2.2.1-2对数运算性质

合集下载

第二章 2.2 2.2.1 第2课时 对数的运算

第二章 2.2 2.2.1 第2课时 对数的运算

log27
=

1 2
×
4

1 2
log23
+
3 2
+
1 2
log23
=
−2
+
3 2
=
−对数的运算
M 目标导航 UBIAODAOHANG
Z 知识梳理 HISHI SHULI
题型一 题型二 题型三 题型四
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
(2)原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
2 49 3
(2)2log32-log3
32 9
+
log38

5lo
g53.
解:(1)(方法一)原式 = 1 (5lg 2-2lg 7)− 4 × 3 lg 2+ 1 (2lg 7+lg 5)
2
32
2
=
5 2
lg
2-lg
7-2lg
2+lg
7+
1 2
lg
5
= 1 lg 2+ 1 lg 5= 1 (lg 2+lg 5)
=
lo g18 (5×9) lo g18 (2×18)
=
log185 + log189 log182 + log1818
=
1
������ +
+ ������ log18 2
������ + ������
������ + ������ ������ + ������

课件2:2.2.1 第2课时 对数的运算

课件2:2.2.1 第2课时 对数的运算
2.2.1 对数与对数运算 第2课时 对数的运算
自学导引
1.对数的运算性质 如果 a>0,a≠1,M>0,N>0,那么, (1)loga(MN)=_l_o_g_aM__+__l_o_g_aN___; (2)logaMN =__lo_g_a_M_-__l_o_g_a_N_; (3)logaMn=____n_lo_g_a_M______(n∈R).
3.对于多重对数符号对数的化简,应从内向外逐层化简 求值.
4.要充分运用“1”的对数等于 0,底的对数等于“1”等对 数的运算性质.
5.两个常用的推论: (1)logab·logba=1(a,b>0 且均不为 1); (2)logambn=mn logab(a,b>0 且均不为 1,m≠0).
本节内容结束 更多精彩内容请登录:
=2(log214密 因忽略真数大于0而出错
【例 4】 已知 lg x+lg y=2lg (x-2y),求 错解:因为 lg x+lg y=2lg(x-2y),
xy的值.
所以 xy=(x-2y)2,即 x2-5xy+4y2=0,
所以 x=y 或 x=4y,即xy=1 或xy=4,
解:(1)lg 14-2lg73+lg 7-lg 18=lg (2×7)-2(lg 7-lg 3)+lg 7 -lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.
(3)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+ (lg 5+lg 2)2=2+(lg 10)2=2+1=3.
x,得
x=llooggccba.
∵x=logab,
∴logab=llooggccba.

高中数学:2.2.1对数与对数运算 (2)

高中数学:2.2.1对数与对数运算  (2)

2.2 对数函数2.2.1对数与对数运算第1课时对数[目标] 1.记住对数的定义,会进行指数式与对数式的互化;2.记住对数的性质,会利用对数的性质解答问题.[重点] 对数的概念及对数的性质.[难点] 对数概念的理解及对数性质的应用.知识点一对数的概念[填一填]1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.对数与指数间的关系:当a>0,a≠1时,a x=N⇔x=log a N.2.两种重要对数(1)常用对数:以10为底的对数叫做常用对数,并把log10N记为lg N.(2)自然对数:以无理数e(e=2.718_28…)为底的对数称为自然对数,并把log e N记为ln N.[答一答]1.在对数概念中,为什么规定a>0且a≠1呢?提示:(1)若a<0,则N取某些数值时,log a N不存在,为此规定a不能小于0.(2)若a=0,则当N≠0时,log a N不存在,当N=0时,则log a N有无数个值,与函数定义不符,因此,规定a≠0.(3)若a=1,当N≠1时,则log a N不存在,当N=1时,则log a N有无数个值,与函数定义不符,因此,规定a≠1.2.判一判(正确的打“√”,错误的打“×”)(1)因为(-2)4=16,所以log(-2)16=4.(×)(2)对数式log32与log23的意义一样.(×)(3)对数的运算实质是求幂指数.( √ )(4)等式log a 1=0对于任意实数a 恒成立.( × ) 知识点二 对数的基本性质[填一填]1.对数的性质 (1)负数和零没有对数; (2)log a 1=0(a >0,且a ≠1); (3)log a a =1(a >0,且a ≠1). 2.对数恒等式 a log a N =N .[答一答]3.为什么零与负数没有对数?提示:因为x =log a N (a >0,且a ≠1)⇔a x =N (a >0,且a ≠1),而a >0且a ≠1时,a x 恒大于0,即N >0,故0和负数没有对数.4.你知道式子a log a N =N (a >0,a ≠1,N >0)为什么成立吗? 提示:此式称为对数恒等式.设a b =N ,则b =log a N , ∴a b =a log a N =N .类型一 对数的意义[例1] 求下列各式中的实数x 的取值范围: (1)log 2(x -10);(2)log (x -1)(x +2).[分析] 根据对数的定义列出不等式(组)求解. [解] (1)由题意有x -10>0,∴x >10, ∴实数x 的取值范围是{x |x >10}. (2)由题意有⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1,且x ≠2,∴x >1,且x ≠2.∴实数x 的取值范围是{x |x >1,且x ≠2}.求形如log f (x )g (x )的式子有意义的x 的取值范围,可利用对数的定义,即满足⎩⎪⎨⎪⎧g (x )>0,f (x )>0,f (x )≠1,进而求得x 的取值范围.[变式训练1] 求下列各式中实数x 的取值范围: (1)log (2x -1)(3x +2); (2)log (x 2+1)(-3x +8).解:(1)因为真数大于0,底数大于0且不等于1,所以⎩⎪⎨⎪⎧3x +2>0,2x -1>0,2x -1≠1,解得x >12,且x ≠1.即实数x 的取值范围是{x |x >12,且x ≠1}.(2)因为底数x 2+1≠1,所以x ≠0. 又因为-3x +8>0,所以x <83.综上可知,x <83,且x ≠0.即实数x 的取值范围是{x |x <83,且x ≠0}.类型二 利用对数式与指数式的关系求值[例2] 求下列各式中x 的值: (1)4x =5·3x ;(2)log 7(x +2)=2; (3)lne 2=x ;(4)log x 27=32;(5)lg0.01=x .[分析] 利用指数式与对数式之间的关系求解. [解] (1)∵4x=5·3x,∴4x3x =5,∴⎝⎛⎭⎫43x =5,1.log a N =x 与a x =N (a >0,且a ≠1,N >0)是等价的,转化前后底数不变.2.对于对数和对数的底数与真数三者之间,已知其中两个就可以利用对数式和指数式的互化求出第三个.[变式训练2] 求下列各式中x 的值. (1)log 2x =32;(2)log x 33=3;(3)x =log 51625;(4)log 2x 2=4.解:(1)由log 2x =32,得x =232=23=2 2.(2)由log x 33=3,得x 3=33=(3)3,∴x = 3. (3)由x =log 51625,得5x =1625=5-4,∴x =-4. (4)由log2x 2=4,得x 2=(2)4=4,∴x =±2. 类型三 对数基本性质的应用[例3] 求下列各式中x 的值:[解](1)∵log3(log2x)=0,∴log2x=1.∴x=21=2.对数的基本性质及对数恒等式是进行对数化简、求值的重要工具,要熟记并能灵活应用. [变式训练3]求下列各式中的x:解:(1)∵ln(lg x)=1,∴lg x=e,∴x=10e.(2)∵log2(log5x)=0,∴log5x=1,∴x=5.1.把对数式m=log n q化为指数式是(B)A.m n=q B.n m=q C.n q=m D.q m=n解析:利用对数定义得n m=q.2.log 3181等于( B )A .4B .-4 C.14 D .-14解析:log 3181=log 33-4=-4.3.=34.4.log 5[log 3(log 2x )]=0,则x -12 =24.解析:∵log 5[log 3(log 2x )]=0,∴log 3(log 2x )=1.∴log 2x =3.∴x =23.5.把下列各式中的对数式化为指数式,指数式化为对数式. (1)5-2=125;(2)8x =30;(3)3x =1;(4)log 13 9=-2;(5)x =log 610;(6)x =ln 13;(7)3=lg x .解:(1)-2=log 5125;(2)x =log 830;(3)x =log 31;(4)(13)-2=9;(5)6x =10;(6)e x =13;(7)103=x .——本课须掌握的三大问题1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)a log a N =N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算,而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化学习至此,请完成课时作业18。

高中数学 2.2.1第2课时 对数的运算课件 新人教A版必修1 (2)

高中数学 2.2.1第2课时 对数的运算课件 新人教A版必修1 (2)

解:(1)方法一:
原式=12(lg
25-lg
72)-43lg
3
22
+lg(72×5)
1 2
=52lg 2-lg 7-2lg 2+lg 7+12lg 5
=12lg 2+12lg 5
=12(lg 2+lg 5)=12.
方法二:
原式=lg472-lg 4+lg 7 5
第二章 基本初等函数 第2课时 对数的运算
1.理解并掌握对数恒等式的推导与应用.(难点、易错点) 2.理解并掌握对数的运算性质,并能运用运算性质进行 对数的有关运算.(重点) 3.掌握换底公式,能用换底公式将一般对数化成自然对 数或常用对数.(难点)
1.对数恒等式 alogaN=__N_.(a>0,且a≠1) 2.对数的运算性质 如果a>0,且a≠1,M>0,N>0,那么
1.求值: (1)10lg 2=________. (2)31+log3 4=________. (3)22log25-1=________. (4)13log34-2=________.
解析:(1)10lg 2=2.
(2)31+log3 4=3×3 log3 4=3×4=12.
(3)22log25-1=2lo2g 252=522=225.
3.对数运算性质的两个注意点 (1)适用前提:对数的运算性质的适用条件是“同底,且真数 为正”,即 a>0,a≠1,M>0,N>0.若去掉此条件,性质不一 定成立,如 log3- -83≠log3(-8)-log3(-3). (2)可逆性:对数的运算性质具有可逆性,具体如下: ①logaM+logaN=loga(MN)(a>0,a≠1,M>0,N>0),如 lg 2+l公式:
底数相同的对数式的化简和求值的原则、方法及注意事项 (1)基本原则. 对数的化简求值一般是正用或逆用公式,对真数进行处 理,选哪种策略化简,取决于问题的实际情况,一般本着便于 真数化简的原则进行. (2)两种常用方法. ①“收”,将同底的两对数的和(差)收成积(商)的对数. ②“拆”,将积(商)的对数拆成同底的两对数的和(差).

2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.2.1 第2课时 对数的运算 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.2.1 第2课时 对数的运算 Word版含解析

第2课时对数的运算1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点) 3.会运用运算性质进行一些简单的化简与证明(易混点).[基础·初探]教材整理1 对数的运算性质阅读教材P64至P65“例3”以上部分,完成下列问题.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M__(n∈R).判断(正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a xy=log a x·log a y.( )(3)log a(-2)3=3log a(-2).( )【解析】(1)√.根据对数的运算性质可知(1)正确;(2)×.根据对数的运算性质可知log a xy=log a x+log a y;(3)×.公式log a M n=n log a M(n∈R)中的M应为大于0的数.【答案】(1)√(2)×(3)×教材整理2 换底公式阅读教材P 65至P 66“例5”以上部分,完成下列问题. 对数换底公式:log a b =logcblogca (a >0,且a ≠1,b >0,c>0,且c ≠1); 特别地:log a b ·log b a =1(a >0,且a ≠1,b >0,且b ≠1).计算:log 29·log 34=________.【解析】 由换底公式可得log 29·log 34=2lg 3lg 2·2lg 2lg 3=4. 【答案】4[小组合作型](1)lg 14-2lg 73+lg 7-lg 18; 【导学号:97030098】 (2)2lg 2+lg 32+lg 0.36+2lg 2;(3)log 34273+lg 25+lg 4+7log 72; (4)2log 32-log 3329+log 38-52log 53.【精彩点拨】 当对数的底数相同时,利用对数运算的性质,将式子转化为只含一种或少数几种真数的形式再进行计算.【自主解答】 (1)法一 原式=lg (2×7)-2(lg 7-lg 3)+lg 7-lg (32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.法二 原式=lg 14-lg ⎝ ⎛⎭⎪⎫732+lg 7-lg 18=lg 14×7⎝ ⎛⎭⎪⎫732×18=lg 1=0.(2)原式=2lg 2+lg 32+lg 36-2+2lg 2=错误!=错误!=错误!.(3)原式=log 33343+lg (25×4)+2=log 33-14+lg 102+2=-14+2+2=154. (4)原式=2log 32-(log 325-log 39)+3log 32-5log 532 =2log 32-5log 32+2log 33+3log 32-9=2-9=-7.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系. 2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.[再练一题]1.求下列各式的值: (1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25.【解】 (1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1. (2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5=2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.一种放射性物质不断变化为其他物质,每经过一年剩余的质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13(结果保留1个有效数字)?(lg 2≈0.301 0,lg 3≈0.477 1)【精彩点拨】 由题目可知经过一年物质剩余的质量约是原来的75%,由此首先找到剩余量与年数的关系,再利用对数计算.【自主解答】 设物质的原有量为a ,经过t 年,该物质的剩余量是原来的13,由题意可得a ·0.75t =13a ,∴⎝ ⎛⎭⎪⎫34t =13,两边取以10为底的对数得lg ⎝ ⎛⎭⎪⎫34t=lg 13,∴t(lg 3-2lg 2)=-lg 3, ∴t =-lg 3lg 3-2lg 2≈0.477 12×0.301 0-0.477 1≈4(年).解对数应用题的步骤[再练一题]2.地震的震级R 与地震释放的能量E 的关系为R =23(lgE -11.4).根据英国天空电视台报道,英格兰南部2007年4月28日发生地震,欧洲地震监测站称,地震的震级为5.0级,而2011年3月11日,日本本州岛发生9.0级地震,那么此次地震释放的能量是5.0级地震释放能量的________倍.【解】 设9.0级地震所释放的能量为E 1,5.0级地震所释放的能量为E 2.由9.0=23(lg E 1-11.4),得lg E 1=32×9.0+11.4=24.9. 同理可得lg E 2=32×5.0+11.4=18.9, 从而lg E 1-lg E 2=24.9-18.9=6.故lg E 1-lg E 2=lg E1E2=6,则E1E2=106=1 000 000,即9.0级地震释放的能量是5.0级地震释放能量的1 000 000倍.[探究共研型]探究1 假设log25log23=x ,则log 25=xlog 23,即log 25=log 23x ,从而有3x =5,进一步可以得到什么结论?【提示】 进一步可以得到x =log 35,即log 35=log25log23.探究2 由探究1,你能猜测logcblogca 与哪个对数相等吗?如何证明你的结论?【提示】 logcb logca =log a b .假设logcblogca =x ,则log c b =xlog c a ,即log c b =log c a x ,所以b =a x ,则x =log a b ,所以logcblogca =log a b.(1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.【导学号:02962014】【精彩点拨】 各个对数的底数都不相同,需先统一底数再化简求值. 【自主解答】 (1)由log 1227=a ,得3lg 32lg 2+lg 3=a ,∴lg 2=3-a2a lg 3. ∴log 616=lg 16lg 6=4lg 2lg 2+lg 3=4×3-a 2a1+3-a 2a=错误!. (2)法一 原式=⎝ ⎛⎭⎪⎫log253+log225log24+log25log28·log 52+log54log525+log58log5125=⎝ ⎛⎭⎪⎫3log25+2log252log22+log253log22log 52+2log522log55+3log523log55=⎝ ⎛⎭⎪⎫3+1+13log 25·(3log 52) =13log 25·log22log25=13.法二 原式=⎝ ⎛⎭⎪⎫lg 125lg 2+lg 25lg 4+lg 5lg 8lg 2lg 5+lg 4lg 25+lg 8lg 125=⎝ ⎛⎭⎪⎫3lg 5lg 2+2lg 52lg 2+lg 53lg 2⎝ ⎛⎭⎪⎫lg 2lg 5+2lg 22lg 5+3lg 23lg 5 =⎝ ⎛⎭⎪⎫13lg 53lg 2⎝ ⎛⎭⎪⎫3lg 2lg 5=13. 法三 原式=(log 2153+log 2252+log 2351)·(log 512+log 5222+log 5323)=⎝ ⎛⎭⎪⎫3log25+log25+13log25(log 52+log 52+log 52)=3×⎝ ⎛⎭⎪⎫3+1+13log 25·log 52=3×133=13.1.在利用换底公式进行化简求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.2.在运用换底公式时,还可结合底数间的关系恰当选用一些重要的结论,如log a b ·log b a =1,log a b ·log b c·log c d =log a d ,log a m b n =n m log a b ,log a a n =n ,等,将会达到事半功倍的效果.[再练一题]3.求值:log 225·log 3116·log 519=________.【解析】 原式=log 252·log 32-4·log 53-2=2lg 5lg 2·-4lg 2lg 3·-2lg 3lg 5=16. 【答案】 161.若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( ) ①log a x 2=2log a x ;②log a x 2=2log a |x |; ③log a (xy )=log a x +log a y ; ④log a (xy )=log a |x |+log a |y |. A .②④ B .①③ C .①④D .②③【解析】 ∵xy >0,∴①中,若x <0,则不成立;③中,若x <0,y <0也不成立,故选B . 【答案】 B2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 5【解析】 lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A .【答案】 A3.(2016·宝鸡高一检测)已知log a 2=m ,log a 3=n ,则log a 18=________.(用m ,n 表示) 【解析】 log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 【答案】 m +2n4.计算(lg 2)2+lg 2·lg 50+lg 25=________. 【解析】 原式=(lg 2)2+lg 2·(1+lg 5)+2lg 5 =lg 2(1+lg 5+lg 2)+2lg 5=2lg 2+2lg 5=2. 【答案】 25.已知log 189=a ,18b =5,求log 3645. 【导学号:97030099】 【解】 法一 ∵log 189=a ,18b =5,即log 185=b , 于是log 3645=log1845log1836=错误!=错误!=错误!=错误!. 法二 ∵log 189=a ,18b =5, 即log 185=b .于是log 3645=错误!=错误!=错误!.法三 ∵log 189=a ,18b =5,∴lg 9=alg 18,lg 5=blg 18. ∴log 3645=lg 45lg 36=错误!=错误!=错误!=错误!.。

DL教育 最新高考 高中数学课件(可改)第二章 2.2.1 第2课时对数的运算

DL教育 最新高考 高中数学课件(可改)第二章 2.2.1 第2课时对数的运算
● (1)根据题意,设出变量;
● (2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
● (3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
● 高三数学复习知识点2 ● 一、充分条件和必要条件 ● 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 ● 二、充分条件、必要条件的常用判断法 ● 1.定义法:判断B是A的条件,实际上就是判断B=&gt;A或者A=&gt;B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可 ● 2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。 ● 3.集合法 ● 在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: ● 若A?B,则p是q的充分条件。 ● 若A?B,则p是q的必要条件。 ● 若A=B,则p是q的充要条件。 ● 若A?B,且B?A,则p是q的既不充分也不必要条件。 ● 三、知识扩展 ● 1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: ● (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; ● (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题; ● (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 ● 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转
单击输入您的封面副标题
D&L精品教育
第二章 2.2.1 对数与对数运算

课件8:2.2.1 第2课时 对数的运算

课件8:2.2.1 第2课时 对数的运算

方法二:原式=lg14-lg(73)2+lg7-lg18 =lg73142××718=lg1=0. (2)原式=2+l2gl3g62-+2l+g32lg2=42llgg22++2llgg33=12. (3)原式=lg25+(1-lg5)(1+lg5) =lg25+1-lg25 =1.
跟踪训练 2.
2 原式=lologg333442=3lloogg3344=23.
4.计算:log89·log332=________.
[答案]
10 3
[解析] 运用换底公式,得 log89·log332=llgg98·llgg332=23llgg32·5llgg32=130.
5.计算下列各式的值: (1)2lg5+lg4+eln2+log 22 2; (2)(log23+log89)(log34+log98+log32).
(2)log927=lloogg33297=lloogg333332=32lloogg3333=32.
1
11
(3)log2125·log332·log53
=log25-3·log32-5·log53-1
=-3log25·(-5log32)·(-log53)=-15·llgg52·llgg23·llgg35=-15.
跟踪训练 3.
计算下列各式的值:
(1)log89·log2732;
(2)log927;
1
11
(3)log2125·log332·log53.
[解析] (1)log89·log2732=llgg98·llgg3227=llgg3223·llgg2353=23llgg32·53llgg23=
10 9.
本节内容结束 更多精彩内容请登录:

3 (3)loga

人教A版必修一第二章2.2.1对数与对数运算重难点题型(举一反三)(含解析)

人教A版必修一第二章2.2.1对数与对数运算重难点题型(举一反三)(含解析)

2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件a x=N(a>0,且a≠1)结论记法数x叫做以a为底N的对数,a叫做对数的底数,N叫做真数x=log Na2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把l og N记为lg N.10(2)自然对数:在科学技术中常使用以无理数e=2.71828…为底数的对数,以e为底的对数称为自然对数,log aa nb m=log a n并把log N记为ln N.e3.对数与指数的关系当a>0,且a≠1时,a x=N⇔x=log N.a4.对数的基本性质(1)负数和零没有对数,即N>0;(2)log1=0(a>0,且a≠1);a(3)log a=1(a>0,且a≠1).a【知识点2对数的运算性质】1.运算性质条件a>0,且a≠1,M>0,N>0log(MN)=log M+log Na a a性质logaMN=log M-log Na a2.换底公式log b=logcbac3.知识拓展log M n=n log M(n∈R)a a(a>0,且a≠1;c>0,且c≠1;b>0).(1)可用换底公式证明以下结论:1m①log b=;②log b⋅log c⋅log a=1;③log b n=log b;④loga abc ab⑤log b=-log b.1alog b;aa(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log(a﹣2)(5﹣a)中实数a的取值范围是()A.(﹣∞,5)C.(2,3)∪(3,5)B.(2,5)D.(2,+∞)【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)C.(﹣∞,2)B.(2,3)∪(3,+∞)D.(2,+∞)【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3] C.(4,+∞)B.(3,4)∪(4,+∞)D.(3,4)【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4)(5)x=;16.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2(2)lg52+lg8+lg5lg20+(lg2)2【变式4-1】(2019•西湖区校级模拟)计算:(1);(2).﹣()+lg+()lg1【变式4-2】(2019春•大武口区校级月考)(1)((2))0+()+();【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;(3)log34;(4)lg.【考点7与对数有关的条件求值问题】x﹣y的值;【例7】(2018秋•龙凤区校级月考)(1)已知lgx+lg(4y)=2lg(x﹣3y),求(2)已知lg2=a,lg3=b,试用a,b表示log830.【变式7-1】(2019秋•江阴市期中)已知lgx+lgy=2lg(x﹣y),求.【变式 8-2】2018 秋•渝中区校级期中)令 P =80.25× +( ) ﹣(﹣2018)0,Q =2log 32﹣log 3【变式 7-2】已知 lg (x +2y )+lg (x ﹣y )=lg 2+lgx +lgy ,求 log 8 的值.【变式 7-3】已知 2lg=lgx +lgy ,求 .【考点 8 对数的综合应用】【例 8】设 x 、y 、z 均为正数,且 3x =4y =6z(1)试求 x ,y ,z 之间的关系;(2)求使 2x =py 成立,且与 p 最近的正整数(即求与 P 的差的绝对值最小的正整数);(3)试比较 3x 、4y 、6z 的大小.【变式 8-1】设 a ,b ,c 是直角三角形的三边长,其中 c 为斜边,且 c ≠1,求证:log (c +b )a+log (c ﹣b )a =2log(c +b )a •log (c ﹣b )a .((1)分别求 P 和 Q .+log 38.(2)若 2a =5b =m ,且,求 m .【变式 8-3】已知 2y •log y 4﹣2y ﹣1=0,•log 5x =﹣1,问是否存在一个正整数 P ,使 P =.2.2.1对数与对数运算重难点题型【举一反三系列】【知识点1对数的概念与基本性质】1.对数的概念条件a x=N(a>0,且a≠1)结论记法数x叫做以a为底N的对数,a叫做对数的底数,N叫做真数x=log Na2.常用对数和自然对数(1)常用对数:通常我们将以10为底的对数叫做常用对数,并把l og N记为lg N.10(2)自然对数:在科学技术中常使用以无理数e=2.71828…为底数的对数,以e为底的对数称为自然对数,log aa nb m=log a n并把log N记为ln N.e3.对数与指数的关系当a>0,且a≠1时,a x=N⇔x=log N.a4.对数的基本性质(1)负数和零没有对数,即N>0;(2)log1=0(a>0,且a≠1);a(3)log a=1(a>0,且a≠1).a【知识点2对数的运算性质】1.运算性质条件a>0,且a≠1,M>0,N>0log(MN)=log M+log Na a a性质logaMN=log M-log Na a2.换底公式log b=logcbac3.知识拓展log M n=n log M(n∈R)a a(a>0,且a≠1;c>0,且c≠1;b>0).(1)可用换底公式证明以下结论:1m①log b=;②log b⋅log c⋅log a=1;③log b n=log b;④loga abc ab⑤log b=-log b.1alog b;aa(2)对换底公式的理解:换底公式真神奇,换成新底可任意,原底加底变分母,真数加底变分子.【考点1对数有意义条件】【例1】(2019秋•马山县期中)对数式log(a﹣2)(5﹣a)中实数a的取值范围是()A.(﹣∞,5)C.(2,3)∪(3,5)B.(2,5)D.(2,+∞)【分析】对数式有意义的条件是:真数为正数,底为正数且不为1,联立得到不等式组,解出即可.【答案】解:要使对数式b=log(a﹣2)(5﹣a)有意义,则,解得a∈(2,3)∪(3,5),故选:C.【点睛】本题主要考查了对数式有意义的条件,即真数为正数,底为正数且不为1,属于基础题.【变式1-1】(2019秋•龙岩期末)若对数式log(t﹣2)3有意义,则实数t的取值范围是()A.[2,+∞)C.(﹣∞,2)B.(2,3)∪(3,+∞)D.(2,+∞)【分析】根据对数式log(t﹣2)3的定义,底数大于0且不等于1,列出不等式组,求出解集即可.【答案】解:要使对数式log(t﹣2)3有意义,须;解得t>2且t≠3,∴实数t的取值范围是(2,3)∪(3,+∞).故选:B.【点睛】本题考查了对数定义的应用问题,是基础题目.【变式1-2】在M=log(x﹣3)(x+1)中,要使式子有意义,x的取值范围为()A.(﹣∞,3] C.(4,+∞)B.(3,4)∪(4,+∞)D.(3,4)【分析】由对数的定义可得,由此解得x的范围.【答案】解:由函数的解析式可得,解得3<x<4,或x>4.故选:B.【点睛】本题主要考查对数的定义,属于基础题.【变式1-3】若对数ln(x2﹣5x+6)存在,则x的取值范围为.【分析】由已知利用对数的概念可得x2﹣5x+6>0,解不等式即可得解.【答案】解:∵对数ln(x2﹣5x+6)存在,∴x2﹣5x+6>0,∴解得:3<x或x<2,即x的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).【点睛】本题考查对数函数的定义域的求法,是基础题.解题时要认真审题,仔细解答.【考点2对数式与指数式的互化】【例2】(2019秋•巴彦淖尔校级期中)将下列指数形式化成对数形式,对数形式化成指数形式.①54=625②()m=5.73③ln10=2.303④lg0.01=﹣2⑤log216=4.【分析】利用对数的定义进行指对互化.【答案】解:①log5625=4,② 5.73=m,③e2.303=10,④10﹣2=0.01,⑤24=16.【点睛】本题考查了指对互化,是基础题.【变式2-1】将下列指数式化为对数式,对数式化为指数式:(1)102=100;(2)lna=b;(3)73=343;(4)log6=﹣2.【分析】根据对数的定义进行转化.【答案】解:(1)lg100=2,(2)e b=a,(3)log7343=3;(4)6﹣2=.【点睛】本题考查了对数的定义,属于基础题.【变式2-2】将下列指数式与对数式互化:(1)log216=4(2)27=﹣3(3)43=64(4)﹣2=16.【分析】根据指数式a x=N等价于对数式x=log a N,可将指数式与对数式互化.【答案】解:(1)log216=4可化为:24=16;(2)27=﹣3可化为:;(3)43=64可化为:log464=3;(4)﹣2=16可化为:.【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握指数式a x=N等价于对数式x=log a N,是解答的关键.【变式2-3】将下列指数式化为对数式,对数式化为指数式.(1)3﹣2=;(2)9=﹣2;(3)1g0.001=﹣3.【分析】直接利用指数式与对数式的互化,写出结果即可.【答案】解:(1)3﹣2=;可得﹣2=1og3.(2)9=﹣2;()﹣2=9.(3)1g0.001=﹣3.0.001=10﹣3.【点睛】本题考查指数式与对数式的互化,考查计算能力.【考点3解对数方程】【例3】求下列各式中x的值:(1)log4x=﹣,求x;(2)已知log2(log3x)=1,求x.【分析】(1)根据对数和指数之间的关系即可将log232=5化成指数式;化成对数式;(2)根据对数和指数之间的关系即可将3﹣3=(3)根据对数的运算法则即可求x;(4)根据对数的运算法则和性质即可求x.【答案】解:(1)∵log232=5,∴25=32(2)∵3﹣3=,∴log3=﹣3;(3)∵log4x=﹣,∴x===2﹣3=;(4)∵log2(log3x)=1,∴log3x=2,即x=32=9.【点睛】本题主要考查指数式和对数式的化简,根据指数和对数的关系是解决本题的关键.【变式3-1】求下列各式中x的值:(1)log x27=;(2)4x=5×3x.【分析】(1)根据log x27=,可得=,进而得到x=9,,化为对数式可得答案.(2)根据4x=5×3x,可得【答案】解:(1)∵log x27=,,∴=27=33=故x=9,(2)∵4x=5×3x.∴,∴x=【点睛】本题考查的知识点是指数式与对数式的互化,熟练掌握a x=N⇔log a N=x(a>0,且a≠1,N >0)是解答的关键.【变式3-2】先将下列式子改写指数式,再求各式中x的值.①log2x=﹣②log x3=﹣.【分析】化对数式为指数式,然后利用有理指数幂的运算性质化简求值.【答案】解:①由log2x=﹣,得==;②由log x3=﹣,得,即.【点睛】本题考查对数式化指数式,考查了有理指数幂的运算性质,是基础的计算题.【变式3-3】将下列对数式化为指数式求x值:(1)log x27=;(2)log2x=﹣;(3)log5(log2x)=0;(4)(5)x=;16.【分析】利用指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质log a1=0及log a a =1、指数的性质即可得出.【答案】解:(1)∵,∴,∴x==32=9;(2),∴==;(3)∵log5(log2x)=0,∴log2x=1,∴x=2;(4)∵(5)∵,∴,∴,化为33x=3﹣2,∴3x=﹣2,得到,∴2﹣x=24,解得x=﹣4.;【点睛】熟练掌握指数式与对数的互化:a b=N⇔log a N=B(a>0,a≠1,)、对数的性质、指数的性质是解题的关键.【考点4对数运算性质的化简求值】【例4】(2019春•东莞市期末)计算(1)2﹣()+lg+()lg1(2)lg52+lg8+lg5lg20+(lg2)2【分析】(1)进行分数指数幂和对数的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=2lg5+2lg2+lg5(2lg2+lg5)+(lg2)2=2+(lg2+lg5)2=3.【点睛】考查分数指数幂和对数的运算,完全平方公式的运用.【变式4-1】(2019•西湖区校级模拟)计算:(1);.(2)【分析】(1)进行对数的运算即可;(2)进行指数式和根式的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查对数的运算性质,以及指数式和根式的运算.)0+()+();【变式4-2】(2019春•大武口区校级月考)(1)((2)【分析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可.【答案】解:(1)原式=;(2)原式=.【点睛】考查分数指数幂和对数的运算,以及对数的定义.【变式4-3】(2019春•禅城区期中)(1)化简:(2a b)(﹣6a b)÷(﹣3a b);(2)求值:2(lg)2+lg2•lg5+.【分析】(1)由指数幂的运算得:原式=4a b=4a,(2)由对数的运算得:原式=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.得解【答案】解:(1)(2a b)(﹣6a b)÷(﹣3a b)=4a b=4a,(2)2(lg)2+lg2•lg5+=2(lg2)2+lg2(1﹣lg2)+(1﹣lg2)=1.【点睛】本题考查了对数的运算及指数幂的运算,属简单题.【考点5利用换底公式化简求值】【例5】(2019秋•中江县校级期中)利用对数的换底公式化简下列各式:(1)log a c•log c a;(2)log23•log34•log45•log52;(3)(log43+log83)(log32+log92).【分析】根据换底公式,把对数换为以10为底的对数,进行计算即可.【答案】解:(1)log a c•log c a=•=1;(2)log23•log34•log45•log52=•••=1;+)(+)(3)(log43+log83)(log32+log92)=(=(+)(+)=•=.【点睛】本题考查了对数的计算问题,也考查了换底公式的灵活应用问题,是基础题目.【变式5-1】利用对数的换底公式化简下列各式:(log43+log83)(log32+log92)【分析】利用对数性质、运算法则、换底公式直接求解.【答案】解:(log43+log83)(log32+log92)=(log6427+log649)(log94+log92)=log64243•log98===.【点睛】本题考查对数值的求法,考查对数性质、运算法则、换底公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【变式5-2】利用对数的换底公式化简下列各式:(1)log43+log83(2)log45+log92.【分析】(1)利用对数的换底公式展开后通分计算;(2)直接利用对数的换底公式进行化简.【答案】解:(1)log43+log83==;(2)log45+log92==.【点睛】本题考查对数的换底公式,是基础的会考题型.【变式5-3】(2019秋•西秀区校级期中)利用换底公式求log225•log34•log59的值.【分析】利用对数的运算法则和对数的换底公式即可得出.【答案】解:原式==2log25•2log32•2log53=8log25•log32•log53==8.【点睛】本题考查了对数的运算法则和对数的换底公式,属于基础题.【考点6用已知对数表示其他对数】【例6】已知log189=a,18b=5,用a、b表示log645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:log189=a,18b=5,∴b=log185,∴log645====【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题【变式6-1】(1)已知log310=a,log625=b,试用a,b表示log445.(2)已知log627=a,试用a表示log1816.【分析】(1)先用换底公式用a表示lg3,再用换底公式化简log625=b,把lg3代入求出lg2,再化简log445,把lg3、lg2的表达式代入即可用a,b表示log445.(2)先用换底公式化简log1816,由条件求出lg3,再把它代入化简后的log1816的式子.【答案】解:(1)∵log310=a,∴a=,∵log625=b===,∴lg2=,∴log445=====.(2)∵log627=a==,∴lg3=,∴log1816====.【点睛】本题考查换底公式及对数运算性质,体现解方程的思想,属于基础题.【变式6-2】(1)已知log147=a,log145=b,用a、b表示log3528.(2)已知log189=a,18b=5,用a、b表示log3645.【分析】根据换底公式,化简计算即可得到答案.【答案】解:(1)log147=a,log145=b,∴log3528====,(2)∵log189=a,18b=5,∴log185=b,∴log3645====,【点睛】本题考查了对数的运算性质,以及换底公式,属于基础题.【变式6-3】.已知lg2=a,lg3=b,用a,b表示下列各式的值.(1)lg12;(2)log224;( lg(3)log 34;(4)lg .【分析】利用对数的换底公式与对数的运算法则即可得出.【答案】解:∵lg2=a ,lg3=b ,∴(1)lg12=2lg 2+lg3=2a +b ;(2)log 224= (3)log 34==+log 23=3+ ; ;(4)=lg3﹣3lg2=b ﹣3a .【点睛】本题考查了对数的换底公式与对数的运算法则,属于基础题.【考点 7 与对数有关的条件求值问题】【例 7】(2018 秋•龙凤区校级月考)(1)已知 lgx +lg (4y )=2lg (x ﹣3y ),求(2)已知 lg2=a ,lg3=b ,试用 a ,b 表示 log 830.x ﹣ y 的值;【分析】 1)由 lgx + (4y )=2lg (x ﹣3y ),推导出 =9,再由 x ﹣ y = = ,能求出结果.(2)log 830== ,由此能求出结果.【答案】解:(1)∵lgx +lg (4y )=2lg (x ﹣3y ),∴,解得 =9,∴x ﹣ y = = =4.(2)∵lg2=a ,lg3=b ,∴log 830== = .【点睛】本题考查对数式化简求值,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.【变式 7-1】(2019 秋•江阴市期中)已知 lgx +lgy =2lg (x ﹣y ),求 .【分析】由题意可得x>0,y>0,x﹣y>0,xy=(x﹣y)2,从而解得=【答案】解:∵lgx+lgy=2lg(x﹣y),∴x>0,y>0,x﹣y>0,xy=(x﹣y)2,∴x2﹣3xy+y2=0,即()2﹣3+1=0,,从而解得.故=故=,=(3+()﹣2.)【点睛】本题考查了对数的化简与运算,同时考查了整体思想的应用,属于基础题.【变式7-2】已知lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,求log8的值.【分析】由已知条件推导出,由此能求出log8的值.【答案】解:∵lg(x+2y)+lg(x﹣y)=lg2+lgx+lgy,∴,整理,得,解得或=﹣1(舍),∴log8=log82==.∴log8的值为.【点睛】本题考查对数值的求法,是基础题,解题时要认真审题,注意对数的性质和运算法则的合理运用.【变式7-3】已知2lg=lgx+lgy,求.【分析】根据对数的运算法则进行化简即可.1【答案】解:由得 x >y >0,即 >1,则由 2lg即(=lgx +lgy ,得 lg ()2=xy ,)2=lgxy ,即(x ﹣y )2=4xy ,即 x 2﹣2xy +y 2=4xy ,即 x 2﹣6xy +y 2=0,即( )2﹣6( )+1=0,则 =则=3+2= 或 =3﹣2(3+2(舍),)= (3﹣2 )﹣=﹣1【点睛】本题主要考查对数的基本运算,根据对数的运算法则是解决本题的关键.【考点 8 对数的综合应用】【例 8】设 x 、y 、z 均为正数,且 3x =4y =6z(1)试求 x ,y ,z 之间的关系;(2)求使 2x =py 成立,且与 p 最近的正整数(即求与 P 的差的绝对值最小的正整数);(3)试比较 3x 、4y 、6z 的大小.【分析】(1)令 3x =4y =6z =k ,利用指对数互化求出 x 、y 、z ,由对数的运算性质求出 、、 ,由对数的运算性质化简与 ,即可得到关系值;(2)由换底公式求出 P ,由对数函数的性质判断 P 的取值范围,找出与它最接近的 2 个整数,利用对数的运算性质化简 P 与这 2 个整数的差,即可得到答案;(3)由(1)得 3x 、4y 、6z ,由于 3 个数都是正数,利用对数、指数的运算性质化简它们的倒数的差,从而得到这 3 个数大小关系.【答案】解:(1)令 3x =4y =6z =k ,由 x 、y 、z 均为正数得 k >1,则 x =log 3k ,y =log 4k ,z =log 6k ,∴ , , ,∵=,且,∴;(2)∵2x=py,∴p=====2=log316,∴2<log316<3,即2<p<3,∵p﹣2=log316﹣2=,3﹣p=3﹣log316=,∵﹣=0,∴,即>,∴与p的差最小的整数是3;(3)由(1)得,3x=3log3k,4y=4log4k、6z=6log6k,又x、y、z∈R+,∴k>1,=﹣==>0,∴,则3x<4y,同理可求=>0,则4y<6z,综上可知,3x<4y<6z.【点睛】本题考查了对数的运算法则、换底公式、指数式与对数式的互化,考查了推理能力,化简、计算能力,属于中档题.【变式8-1】设a,b,c是直角三角形的三边长,其中c为斜边,且c≠1,求证:log(c+b)a+log(c﹣b)a=2log(c+b)a•log(c﹣b)a.【分析】依题意,利用对数换底公式log(c+b)a=端即可.【答案】证明:由勾股定理得a2+b2=c2.log(c+b)a+log(c﹣b)a,log(c﹣b)a=证明左端=右【变式 8-2】2018 秋•渝中区校级期中)令 P =80.25× +( ) ﹣(﹣2018)0,Q =2log 32﹣log 3=+====2log (c +b )a •log (c ﹣b )a .∴原等式成立.【点睛】本题考查对数换底公与对数运算性质的应用,考查正向思维与逆向思维的综合应用,考查推理证明与运算能力,属于中档题.((1)分别求 P 和 Q .+log 38.(2)若 2a =5b =m ,且 ,求 m .【分析】(1)利用指数与对数运算性质可得 P ,Q .(2)2a =5b =m ,且=2,利用对数换底公式可得 a = ,b = ,代入解出即可得出.【答案】解:(1)P =× + ﹣1=2+ ﹣1= .Q ==log 39=2.(2)2a =5b =m ,且=2,∴a =∴∴m =,b = ,=2,可得 lgm = ,. 【点睛】本题考查了指数与对数运算性质、非常的解法,考查了推理能力与计算能力,属于基础题.【变式8-3】已知2y•log y4﹣2y﹣1=0,•log5x=﹣1,问是否存在一个正整数P,使P=.【分析】由2y•log y4﹣2y﹣1=2y•log y4﹣=0可求y,再由•log5x=﹣1求出x即可.【答案】解:∵2y•log y4﹣2y﹣1=2y•log y4﹣∴y=16;=0,∵•log5x=﹣1,∴,解得,x=故P=;==3.【点睛】本题考查了指数函数与对数函数的应用及方程的解法,属于基础题.。

【精编】人教A版数学必修一2-2-1-2对数的运算性质课件-精心整理

【精编】人教A版数学必修一2-2-1-2对数的运算性质课件-精心整理
一、计算 ①lg100,lg0.1与lg(100×0.1); ②log243,log225与log2(43×25); ③log93,log927 与 log9237;
④log12,log116
2
2

log21126;
⑤lg3
100,13lg100

2
lg103.
观察分析以上计算结果,你发现了什么?
本节重点:对数的运算法则 本节难点:对数运算法则中条件的掌握.
1.要准确应用对数的运算法则,关键是①注意用文字 语言叙述法则.②注意指数运算与对数运算性质的比 较.③注意各字母的允许取值范围.
2.指数与对数运算性质对比表
[例1] 用logax,logay,logaz表示:
(1)loga(xy2);(2)loga(x
再进行计算.
[解析] (1)因为loga2=m,loga3=n,所以am=2,an =3,则a2m+n=(am)2·an=4×3=12.
(2)∵10a=2,10b=3,∴lg2=a,lg3=b.
4
4
则 1002a-b=1002lg2-lg3=100lg3=(102)lg3
=(10lg43)2=432=196.
已知lgx=-2.2219,lg2=0.3010,lg3=0.4771,则x= ________.
[答案] 0.006 [解析] lgx=-2.2219=-3+0.7781 =-3+0.3010+0.4771 =lg10-3+lg2+lg3=lg0.006,∴x=0.006.
[例 5] 已知 lgx+lgy=2lg(x-2y),求 log 2yx的值
[解析] 解法 1:lg 45=12lg45=12lg920 =12(lg9+lg10-lg2) =12(2lg3+1-lg2)=lg3+12-12lg2 =0.4471+0.5-0.1505=0.8266. 解法 2:lg 45=12lg45=12lg(5×9) =12(lg5+2lg3)=12(1-lg2+2lg3) =12-12lg2+lg3=0.8266.

§2.2.1-2对数与对数运算 (二)

§2.2.1-2对数与对数运算 (二)

20
§2.2.1-2对数与对数运算 (二)
课堂练习 <<教材>> P.68 书面作业 <<教材>> P.74 习题2.2 A组3.4.5 练习1.2.3
2013-1-15
重庆市万州高级中学 曾国荣 wzzxzgr@
21
n
2013-1-15
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§2.2.1-2对数与对数运算 (二)
思考2:下列7个式子中,其中正确的有___________.
(1)(log a x) n log a x;
n
(3)(6)(7) n n (2)(log a x) log a x
loga (MN ) loga M loga N
M log a log a M log a N N
loga M n loga M
n
2013-1-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 6
§2.2.1-2对数与对数运算 (二)
loga (MN ) loga M loga N
p
M pq pq log a log a a N loga M loga N
M log a log a M log a N N
2013-1-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 8
§2.2.1-2对数与对数运算 (二)
loga M n loga M
§2.2.1-2对数与对数运算 (二)
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.2.1-2对数与对数运算 (二)
教学目标:
1.掌握对数的运算性质,并能理解推导这些法则的 依据和过程; 2.能较熟练地运用法则解决问题.

高中数学2.2.1.2对数的运算

高中数学2.2.1.2对数的运算

【探究总结】关于对数运算性质的两点说明 (1)利用对数的运算性质时,要注意公式成立的前提条件. (2)利用对数的运算性质,可以把乘、除、乘方运算转化为加、 减、乘的运算,加快计算速度.
二、换底公式 探究1:观察换底公式,思考下列问题: (1)换底公式中底数c是特定数还是任意数? 提示:是大于0,且不等于1的任意数.
2.计算:log36-log32=( )
A.3
B.2
C.1
D.0
【解析】选C.log36-log32=log33=1.
3.log32·log23=( )
A.1 B.2 C.3 D.4
【解析】选A.由换底公式知log32·log23=
lg 2 lg 3 1. lg 3 lg 2
4.若x>0,y>0且lgx=a,lgy=b,则lg(x·y)= 【解析】lg(x·y)=lgx+lgy=a+b. 答案:a+b
2
= 1 a-2b+2.
2
类型 二 换底公式
1.若log34·log25·log5m=2,则m=
.
2.(2013·大庆高一检测)已知log23=a,3b=7,试用a,b表示
log1456.
【解题指南】1.将等式左端各对数式均换成以10为底的对数即
可求出m的值.
2.解答本题可先将log1456利用换底公式转化为以3为底的对数, 然后将已知条件代入即可.
探究2:对数的运算性质逆用成立吗?请按下面的提示填空:
①logaM+logaN=
.
②logaM-logaN=
.
③nlogaM=
.
提示:成立.
答案:①loga(M·N) ②loga M ③logaMn

课件3:2.2.1 第2课时 对数的运算

课件3:2.2.1 第2课时 对数的运算

提示
对.利用换度公式:log36=llgg
63=lg
2+lg lg 3
3=a+b b.
典题例证技法归纳
题型探究
题型一 对数式与指数式的互化 例1 将下列指数式化为对数式,对数式化为指数式:
(1)2-7=1218;(2)10-1=0.1;
(3) log 1 32 =-5;(4)lg0.001=-3.
(2)∵14-2=16,∴ log 1 16 =-2.
4
(3)∵ log 1 8 =-3,∴12-3=8.
2
(4)∵log3217=-3,∴3-3=217.
题型二 求解含对数式的方程 例2 求下列各式中 x 的值:(1)log2(log5x)=0;
(2)logx27=34;(3)x=log84.
【解】 (1)∵log2(log5x)=0,∴log5x=1,
1
11
(3)log2125·log332·log53
=log25-3·log32-5·log53-1
=-3log25·(-5log32)·(-log53)
=-15·llgg52·llgg23·llgg35=-15.
方法感悟
方法技巧 1.logaN=b 与 ab=N(a>0 且 a≠1,N>0)是等价 的,表示 a,b,N 三者之间的同一种关系,可以 利用其中两个量表示第三个量. 2.利用对数运算法则求值,一般有两种处理方法. 一种是将式中真数的积、商、幂、方根运用对数的 运算法则将它们化为对数的和、差、积、商,然后 化简求值;另一种是它的逆运算.
2.2.1 第二课时 对数的运算
重点难点 重点:运用运算性质进行对数的有关运算. 难点:换底公式的应用.
新知初探思维启动

20-21版:2.2.1 第2课时 对数的运算(步步高)

20-21版:2.2.1 第2课时 对数的运算(步步高)

√2 D.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4.如果 lg x=lg a+3lg b-5lg c,那么
√A.x=acb53
B.x=35acb
C.x=a+3b-5c
D.x=a+b3-c3
解析 lg a+3lg b-5lg c=lg a+lg b3-lg c5=lg acb53, ∴由 lg x=lg acb53,可得 x=acb53.
3 达标检测
PART THREE
1.log531+log53 等于
√A.0
B.1
C.-1
10 D.log5 3
12345
2.若 lg 2=m,则 lg 5 等于
A.m
1 B.m
√C.1-m
10 D. m
解析 lg 5=lg 120=lg 10-lg 2=1-m.
12345
3.已知a=log32,那么log38-2log36用a表示是
第二章 2.2.1 对数与对数运算
学习目标
XUE XI MU BIAO
1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件. 2.掌握换底公式及其推论. 3.能熟练运用对数的运算性质进行化简求值.

自主学习

题型探究

达标检测

课时对点练
1
PART ONE
自主学习
知识点一 对数运算性质
1
A.4
B.2
C.2
√D.4
解析 log29×log34=llgg 92×llgg 43=2llgg23×2llgg32=4.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

学案7:2.2.1 第2课时 对数的运算

学案7:2.2.1 第2课时 对数的运算

2.2.1第2课时 对数的运算[学习目标]1.理解对数的运算性质.(重点)2.能用换底公式将一般对数转化成自然对数或常用对数.(难点)3.会运用运算性质进行一些简单的化简与证明.(易混点)[自 主 预 习·探 新 知]1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (M ·N )= ;(2)log a M N= ; (3)log a M n = (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?2.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c b log c a. [基础自测]1.思考辨析(1)积、商的对数可以化为对数的和、差.( )(2)log a (xy )=log a x ·log a y .( )(3)log 2(-3)2=2log 2(-3).( )2.计算log 84+log 82等于( )A .log 86B .8C .6D .13.计算log 510-log 52等于( )A .log 58B .lg 5C .1D .2 4.log 23·log 32=________.[合 作 探 究·攻 重 难]类型一 对数运算性质的应用计算下列各式的值:(1)12lg 3249-43lg 8+lg 245;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2; (3)lg 2+lg 3-lg 10lg 1.8.[规律方法] 1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算;化简问题的常用方法:①“拆”:将积(商)的对数拆成两对数之和(差);②“收”:将同底对数的和(差)收成积(商)的对数.[跟踪训练]1.求下列各式的值:(1)lg 25+lg 2·lg 50;(2)23lg 8+lg 25+lg 2·lg 50+lg 25.类型二 对数的换底公式计算:(1)lg 20+log 10025;(2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52).[规律方法] 1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式.2.常用的公式有:log a b ·log b a =1,log an b m =m n log a b ,log a b =1log b a等. [跟踪训练]2.求值:(1)log 23·log 35·log 516;(2)(log 32+log 92)(log 43+log 83).类型三 对数运算性质的综合应用[探究问题]1. 若2a =3b ,则a ,b 间存在怎样的等量关系?2.若log 23=a ,log 25=b ,你能用a ,b 表示log 415吗?已知3a =5b =c ,且1a +1b=2,求c 的值.[规律方法] 应用换底公式应注意的两个方面化成同底的对数时,要注意换底公式的正用、逆用以及变形应用题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式1.计算:log 153-log 62+log 155-log 63=( )A .-2B .0C .1D .22.计算log 92·log 43=( )A .4B .2 C.12 D.143.设10a =2,lg 3=b ,则log 26=( )A.b aB.a +b aC .abD .a +b 4.log 816=________.5.计算:(1)log 535-2log 573+log 57-log 51.8; (2)log 2748+log 212-12log 242-1.【参考答案】[自 主 预 习·探 新 知]1.(1) log a M +log a N (2) log a M -log a N (3) n log a M 思考:[提示] 不一定.[基础自测]1. (1)√ (2)× (3)×2.D 【解析】log 84+log 82=log 88=1.3.C 【解析】log 510-log 52=log 55=1.4.1 【解析】log 23·log 32=lg 3lg 2×lg 2lg 3=1. [合 作 探 究·攻 重 难] 解 (1)原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5 =12(lg 2+lg 5) =12lg 10 =12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2=2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3.(3)原式=12lg 2+lg 9-lg 10lg 1.8=lg 18102lg 1.8=lg 1.82lg 1.8=12. [跟踪训练]1.解 (1)原式=lg 25+(1-lg 5)(1+lg 5)=lg 25+1-lg 25=1. (2)23lg 8+lg 25+lg 2·lg 50+lg 25=2lg 2+lg 25+lg 2(1+lg 5)+2lg 5=2(lg 2+lg 5)+lg 2 5+lg 2+lg 2·lg 5=2+lg 5(lg 5+lg 2)+lg 2=2+lg 5+lg 2=3.解 (1)lg 20+log 10025=1+lg 2+lg 25lg 100=1+lg 2+lg 5=2. (2)(log 2125+log 425+log 85)·(log 1258+log 254+log 52)=(log 253+log 2252+log 235)·(log 5323+log 5222+log 52)=⎝⎛⎭⎫3+1+13log 25·(1+1+1)log 52=133·3=13. [跟踪训练]2.解 (1)原式=lg 3lg 2·lg 5lg 3·lg 16lg 5=lg 16lg 2=4lg 2lg 2=4. (2)原式=⎝⎛⎭⎫lg 2lg 3+lg 2lg 9⎝⎛⎭⎫lg 3lg 4+lg 3lg 8=⎝⎛⎭⎫lg 2lg 3+lg 22lg 3⎝⎛⎭⎫lg 32lg 2+lg 33lg 2=3lg 22lg 3·5lg 36lg 2=54.[探究问题]1.提示:设2a =3b =t ,则a =log 2t ,b =log 3t ,∴a b=log 23. 2.提示:log 415=log 215log 24=log 23+log 252=a +b 2. 解 ∵3a =5b =c ,∴a =log 3c ,b =log 5c ,∴1a =log c 3,1b=log c 5, ∴1a +1b=log c 15. 由log c 15=2得c 2=15,即c =15.[当 堂 达 标·固 双 基]1.B 【解析】原式=log 15(3×5)-log 6(2×3)=1-1=0.2.D 【解析】log 92·log 43=lg 2lg 9·lg 3lg 4=14. 3.B 【解析】∵10a =2,∴lg 2=a ,∴log 26=lg 6lg 2=lg 2+lg 3lg 2=a +b a. 4.43 【解析】log 816=log 2324=43. 5.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2.(2)原式=log 2748+log 212-log 242-log 22 =log 27×1248×42×2=log 2122=log 22-32=-32.。

2.2.1.对数与对数运算

2.2.1.对数与对数运算
2.2.1 对数与对数运算
对数的定义:
一般地,如果子
a N (a 0, a 0)
x
那么x叫做以a为底N的对数(LOGARITHM),记为:
x=
loga N
指数式与对数式的比较
a N
x
x loga N
) )
)
指数式中的X在对数式中叫: ( 指数式中的幂N在对数式中叫:( 指数式中底数a在对数式中叫:
3:
负数和0没有对数.
完成下列练习
1:将下列指数式化为对数式,对数式化为指数式. 1 4 (1). 34 81 (2) 2 16
1m (30.5 16 4
1 log2 ( ) 6 64
lg 0.001 3
(6)
2:求下列各式中的x的值. (1)
(
2 log64 x 3
(2)
logx 8 6
ln e x
2
(3)
lg 0.001 x
(4)
(5)
3
log x
4
81
2
(6)
log( x1)
( 32 x )
指数式与对数式的比较
a N
x
x loga N
) )
)
指数式中的X在对数式中叫: ( 指数式中的幂N在对数式中叫:( 指数式中底数a在对数式中叫:
(
常用对数与自然对数. 我们将底数是10的对数叫做常
用对数. 记为: log10 N lg N 我们把以e为底的对数称为自然 对数. 记为: loge N ln N
几个特殊的对数:
1: 1的对数等于0,即
loga 1 0
2: 底数的对数等于1,即:

课件7:2.2.1 第2课时 对数的运算

课件7:2.2.1 第2课时 对数的运算

提示:
1.应用 logaM+logaN=loga(MN),logaM-logaN=logaMN,及 mlogab=logabm 来
化简求值.
2.3429=(4 7 2)2,
3
8= 22 ,
245=7
5.
3.统一为 lg2 或 lg5 的形式便于求值,能使用 lg5+lg2=1 求值.
[解]
(1)解法一:原式=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)
【跟踪训练 1】 计算下列各式的值: (1)log2 8+4 3+log2 8-4 3; (2)lg5(lg8+lg1000)+(lg2 3)2+lg16+lg0.06. [解] (1)原式=log2( 8+4 3· 8-4 3)=log24=2. (2)原式=lg5(lg23+lg103)+( 3lg2)2+lg6-1+lg(6×10-2) =lg5(3lg2+3)+3(lg2)2-lg6+(lg6+lg10-2) =(1-lg2)(3lg2+3)+3(lg2)2-2 =3lg2+3-3(lg2)2-3lg2+3(lg2)2-2=1.
第二章 基本初等函数(Ⅰ)
2.2.1 对数与对数运算
第2课时 对数的运算
[问题提出] 1.对数的运算性质有哪些? 2.不同底的对数运算应用什么公式转化为同底的对数运算? 3.换底公式有哪些变形形式?
[基础自学] 1.对数的运算性质 如果 a>0 且 a≠1,M>0,N>0,那么, (1)loga(MN)=___l_og_a_M_+__lo_g_aN___; 推广:loga(N1N2…Nk)=logaN1+logaN2+…+logaNk(k∈N*). (2)logaMN =___l_o_ga_M_-__lo_g_aN____; (3)logaMn=___n_l_og_a_M__ (n∈R).

2-2-1-2 对数与对数运算对数的运算法则

2-2-1-2 对数与对数运算对数的运算法则

高考调研
新课标A版 ·数学 ·必修1
课时学案 课时作业
第4页
第二章 2.2 2.2.1 第2课时
高考调研
新课标A版 ·数学 ·必修1
1.对数的运算法则
(a>0且a≠1,M>0,N>0) (1)loga(M·N)= logaM+logaN ;
(2)logaMN= logaM-logaN

(3)logaMn= nlogaM .
高考调研
新课标A版 ·数学 ·必修1
第二章 基本初等函数(Ⅰ)
第1页
第二章 基本初等函数(Ⅰ)
高考调研
新课标A版 ·数学 ·必修1
2.2 对 数 函 数
第2页
第二章 基本初等函数(Ⅰ)
高考调研
新课标A版 ·数学 ·必修1
2.2.1 对数与对数运算(第2课时) 对数的运算法则
第3页
第二章 基本初等函数(Ⅰ)
第20页
第二章 2.2 2.2.1 第2课时
高考调研
新课标A版 ·数学 ·必修1
题型二 带有附加条件的对数式求值 例3 已知lg2=0.301 0,lg3=0.477 1,求lg 45. 【解析】 lg 45=12lg45=12lg920 =12(lg9+lg10-lg2)=12(2lg3+1-lg2) =lg3+12-12lg2 =0.477 1+0.5-0.150 5=0.826 6.
新课标A版 ·数学 ·必修1
思考题2 计算下列各式的值. (1)(lg5)2+2lg2-(lg2)2; (2)log535-2log573+log57-log51.8.
第19页
第二章 2.2 2.2.1 第2课时
高考调研
新课标A版 ·数学 ·必修1

17-18版:2.2.1 第2课时 对数的运算

17-18版:2.2.1 第2课时 对数的运算

第2课时 对数的运算学习目标 1.掌握对数的运算性质,能运用运算性质进行对数的有关计算(重点).2.了解换底公式,能用换底公式将一般对数化为自然对数或常用对数(重点).预习教材P64-P65,完成下面问题:知识点1 对数的运算性质若a >0且a ≠1,M >0,N >0,则有:(1)log a (M ·N )=log a M +log a N .(2)log a M N=log a M -log a N . (3)log a M n =n log a M (n ∈R ).【预习评价】 (正确的打“√”,错误的打“×”)(1)积、商的对数可以化为对数的和、差.( )(2)log a (xy )=log a x ·log a y .( )(3)log a (-2)3=3log a (-2).( ).知识点2 换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 【预习评价】(1)log 35·log 56·log 69=________.(2)若log 34×log 48×log 8m =log 416,则m =________.题型一 利用对数的运算性质化简、求值【例1】 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.规律方法 利用对数运算性质化简与求值的原则和方法(1)基本原则:①正用或逆用公式,对真数进行处理,②选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行.(2)两种常用的方法:①“收”,将同底的两对数的和(差)收成积(商)的对数;②“拆”,将积(商)的对数拆成同底的两对数的和(差).【训练1】 计算下列各式的值:(1)(lg 5)2+2lg 2-(lg 2)2;(2)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.题型二 利用换底公式化简、求值【例2】 (1)(log 43+log 83)(log 32+log 92)=________.(2)已知log 189=a,18b =5,用a ,b 表示log 3645的值.规律方法 利用换底公式化简与求值的思路【训练2】 (1)已知log 1227=a ,求log 616的值;(2)计算(log 2125+log 425+log 85)(log 52+log 254+log 1258)的值.题型三 利用对数式与指数式的互化解题【例3】 (1)设3a =4b =36,求2a +1b的值; (2)已知2x =3y =5z ,且1x +1y +1z=1,求x ,y ,z .规律方法 利用对数式与指数式互化求值的方法(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的相互转化.(2)对于连等式可令其等于k (k >0),然后将指数式用对数式表示,再由换底公式可将指数的倒数化为同底的对数,从而使问题得解.【训练3】 已知3a =5b =M ,且1a +1b=2,则M =________.课堂达标1.lg 2516-2lg 59+lg 3281等于( ) A .lg 2B .lg 3C .lg 4D .lg 5 2.已知a =log 32,那么log 38-2log 36用a 表示是( )A .a -2B .5a -2C .3a -(1+a )2D .3a -a 23.若log a b ·log 3a =4,则b 的值为________.4.已知2m =5n =10,则1m +1n=________. 5.求下列各式的值:(1)lg 14-2lg 73+lg 7-lg 18; (2)2lg 2+lg 32+lg 0.36+2lg 2. 课堂小结1.换底公式可完成不同底数的对数式之间的转化,可正用,逆用;使用的关键是恰当选择底数,换底的目的是利用对数的运算性质进行对数式的化简.2.运用对数的运算性质应注意:(1)在各对数有意义的前提下才能应用运算性质.(2)根据不同的问题选择公式的正用或逆用.(3)在运算过程中避免出现以下错误:①log a N n=(log a N)n,②log a(MN)=log a M·log a N,③log a M±log a N=log a(M±N).。

2.2.1.2 第2课时 对数的运算

2.2.1.2 第2课时 对数的运算

=-3log25·(-5log32)·(-log53)=
-15·llgg
5 lg 2·lg
2 lg 3·lg
3 5
=-15.
必修1 第二章 基本初等函数(I)
栏目导引
已知 log189=a,18b=5,用 a、b 表示 log3645.
已知对数和指数的底数都是18,需求值的对数 底数为36,因此既可以将需求的对数化为与已 知对数同底后再求解,也可以将已知与需求值 的对数都换为同一底数后再求解.
栏目导引
(2)对于底数相同的对数式的化简,常用的方法 是: ①“收”,将同底的两对数的和(差)收成积(商) 的对数; ②“拆”,将积(商)的对数拆成对数的和(差). (3)对数的化简求值一般是正用或逆用公式,对 真数进行处理,选哪种策略化简,取决于问题的 实际情况,一般本着便于真数化简的原则进行.
2.2 对数函数
必修1 第二章 基本初等函数(I)
栏目导引
第2课时 对数的运算
必修1 第二章 基本初等函数(I)
栏目导引
1.掌握对数的运算性质, 并能运用运算性质进行 对数的有关运算. 2.了解换底公式并能用换 底公式将一般对数化成 自然对数和常用对数.
1.利用对数的运算性 质进行对数运算.(重 点) 2.对数运算性质的形 式.(易混点) 3.利用换底公式解 题.(难点)
logab=log1ba,loganbm=mn logab,loganbn=logab.
必修1 第二章 基本初等函数(I)
栏目导引
2.计算: (1)(log23+log89)(log34+log98+log32);
1 11 (2)log2125·log332·log53.
必修1 第二章 基本初等函数(I)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 2.1第二课时 对数的运算性质
【教学目标】
1.知识目标:掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能力目标:能较熟练地运用法则解决问题;
【教学重难点】重点、对数运算性质
难点:对数运算性质的证明方法.
【教学过程】
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

(二)情景导入、展示目标。

(一)、复习引入:1.对数的定义 b N a =log 其中 a ∈),1()1,0(+∞U 与 N ∈,0(+∞
2.指数式与对数式的互化
3.重要公式:
⑴负数与零没有对数;
⑵01log =a ,log =a a ⑶对数恒等式N a N a =log 3.指数运算法则 )
()()
,()()
,(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+(二)、新授内容:
积、商、幂的对数运算法则:
如果 a > 0,a ≠ 1,M > 0, N > 0 有:
)
()()
(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+=证明:①设a log M=p, a log N=q
由对数的定义可以得:M=p a ,N=q a
∴MN= p a q a =q p a + ∴a log MN=p+q ,
即证得a log MN=a log M + a log N
②设a log M=p ,a log N=q
由对数的定义可以得M=p a ,N=q a ∴q p q p a a
a N M -== ∴q p N M a -=log 即证得N M N
M a a a log log log -=③设a log M=P 由对数定义可以得M=p a ,
∴n M =np a ∴a log n M =np , 即证得a log n
M =n a log M
说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如10log 2log 5log 101010==+③真数的取值范围必须是),0(+∞:
)5(log )3(log )5)(3(log 222-+-=-- 是不成立的
)10(log 2)10(log 10210-=-是不成立的
④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠ ,N
M N M a a a log log )(log ±≠±(三)、合作探究,精讲点拨
例1 计算
(1)5log 25, (2)4.0log 1, (3)2log (74×52), (4)lg 5100解析:用对数的运算性质进行计算.
解:(1)5log 25= 5log 25=2
(2)4.0log 1=0(3)2log (74×25)= 2log 74+ 2log 52= 2log 722
⨯+ 2log 52 = 2×7+5=19(4)lg 5100=5
2lg1052log10512==点评:本题主要考察了对数性质的应用,有助于学生掌握性质.
例2 用x a log ,y a log ,z a log 表示下列各式:
log )2(;(1)log z xy a a 解析:利用对数的性质化简.
解:(1)z xy a
log =a log (xy )-a log z=a log x+a log y- a log z (2)32log z
y x a =a log (2x 3log )z y a - = a log 2x +a log 3log z y a -=2a log x+z y a a log 3
1log 21-点评:熟悉对数的运算性质.
变式练习、计算:
(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg (3)2
.1lg 10lg 38lg 27lg -+ 说明:此题可讲练结合.
(1)解法一:lg14-2lg 3
7+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2)
=lg2+lg 7-2lg7+2lg3+lg7-2lg3-lg2=0
解法二:lg14-2lg 37+lg7-lg18=lg14-lg 2)37(+lg7-lg18 =lg 1lg 18)3
7(7142==⨯⨯评述:此题体现了对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.
2
3lg 23lg 53lg 3lg 9lg 243lg )2(25===10232.1lg 10lg 38lg 27lg )3(2
2121⨯=-+2
12lg 23lg )12lg 23(lg 23=-+-+=评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.
(四)、反思总结,当堂检测
1.求下列各式的值:
(1)2log 6-2log 3 (2)lg 5+lg 2
2. 用lg x,lg y,lg z表示下列各式:
(1) lg (xyz ); (2)lg z
xy 2
;【板书设计】
一、对数概念及其运算性质
二、例题
例1
变式1
例2
变式2
【作业布置】 导学案课后练习与提高
2.2.1对数的运算性质导学案
课前预习学案
一、预习目标
初步了解对数的运算性质,知道推导这些法则的依据和过程;
二、预习内容
1.对数的定义 b N a =log 其中 a ∈),1()1,0(+∞U 与 N ∈,0(+∞2.指数式与对数式的互化
3.重要公式:
⑴负数与零没有对数;⑵=1log a ,=a a log
⑶对数恒等式=N a a log
3.指数运算法则 )
_______()(),______()()
,_____(R n ab R n m a R n m a a n n
m n m ∈=∈=∈=⋅三、提出疑惑
课内探究学案
一、学习目标
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.能较熟练地运用法则解决问题;学习重点、对数运算性质
学习难点:对数运算性质的证明方法.
二、学习过程
(一)合作探究
探究一:积、商、幂的对数运算法则:
如果 a > 0,a ≠ 1,M > 0, N > 0 有:
)
()()
(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+=解析:利用对数的性质与对数式与指数式的关系证明.
点评:知道公式的推倒过程有利于学生掌握公式.
探究二
例1 计算
(1)5log 25, (2)4.0log 1, (3)2log (74×5
2), (4)lg 5100解析:用对数的运算性质进行计算.
解:
点评:本题主要考察了对数性质的应用,有助于学生掌握性质.
例2 用x a log ,y a log ,z a log 表示下列各式:
32log )2(;(1)log z
y x z xy a a 解析:利用对数的性质化简.
解:
点评:熟悉对数的运算性质.
变式练习:计算:(1)lg14-2lg 37+lg7-lg18 (2)9lg 243lg (3)2
.1lg 10lg 38lg 27lg -+(二)反思总结
(三)当堂检测
1.求下列各式的值:
(1)2log 6-2log 3 (2)lg 5+lg 2
2. 用lg x,lg y,lg z表示下列各式:
(1) lg (xyz ); (2)lg z
xy 2
;课后练习与提高
1.若3a =2,则log 38-2log 36用a 的代数式可表示为( )
(A )a-2 (B )3a-(1+a)2 (C )5a-2 (D )3a-a 2
2、已知lga ,lgb 是方程2x 2-4x +1 = 0的两个根,则(lg
b
a )2的值是( ).(A).4 (B).3 (C).2 (D).1
3、下列各式中正确的个数是 ( ). ① ② ③
(A )0 (B )1 (C )2 (D )3 4.已知,,那么______.
5、若lg2 = a ,lg3 = b ,则lg 54=_____________.
6. 用lg x,lg y,lg z表示下列各式:(1)z xy 3
lg ; (2)z
y x
2lg。

相关文档
最新文档