高中数学--圆锥曲线
圆锥曲线
概念
01
焦点
02
准线03离Fra bibliotek率04
焦准距
06
弦和焦点弦
05
焦半径
定义中提到的定点,称为圆锥曲线的焦点。
定义中提到的定直线称为圆锥曲线的准线。
固定的常数(即圆锥曲线上一点到焦点与对应准线的距离比值)称为圆锥曲线的离心率。
焦点到对应准线的距离称为焦准距。
焦点到曲线上一点的线段称为焦半径。
类似圆,圆锥曲线上任意两点之间的连线段称为弦;过焦点的弦称为焦点弦。平行于准线的焦点弦称为通径, 物理学中又称为正焦弦。
(1)两条动直线交点为圆锥曲线上的某个定点
即从圆锥曲线上某一点引出两直线AC、AD,如果CD经过定点B,则kAC+kAD为定值。反之,如果已知kAC+kAD 为定值,也能推出CD经过某定点B。
斜率之和为定值如图,A为圆锥曲线上的定点,A'是A关于x轴的对称点。在过A‘的切线上找一点B,过B作割 线CD,连接AC、AD。这就有了两动直线AC、AD,其交点为圆锥曲线上的定点A,且经过定点B。
圆锥曲线是光滑的,因此有切线和法线的概念。
对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。因此,椭圆和双曲线有两个焦点和两 条准线。而抛物线只有一个焦点和一条准线。
圆锥曲线是轴对称图形,对称轴为过焦点且与准线垂直的直线。在椭圆和双曲线的情况,该直线通过两个焦 点,该直线称为圆锥曲线的焦轴。对于椭圆和双曲线,还关于焦点连线的垂直平分线对称,因此椭圆和双曲线有 两条对称轴。
早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。 他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之 作。
高中生对圆锥曲线的理解
高中生对圆锥曲线的理解圆锥曲线是高中数学中的一个重要内容,涉及抛物线、椭圆、双曲线等曲线的定义、性质和方程。
圆锥曲线问题在高考中占有一定比例,要想取得好成绩,必须掌握其常用方法。
本文将介绍圆锥曲线中的常用方法,并举例说明其在高考中的应用。
圆锥曲线是平面几何的重要组成部分,也是高考的重点之一。
圆锥曲线问题往往需要运用曲线的定义、性质和方程来解决。
为了更好地掌握圆锥曲线问题,我们需要了解其常用方法。
圆锥曲线包括抛物线、椭圆、双曲线等,是指一个动点的轨迹满足某种条件的曲线。
圆锥曲线的定义和性质是解决圆锥曲线问题的前提和基础。
抛物线是指一个动点到一个定点和一条定直线距离之比为定值的轨迹,其中定点与定直线相交。
根据不同的定义,抛物线有不同的方程,如标准方程、参数方程等。
椭圆是指一个动点到一个定点和一条定直线的距离之比为定值且小于1的轨迹,其中定点与定直线相交。
椭圆有标准方程、参数方程等,应用时需要根据具体问题进行选择。
双曲线是指一个动点到两个定点距离之差的绝对值为定值的轨迹,其中两个定点不重合。
双曲线有标准方程、参数方程等,需要根据题目要求进行选择。
在解决圆锥曲线问题时,我们常常需要运用一些常用方法。
下面介绍几种常见的圆锥曲线方法:代入法:通过代入消元,将圆锥曲线问题转化为解方程组的问题。
这种方法在解决圆锥曲线交点、弦长等问题时非常实用。
【例1】已知椭圆方程为,直线方程为,求直线与椭圆相交的弦长。
解:将直线方程代入椭圆方程,得到一个二元一次方程组,通过解方程组得到交点坐标,再利用弦长公式计算即可。
参数法:通过引入参数,将圆锥曲线问题转化为参数方程的问题,从而简化计算。
这种方法在解决涉及角度、长度等问题时常用。
【例2】已知抛物线方程为,A、B是抛物线上的两个点,且AB的倾斜角为,求AB的长度。
解:将问题转化为参数方程形式,设,则,利用参数方程求出AB的长度。
定义法:利用圆锥曲线的定义解决问题。
在解决与轨迹、弦长相关的问题时常用此方法。
高考数学中的常见圆锥曲线
高考数学中的常见圆锥曲线圆锥曲线是高中数学中重要的一章内容,也是高考中经常出现的考点之一。
圆锥曲线是平面解析几何的基础,对于学习解析几何和进一步学习微积分等数学课程具有重要的意义。
在高考数学中,常见的圆锥曲线有椭圆、双曲线和抛物线。
接下来,我们将对每种圆锥曲线进行详细的介绍。
一、椭圆椭圆是圆锥曲线中的一种,其定义为到定点F1和F2的距离之和等于定长2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为椭圆的长轴。
椭圆的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与长轴之比,记作e。
在椭圆中,离心率小于1。
3. 扁压比:定义为短轴与长轴之比,记作b/a。
在椭圆中,扁压比小于1。
椭圆的方程可以通过坐标系中点P(x,y)到焦点F1、F2的距离之和等于定长2a来表示。
椭圆的标准方程为:(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1在高考中,关于椭圆的考点主要包括椭圆的性质和椭圆的方程与图像等方面的题目。
二、双曲线双曲线是圆锥曲线中的另一种,其定义为到定点F1和F2的距离之差等于定常2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为双曲线的距。
双曲线的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与距之比,记作e。
在双曲线中,离心率大于1。
3. 长半轴:定义为从顶点到较远焦点的距离,记作a。
4. 短半轴:定义为从顶点到双曲线与x轴或y轴的交点的距离,记作b。
在双曲线中,短半轴小于距。
双曲线的标准方程为:(x-x0)^2/a^2 - (y-y0)^2/b^2 = 1在高考中,关于双曲线的考点主要包括双曲线的性质和双曲线的方程与图像等方面的题目。
三、抛物线抛物线是圆锥曲线中的最后一种,其定义为点P到定直线(直矩)的距离等于点P到定直线(焦准)的距离。
抛物线的定直线称为准线,定直线的焦点称为焦点,焦距的两倍称为抛物线的焦距。
高中圆锥曲线题型及解题方法
高中圆锥曲线题型及解题方法
高中数学中的圆锥曲线是指椭圆、双曲线和抛物线这三种曲线。
下面是一些常见的高中圆锥曲线题型及其解题方法:
1.椭圆题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定椭圆的中心、长轴和短轴的长度。
o图形性质:通过关键参数判断椭圆的形状,并确定焦点和直径等性质。
2.双曲线题型:
o方程转化:将标准方程转化为对称轴方程或标准方程。
o确定关键参数:通过比较方程的系数,确定双曲线的中心、焦距和各轴的长度。
o图形性质:通过关键参数判断双曲线的形状,确定焦点、渐近线和渐近角等性质。
3.抛物线题型:
o方程转化:将标准方程转化为顶点形式或焦点式。
o确定关键参数:通过比较方程的系数,确定抛物线的顶点、焦距和开口方向。
o图形性质:通过关键参数判断抛物线的形状,确定
对称轴、焦点和准线等性质。
解题方法的关键在于确定关键参数,然后利用这些参数来判断曲线的形状和性质。
同时,要熟练掌握方程转化的方法,以便在解题过程中将方程转化为更容易分析的形式。
除了掌握相应的公式和技巧,还需要多做练习,加深对圆锥曲线图形和性质的理解。
同时,理论和实践相结合,通过画图、观察和推理的方式加深对圆锥曲线的认识。
最重要的是理解概念和思想,而不只是死记硬背。
只有真正理解了圆锥曲线的几何性质,才能更好地应用于解题,并在应用过程中灵活运用。
高中数学素材:圆锥曲线知识点与公式
第1节 椭圆【知识梳理】1.椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数(12122PF PF a F F +=>),这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 若1212PF PF F F +=,则动点P 的轨迹为线段12F F ;若1212PF PF F F +<,则动点P 的轨迹无图形.2.椭圆的标准方程与几何性质 3.椭圆的通径以及有关最值过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为22b a .①椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点. ②椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为a c +,距离的最小值为a c −.[使用点到点的距离公式证明] 4.点与椭圆的位置关系对于椭圆22221(0)x y a b a b+=>>,点00()P x y ,在椭圆内部,等价于2200221x y a b +<,点00()P x y ,在椭圆外部,等价于2200221x y a b+>.5.椭圆焦点三角形的面积为2tan2S b θ=⋅(θ为焦距对应的张角)1(0)F c −,,2(0F证明:设12,PF m PF n ==()()()()()()122222221222cos 2121cos 1sin 32F PF m n a b c m n mn mn S mn θθθ+==+−−= + = ,: 1222222sin cossin 22tan 1cos 22cos 2F PF S b b b θθθθθθ⇒=⋅=⋅=+ .6.椭圆的切线(1)椭圆22221(0)x y a b a b +=>>上一点00()P x y ,处的切线方程是00221x x y y a b+=; (2)过椭圆22221(0)x y a b a b +=>>外一点00()P x y ,,所引两条切线的切点弦方程是00221x x y ya b+=; (3)椭圆 22221(0)x y a b a b+=>>与直线0Ax By C ++= 相切的条件是22222A a B b c +=.第二讲 双曲线【知识梳理】1.双曲线定义在平面内,到两个定点1F 、2F 的距离之差的绝对值等于常数2a (a 大于0且122a F F <)的动点P 的轨迹叫作双曲线.这两个定点1F 、2F 叫双曲线的焦点,两焦点的距离叫作双曲1(0)F c −,,2(0)F c ,1(0)F c −,,F 2|2(F c c a b ==+12||2(F F c c =={y y a y a 或≤−≥轴和原点对称2.双曲线的通径过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为22ba .3.点与双曲线的位置关系对于双曲线22221(0)x y a b a b −=>>,点00()P x y ,在双曲线内部,等价于2200221x y a b−>.点00()P x y ,在双曲线外部,等价于2200221x y a b −<结合线性规划的知识点来分析.4.双曲线常考性质性质一 双曲线的焦点到两条渐近线的距离为常数b ;顶点到两条渐近线的距离为常数ab c; [使用点到直线的距离公式即可证明]性质二 双曲线上的任意点P 到双曲线C 的两条渐近线的距离的乘积是一个常数222a b c;证明 设11()P x y ,是双曲线22221(0)x y a b a b−=>>上任意一点,该双曲线的两条渐近线方程分别是0ay bx −=和0ay bx +=,点11()P x y ,和222a b c =. 5. 双曲线焦点三角形面积为2tan 2b θ(可以这样理解,顶点越高,张角越小,分母越小,面积越大)6. 双曲线的切线点00()M x y ,在双曲线22221x y a b−=(00)a b ,>>上,过点M 作双曲线的切线方程为00221x x y y a b−=.若点00()M x y ,在双曲线22221x y a b −=(00)a b ,>>外,则点M 对应切点弦方程为00221x x y ya b −=第3节 抛物线【知识梳理】1.抛物线定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 22(0)y px p =>22(0)y px p =−>22(0)x py p =>22(0)x py p =−>0),0y ≥,x R ∈0y ≤,x R ∈ 所以p 的值永远大于0.另外,焦半径使用定义即可证明.3.抛物线的通径过焦点且垂直于抛物线对称轴的弦叫做抛物线的通径.对于抛物线22(0)y px p =>,由()2pA p ,,()2p B p −,,可得||2AB p =,故抛物线的通径长为2p .4.弦的中点坐标与弦所在直线的斜率的关系:0p y k =证明(点差法):设11()A x y ,,22()B x y ,为抛物线22(0)y px p =>上两点,则2112y px =,2222y px =作差得21211202y y p px x y y y −==−+,其中00()M x y ,是AB 中点.或者说,若设AB 的斜率为k ,则AB 中点纵坐标0py k=.[焦点在y 轴上的抛物线,同理]111||[||||][||||]||222MN AC BD AF BF AB =+=+=,90ANB ∠=°,故以AB 为直径的圆与准线l 相切.设E 是AF 的中点,则E 的坐标为11222p x y +(,),则点E 到y 轴的距离为12221AF p x d =+= 故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.(2)在ACN △与AFN △中,||||||||AN AN AC AF ==,;在Rt ABN △中,NAM ANM ∠=∠90CAN ANM ACN AFN AFN ACN FN AB ∠=∠∠=∠=°⊥,△≌△,因为2()D p y F −=,,1()C p y F −=,,所以212+=0DF CF p y y =,所以FC FD ⊥.(3)设直线AB 的方程为2p x ty =+与抛物线22y px =联立得:22()2py p ty =+,即2220y pty p −−=,故212y y p =−,2221212224y y p x x p p ==. (4)11211122OA y y p k y x y p===,2222212122222OD y y py py pk p p p y y y ==−=−==−,则A 、O 、C 三点共线,同理B 、O 、C 三点共线.上述证明方式并非唯一,多种方法均可证明,不再赘述.6.抛物线的切线问题点00()M x y ,在抛物线22y px =(0)p >上,过点M 作抛物线的切线方程为00()y yp x x =+.点00()M x y ,在抛物线22y px =(0)p >外,过点M 对应切点弦方程为00()y yp x x =+. 点00()M x y ,在抛物线22x py =(0)p >内,过点M 作抛物线的弦AB ,分别过A B 、作抛物线的切线,则两条切线的交点P 的轨迹方程为直线00()x xp y y =+.第4节 焦长与焦半径体系【知识梳理—椭圆篇】1.焦半径公式设椭圆22221(00)x y a b a b +=>>,的右焦点为2(0)F c ,,11()A x y ,是椭圆上任意一点,则21212222121222221221212121222)1(2)(a cx x ac c b cx x a b a ax b c cx x y c x AF +−=++−−=−++−=+−=11cax a ex a=−=−.其中e 为椭圆的离心率,焦半径公式也可由第二定义快速得到2211()a AF e x a ex c=−=−,同理可以推出其他焦半径公式.焦点在y 轴上的椭圆和双曲线的时候,同理也可推出焦半径公式.总结:在椭圆和双曲线中,11()A x y ,到焦点的距离为1AF a ex =±(焦点在x 轴上) 1AF a ey =±(焦点在y 轴上)[长短记忆法:画图看长短来判断谁加谁减.] [口诀记忆法: 左加右减,上加下减,长正短负]焦半径范围:根据公式21AF a ex =−里面坐标x 1的范围,可得2AF 的范围为2a c AF a c −≤≤+. 2.焦点弦长公式椭圆焦点弦长公式.在椭圆22221(0)x y a b a b+=>>中,结合椭圆的焦点弦公式,过右焦点F的弦长为221212 ||()()2()a aMN e x e x a e x x c c =−+−=−+.3.椭圆焦长以及焦比问题焦长公式:A 是椭圆22221(0)x y a b a b+=>>上一点,1F 、2F 是左、右焦点,12AF F ∠为α,AB过1F ,c 是椭圆半焦距,则:(1)21||cos b AF a c α=−;(2)21||cos b BF a c α=+;(3)2222222222||cos sin ab ab AB a c b c αα==−+.图1-1-1证明 (1)如图1-1-1所示,12||||2AF AF a +=;12||||2BF BF a +=,故22||||||4AB AF BF a ++=; (2)设1||AF m =,1||BF n =,2||2AF a m =-,2||2BF a n =-,由余弦定理得 222(2)(2)2(2)cos m c a m m c α+--=⋅;整理得21||cos b AF a c α=-① 同理:222(2)(2)2(2)cos(180)n c a n n c α︒+--=⋅-;整理得21||cos b BF a c α=+②①+②得,则过焦点的弦长:2222222222||cos sin ab ab AB m n a c b c αα=+==-+③焦比定理 过椭圆22221x y a b +=的左焦点1F 的弦21||cos b AF a c α=−,21||cos b BF a c α=+,令11||||AF F B λ=,即221cos cos cos 1b b e ac a c λλαααλ-=⇒=-++④,代入焦长公式①可得21(1)||2b AF aλ+=⑤.推论 根据公式1cos 1e λαλ-=+,利用tan k α=把角度替换掉可以得到e =注意:1.整个焦长体系只需要记住上面~①⑤的公式,其他要熟悉推导,涉及到的面积问题记住是焦长当底即可;当直线过右焦点,或者上焦点、下焦点时,要熟悉此时的公式会如何变化,详见后面记忆方法处.2.学习焦长焦比体系要非常熟悉推导过程[定义+余弦定理+abc 的平方关系],在处理解答题的时候,若用本模块公式到必须给出必要证明.3.公式1cos 1e λαλ-=+和21(1)||2b AF a λ+=这两个公式属于结论公式,一般用上能很快解题,所以在解小题的时候要优先考虑这两个公式.和角度相关优先想第一个,只和长度相关优先想第二个.4.焦长公式利用极坐标或第二定义都能更快证明,这个问题大家可以自己去掌握,解答题中的证明建议以余弦定理的方式为主;其他证法本文不在阐述,读者可以自己去掌握.[长短记忆法: 画图,看长短来记忆.当焦点在x 轴上的时候,焦长为2cos b a c α±,其中α为焦长所在直线的倾斜角或者其补角,为方便判断,一般选用锐角记为α.例如上图,如果记12AF F ∠为α,那么根据草图1||AF 为长边,则分母小即可得到21||cos b AF a c α=-,不管交于左右都是如此,交于y 轴的话需要把cos α换成sin α.焦比公式,如果1cos 1e λαλ-=+,λ为两个焦长之比,可以选=λ长短也可以=λ短长,但是公式里面要正负对齐,如果α选的是锐角,那么左侧是正的,右侧也要为正的,此时=λ长短;反之α选钝角,右侧=λ短长最后一个公式一样的,2(1)2b a λ+,代入的=λ长短算出来的就是长边,如果代入的=λ短长,算出来就是短边]1.双曲线焦长以及焦比问题周长问题:双曲线22221x y a b-=(00)a b ,>>,的两个焦点为1F 、2F ,弦AB 过左焦点1F (A 、B 都在左支上),||AB l =,则2ABF △的周长为42a l +(如图)图1-2-1 图1-2-2 图1-2-3 设A 是双曲线22221x y a b-=(00)a b ,>>上一点,设12AF F ∠为α,直线AB 过点1F .(1)直线和渐近线平行时,此时1cos e α=. (2)当AB 交双曲线于一支时,则21cos b AF a c α=+;21cos b BF a c α=−.2222222222||cos sin ab ab AB a c b c αα==−+,22222||cos ab AB a c α=-,2221cos 01cos a c e αα->⇒<< 令11||||BF F A λ=,即221cos cos cos 1b b e a c a c λλαααλ-=⇒=-++,代入弦长公式可得21(1)||2b AF aλ+=. 当AB 交双曲线于两支时,21cos b AF a c α=+;21cos b BF a c α=−;22222||cos ab AB c a α=-,2221cos 0cos a c e αα-<⇒>(图1-2-3),令11||||BF F A λ=,221cos (1)cos cos 1b b e c a a c λλαλααλ+=⇒=>-+-,代入弦长公式可得21(1)||2b BF aλ-=.=λ长(其中)短 [总结:焦点在x 轴上的时候,直线和双曲线交于单支的时候,公式形式和椭圆完全一样; 直线和双曲线交于双支的时候,公式形式有所变化,具体参考上面书写] 因为双曲线的部分考题会涉及渐近线,不过焦点的时候要注意,注意鉴别.1.||||1cos 1cos p pAF BF αα==−+;. 2.1222||sin p AB x x p α=++=. 3.22sin AOBp S △α=. 4.设||||AF BF λ=,则11cos ;||12AF p λλαλ−+==+. 5.设AB 交准线于点P ,则||cos ||AF PA α=;||cos ||BF PB α=. 证明1.||||||||||||cos 1cos AC AF p AF p FD AC AF θθ= ⇒===−−,同理||1cos pBF α=+. 2.22||||||1cos 1cos sin p p pAB AF BF ααα=+=+=-+. 3.设O 到AB 的距离为d ,则 sin 2pd α=,故22112||sin 22sin 22sin AOB p p p S AB d ααα===△. 4.||1cos 1cos ||1cos 1AF BF αλλλααλ+−=⇒=⇒=−+,1||1cos 2p AF p λα+==−. 5.||2A p AF x =+,||2B p BF x =+,||cos ||AF PA α=,||cos ||BF PB α=. 关于抛物线22x py =的焦长公式及定理(A 为直线与抛物线右交点,B 为左交点,90 α<为AB 倾斜角)1.||1sin p AF α=−;||1sin pBF α=+.2.1222||cos pAB y y p α=++=. 3.22cos AOBp S α=△.4.设||||AF BF λ=,则1sin 1λαλ−=+;1||2AF p λ+=.5.设AB 交准线于点P ,||||sin ;sin ||||AF BF PA PB αα==. [总结:抛物线焦点在x 轴的时候的,焦长为1cos p α±,1cos 1λαλ−=+,焦长为12p λ+,记忆方法参考椭圆模块;当焦点在y 轴上的时候cos 换成sin]。
高考数学中的圆锥曲线
高考数学中的圆锥曲线圆锥曲线是代数几何中的重要概念,也是高中数学中比较难的一部分。
它包含了直线、双曲线、抛物线和椭圆四种曲线类型。
在高考数学中,圆锥曲线是一个难点,但是掌握了这个知识点,不仅有助于理解高数中其他知识点,也有助于应对高考成绩。
一、圆锥曲线的定义和概念圆锥曲线是在平面直角坐标系中的解析几何概念,它是二次方程x²+y²+Dx+Ey+F=0(D,E,F均为常数,且D²+E²≠0)的图形。
其中的四种曲线类型如下:1. 直线:当圆锥曲线的系数D=E=0时,圆锥曲线变成直线。
直线可以看成是一个不确定的椭圆,它有两个焦点(即两个充电电荷)、两个半轴(即极值)。
2. 双曲线:当圆锥曲线的系数D²-E²>0时,圆锥曲线变成双曲线。
双曲线有两个焦点和两个渐近线。
3. 抛物线:当圆锥曲线的系数D=0,E≠0时,圆锥曲线变成抛物线。
抛物线有一个焦点和一个顶点。
4. 椭圆:当圆锥曲线的系数D²-E²<0时,圆锥曲线变成椭圆。
椭圆有两个焦点和两个半轴。
二、实例探究:直线与圆锥曲线我们以直线为例,来看一下圆锥曲线与直线的关系。
首先,我们知道当圆锥曲线系数D=E=0时,可以变成一个直线。
而对于直线y=kx+b(k和b均为常数),可以加入一个令y=mx,那么k和b就是D和E,即圆锥曲线的系数。
例如,圆锥曲线x²-6x+y²+4y+9=0,我们可以将它转换为(x-3)²+(y+2)²=4。
这是一个半径为2,圆心在(3,-2)处的圆。
我们可以绘制它的图像,然后再绘制直线y=x-1的图像。
从图像来看,直线y=x-1穿过了圆心,因此它一定与这个圆有交点。
我们可以通过解方程,求出直线y=x-1与圆的交点:(x-3)²+(y+2)²=4;y=x-1.解得:x²-5x+9=0,因此x=(5±√5)/2,代入y=x-1,得到y=(3±√5)/2。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的知识点对于解决相关的数学问题至关重要。
下面我们来详细总结一下圆锥曲线的相关知识。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a>b>0\))焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a>b>0\))其中,\(a\)为椭圆的长半轴长,\(b\)为椭圆的短半轴长,\(c\)为椭圆的半焦距,满足\(c^2 = a^2 b^2\)。
3、椭圆的性质(1)范围:焦点在 x 轴上时,\(a ≤ x ≤ a\),\(b ≤ y ≤ b\);焦点在 y 轴上时,\(b ≤ x ≤ b\),\(a ≤ y ≤ a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:焦点在 x 轴上时,顶点坐标为\((±a, 0)\),\((0, ±b)\);焦点在 y 轴上时,顶点坐标为\((0, ±a)\),\((±b, 0)\)。
(4)离心率:\(e =\frac{c}{a}\)(\(0 < e < 1\)),离心率反映了椭圆的扁平程度,\(e\)越接近0,椭圆越圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} = 1\)其中,\(a\)为双曲线的实半轴长,\(b\)为双曲线的虚半轴长,\(c\)为双曲线的半焦距,满足\(c^2 = a^2 + b^2\)。
高中数学中的圆锥曲线知识点总结
高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
高考数学圆锥曲线详解与实例
高考数学圆锥曲线详解与实例现代数学是应用数学和纯粹数学两大分支的结合,其中纯粹数学又包含了数学的许多分支,例如代数学、几何学、拓扑学等等,而几何学更是涉及到了各种图形的研究。
圆锥曲线作为几何学中的一种非常基础的图形,在高中数学中就已经开始进行系统的学习,而在高考中也是经常出现的考点。
本文将详细讲解圆锥曲线的基本概念及其应用实例,帮助大家更好地理解和掌握这一知识点。
一、圆锥曲线的概念圆锥曲线指的是通过按一定规律割圆锥而得到的曲线,其中包括圆、椭圆、双曲线和抛物线。
以割圆锥的方式命名的原因是因为,圆锥曲线最初是通过圆锥割切而得到的。
圆锥曲线的基本定义为平面上满足二次方程的点集,其中二次方程的形式为Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C不全为0。
二、圆的特点圆是一类非常基础的圆锥曲线,通常用来描述一些圆形问题。
圆的特点是,它是由平面上所有到某一点距离相等的所有点组成的。
这一点通常被称作圆心,而到圆心距离的长度则被称作半径。
圆的一些基本性质包括面积公式πr²以及周长公式2πr,其中r为半径长度。
三、椭圆的特点椭圆是圆锥曲线中比圆复杂的一种曲线,它的定义为平面上满足二次方程x²/a² + y²/b² = 1的点的集合,其中a和b分别是椭圆的半长轴和半短轴。
椭圆的一些基本性质包括离心率e=sqrt(1-b²/a²)以及面积公式πab。
椭圆还可以被视为一个圆沿着其周长不断拉伸而成的。
四、双曲线的特点双曲线是圆锥曲线中比椭圆更为复杂的一种曲线,它的定义为平面上满足二次方程x²/a² - y²/b² = 1的点的集合(或者换为y²/b² -x²/a² = 1)。
双曲线和椭圆的一个重要区别在于它们的离心率。
高中数学第八章圆锥曲线知识点
高中数学第八章圆锥曲线知识点第八章圆锥曲线是高中数学的一个重要章节,本章内容涵盖了圆锥曲线的基本定义、性质和相关的解题方法。
在本文档中,我们将详细介绍圆锥曲线的相关知识点,帮助同学们更好地理解和掌握这一部分内容。
一、圆锥曲线的基本定义1. 圆锥曲线的定义圆锥曲线是由一个固定点(焦点)和一个动点(在直线上移动)确定的几何图形。
根据焦点的位置和直线与曲线的交点情况,圆锥曲线分为椭圆、双曲线和抛物线三种情况。
2. 椭圆的定义椭圆是平面上与两个固定点的距离之和等于常数的点(焦点),构成的几何图形。
3. 双曲线的定义双曲线是平面上与两个固定点的距离之差等于常数的点(焦点),构成的几何图形。
4. 抛物线的定义抛物线是平面上与一个固定点的距离等于另一个固定点到直线的距离,构成的几何图形。
二、圆锥曲线的性质1. 椭圆的性质椭圆的离心率小于1,焦点在椭圆的内部。
椭圆有两个主轴,相互垂直,长度分别为2a和2b,其中2a是椭圆的长轴,2b是椭圆的短轴。
椭圆的面积为πab。
2. 双曲线的性质双曲线的离心率大于1,焦点在双曲线的外部。
双曲线有两个虚轴和两条实轴,相互垂直。
双曲线的面积无限大。
3. 抛物线的性质抛物线的离心率等于1,焦点在抛物线的内部。
抛物线有一个对称轴,与焦点和顶点的距离相等。
抛物线的面积为2/3 × a × h,其中a是焦点到顶点的距离,h是对称轴的长度。
三、圆锥曲线的解题方法1. 椭圆的解题方法(1)求解椭圆的标准方程,确定椭圆的中心、长轴和短轴;(2)求解椭圆的焦点和离心率;(3)利用椭圆的性质解题,例如求点到椭圆的距离或求椭圆上一点的坐标。
2. 双曲线的解题方法(1)求解双曲线的标准方程,确定双曲线的中心、虚轴和实轴;(2)求解双曲线的焦点和离心率;(3)利用双曲线的性质解题,例如求点到双曲线的距离或求双曲线上一点的坐标。
3. 抛物线的解题方法(1)求解抛物线的标准方程,确定抛物线的顶点、对称轴和焦点;(2)利用抛物线的性质解题,例如求点到抛物线的距离或求抛物线上一点的坐标。
高中数学 圆锥曲线
高中数学知识点大全—圆锥曲线1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
3、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
4、利用焦半径公式计算焦点弦长:若斜率为k的直线被圆锥曲线所截得的弦为AB,A、B两点的坐标分别为,则弦长这里体现了解析几何“设而不求”的解题思想。
高中数学——圆锥曲线
数学定义几何学基本概念:从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与 X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
在空间,两个平面相交时,交线为一条直线。
因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
空间直线的方向空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。
直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。
在欧几里得几何学中,直线只是一个直观的几何对象。
在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。
关系式◆直线的斜率:k=(y2-y1)/(x2-x1) (x1≠x2)(1)一般式:适用于所有直线Ax+By+C=0 (其中A、B不同时为0)两直线平行时:A1/A2=B1/B2≠C1/C2两直线垂直时:A1A2+B1B2=0两直线重合时:A1/A2=B1/B2=C1/C2两直线相交时:A1/A2≠B1/B2(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)当k不存在时,直线可表示为x=x0(3)截距式:不适用于和任意坐标轴垂直的直线和过原点的直线知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为x/a+y/b=1(4)斜截式: Y=KX+B (K≠0)当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
高中数学圆锥曲线知识全归纳
圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a2c标准方程x 2a 2+y 2b 2=1a >b >0y 2a 2+x 2b2=1a >b >0范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =c a=1-b 2a20<e <1 准线方程x =±a 2cy =±a 2c切线方程x 0x a 2+y 0y b 2=1x 0xb 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c (2)焦点三角形面积:S △F 1PF 2=b 2×tan θ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P与两定点F1、F2距离之差为常数(大于F1F2)的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF1d1=MF2d2=e焦点焦点在x轴上焦点在y轴上图形yxF1F2bc虚轴实轴ayxF1F2实轴虚轴标准方程x2a2-y2b2=1a>0,b>0y2a2-x2b2=1a>0,b>0范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R 顶点A1-a,0、A2a,0A10,-a、A20,a轴长虚轴长=2b,实轴长=2a,焦距=F1F2=2c,c2=a2+b2焦点F1-c,0、F2c,0F10,-c、F20,c焦半径|PF1|=a+e x0,|PF2|=-a+e x0左支添“-”离心率e=ca=1+b2a2e>1准线方程x=±a2c y=±a2c渐近线y=±ba x y=±ab x切线方程x0xa2-y0yb2=1x0xb2-y0ya2=1通径过双曲线焦点且垂直于对称轴的弦长AB=2b2a(最短焦点弦)焦点三角形(1)由定义可知:|PF1|-|PF2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S△F1PF2=b2÷tanθ2=c∙y(4)离心率:e=F1F2PF1-PF2=sinθsinα-sinβ=sin(α+β)sinα-sinβyxF1F2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p 2准线方程x =-p 2x =p2y =-p 2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2P (4)AB =2psin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 2 3、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法:若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .(椭圆)设M 、N 两两点的坐标分别为(x 1,y 1)、(x 2,y 2),则有x 12a 2+y 12b 2=1,⋯⋯(1)x 22a 2+y 22b 2=1.⋯⋯(2) (1)−(2),得x 12−x 22a 2+y 12−y 22b 2=0.∴y 2−y 1x 2−x 1⋅y 2+y 1x 2+x 1=−b 2a2.又∵k MN =y 2−y 1x 2−x 1,y 1+y 2x 1+x 2=2y 2x =y x .∴k MN ⋅y x =−b 2a2.圆锥曲线的参数方程1、参数方程的概念在平面直角坐标系中,曲线上任意一点的坐标x ,y 都是某个变数t 的函数x =f (t )y =g (t )并且对于t 的每一个允许值,由这个方程所确定的点M (x ,y )都在这条曲线上,该方程就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.※2、直线的参数方程(1)过定点P (x 0,y 0)、倾斜角为α(α≠π2)的直线的参数方程x =x 0+t cos αy =y 0+t sin α (t 为参数)(2)参数t 的几何意义:参数t 表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段的长度再加上表示方向的正负号,也即|M 0M|=|t |,|t |表示直线上任一点M 到定点M 0的距离.当点M 在M 0上方时,t >0;当点M 在M 0下方时,t <0;当点M 与M 0重合时,t =0;(3)直线方程与参数方程互化:y −y o =tan α(x −x o )⇔x =x 0+t cos αy =y 0+t sin α(t 为参数)(4)直线参数方程:x =x 0+aty =y 0+bt (t 为参数),当a 2+b 2=1时,参数方程为标准型参数方程,参数的几何意义才是代表距离.当a 2+b 2≠1时,将参数方程化为x =x 0+aa 2+b 2t y =y 0+ba 2+b 2t 然后在进行计算.★3、圆的参数方程(1)圆心(a ,b ),半径r 的圆(x -a )2+(y -b )2=r 2参数方程x =a +r cos θy =b +r sin θ (θ为参数);特别:当圆心在原点时,半径为r 的圆x 2+y 2=r 2的参数方程为:x =r cos θy =r sin θ (θ是参数).(2)参数θ的几何意义:θ表示x 轴的正方向到圆心和圆上任意一点的半径所成的角.(3)消参的方法:利用sin 2θ+cos 2θ=1,yxF 1F 2PN OMyxM 0tαO M 1αP (x ,y )rxy可得圆方程:(x -a )2+(y -b )2=r 2★4、椭圆的参数方程(1)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为x =a cos φy =b sin φ (φ为参数);椭圆y 2a 2+x 2b2=1(a >b >0)的参数方程为x =b cos φy =a sin φ (φ为参数);(2)参数θ的几何意义:参数θ表示椭圆上某一点的离心角.如图所示,点P 对应的离心角为θ=∠QOx (过P 作PQ ⊥x 轴,交大圆即以2a 为直径的圆于Q ),切不可认为是θ=∠POx .5、双曲线的参数方程(1)双曲线x 2a 2-y 2b 2=1(a >b >0)的参数方程x =a sec φy =b tan φ (φ为参数);sec φ=1cos φ双曲线y 2a 2-x 2b2=1(a >b >0)的参数方程x =b cot φy =a csc φ (φ为参数);csc φ=1sin φ(2)参数θ的几何意义:参数θ表示双曲线上某一点的离心角.※6、抛物线的参数方程(1)抛物线y 2=2px 参数方程x =2pt 2y =2pt(t 为参数,t =1tan α);(2)参数t 的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.t =1k OP仿射变换与齐次式1、仿射变换:在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间.※2、椭圆的变换:椭圆b 2x 2+a 2y 2=a 2b 2变换内容x =x y=a b y x =xy =b a yx =b a x y=yx =a b x y =y圆方程x 2+y 2=a 2x 2+y 2=b 2图示yxAB OCyxABOCyxAB OCyxAB OC 点坐标A (x 0,y 0)→A '(x 0,a by 0)A (x 0,y 0)→A '(b ax 0,y 0)斜率变化k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a 2k '=a bk ,由于k A 'C '⋅k B 'C '=−1.k AC ⋅k BC =b a k A 'C '⋅b a k B 'C '=−b 2a2弦长变化则AB =1+k 2x 1-x 2 ⇒A 'B '=1+k '2x 1-x 2 =1+(a b)2k 2x 1-x 2 yxαPOQ面积变化S△ABC=b a S△A'B'C'(水平宽不变,铅锤高缩小)S△ABC=a b S△A'B'C'(水平宽扩大,铅垂高不变)3、中点弦问题,k OP⋅k AB=−b2a2,中垂线问题k OPk MP=b2a2,且x M=c2x0a2y N=-c2y0b2,拓展1:椭圆内接△ABC中,若原点O为重心,则仿射后一定得到△OB'C'为120°的等腰三角形;△A'B'C'为等边三角形;拓展2:椭圆内接平行四边形OAPB(A、P、B)在椭圆上,则仿射后一定得菱形OA'P'B' 4、面积问题:(1)若以椭圆x2a2+y2b2=1对称中心引出两条直线交椭圆于A、B两点,且k OA⋅k OB=−b2a2,则经过仿射变换后k OA'⋅k OB'=−1,所以S△AOB为定值.(2)若椭圆方程x2a2+y2b2=1上三点A,B,M,满足:①k OA⋅k OB=−b2a2②S△AOB=ab2③OM=sinαOA+cosαOBα∈0,π2,三者等价※5、平移构造齐次式:(圆锥曲线斜率和与积的问题)(1)题设:过圆锥曲线上的一个定点P作两条直线与圆锥曲线交于A、B,在直线PA和PB斜率之和或者斜率之积为定值的情况下,直线AB过定点或者AB定斜率的问题.(2)步骤:①将公共点平移到坐标原点(点平移:左加右减上减下加)找出平移单位长.②由①中的平移单位长得出平移后的圆锥曲线C ,所有直线方程统一写为:mx+ny=1③将圆锥曲线C 展开,在一次项中乘以mx+ny=1,构造出齐次式.④在齐次式中,同时除以x2,构建斜率k的一元二次方程,由韦达定理可得斜率之积(和).圆锥曲线考点归类(一)条件方法梳理1、椭圆的角平分线定理(1)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆长轴交点为N,在长轴上一定存在一个点M,当仅当则x M⋅x N=a2时,∠AMN=∠BMN,即长轴为角平分线;(2)若点A、B是椭圆x2a2+y2b2=1(a>b>0)上的点,AB与椭圆短轴交点为N,在短轴上一定存在一个点M,当仅当则y M⋅y N=b2时,∠AMN=∠BMN,即短轴为角平分线;※2、关于角平分线的结论:若直线AO的斜率为k1,直线CO的斜率为k2,EO平分∠AOC则有:k1+k2=tanα+tan(π-α)=0角平分线的一些等价代换条件:作x轴的对称点、点到两边的距离相等.3、四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A ,B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.4、圆系方程(1)过直线l :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0的交点的圆系方程是x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0,λ是待定的系数.(2)过圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程是x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0,λ是待定的系数.★(二)圆锥曲线过定点问题1、直线过定点的背景:(1)直线过定点模型:A ,B 是圆锥曲线上的两动点,M 是一定点,其中α,β分别为MA ,MB 的倾斜角,则:①、MA ⋅MB 为定值⇔直线AB 恒过定点;②、k MA ⋅k MB 为定值⇔直线AB 恒过定点;③、α+β=θ(0<θ<π)⇔直线AB 恒过定点.(2)抛物线中直线过定点:A ,B 是抛物线y 2=2px (p >0)上的两动点,α,β分别为OA ,OB 的倾斜角,则:OA ⊥OB ⇔k OA ⋅k OB =-1⇔α-β =π2⇔直线AB 恒过定点(2p ,0).(3)椭圆中直线过定点模型:A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)上异于右顶点D 的两动点,其中α,β分别为DA ,DB 的倾斜角,则可以得到下面几个充要的结论:DA ⊥DB ⇔k DA ⋅k DB =-1⇔α-β =π2⇔直线AB 恒过定点(ac 2a 2+b 2,0)2、定点的求解方法:1含参形式简单的直线方程,通过将直线化为y -y 0=k (x -x 0)可求得定点坐标(x 0,y 0)2含参形式复杂的通过变换主元法求解定点坐标.变换主元法:将直线化为h (x ,y )+λf (x ,y )=0,解方程组:h (x ,y )=0f (x ,y )=0 可得定点坐标.eg :直线方程:(2m +1)x +(m -5)y +6=0,将m 看作主元,按照降幂排列:(2x +y )m+x -5y +6=0,解方程组:2x +y =0x -5y +6=0,解得:x =-611y =1211,求得直线过定点(-611,1211).3、关于以AB 为直径的圆过定点问题:(1)直接法:设出参数后,表示出圆的方程.圆的直径式方程:(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0(2)由特殊到一般:利用赋值法,先求出几个位置的圆方程,联立圆方程解出公共交点,该交点即为圆所过的定点,再利用向量数量积为0证明点恒在圆上.★(三)圆锥曲线面积问题1、面积的求解方法:(1)S △ABC =12MN ∙d ,从公式可以看出,求面积重在求解弦长和点到线的距离.(2)S △ABC =12×水平宽×铅锤高,主要以点的坐标运算为主.(3)S △AOB =12x 1y 2-x 2y 1例题1.在平面直角坐标系xOy 中,已知点O 0,0 ,A x 1,y 1 ,B x 2,y 2 不共线,证明:△AOB 的面积为S △AOB =12x 1y 2-x 2y 1 .2、面积中最值的求解(1)f (x )=αx 2+βx +φx +n型:令t =x +n ⇒x =t -n 进行代换后裂项转化为:y =at +bt (2)f (x )=x +n αx 2+βx +φ型:先在分母中配出分子式f (x )=x +n α(x +n )2+λ(x +n )+υ令t =x +n ,此时:y =t αt 2+λt +υ,分子分母同时除t ,此时y =1αt +υt+λ,再利用对勾函数或不等式分析最值.(3)f (x )=αx +βx +n型:令t =x +n ⇒x =t 2-n 进行代换后裂项,可转化为:y =at +bt五、椭圆的二级结论1.PF1+PF2=2a2.标准方程x2a2+y2b2=13.PF1d1=e<14.点P处的切线PT平分△PF1F2在点P处的外角.5.PT平分△PF1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相离.7.以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.8.设A1、A2为椭圆的左、右顶点,则△PF1F2在边PF2(或PF1)上的旁切圆,必与A1A2所在的直线切于A2 (或A1).9.椭圆x2a2+y2b2=1(a>b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2-y2b2=1.10.若点P0(x0,y0)在椭圆x2a2+y2b2=1a>b>0上,则在点P0处的切线方程是x0xa2+y0yb2=1.11.若P0(x0,y0)在椭圆x2a2+y2b2=1外,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2+y0yb2=1.12.AB是椭圆x2a2+y2b2=1的不平行于对称轴的弦,M为AB的中点,则k OM⋅k AB=-b2a2.13.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则被PO所平分的中点弦的方程是x0xa2+y0yb2=x02a2+y02b2.14.若P0(x0,y0)在椭圆x2a2+y2b2=1内,则过PO的弦中点的轨迹方程是x2a2+y2b2=x0xa2+y0yb2.15.若PQ是椭圆x2a2+y2b2=1(a>b>0)上对中心张直角的弦,则1r12+1r22=1a2+1b2(r1=|OP|,r2=|OQ|).16.若椭圆x2a2+y2b2=1(a>b>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2+1 b2=A2+B2;(2)L=2a4A2+b4B2a2A2+b2B2.17.给定椭圆C1:b2x2+a2y2=a2b2(a>b>0),C2:b2x2+a2y2=a2-b2a2+b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2-b2a2+b2x0,-a2-b2a2+b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为椭圆(或圆)C:x2a2+y2b2=1(a>0,.b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=-1+m1-m⋅b2a2.19.过椭圆x2a2+y2b2=1(a>0,b>0)上任一点A(x0,y0)任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且k BC=b2x0a2y0(常数).20.椭圆x2a2+y2b2=1(a>b>0)的左右焦点分别为F1,F2,点P为椭圆上任意一点∠F1PF2=γ,则椭圆的焦点三角形的面积为S△F1PF2=b2tanγ2,P±ac c2-b2tan2γ2,±b2c tanγ2.21.若P为椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则a-ca+c=tanα2tanβ2.22.椭圆x2a2+y2b2=1(a>b>0)的焦半径公式:|MF1|=a+ex0,|MF2|=a-ex0(F1(-c,0),F2(c,0),M(x0,y0)).23.若椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当2-1≤e<1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.24.P为椭圆x2a2+y2b2=1(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则2a-|AF2|≤|PA|+|PF1|≤2a+|AF2|,当且仅当A,F2,P三点共线时,等号成立.25.椭圆x2a2+y2b2=1(a>b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02≤(a2-b2)2a2+b2k2.26.过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是椭圆x=a cosϕy=b sinϕ(a>b>0)上一点,则点P对椭圆两焦点张直角的充要条件是e2=11+sin2ϕ.29.设A,B为椭圆x2a2+y2b2=k(k>0,k≠1)上两点,其直线AB与椭圆x2a2+y2b2=1相交于P,Q,则AP=BQ.30.在椭圆x 2a 2+y 2b 2=1中,定长为2m (o <m ≤a )的弦中点轨迹方程为m 2=1-x 2a 2+y 2b 2a 2cos 2α+b 2sin 2α ,其中tan α=-bx ay ,当y =0时,α=90∘.31.设S 为椭圆x 2a 2+y 2b2=1(a >b >0)的通径,定长线段L 的两端点A ,B 在椭圆上移动,记|AB |=l ,M(x 0,y 0)是AB 中点,则当l ≥ΦS 时,有(x 0)max =a 2c -l 2e c 2=a 2-b 2,e =c a;当l <ΦS 时,有(x 0)max =a 2b4b 2-l 2,(x 0)min=0.32.椭圆x 2a 2+y 2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥C 2.33.椭圆(x -x 0)2a 2+(y -y 0)2b2=1与直线Ax +By +C =0有公共点的充要条件是A 2a 2+B 2b 2≥(Ax 0+By 0+C )2.34.设椭圆x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1、F 2,P (异于长轴端点)为椭圆上任意一点,在△PF 1F 2中,记∠F 1PF 2=α,∠PF 1F 2=β,∠F 1F 2P =γ,则有sin αsin β+sin γ=c a =e.35.经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)的长轴的两端点A 1和A 2的切线,与椭圆上任一点的切线相交于P 1和P 2,则|P 1A 1|⋅|P 2A 2|=b 2.36.已知椭圆x 2a 2+y 2b2=1(a >b >0),O 为坐标原点,P 、Q 为椭圆上两动点,且OP ⊥OQ .(1)1|OP |2+1|OQ |2=1a 2+1b2;(2)|OP |2+|OQ |2的最小值为4a 2b 2a 2+b 2;(3)S ΔOPQ 的最小值是a 2b 2a 2+b 2.37.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若AB 是经过椭圆中心O 且平行于MN 的弦,则|AB |2=2a |MN |.38.MN 是经过椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)焦点的任一弦,若过椭圆中心O 的半弦OP ⊥MN ,则2a |MN |+1|OP |2=1a 2+1b2.39.设椭圆x 2a 2+y 2b2=1(a >b >0),M (m ,o )或(o ,m )为其对称轴上除中心,顶点外的任一点,过M 引一条直线与椭圆相交于P 、Q 两点,则直线A 1P 、A 2Q (A 1,A 2为对称轴上的两顶点)的交点N 在直线l :x =a2m(或y =b 2m)上.40.设过椭圆焦点F 作直线与椭圆相交P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF .41.过椭圆一个焦点F的直线与椭圆交于两点P、Q,A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.42.设椭圆方程x2a2+y2b2=1,则斜率为k(k≠0)的平行弦的中点必在直线l:y=kx的共轭直线y=k x上,而且kk =-b2 a2 .43.设A、B、C、D为椭圆x2a2+y2b2=1上四点,AB、CD所在直线的倾斜角分别为α,β,直线AB与CD相交于P,且P不在椭圆上,则PA⋅PBPC⋅PD=b2cos2β+a2sin2βb2cos2α+a2sin2α.44.已知椭圆x2a2+y2b2=1(a>b>0),点P为其上一点F1,F2为椭圆的焦点,∠F1PF2的外(内)角平分线为l,作F1、F2分别垂直l于R、S,当P跑遍整个椭圆时,R、S形成的轨迹方程是x2+y2=a2c2y2=a2y2+b2x x±c2 a2y2+b2x±c2.45.设△ABC内接于椭圆Γ,且AB为Γ的直径,l为AB的共轭直径所在的直线,l分别交直线AC、BC于E和F,又D为l上一点,则CD与椭圆Γ相切的充要条件是D为EF的中点.46.过椭圆x2a2+y2b2=1(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则|PF||MN|=e2.47.设A(x1,y1)是椭圆x2a2+y2b2=1(a>b>0)上任一点,过A作一条斜率为-b2x1a2y1的直线L,又设d是原点到直线L的距离,r1,r2分别是A到椭圆两焦点的距离,则r1r2d=ab.48.已知椭圆x2a2+y2b2=1(a>b>0)和x2a2+y2b2=λ(0<λ<1),一直线顺次与它们相交于A、B、C、D四点,则│AB│=|CD│.49.已知椭圆x2a2+y2b2=1(a>b>0),A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0),则-a2-b2a<x0<a2-b2 a.50.设P点是椭圆x2a2+y2b2=1(a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记∠F1PF2=θ,则(1)|PF1||PF2|=2b21+cosθ.(2)SΔPF1F2=b2tanθ2.51.设过椭圆的长轴上一点B(m,o)作直线与椭圆相交于P、Q两点,A为椭圆长轴的左顶点,连结AP和AQ分别交相应于过H点的直线MN:x=n于M,N两点,则∠MBN=90∘⇔a-ma+m=a2n-m2 b2(n+a)2.52.L是经过椭圆x2a2+y2b2=1(a>b>0)长轴顶点A且与长轴垂直的直线,E、F是椭圆两个焦点,e是离心率,点P∈L,若∠EPF=α,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=b时取等号).53.L是椭圆x2a2+y2b2=1(a>b>0)的准线,A、B是椭圆的长轴两顶点,点P∈L,e是离心率,∠EPF=α,H是L与X轴的交点c是半焦距,则α是锐角且sinα≤e或α≤arcsin e(当且仅当|PH|=ab c时取等号).54.L是椭圆x2a2+y2b2=1(a>b>0)的准线,E、F是两个焦点,H是L与x轴的交点,点P∈L,∠EPF=α,离心率为e,半焦距为c,则α为锐角且sinα≤e2或α≤arcsin e2(当且仅当|PH|=b c a2+c2时取等号).55.已知椭圆x2a2+y2b2=1(a>b>0),直线L通过其右焦点F2,且与椭圆相交于A、B两点,将A、B与椭圆左焦点F1连结起来,则b2≤|F1A|⋅|F1B|≤(2a2-b2)2a2(当且仅当AB⊥x轴时右边不等式取等号,当且仅当A、F1、B三点共线时左边不等式取等号).56.设A、B是椭圆x2a2+y2b2=1(a>b>0)的长轴两端点,P是椭圆上的一点,∠PAB=α,∠PBA=β,∠BPA=γ,c、e分别是椭圆的半焦距离心率,则有(1)|PA|=2ab2|cosα|a2-c2cos2α.(2)tanαtanβ=1-e2.(3)SΔPAB=2a2b2b2-a2cotγ.57.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点)、外部的两点,且x A、x B的横坐标x A⋅x B=a2,(1)若过A点引直线与这椭圆相交于P、Q两点,则∠PBA=∠QBA;(2)若过B引直线与这椭圆相交于P、Q两点,则∠PAB+∠QAB=180∘.58.设A、B是椭圆x2a2+y2b2=1(a>b>0)长轴上分别位于椭圆内(异于原点),外部的两点,(1)若过A点引直线与这椭圆相交于P、Q两点,(若BP交椭圆于两点,则P、Q不关于x轴对称),且∠PBA=∠QBA,则点A、B的横坐标x A、x B满足x A⋅x B=a2;(2)若过B点引直线与这椭圆相交于P、Q两点,且∠PAB+∠QAB=180∘,则点A、B的横坐标满足x A⋅x B=a2.59.设A,A 是椭圆x2a2+y2b2=1的长轴的两个端点,QQ 是与AA 垂直的弦,则直线AQ与A Q 的交点P的轨迹是双曲线x2a2-y2b2=1.60.过椭圆x2a2+y2b2=1(a>b>0)的左焦点F作互相垂直的两条弦AB、CD则8ab2a2+b2≤|AB|+|CD|≤2(a2+b2)a.61.到椭圆x 2a 2+y 2b2=1(a >b >0)两焦点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆(x ±a )2+y 2=b 2.62.到椭圆x 2a 2+y 2b2=1(a >b >0)的长轴两端点的距离之比等于a -c b (c 为半焦距)的动点M 的轨迹是姊妹圆x ±a e 2+y 2=b e 2.63.到椭圆x 2a 2+y 2b2=1(a >b >0)的两准线和x 轴的交点的距离之比为a -c b (c 为半焦距)的动点的轨迹是姊妹圆x ±a e 2 2+y 2=b e 2 2(e 为离心率).64.已知P 是椭圆x 2a 2+y 2b2=1(a >b >0)上一个动点,A ,A 是它长轴的两个端点,且AQ ⊥AP ,A Q ⊥AP ,则Q 点的轨迹方程是x 2a 2+b 2y 2a4=1.65.椭圆的一条直径(过中心的弦)的长,为通过一个焦点且与此直径平行的弦长和长轴之长的比例中项.66.设椭圆x 2a 2+y 2b 2=1(a >b >0)长轴的端点为A ,A ,P (x 1,y 1)是椭圆上的点过P 作斜率为-b 2x 1a 2y 1的直线l ,过A ,A 分别作垂直于长轴的直线交l 于M ,M ,则(1)|AM ||A M |=b 2.(2)四边形MAA M 面积的最小值是2ab .67.已知椭圆x 2a 2+y2b2=1(a >b >0)的右准线l 与x 轴相交于点E ,过椭圆右焦点F 的直线与椭圆相交于A 、B 两点,点C 在右准线l 上,且BC ⎳x 轴,则直线AC 经过线段EF 的中点.68.OA 、OB 是椭圆(x -a )2a 2+y 2b 2=1(a >0,b >0)的两条互相垂直的弦,O 为坐标原点,则(1)直线AB必经过一个定点2ab 2a 2+b 2,0 .(2)以OA 、OB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2a 2+b 2 2+y 2=ab 2a 2+b 2 2(x ≠0).69.P (m ,n )是椭圆(x -a )2a 2+y 2b2=1(a >b >0)上一个定点,PA 、PB 是互相垂直的弦,则(1)直线AB 必经过一个定点2ab 2+m (a 2-b 2)a 2+b 2,n (b 2-a 2)a 2+b 2 .(2)以PA 、PB 为直径的两圆的另一个交点Q 的轨迹方程是x -ab 2+a 2m a 2+b 2 2+y -b 2n a 2+b 2 2=a 2[b 4+n 2(a 2-b 2)](a 2+b 2)2(x ≠m 且y ≠n ).70.如果一个椭圆短半轴长为b ,焦点F 1、F 2到直线L 的距离分别为d 1、d 2,那么(1)d 1d 2=b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相切.(2)d 1d 2>b 2,且F 1、F 2在L 同侧⇔直线L 和椭圆相离,(3)d 1d 2<b 2,或F 1、F 2在L 异侧⇔直线L 和椭圆相交.71.AB 是椭圆x 2a 2+y 2b2=1(a >b >0)的长轴,N 是椭圆上的动点,过N 的切线与过A 、B 的切线交于C 、D两点,则梯形ABDC的对角线的交点M的轨迹方程是x2a2+4y2b2=1(y≠0).72.设点P(x0,y0)为椭圆x2a2+y2b2=1(a>b>0)的内部一定点,AB是椭圆x2a2+y2b2=1过定点P(x0,y0)的任一弦,当弦AB平行(或重合)于椭圆长轴所在直线时(|PA|⋅|PB|)max=a2b2-(a2y02+b2x02)b2.当弦AB垂直于长轴所在直线时,(|PA|⋅|PB|)min=a2b2-(a2y02+b2x02)a2.73.椭圆焦三角形中,以焦半径为直径的圆必与以椭圆长轴为直径的圆相内切.74.椭圆焦三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点.75.椭圆两焦点到椭圆焦三角形旁切圆的切线长为定值a+c与a-c.76.椭圆焦三角形的非焦顶点到其内切圆的切线长为定值a-c.77.椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)78.椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.79.椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.80.椭圆焦三角形中,椭圆中心到内点的距离、内点到同侧焦点的距离、半焦距及外点到同侧焦点的距离成比例.81.椭圆焦三角形中,半焦距、外点与椭圆中心连线段、内点与同侧焦点连线段、外点与同侧焦点连线段成比例.82.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行.83.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长.84.椭圆焦三角形中,过任一焦点向非焦顶点的外角平分线引垂线,垂足就是垂足同侧焦半径为直径的圆和椭圆长轴为直径的圆的切点.85.椭圆焦三角形中,非焦顶点的外角平分线与焦半径、长轴所在直线的夹角的余弦的比为定值e.86.椭圆焦三角形中,非焦顶点的法线即为该顶角的内角平分线.87.椭圆焦三角形中,非焦顶点的切线即为该顶角的外角平分线.88.椭圆焦三角形中,过非焦顶点的切线与椭圆长轴两端点处的切线相交,则以两交点为直径的圆必过两焦点.89.已知椭圆x2a2+y2b2=1(a>0,b>0)(包括圆在内)上有一点P,过点P分别作直线y=b a x及y=-b a x的平行线,与x 轴于M ,N ,与y 轴交于R ,Q .,O 为原点,则:(1)|OM |2+|ON |2=2a 2;(2)|OQ |2+|OR |2=2b 2.90.过平面上的P 点作直线l 1:y =b a x 及l 2:y =-b ax 的平行线,分别交x 轴于M ,N ,交y 轴于R ,Q .(1)若|OM |2+|ON |2=2a 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).(2)若|OQ |2+|OR |2=2b 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).91.点P 为椭圆x 2a 2+y 2b2=1(a >0,b >0)(包括圆在内)在第一象限的弧上任意一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记ΔOMQ 与ΔONR 的面积为S 1,S 2,则:S 1+S 2=ab 2.92.点P 为第一象限内一点,过P 引x 轴、y 轴的平行线,交y 轴、x 轴于M ,N ,交直线y =-b ax 于Q ,R ,记△OMQ 与△ONR 的面积为S 1,S 2,已知S 1+S 2=ab 2,则P 的轨迹方程是x 2a 2+y 2b2=1(a >0,b >0).93.过椭圆焦点垂直于长轴的弦(通径)是最短的弦,长为2b 2a,过焦点最长弦为长轴.94.过原点最长弦为长轴长2a ,最短弦为短轴长2b .95.与椭圆x 2a 2+y 2b 2=1(a >b >0)有共焦点的椭圆方程为x 2a 2+λ+y 2b 2+λ=1(a >b >0,λ>-b 2).96.与椭圆y 2a 2+x 2b 2=1(a >b >0)有共焦点的椭圆方程为y 2a 2+λ+x 2b 2+λ=1(a >b >0,λ>-b 2).97.焦点三角形:椭圆上的点P (x 0,y 0)与两焦点F 1,F 2构成的△PF 1F 2叫做焦点三角形.若r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①当r 1=r 2时,即点P 为短轴端点时,θ最大;cos θ=r 21+r 22-4c 22r 1r 2=r 1+r 2 2-2r 1r 2-4c22r 1r 2=4b 22r 1r 2-1=2b 2r 1r 2-1≥2b 2r 1+r 222-1=2b 2-a 2a 2=b 2-c 2a 2当且仅当r 1=r 2时,等号成立.②S =12|PF 1||PF 2|sin θ=c |y 0|=sin θ1+cos θb 2=b 2tan θ2,当|y 0|=b ,即点P 为短轴端点时,S 取得最大值,最大值为bc ;③△PF 1F 2的周长为2(a +c ).98.AB 为过F 的焦点弦,则1FA +1FB =2ab 299.已知椭圆Γ:x 2a 2+y 2b2=1a >b >0 的左右焦点分别为F 1、F 2.椭圆Γ在点P 处的切线为l ,Q ∈l .且满足∠AQF1=θ0<θ<π2,则点Q在以C0,±cθcot为圆心,a θsin为半径的圆上.六、双曲线的二级结论1.PF1-PF2=2a2.标准方程x2a2-y2b2=13.PF1d1=e>14.点P处的切线PT平分△PF1F2在点P处的内角.5.PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以实轴为直径的圆,除去实轴的两个端点.6.以焦点弦PQ为直径的圆必与对应准线相交.7.以焦点半径PF1为直径的圆必与以实轴为直径的圆外切.8.设P为双曲线上一点,则△PF1F2的内切圆必切于与P在同侧的顶点.9.双曲线x2a2-y2b2=1(a>0,b>0)的两个顶点为A1(-a,0),A2(a,0),与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是x2a2+y2b2=1.10.若点P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)上,则在点P0处的切线方程是x0xa2-y0yb2=1.11.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)外,则过P0作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是x0xa2-y0yb2=1.12.若AB是双曲线x2a2-y2b2=1(a>0,b>0)的不平行于对称轴且过原点的弦,M为AB的中点,则k OM⋅k AB=b2a2.13.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则被P0所平分的中点弦的方程是x0xa2-y0yb2=x02a2-y02 b2 .14.若P0(x0,y0)在双曲线x2a2-y2b2=1(a>0,b>0)内,则过Po的弦中点的轨迹方程是x2a2-y2b2=x0xa2-y0y b2.15.若PQ是双曲线x2a2-y2b2=1(b>a>0)上对中心张直角的弦,则1r12+1r22=1a2-1b2(r1=|OP|,r2=|OQ|).16.若双曲线x2a2-y2b2=1(b>a>0)上中心张直角的弦L所在直线方程为Ax+By=1(AB≠0),则(1)1a2-1 b2=A2+B2;(2)L=2a4A2+b4B2|a2A2-b2B2|.17.给定双曲线C1:b2x2-a2y2=a2b2(a>b>0),C2:b2x2-a2y2=a2+b2a2-b2ab2,则(i)对C1上任意给定的点P(x0,y0),它的任一直角弦必须经过C2上一定点M a2+b2a2-b2x0,-a2+b2a2-b2y0. (ii)对C2上任一点P (x0 ,y0 )在C1上存在唯一的点M ,使得M 的任一直角弦都经过P 点.18.设P(x0,y0)为双曲线x2a2-y2b2=1(a>0,b>0)上一点,P1P2为曲线C的动弦,且弦PP1,PP2斜率存在,记为k1,k2,则直线P1P2通过定点M(mx0,-my0)(m≠1)的充要条件是k1⋅k2=1+m1-m⋅b2a2.19.过双曲线x2a2-y2b2=1(a>0,b>o)上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且k BC=-b2x0a2y0(常数).20.双曲线x2a2-y2b2=1(a>0,b>0)的左右焦点分别为F1,F2,点P为双曲线上任意一点∠F1PF2=γ,则双曲线的焦点角形的面积为S△F1PF2=b2cotγ2=b2γ2tan,P±ac c2+b2cot2γ2,±b2c cotγ2.21.若P为双曲线x2a2-y2b2=1(a>0,b>0)右(或左)支上除顶点外的任一点,F1,F2是焦点,∠PF1F2=α,∠PF2F1=β,则c-ac+a=tan α2cotβ2(或c-ac+a=tanβ2cotα2).22.双曲线x2a2-y2b2=1(a>0,b>o)的焦半径公式:F1(-c,0),F2(c,0)当M(x0,y0)在右支上时,|MF1|=ex0+a,|MF2|=ex0-a.当M(x0,y0)在左支上时,|MF1|=-ex0-a,|MF2|=-ex0+a.23.若双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤2+1时,可在双曲线上求一点P,使得PF1是P到对应准线距离d1与PF2的比例中项.24.P为双曲线x2a2-y2b2=1(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线左支内一定点,则|AF2|-2a≤|PA|+|PF1|,当且仅当A,F2,P三点共线且P在左支时,等号成立.25.双曲线x2a2-y2b2=1(a>0,b>0)上存在两点关于直线l:y=k(x-x0)对称的充要条件是x02>(a2+b2)2 a2-b2k2k≠0且k≠±a b .26.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.27.过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.28.P是双曲线x=a secϕy=b tanϕ(a>0,b>0)上一点,则点P对双曲线两焦点张直角的充要条件是e2=11-tan2ϕ.29.设A,B为双曲线x2a2-y2b2=k(a>0,b>0,k>0,k≠1)上两点,其直线AB与双曲线x2a2-y2b2=1相交于P,Q,则AP=BQ.30.在双曲线x2a2-y2b2=1中,定长为2m(m>0)的弦中点轨迹方程为m2=1-x2a2-y2b2a2cosh2t+b2sinh2t,coth t=-aybx,x=0时t=0,弦两端点在两支上x2a2-y2b2-1a2sinh2t+b2cosh2t,coth t=-bxay,y=0时t=0,弦两端点在同支上31.设S为双曲线x2a2-y2b2=1(a>0,b>0)的通径,定长线段L的两端点A,B在双曲线右支上移动,记|AB|=l,M(x0,y0)是AB中点,则当l≥ΦS时,有(x0)min=a2c+l2e c2=a2+b2,e=c a;当l<ΦS时,有(x0)min=a2b4b2+l2.32.双曲线x2a2-y2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤C2.33.双曲线(x-x0)2a2-(y-y0)2b2=1(a>0,b>0)与直线Ax+By+C=0有公共点的充要条件是A2a2-B2b2≤(Ax0+By0+C)2.34.设双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF1F2中,记∠F1PF2=α,∠PF1F2=β,∠F1F2P=γ,则有sinα±(sinγ-sinβ)=c a=e.35.经过双曲线x2a2-y2b2=1(a>0,b>0)的实轴的两端点A1和A2的切线,与双曲线上任一点的切线相交于P1和P2,则|P1A1|⋅|P2A2|=b2.36.已知双曲线x2a2-y2b2=1(b>a>0),O为坐标原点,P、Q为双曲线上两动点,且OP⊥OQ.(1)1|OP|2+1 |OQ|2=1a2-1b2;(2)|OP|2+|OQ|2的最小值为4a2b2b2-a2;(3)SΔOPQ的最小值是a2b2b2-a2.37.MN是经过双曲线x2a2-y2b2=1(a>0,b>0)过焦点的任一弦(交于两支),若AB是经过双曲线中心O且平行于MN的弦,则|AB|2=2a|MN|.38.MN是经过双曲线x2a2-y2b2=1(a>b>0)焦点的任一弦(交于同支),若过双曲线中心O的半弦OP⊥。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
高中数学圆锥曲线弦长公式
高中数学圆锥曲线弦长公式
摘要:
1.圆锥曲线的定义和重要性
2.圆锥曲线弦长公式的推导和应用
3.圆锥曲线弦长公式的简化方法
4.圆锥曲线弦长公式在实际问题中的应用
正文:
一、圆锥曲线的定义和重要性
圆锥曲线是一种重要的几何图形,它包括椭圆、双曲线、抛物线和它们的简化形式:圆和直线。
圆锥曲线可以通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到。
在数学和几何学中,圆锥曲线有着广泛的应用,它们是许多重要理论和问题的基础。
二、圆锥曲线弦长公式的推导和应用
圆锥曲线弦长公式是指直线与圆锥曲线相交所得弦长的公式。
求解圆锥曲线弦长公式的通用方法是将直线方程代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。
这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的。
三、圆锥曲线弦长公式的简化方法
然而,对于过焦点的圆锥曲线弦长求解,利用上述方法相比较而言有点繁琐。
这时,可以利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式,以简化运算过程。
例如,椭圆弦长公式为d(1k)x1-x2,双曲线弦长公式为
d(1k2)/a2,抛物线弦长公式为d(1k2)/a。
四、圆锥曲线弦长公式在实际问题中的应用
掌握圆锥曲线弦长公式,可以帮助我们更好地解决实际问题。
例如,在研究某个卫星绕地球的运动轨迹时,我们可以通过圆锥曲线弦长公式来计算卫星与地球之间的距离,从而更准确地预测卫星的运行轨迹。
此外,在光学、力学、天文学等领域,圆锥曲线弦长公式也有着广泛的应用。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
高中数学圆锥曲线选知识点总结
高中数学圆锥曲线选知识点总结高中数学圆锥曲线是高中数学的一门重要内容,主要包括椭圆、双曲线和抛物线三种基本曲线。
以下是一份完整的高中数学圆锥曲线选知识点总结:1.定义:圆锥曲线是平面上的一条曲线,它是由一个交角不为直角的平面截一个圆锥所得到的截面图形。
2.椭圆:椭圆是一条平面曲线,它的定义是所有到两个给定点的距离之和等于定值的点所形成的轨迹。
椭圆的性质包括离心率、焦点、焦距、长轴、短轴、半焦距等。
3.双曲线:双曲线是一条平面曲线,它的定义是所有到两个给定点的距离之差等于定值的点所形成的轨迹。
双曲线的性质包括离心率、焦点、焦距、渐近线等。
4.抛物线:抛物线是一条平面曲线,它的定义是所有到一个给定点的距离等于定值的点所形成的轨迹。
抛物线的性质包括焦点、焦距、准线、对称轴、顶点等。
5.圆锥曲线的参数方程:圆锥曲线也可以用参数方程表示,例如椭圆的参数方程为x = a cos t,y = b sin t;双曲线的参数方程为x = a sec t,y = b tan t;抛物线的参数方程为x = at^2,y = 2at。
6.圆锥曲线的应用:圆锥曲线在几何学、物理学、工程学等领域都有广泛的应用。
例如,在天文学中,行星轨道和彗星轨道就是圆锥曲线;在工程学中,喷气式飞机的外形和空气动力学研究中也常常使用圆锥曲线。
7.椭圆的方程:椭圆的标准方程为(x^2 / a^2) + (y^2 / b^2) = 1,其中a和b分别为椭圆长轴和短轴的长度。
可以通过椭圆的焦点坐标和离心率求得椭圆的方程。
8.双曲线的方程:双曲线的标准方程为(x^2 / a^2) - (y^2 / b^2) =1,其中a和b分别为双曲线的顶点到两条渐近线的距离。
同样可以通过双曲线的焦点坐标和离心率求得双曲线的方程。
9.抛物线的方程:抛物线的标准方程为y = ax^2 + bx + c,其中a、b、c为常数。
抛物线的顶点坐标为(-b / 2a, c - b^2 / 4a),焦距为1 / 4a。
高中数学圆锥曲线解题方法归纳
高中数学圆锥曲线解题方法归纳圆锥曲线是高中数学中的一个重要部分,包括椭圆、双曲线和抛物线。
这些曲线通常通过平面截取圆锥的不同部分来形成。
为了更好地理解和解决这类问题,我们需要掌握一些基本的解题方法。
1. 定义法:根据圆锥曲线的定义来解题。
例如,椭圆和双曲线的定义是两个焦点到曲线上任一点的距离之和或差为一个常数。
抛物线的定义是一个点到固定点(焦点)和固定直线(准线)的距离相等。
2. 参数方程法:对于一些复杂的圆锥曲线问题,我们可以使用参数方程来表示曲线上点的坐标。
这样可以将几何问题转化为代数问题,便于计算。
3. 切线法:对于一些与圆锥曲线切线相关的问题,我们可以使用切线性质来解题。
例如,切线到曲线上任一点的距离在切点处达到最小值。
4. 极坐标法:将问题转化为极坐标形式,利用极坐标的性质来解题。
例如,在极坐标下,距离和角度的关系可以简化为数学表达式。
5. 几何法:利用圆锥曲线的几何性质来解题。
例如,椭圆的焦点到椭圆中心的距离等于椭圆上任一点到椭圆中心的距离减去椭圆半径。
6. 代数法:通过代数运算来解题。
例如,解联立方程来找到满足多个条件的点的坐标。
7. 数形结合法:结合图形和数学表达式来解题。
通过观察图形,可以更好地理解问题的本质,从而找到合适的解题方法。
以上是高中数学中圆锥曲线解题的一些基本方法。
需要注意的是,每种方法都有其适用的范围和局限性,需要根据具体问题选择合适的方法。
同时,这些方法也不是孤立的,有时需要综合运用多种方法来解决一个复杂的问题。
通过大量的练习和总结,我们可以提高解决圆锥曲线问题的能力。
(word完整版)高中数学圆锥曲线基本知识与典型例题
高中数学圆锥曲线基本知识与典型例题第一部分: 椭圆1. 椭圆的概念在平面内与两定点F1.F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点, 两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a}, |F1F2|=2c, 其中a>0, c>0, 且a, c为常数:(1)若a>c, 则集合P为椭圆;(2)若a=c, 则集合P为线段;(3)若a<c, 则集合P为空集.2. 椭圆的标准方程和几何性质标准方程x2a2+y2b2=1 (a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴: 坐标轴对称中心: 原点顶点A1(-a,0), A2(a,0)B1(0, -b), B2(0, b)B1(0,-b),B2(0,b)A1(0, -a), A2(0, a)B1(-b,0), B2(b,0)B1(-b,0),B2(b,0) 轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|=2c离心率e=ca∈(0,1)a, b, c的关系c2=a2-b2典型例题例1.F1, F2是定点, 且|F1F2|=6, 动点M 满足|MF1|+|MF2|=6, 则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2.已知 的周长是16, , B .则动点的轨迹方程是.. )(A)1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(1251622≠=+y y x例3.若F(c, 0)是椭圆 的右焦点, F 与椭圆上点的距离的最大值为M, 最小值为m, 则椭圆上与F 点的距离等于 的点的坐标是.. )(A)(c, ) (C)(0, ±b) (D)不存在例4.设F1(-c ,0)、F2(c ,0)是椭圆 + =1(a>b>0)的两个焦点,P 是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为..)例5 P 点在椭圆 上, F1.F2是两个焦点, 若 , 则P 点的坐标是 .例6.写出满足下列条件的椭圆的标准方程:(1)长轴与短轴的和为18, 焦距为6; . (2)焦点坐标为 , ,并且经过点(2, 1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的31; ____. (4)离心率为 , 经过点(2, 0); .例7 是椭圆 的左、右焦点, 点 在椭圆上运动, 则 的最大值是 .第二部分: 双曲线1. 双曲线的概念平面内动点P 与两个定点F1.F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c), 则点P 的轨迹叫双曲线. 这两个定点叫双曲线的焦点, 两焦点间的距离叫焦距.集合P ={M|||MF1|-|MF2||=2a}, |F1F2|=2c, 其中a 、c 为常数且a>0, c>0: (1)当a<c 时, P 点的轨迹是双曲线; (2)当a =c 时, P 点的轨迹是两条射线; (3)当a>c 时, P 点不存在.2. 双曲线的标准方程和几何性质 标准方程- =1 (a>0, b>0)- =1(a>0, b>0)图形性 质范围x ≥a 或x ≤-a, y ∈Rx ∈R, y ≤-a 或y ≥a对称性对称轴: 坐标轴 对称中心: 原点顶点A1(-a,0), A2(a,0)A1(0, -a), A2(0, a)渐近线y =±b axy =±a bx离心率e = , e ∈(1, +∞), 其中c =实虚轴线段A1A2叫做双曲线的实轴, 它的长|A1A2|=2a ;线段B1B2叫做双曲线的虚轴, 它的长|B1B2|=2b ;a 叫做双曲线的半实轴长, b 叫做双曲线的半虚轴长a 、b 、c 的关系c2=a2+b2 (c>a>0, c>b>0)典型例题例8.命题甲: 动点P 到两定点A.B 的距离之差的绝对值等于2a(a>0);命题乙: 点P 的轨迹是双曲线。
高中数学圆锥曲线知识点图像(精华)
【6】关于抛物线切线问题,因为抛物线是一个二次和一次的结合,在求一些关于切线的问 题时可以适当的利用求导来解决.
D 为准线上任一点,DA, DB 为抛物线的两条切线,以下三个结论和 DA, DB 切线为等价结
论,知一求三:
① A, F, B 三点共线;
② DA DB ;
③ DF AB
F2Q F2 P
F1Q F2Q F1P F2 P
F1F2 F1P F2 P
sin sin sin
2c 2a
e
QI IP
第1页
【4】 P(x0 , y0 ) 为椭圆上任意一点,则过点 P 的切线 PT 方程为:
x0 x a2
y0 y b2
1.分析:可理解为切线是一次的方程,点
任 意 一 点 , 在 PF1F2 中 , 记 F1PF2 , PF1F2 , F1F2P , 则 有
sin (sin sin
)
c a
e.
③
P(x0 ,
y0 )
为双曲线上任意一点,则过点
P
的切线
PT
方程为:
x0 x a2
y0 y b2
1 .另外切线
圆锥曲线知识点图像,一目了然
圆锥曲线一:椭圆
【1】第一定义: PF1 PF2 2a
第二定义:
PF2 PP
e
注意:当 2a F1F2 时表示椭圆; 2a F1F2 时表示线段 F1F2 ; 2a F1F2 ,没有轨迹.
x2
【2】标准方程:
a2
y2 b2
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学--圆锥曲线
一.选择题(共16小题)
1.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,
点A的坐标是(1,3),则△APF的面积为()
A.B.C.D.
2.若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()
A.2 B.C.D.
3.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为()
A.B.2 C.2 D.3
4.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10
5.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.
6.设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠
AMB=120°,则m的取值范围是()
A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)
C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)
7.若a>1,则双曲线﹣y2=1的离心率的取值范围是()
A.(,+∞) B.(,2)C.(1,)D.(1,2)
8.已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
9.已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F 和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A.=1 B.=1 C.=1 D.=1
10.已知方程﹣=1表示双曲线,且该双曲线两焦点间的距离为4,
则n的取值范围是()
A.(﹣1,3)B.(﹣1,) C.(0,3) D.(0,)
11.已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()
A.﹣y2=1 B.x2﹣=1
C.﹣=1 D.﹣=1
12.设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PF⊥x轴,则k=()
A.B.1 C.D.2
13.已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分
别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF 交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.B.C.D.
14.已知双曲线﹣=1(b>0),以原点为圆心,双曲线的实半轴长为半径
长的圆与双曲线的两条渐近线相交于A,B,C,D四点,四边形ABCD的面积为2b,则双曲线的方程为()
A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1
15.已知F1,F2是双曲线E:﹣=1的左,右焦点,点M在E上,MF1与x 轴垂直,sin∠MF2F1=,则E的离心率为()
A.B.C.D.2
16.直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()
A.B.C.D.
二.填空题(共6小题)
17.已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=.
18.已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b
为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.
19.已知F是双曲线C:x2﹣=1的右焦点,P是C的左支上一点,A(0,6).当△APF周长最小时,该三角形的面积为.
20.设F1,F2分别是椭圆+=1的左,右焦点,P为椭圆上任一点,点M的坐标为(6,4),则|PM|+|PF1|的最大值为.
21.如图,F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,过F1的直
线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为.
22.已知P为椭圆上一点,F1,F2是椭圆的两个焦点,∠F1PF2=60°,则△F1PF2的面积S=.
三.解答题(共1小题)
23.设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂
足为N,点P满足=.
(1)求点P的轨迹方程;
(2)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l 过C的左焦点F.
高中数学--圆锥曲线
参考答案
一.选择题(共16小题)
1.D;2.A;3.C;4.A;5.A;6.A;7.C;8.B;9.B;10.A;11.A;12.D;13.A;14.D;15.A;16.B;
二.填空题(共6小题)
17.6;18.;19.12;20.15;21.;22.;
三.解答题(共1小题)
23.;。