边长扩大为原来的2倍,则变形后点B 的对应点所在的位置是 A .甲 B .乙 C .丙 D .丁 二、填空题(本题共8个小题,每小题3分,共计24分)9.计算:(3)2-⨯= . 10.化简:52a a -= . 11.北京时间2008年5月12日14时28分,四川省汶川县发生了8.0级地震.一时间,全国人民“众志成城、抗震救灾”,体现出了前所未有的民族大团结. 截至6月5 日12:00时,四川省财政厅共收到抗震救灾捐款约为43 800 000 000元,用科学记数法表示捐款数为 元.12.如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.13.根据如上图所示的程序计算,若输入的x 的值为1,则输出的y 值为 . 14.利民商店中有3种糖果,单价及重量如下表:第8题第4题A BCD E第7题-1-1yxO若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克_________元.15.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为 .16.如下图中每个阴影部分是以多边形各顶点为圆心,1为半径的扇形,并且所有多边形的每条边长都大于2,则第n 个多边形中,所有扇形面积之和是 (结果保留π).……第1个 第2个 第3个第16题三、解答题17.(本题满分8分,每小题4分)(1)计算:0111(3)()2π--+-- (2)分解因式:3269x x x -+18.(本题满分8分,每小题4分)(1)已知290x -=,求代数式22(1)(1)7x x x x x +----的值.(2)解方程:22570x x --=19.(本题满分6分)如图,在ABC ∆中,90C ∠=︒,点D 、E 分别在AC 、AB 上,BD 平分ABC ∠,DE AB ⊥,6AE =,3cos 5A =. 求(1)DE 、CD 的长;(2)tan DBC ∠的值.中考数学考前50天得分专练4一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分36) 1.比1小2的数是( ) A.3- B.2- C.1- D.1 2.结果为2a 的式子是( ) A.63a a ÷B.42a a -C.12()a -D.42a a -3.如图,水平放置的下列几何体,主视图不是..长方形的是( )4.如图,直线y kx b =+交坐标轴于A B ,两点,则不等式0kx b +>的解集是( ) A.2x >-B.3x >C.2x <-D.3x <5.如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( ) A.4mC.m 3D.6.A B C D E ,,,,五个景点之间的路线如图所示.若每条路线的里程(km)a 及行驶的平均速度(km/h)b 用()a b ,表示,则从景点A 到景点C 用时最少....的路线是( ) A.A E C →→ B.A B C →→C.A E B C →→→D.A B E C →→→7.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5和11,则b 的面积为( ) A.4B.6C.16D.558.为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++=9.如图,在ABC △中,点E D F ,,分别在边AB ,BC ,CA 上,且DE CA ∥,DF BA ∥.下列四个判断中,不正确...的是( ) A.四边形AEDF 是平行四边形B.如果90BAC ∠=,那么四边形AEDF 是矩形 C.如果AD 平分BAC ∠,那么四边形AEDF 是菱形 D.如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形10.已知:m n ,是两个连续自然数()m n <,且q m n =.设p =p ( )A.总是奇数B.总是偶数C.有时是奇数,有时是偶数 D.有时是有理数,有时是无理数11.如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O则折痕AB 的长为( ) A.2cmC.D.A.B.C.D.(第4题图)(第5题图)AFCDBE (第9题图)(第7题图)(120,60) (250,100) (180,60) (100,100)A E D (200,100) (80,40) (第6题图)(50,100)12.如图,在ABC △中,2AB AC ==,20BAC ∠=.动点P Q ,分别在直线BC 上运动,且始终保持100PAQ ∠=.设B P x =,CQ y =,则y 与x 之间的函数关系用图象大致可以表示为( )二、填空题(每小题4分,满分24分)13.当99a =时,分式211a a --的值是.14.东海县素有“水晶之乡”的美誉.某水晶商店一段时间内销售了各种不同价格的水晶项链75条,其价格和销售数量如下表:下次进货时,你建议该商店应多进价格为元的水晶项链.15.小明家离学校1.5km ,小明步行上学需min x ,那么小明步行速度(m /min)y 可以表示为1500y x=;水平地面上重1500N 的物体,与地面的接触面积为2m x ,那么该物体对地面压强2(/m )y N 可以表示为1500y x =; ,函数关系式1500y x =还可以表示许多不同情境中变量之间的关系,请你再列举1.例.:.16.正ABC △的边长为3cm ,边长为1cm 的正RPQ △的顶点R 与点A 重合,点P Q ,分别在AC ,AB 上,将RPQ △沿着边AB BC CA ,,顺时针连续翻转(如图所示),直至点P 第一 次回到原来的位置,则点P 运动路径的长为cm . (结果保留π)17.当22x -<<时,下列函数中,函数值y 随自变量x 增大而增大的是(只填写序号)①2y x =;②2y x =-;③2y x=-;④268y x x =++. 18.右图是一山谷的横断面示意图,宽AA '为15m ,用曲尺(两直尺相交成直角)从山谷两侧测量出1m OA =,3m OB =,0.5m O A ''=,3m O B ''=(点A O O A '',,,在同一条水平线上)则该山谷的深h 为m .三、计算与求解19.(本小题满分6分)计算:0212sin 45--.20.(本小题满分6分)解方程:11322xx x-=---.(A (第16题图)(第18题图)(第12题图)A.B.C.D.中考数学考前50天得分专练5一、选择题(本题共10个小题,每小题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请把你认为正确选项的代号填在下表内 1.5的倒数是 A .51 B .51- C .-5 D .5 2.下列长度的三条线段,能组成三角形的是A .1cm ,2 cm ,3cmB .2cm ,3 cm ,6 cmC .4cm ,6 cm ,8cmD .5cm ,6 cm ,12cm3.如图,C 、D 是线段AB 上两点,若CB =4cm ,DB =7cm ,且D 是AC 的中点,则AC 的长等于 A .3cm B .6cm C .11cm D .14cm4.如图,在ΔABC 中,AC =DC =DB ,∠ACD =100°,则∠B 等于 A .50° B .40° C .25° D .20° 5.把方程2133123+-=-+x x x 去分母正确的是 A .)1(318)12(218+-=-+x x x B .)1(3)12(3+-=-+x x x C .)1(18)12(18+-=-+x x x D .)1(33)12(23+-=-+x x x6.经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是 A .91 B .61 C .31 D .21 7.如图,桌上放着一摞书和一个茶杯,从左边看到的图形是8.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是 A .∠3=∠4 B .∠A +∠ADC =180° C .∠1=∠2 D .∠A =∠59.如图,将ΔPQR 向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是 A . (-2,-4) B . (-2,4) C .(2,-3) D .(-1,-3) 10.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0x < 时,该交点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限二、填空题(本题共6小题,每小题3分,共18分.请将答案直接填写在该题目中的横线上)11.2008年5月18日晚,中央电视台举办了“爱的奉献”大型募捐活动.据了解,本次活动社会各界共向四川灾区捐款大约1514000000元人民币,这个数字用科学记数法可表示为 元人民币.12.已知,|x |=5,y =3,则=-y x .13.计算:=---31922a a a . 14.如图,直线AB 、CD 相交于点O ,AB OE ⊥,垂足为O ,如果︒=∠42EOD ,则=∠AOC .15.如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是P A 、PR 的中点.如果DR =3,AD =4,则EF 的长为 . 16.观察下面两行数:根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果) .2, 4, 8, 16, 32, 64, … ①5, 7, 11, 19, 35, 67, … ②第9题图C B 第4题图DA 第3题图D C BA A C第8题图E E 54321D B 第14题图┌O E A BCD第15题图P R F EA B CDBCA三、解答题17.(7分)计算:022)21(45sin 2)1(--︒+-- 解:022)21(45sin 2)1(--︒+--= =18.(7分)解方程组: ⎩⎨⎧=-=+. ②y x , ① y x 54219.(7分)在同一条件下,对同一型号的汽车进行耗油1升所行驶路程的实验,将收集到的数据作为一个样本进行分析,绘制出部分频数分布直方图和部分扇形统计图.如下图所示(路程单位:km)结合统计图完成下列问题:⑴扇形统计图中,表示135.12x <≤部分的百分数是 ;⑵请把频数分布直方图补充完整,这个样本数据的中位数落在第 组;⑶哪一个图能更好地说明一半以上的汽车行驶的路程在1413x <≤之间?哪一个图能更好地说明行驶路程在135.12x <≤的汽车多于在5.1414x <≤的汽车?20.(7分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.西 东 12.5≤x <1312≤x <12.513.5≤x <1413≤x <13.530%30%14≤x <14.513.3%6.7%第20题图中考数学考前50天得分专练6一、选择题(考生注意,本大题共10个小题,每题2分,共20分,在每个小题给出的四个选1.下列计算正确的是( ) A.0(2)0-=B.239-=-3==2.2008年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2008年8月8日20时应是( ) A.伦敦时间2008年8月8日11时 B.巴黎时间2008年8月8日13时 C.纽约时间2008年8月8日5时 D.汉城时间2008年8月8日19时3.下列交通标志中既是中心对称图形,又是轴对称图形的是( ) 4.怀化市2006年的国民生产总值约为333.9亿元,预计2007年比上一年增长10%,用科学计数法表示2007年怀化市的国民生产总值应是(结果保留3个有效数字)( ) A.103.6710⨯元 B.103.67310⨯元 C.113.6710⨯元D.83.6710⨯元5.已知点(23)P -,关于y 轴的对称点为()Q a b ,,则a b +的值是( ) A.1 B.1- C.5 D.5- 6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( ) A.12个B.13个 C.14个 D.18个 7.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A.7cm B.17cm C.12cm D.7cm 或17cm8.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( )9.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin5A =,则下列结论正确的有( )①6cm DE = ②2cm BE =③菱形面积为260cm④BD = A.1个B.2个C.3个D.4个10.已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙则( )A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 二、填空题(本大题共10个小题,每小题2个,共20分) 11.函数13y x =-中,自变量x 的取值范围是 .12.分解因式:2a ab -=.13.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是 度. 14.方程组3520x y x y +=⎧⎨-=⎩的解是.15.两圆有多种位置关系,图中不存在的位置关系是.A. B. C. D.北京 汉城 巴黎 伦敦 纽约 5-0189主视图 左视图A. B. C. D. DCBEA第13题图第15题图第17题图16.已知方程230x x k -+=有两个相等的实数根,则k =.17.如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称 .18.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.19.如图:111A B C ,,分别是BC AC AB ,,的中点,2A ,2B ,2C 分别是11B C ,11A C ,11A B 的中点 这样延续下去.已知ABC △的周长是1,111A B C △的周长是1L ,222A B C △的周长是2n n n L A B C 的周长是n L ,则n L =.20.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是(结果保留根号)三、解答题21.先化简,再求值.(本题满分7分)3(2)(2)()a b a b ab ab -++÷-,其中a =,1b =-22.(本题满分7分)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE =BE兴趣爱好图1 图2 …^ABC2A1C1B1A2B2C第19题图C第20题图中考数学考前50天得分专练7一、选择题(每小题4分,共24分)每小题只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得4分,答错、不答或答案超过一个的一律得0分. 1.计算3233⨯的结果是( )A .35; B .36; C .37; D .38.2.使分式22-x 有意义的x 的取值范围是( )A. 2≤x ;B. 2-≤x ;C. 2x ≠;D. 2x ≠-. 3.已知点A ( 2, 3 ), 则点A 在( ) A .第一象限;B .第二象限;C .第三象限;D .第四象限.4.下列事件中,是必然事件的为( )A .打开电视机,正在播放动画片;B .掷一枚均匀硬币,正面一定朝上;C . 每周的星期日一定是晴天;D .我县夏季的平均气温比冬季的平均气温高. 5.已知⊙O 1和⊙O 2的半径分别为5和2,O 1O 2=7,则⊙O 1和⊙O 2的位置关系是( ) A .外离 ; B .外切 ; C . 相交 ; D .内含 . 6.如图,□ABCD 中,E 为AD 的中点.已知△DEF 的面积为S ,则△DCF 的面积为( ) A .S ; B .2S ; C .3S ; D .4S .二、填空题(每小题3分,共36分)在答题卡上相应题目的答题区域内作答. 7.-3的相反数是 .8.分解因式:x x 22- = .9.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积 约为260 000平方米,用科学记数法表示是 平方米. 10.四边形的外角和等于 度.11.小林同学7次上学途中所花时间(单位:分钟)分别为10,9,11,12,9,10,9.这组数的众数为 .12.只用同一种正多边形铺满地面,请你写出一种这样的正多边形: .13.方程3121+=x x 的解为=x ______. 14.反比例函数xky =的图象经过点(1,6) ,则k 等于______.15.将抛物线2x y =向左平移4个单位后,再向下平移2个单位,则所得到的抛物线的函数关系式为_____________________ .16.如图,将半径为cm 2的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .17.已知圆锥的底面半径是2cm ,母线长是4cm ,则圆锥的侧面积是 cm 2. 18.按一定的规律排列的一列数依次为:-2,5,-10,17,-26,…按此规律排下去,这列数中的第9个数是 . 三、解答题19.(8分)计算:│-4│+20080-2320.(8分)先化简下面的代数式,再求值:2)2(4-+a a ,其中5=a .21.(8分)已知:如图,∠A =∠DCF ,F 是AC 的中点.求证:△AEF ≌△CDF .中考数学考前50天得分专练8一、选择题:(本部分共10小题,每小题3分,共30分.每小题给出4个选项,其中只有一个是正确的)1.2-的相反数是( ) A.12-B.2-C.12D.22.今年参加我市初中毕业生学业考试的考生总数为45730人,这个数据用科学记数法表示为( ) A.50.457310⨯B.44.57310⨯ C.44.57310-⨯D.34.57310⨯3.仔细观察图1所示的两个物体,则它的俯视图是( )4.下列图形中,不是..轴对称图形的是( )5.已知三角形的三边长分别是38x ,,;若x 的值为偶数,则x 的值有( )A.6个 B.5个 C.4个 D.3个6.一件标价为250元的商品,若该商品按八折销售,则该商品的实际售价是( ) A.180元 B.200元 C.240元 D.250元 7.一组数据2-,1-,0,1,2的方差是( ) A.1 B.2 C.3 D.48.若2(2)30a b -++=,则2007()a b +的值是( )A.0 B.1 C.1- D.20079.如图2,直线a b ∥,则A ∠的度数是( ) A.28B.31C.39D.4210.在同一直角坐标系中,函数(0)ky k x=≠与(0)y kx k k =+≠的图象大致是( )二、填空题(本题共5小题,每小题3分,共15分)11.一个口袋中有4个白球,5个红球,6个黄球,每个球除颜色外都相同,搅匀后随机从袋中摸出一个球,这个球是白球的概率是 . 12.分解因式:2242x x -+ .13.若单项式22mx y 与313n x y -是同类项,则m n +的值是 . 14.直角三角形斜边长是6,以斜边的中点为圆心,斜边上的中线为半径的圆的面积是 .那么,当输入数据是时,输出的数据是 .三、解答题(本题共8小题,其中第16题5分,第17题6分,第18题6分,第19题6分,第20题7分,第21题8分,第22题9分,第23题8分,共55分)16.计算:01π3sin 4520073-⎛⎫+- ⎪⎝⎭17.解不等式组,并把它的解集表示在数轴上:2(2)3134x x x x ++⎧⎪⎨+<⎪⎩≤ ① ②18.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠,45MBE = ∠.(1)求证:BE ME =.(2)若7AB =,求MC 的长.正面 图1 A. B. C. D.A. B. C. D.ABD a b图270° 31°A. B. C. D. 图3ABCDMEABCDEO(第5题图) (第8题图)中考数学考前50天得分专练9一、选择题(本大题共有8个小题,每小题3分,满分24分.)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号填入上面选择题答题表中相应题号下的方格内,填错或不填均为零分. 1.2-的倒数是A . 2B . 21C . 2-D . 21-2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A . 1110437.0⨯ B . 10104.4⨯ C . 101037.4⨯ D . 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限 B . 点(k ,k )在它的图象上 C . 它的图象是中心对称图形D . y 随x 的增大而增大 5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD的延长线于点E ,则下列式子不成立...的是 A .DE DA = B . CE BD = C . 90=∠EAC ° D . E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为A . 0B . -1C . 1D . 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P 从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的 一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为A .3cmB .4cmC .21cmD .62cm二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上. 9.分解因式:92-x = . 10.化简211xx x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180元的运动服,打折后他比按标价购买节省了 元.12.关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .40%(图1) (图2)(第13题图) A B C 1OD1C 2O 2C …… (第15题图)正方体 长方体 圆柱 圆锥 A B C D 60 ABDC(第7题图) A BC DE. F.P .·15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作平行四边形11O ABC,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为.16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 . 三、解答题 17.计算:20)21(8)21(3--+-+-18.解不等式组⎪⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题: (1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20⋅元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.类别。