八年级数学12月月考试题无答案
江苏省东海县横沟中学2014-2015学年八年级数学12月月考试题(无答案)
江苏省东海县横沟中学2014-2015学年八年级数学12月月考试题一.选择题:(将正确答案填在表格中,每小题3分,共30分) 1、在平面直角坐标系中,点P(-1,2)的位置( )A .第一象限B .第二象限C .第三象限D .第四象限 2、下列语句中正确的是( ) A.的平方根是3- B.9的平方根是3 C.9的算术平方根是3± D.9的算术平方根是33、下列说法中,不正确的是( ).A 3是2)3(-的算术平方根B ±3是2)3(-的平方根C -3是2)3(-的算术平方根 D.-3是3)3(-的立方根 4、下面实数:π,-2,722,16,38.0,1.732,3271-,0.131131113……中,无理数的个数是 ( )A 、1个B 、2个C 、3个D 、4个5)A 、点PB 、点QC 、点MD 、点N6、已知第二象限内的点P 到.x 轴的距离为4,到y 轴的距离为3,则P 点的坐标一定是 ( ) A .(3,4) B .(3,4) C .(4,3) D .(-4,3)7、下列结论正确的是( )A.6)6(2-=--B.9)3(2=- C.16)16(2±=- D.251625162=⎪⎪⎭⎫ ⎝⎛-- 8、若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为A .2B .0C .-2D .以上都不对9.已知在坐标平面内有一点,若,则点的位置在( )A.原点B.轴上C.轴上D.坐标轴上 10.如图,直角坐标系中,正方形ABCD 的面积是( ). (A )1 (B )2 (C )4 (D )12题10图第5题图二.填空题:( 每小题3分,共30分 ) 11、81的平方根是_____________。
12、按要求取近似值:某人一天饮水1890ml=_______________ml 。
(精确到1000ml ) 13、21-的相反数是_______________________。
山东省滕州市滕西中学2014-2015学年八年级数学12月月考试题(无答案)
山东省滕州市滕西中学2014-2015学年八年级数学12月月考试题(满分:120分 时间:100分钟)一 选择题 (每小题3分)1.下列方程组中,是二元一次方程组的是( ).(A )2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩ (D )24795x y x y +=⎧⎨-=⎩ 2.若220a ba b xy -+--=是二元一次方程,那么a 、b 的值分别是( )。
(A)1,0 (B)0,-1 (C)2.1 (D)2,-33.如果⎩⎨⎧-==23y x 是方程组⎪⎩⎪⎨⎧=+=+53121ny mx ny mx 的解,则一次函数y=mx+n 的解析式为( ) A .y=-x+2 B .y=x -2 C .y=-x -2 D .y=x+24.函数y=ax -3的图象与y=bx+4的图象交于x 轴上一点,那么a ∶b 等于( )A .-4∶3B .4∶3C .(-3)∶(-4)D .3∶(-4) 5.一组数据9.5,9,8.5,8,7.5的极差是 ( ). A .0.5 B .8.5 C .2.5 D .26.在统计中样本的标准差可以反映这组数据的 ( ). A .平均状态 B .分布规律 C .离散程度 D .数值大小 90 A .82 B .75 C .65 D .628. 某射击小组有20人,教练根据他们某次射击的数据绘制成如图1所示的统计图,则这组数据的众数和中位数分别是( ). A.7,7B.8,7.5C.7,7.5D.8,6.59.小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ). A .该组数据的众数是24分 B .该组数据的平均数是25分C .该组数据的中位数是24分D .该组数据的极差是8分10.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是( ). A .10 B .10 C .2 D .2二. 填空题 (每小题3分) 1.若一个二元一次方程的一个解为2,1.x y =⎧⎨=-⎩则这个方程可以是______。
2021-2022学年江苏省苏州市高新一中八年级(上)月考数学试卷(12月份)(解析版)
2021-2022学年江苏省苏州市高新一中八年级第一学期月考数学试卷(12月份)一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±92.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:54.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.26.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.58.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.39.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④二.填空题(本大题共8小题,每小题2分,共16分)11.=.12.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=度.13.点A(4,﹣2)关于x轴的对称点B的坐标为.14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是.15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是.三.解答题19.计算或化简:(1);(2).20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A()、与y轴交点B();(2)画出函数图象,并根据图象回答:当x时,y>2;当x≥0时,y的取值范围.当1<x≤3时,y的取值范围.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为km/h;乙车速度为km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.参考答案一.选择题(本大题共有8小题,每小题2分,共16分)1.3的平方根是()A.±B.9C.D.±9【分析】直接根据平方根的概念即可求解.解:∵()2=3,∴3的平方根是为.故选:A.2.已知点A(3,y1)和点B(﹣2,y2)是一次函数y=﹣2x+3图象上的两点,比较y1与y2的大小关系()A.y1>y2B.y1=y2C.y1<y2D.不能确定【分析】根据一次函数的性质:k<0时,y随x的增大而减小,可得y1与y2的大小关系.解:∵k=﹣2<0,∴y随x的增大而减小,∵3>﹣2,∴y1<y2,故选:C.3.下列条件中,不能判断△ABC(a、b、c为三边,∠A、∠B、∠C为三内角)为直角三角形的是()A.a2=1,b2=2,c2=3B.a:b:c=3:4:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【分析】根据勾股定理的逆定理和三角形内角和,可以判断各个选项中的条件是否可以构成直角三角形,从而可以解答本题.解:当a2=1,b2=2,c2=3时,则a2+b2=c2,即△ABC是直角三角形,故选项A不符合题意;当a:b:c=3:4:5时,设a=3x,b=4x,c=5x,则a2+b2=(3x)2+(4x)2=(5x)2=c2,即△ABC是直角三角形,故选项B不符合题意;当∠A+∠B=∠C时,则∠C=90°,即△ABC是直角三角形,故选项C不符合题意;当∠A:∠B:∠C=3:4:5时,则最大的∠C=180°×=75°,即△ABC不是直角三角形,故选项D符合题意;故选:D.4.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【分析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.解:∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°,故选:A.5.一次函数y=mx+m2(m≠0)的图象过点(0,4),且y随x的增大而增大,则m的值为()A.﹣2B.﹣2或2C.1D.2【分析】由y随x的增大而增大,根据一次函数的性质得m>0;再由于一次函数y=mx+m2(m≠0)的图象过点(0,4),则m2=4,然后解方程,求出满足条件的m的值.解:根据题意得m>0且m2=4,解得m=2.故选:D.6.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.7.如图,在平面直角坐标系中,线段AB的端点坐标为A(﹣3,﹣5),B(2,﹣3),若直线y=kx+1与线段AB有交点,则k的值不可能是()A.﹣5B.﹣1C.3D.5【分析】当直线y=kx+1过点A时,求出k的值,当直线y=kx+1过点B时,求出k的值,介于二者之间的值即为使直线y=kx+1与线段AB有交点的x的值.解:①当直线y=kx+1过点A时,将A(﹣3,﹣5)代入解析式y=kx+1得,k=2,②当直线y=kx+1过点B时,将B(2,﹣3)代入解析式y=kx+1得,k=﹣2,∵|k|越大,它的图象离y轴越近,∴当k≥2或k≤﹣2时,直线y=kx+1与线段AB有交点.故选:B.8.如图,直线y=与x轴、y轴分别交于点A,B,点C是直线AB上的一个动点,在平面直角坐标系中,点P(0,2)是y轴上的一个点,则线段PC的最小值为()A.5B.2C.4D.3【分析】根据垂线段最短得出PC⊥AB时线段PC最短,分别求出PB、OB、OA、AB的长度,利用△PBC≌△ABO,即可求出本题的答案.解:如图,过点P作PC⊥AB,则∠PCB=90°,当PC⊥AB时,PC最短,∵直线y=x﹣3与x轴、y轴分别交于点A,B,∴点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB==5,∵∠BCP=∠AOB=90°,∠B=∠B,PB=OP+OB=5=AB,∴△PBC≌△ABO(AAS),∴PC=OA=4.解法二:连接PA,△PBA的面积=PB×OA=×BA×PC,因为PB=BA=5,所以PC=OA=4.故选:C.9.如图,在平面直角坐标系中,A(0,3),B(5,3),C(5,0),点D在线段OA上,将△ABD沿着直线BD折叠,点A的对应点为E,当点E在线段OC上时,则AD的长是()A.1B.C.2D.【分析】由点的坐标得出∠DAB=∠AOC=90°,由折叠的性质得出AD=DE,AB=BE =5,根据勾股定理可得出答案.【解答】∵A(0,3),B(5,3),C(5,0),∴AB∥x轴,BC∥y轴,AB=OC=5,AO=BC=3,∴∠DAB=∠AOC=90°,∴∠BCE=90°,∵将△ABD沿着直线BD折叠,点A的对应点为E,∴AD=DE,AB=BE=5,∴CE===4,设AD=DE=x,则OD=3﹣x,OE=1,∵OD2+OE2=DE2,∴(3﹣x)2+12=x2,解得x=.∴AD=.故选:D.10.甲、乙两人分别从A,B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了3min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=700;④a=33.以上结论正确的有()A.①②B.①②③C.①③④D.①②④【分析】①由x=0时y=1200,可得出A、B之间的距离为1200m,结论①正确;②根据速度=路程÷时间可求出乙的速度,再根据甲的速度=路程÷时间﹣乙的速度可求出甲的速度,二者相除即可得出乙行走的速度是甲的1.5倍,结论②正确;③根据路程=二者速度和×运动时间,即可求出b=800,结论③错误;④根据甲走完全程所需时间=两地间的距离÷甲的速度+4,即可求出a=34,结论④错误.综上即可得出结论.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②正确;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④错误.故结论正确的有①②.故选:A.二.填空题(本大题共8小题,每小题2分,共16分)11.=2.【分析】如果一个正数x的平方等于a,那么x是a的算术平方根,由此即可求解.解:∵22=4,∴=2.故答案为:212.如图,在△ABC中,AB=AC,若∠B=70°,则∠C=70度.【分析】由已知条件判断出∠B、∠C是底角,结合等腰三角形的两个底角相等,可知∠C=∠B=70°.解:∵在△ABC中,AB=AC∴∠B=∠C∵∠B=70°∴∠C=70°13.点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,即可求解.解:∵关于x轴对称的点横坐标相同,纵坐标互为相反数,∴点A(4,﹣2)关于x轴的对称点B的坐标为(4,2).故答案为(4,2).14.在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为5,到y轴的距离为4,则点M的坐标是(﹣4,5).【分析】根据点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值,得到点M的横纵坐标可能的值,进而根据所在象限可得点M的具体坐标.解:设点M的坐标是(x,y).∵点M到x轴的距离为5,到y轴的距离为4,∴|y|=5,|x|=4.又∵点M在第二象限内,∴x=﹣4,y=5,∴点M的坐标为(﹣4,5),故答案为:(﹣4,5).15.某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为150瓶.【分析】这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题,解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.16.已知直角三角形的两边长为3厘米和5厘米,则第三边长为cm或4cm.【分析】根据勾股定理直接解答即可.不过要分情况讨论,即5厘米的边是斜边还是直角边.解:∵两边长为3厘米和5厘米,当均为直角边时,∴由勾股定理得第三边长为=cm;当5厘米的线段为斜边时,第三边长为=4cm.17.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点,且AB=8,BC=6,则△BEC的周长是16.【分析】根据勾股定理求出AC,根据线段垂直平分线的性质得到EA=EB,根据三角形的周长公式计算,得到答案.解:在Rt△ABC中,∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是边AB的垂直平分线,∴EA=EB,∴△BEC的周长=BC+EC+BE=BC+EC+EA=BC+AC=16,故答案为:16.18.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=12,BC=18,CD=8,则四边形ABCD的面积是120.【分析】过点D作DE⊥BA的延长线于点E,利用角平分线的性质可得出DE=DC=8,再利用三角形的面积公式结合S四边形ABCD=S△ABD+S△BCD可求出四边形ABCD的面积.解:过点D作DE⊥BA的延长线于点E,如图所示.∵BD平分∠ABC,∴DE=DC=8,∴S四边形ABCD=S△ABD+S△BCD,=AB•DE+BC•CD,=×12×8+×18×8,=120.故答案为:120.三.解答题19.计算或化简:(1);(2).【分析】(1)先分母有理化,再利用零指数幂的意义计算,然后合并即可;(2)先把各二次根式化为最简二次根式,再把括号内合并,然后进行二次根式的除法运算.解:(1)原式=+1+3﹣1=4;(2)原式=(﹣9a)÷=(1﹣9a)××=3﹣27a.20.已知一次函数y=﹣2x+4,完成下列问题:(1)图象与x轴交点A(2,0)、与y轴交点B(0,4);(2)画出函数图象,并根据图象回答:当x<1时,y>2;当x≥0时,y的取值范围y≤4.当1<x≤3时,y的取值范围﹣2≤y<2.【分析】(1)分别代入y=0及x=0,求出与之对应的x,y的值,进而可得出点A,B 的坐标;(2)画出函数图象,利用一次函数图象上点的坐标特征及函数图象,即可得出结论.解:(1)当y=0时,﹣2x+4=0,解得:x=2,∴点A的坐标为(2,0);当x=0时,y=﹣2×0+4=4,∴点B的坐标为(0,4).故答案为:2,0;0,4;(2)画出函数图象,如图所示.当y>2时,﹣2x+4>2,解得:x<1;当x=0时,y=4,且y随x的增大而减小,∴当x≥0时,y的取值范围为y≤4;当x=1时,y=﹣2×1+4=2,当x=3时,y=﹣2×3+4=﹣2,∴当1<x≤3时,y的取值范围为﹣2≤y<2.故答案为:<1;y≤4;﹣2≤y<2.21.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是y=2x.【分析】(1)待定系数法即可求解;(2)根据函数解析式即可画出图象;(3)把点代入即可判断是否在直线解析式上;(4)根据上加下减的规律即可得出答案;解:(1)∵一次函数y=kx+4的图象经过点(﹣3,﹣2),∴﹣3k+4=﹣2,∴k=2,∴函数表达式y=2x+4;(2)图象如图:(3)把(﹣5,3)代入y=2x+4,∵﹣10+4=﹣6≠3,∴(﹣5,3)不在此函数的图象上;(4)∵把这条直线向下平移4个单位,∴函数关系式是:y=2x;故答案为:y=2x.22.已知一次函数的图象与y=﹣x的图象平行,且与y轴交点(0,﹣3),求此函数关系式.【分析】一次函数的图象与y=﹣x的图象平行,可得k=﹣,将点(0,﹣3)代入即可求解.解:设所求函数为y=kx+b,∵函数的图象与y=﹣x的图象平行,∴k=﹣,又∵所求函数过点(0,﹣3),∴﹣3=b,∴所求函数为关系式为:y=x﹣3.23.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得DE=AE=AB,DF =AF=AC,再根据四边形的周长的定义计算即可得解;(2)根据到到线段两端点距离相等的点在线段的垂直平分线上证明即可.【解答】(1)解:∵AD是高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明:∵DE=AE,DF=AF,∴EF垂直平分AD.24.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.【分析】(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,∴A(6,0),B(0,8),∴OA=6,OB=8 AB=10,∵A B'=AB=10,∴O B'=10﹣6=4,∴B'的坐标为:(﹣4,0).(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中,m2+42=(8﹣m)2,解得:m=3,∴M的坐标为:(0,3),设直线AM的解析式为y=kx+b,则,解得:,故直线AM的解析式为:y=﹣x+3.25.如图,在△ABC中,AB=AC,DE垂直平分AC,CE⊥AB,AF⊥BC.(1)求证:CF=EF;(2)求∠EFB的度数.【分析】(1)由等腰三角形的性质可得BF=CF,由直角三角形的性质可证CF=EF;(2)由垂直平分线的性质可证AE=EC,由等腰三角形的性质可求∠B=∠ACB=67.5°,即可求解.【解答】证明:(1)∵AB=AC,AF⊥BC,∴BF=CF,又∵CE⊥AB,∴CF=EF;(2)∵DE垂直平分AC,∴AE=EC,又∵∠AEC=90°,∴∠ACE=∠EAC=45°,∴∠B=∠ACB=67.5°,∵EF=CF=BF,∴∠BEF=∠FBE=67.5°,∴∠EFB=45°.26.如图1,某物流公司恰好位于连接A,B两地的一条公路旁的C处.某一天,该公司同时派出甲、乙两辆货车以各自的速度匀速行驶.其中,甲车从公司出发直达B地;乙车从公司出发开往A地,并在A地用1h配货,然后掉头按原速度开往B地.图2是甲、乙两车之间的距离S(km)与他们出发后的时间x(h)之间函数关系的部分图象.(1)由图象可知,甲车速度为40km/h;乙车速度为80km/h;(2)已知最终甲、乙两车同时到达B地.①从乙车掉头到乙车到达B地的过程中,求S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km?【分析】(1)根据题意和函数图象中的数据,可以计算出甲车和乙车的速度;(2)①根据题意和(1)中的结果,可以写出S与x的函数表达式以及关于x的取值范围,并在图2中补上函数图象;②根据题意,利用分类讨论的方法可以得到从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离何时为80km.解:(1)由图象可知,甲车速度为:(100﹣60)÷(1.5﹣0.5)=40÷1=40(km/h),乙车的速度为:60÷0.5﹣40=120﹣40=80(km/h),故答案为:40,80;(2)①由题意可得,S=80×0.5+40x﹣80(x﹣1.5)=﹣40x+160,当80×0.5+40x=80(x﹣1.5)时,解得x=4,即S与x的函数表达式是S=﹣40x+160(1.5≤x≤4),补全的函数图象如右图所示;②当0.5≤x≤1.5时,60+40(x﹣0.5)=80,解得x=1,当1.5≤x≤4时,40x+80×0.5﹣80(x﹣1.5)=80,解得x=2,即从两车同时从C地出发到两车同时到达B地的整个过程中,两车之间的距离在1小时或2小时时为80km.27.如图,直线l:y=﹣x+3与x轴、y轴分别交于A、B两点,OM⊥AB于点M,点P 为直线l上不与点A、B重合的一个动点.(1)求线段OM的长;(2)当△BOP的面积是6时,求点P的坐标;(3)在y轴上是否存在点Q,使得以O、P、Q为顶点的三角形与△OMP全等,若存在,请直接写出所有符合条件的点P的坐标,否则,说明理由.【分析】(1)先求得点A、B的坐标,可求得OA、OB、AB的长,利用面积法即可求得OM的长;(2)先画图,确定△BOP面积可以BO为底,P到y轴距离为高求得P到y轴距离,再分类讨论求得答案;(3)分△OMP≌△PQO与△OMP≌△OQP两种情况讨论,结合图形分析即可求解.解:(1)对于直线y=﹣x+3,令x=0,则y=3,令y=0,则﹣x+3=0,解得:x=4,∴点A、B的坐标分别是(4,0),(0,3),∴OA=4,OB=3,∴AB===5,∵S△OAB=AB•OM,∴OM=;(2)过P作PC⊥y轴于C,如图1,∴S△BOP=OB•PC=6,∴PC=4,∴点P的横坐标为4或﹣4,∵点P为直线l上的一个动点且不与A、B重合,∴横坐标为4时,与A重合,不合题意,∴横坐标为﹣4时,纵坐标为:﹣×(﹣4)+3=6,∴当点P坐标为(﹣4,6)时,△BOP的面积是6;(3)存在,理由如下:①当△OMP≌△PQO时,如图2和图3,由(1)得OM=,∴PQ=OM=,即P点横坐标为﹣或,当P点横坐标为﹣时,纵坐标为:﹣×+3=,∴P(﹣,),当P点横坐标为时,纵坐标为:﹣,∴P(),此时点P的坐标为(﹣,),(,);②当△OMP≌△OQP时,如图4和图5,∴OQ=OM=,即点P、点Q纵坐标为﹣或,由﹣,解得:x=;由﹣,解得:x=;此时点P的坐标为(,﹣),(,);综上所述,符合条件的点P的坐标为(﹣,)或(,)或(,﹣)或(,).。
2022-2023学年山西省太原市八年级第一学期12月月考数学试卷及参考答案
2022-2023学年山西省太原市八年级(上)月考数学试卷说明:共三大题,23小题,满分120分,作答时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.) 1.()02-等于( ) A.2-B.0C.1D.22.下列图标形象地表示了“二十四节气”中的“立春”“芒种”“白露”“大雪”,其中是轴对称图形的是( )A. B. C. D.3.下列计算结果正确的是( ) A.1234a a a ÷=B.()236aa -= C.2510a a a ⋅=D.()2236a a -=4.在ABC △中,B C ∠=∠,2AB =,则AC 的长为( ) A.1B.2C.3D.45.现需要在某条街道l 上修建一个核酸检测点P ,向居住在A ,B 小区的居民提供核酸检测服务,要使P 到A ,B 的距离之和最短,则核酸检测点P 符合题意的是( )A. B. C . D.6.下列各式从左到右的变形是因式分解,并因式分解正确的是( ) A.()2222m n mn m n -+=-B.()()21454x x x x ++=++C.()()22444x y x y x y -=-+D.()()()()21a b a b a b a b -+-=--+7.如图,在33⨯的正方形网格中,12∠+∠等于( )A.60°B.75°C.90°D.105°8.若225x mx ++是完全平方式,则m 的值是( ) A.10±B.5±C.10D.59.如图,将图1中的一个小长方形变换位置得到如图2所示的图形,根据两个图形中阴影部分的面积关系得到的等式是( )A.()2222a b a ab b +=++ B.()2222a b a ab b -=-+ C.()()22a b a b a b -=+-D.()()2222a b a b a ab b +-=+-10.如图,在Rt ABC △中,90C ∠=︒,30A ∠=︒,BH 平分ABC ∠,6BH =,P 是边AB 上一动点,则H ,P 之间的最小距离为( )A.2B.3C.4D.6二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:225x -=______.12.若点A 位于第三象限,则点A 关于y 轴的对称点落在第______象限. 13.已知45m =,49n =,则4m n +的值为______.14.如图,在ABC △中,AB AC =,AB 的垂直平分线交边AB 于点D ,交边AC 于点E ,若ABC △与EBC △的周长分别是15,9,则BC =______.15.如图,某山的山顶E 处有一个观光塔EF ,已知该山的山坡面与水平面的夹角EAB ∠为30°,山高EB 为120米,点C 距山脚A 处180米,CD AB ∥,交EB 于点D ,在点C 处测得观光塔顶端F 的仰角FCD ∠为60°,则观光塔EF 的高度是______米.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2个小题,每小题5分,共10分)计算:(1)()3232a a a -⋅+.(2)()()()2a b a b b a b +---.先化简,再求值:()()22x xy y x y ++-,其中1x =,2y =-.18.(本题8分)课本再现:(1)如图,ABC △是等边三角形,DE BC ∥,分别交AB ,AC 于点D ,E .求证:ADE △是等边三角形.(2)如图,等边三角形ABC 的两条角平分线相交于点D ,延长BD 至点E ,使得AE AD =,求证:ADE △是等边三角形.19.(本题8分) 观察以下等式:第1个等式:223181-=⨯;第2个等式:225382-=⨯;第3个等式:227583-=⨯;第4个等式:229784-=⨯;…按照以上规律,解决下列问题: (1)写出第5个等式:______.(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.下列方框中的内容是小宇分解因式的解题步骤.请回答下列问题:(1)小宇分解因式中第二步到第三步运用了______. A.提公因式法B.平方差公式法C.两数和的完全平方公式法D.两数差的完全平方公式法(2)小宇得到的结果能否继续因式分解?若能,直接写出分解因式的结果;若不能,请说明理由. (3)请对多项式()()22262425x x xx +++-+进行因式分解.21.(本题8分)为了推进节能减排,助力实现碳达峰、碳中和,某市新换了一批新能源公交车(如图1).图2、图3分别是该公交车双开门关闭、打开中某一时刻的俯视(从上面往下看)示意图.ME ,EF ,FN 是门轴的滑动轨道,90E F ∠=∠=︒,两门AB ,CD 的门轴A ,B ,C ,D 都在滑动轨道上,两门关闭时(如图2),点A ,D分别在点E ,F 处,门缝忽略不计(B ,C 重合),两门同时开启时,点A ,D 分别沿E M →,F N →的方向同时以相同的速度滑动,如图3,当点B 到达点E 处时,点C 恰好到达点F 处,此时两门完全开启,若1EF =米,AB CD =,在两门开启的过程中,当60ABE ∠=︒时,求BC 的长度.22.(本题13分)综合与探究【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如,由图可以得到()2222a b a ab b +=++,基于此,请解答下列问题.【直接应用】(1)若3x y +=,225x y +=,求xy 的值. 【类比应用】(2)若()32x x -=,则()223x x +-=______.【知识迁移】(3)将两块全等的特制直角三角板(90AOB COD ∠=∠=︒)按如图所示的方式放置,其中点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上,连接AC ,BD .若14AD =,50AOC BOD S S +=△△,求一块直角三角板的面积.23.(本题13分)综合与实践课间,小鑫在草稿纸上画了一个直角三角形.如图,在Rt ABC △中,90ACB ∠=︒,他想到了作AC 的垂直平分线ED ,交AC 于点E ,交AB 于点D .他和同桌开始探讨线段AD 与BD 的大小关系.(1)尝试探究:当30A ∠=︒时,直接写出线段AD 与BD 的大小关系:AD ______BD .(填“>”、“<”或“=”)(2)得出结论:若A ∠为任意锐角,则线段AD 与BD 的大小关系是AD ______BD ,请说明理由.(填“>”、“<”或“=”)(3)应用结论:利用上面的结论继续研究,如图,P 是FHG △的边HG 上的一个动点,PM FH ⊥于点M ,PN FG ⊥于点N ,FP 与MN 交于点K .当点P 运动到某处时,MN 与FP 正好互相垂直,此时FP 平分HFG ∠吗?请说明理由.数学参考答案1.C2.D3.B4.B5.A6.D7.C8.A9.C 10.B 11.()()55x x +- 12.四 13.45 14.3 15.6016.(1)解:原式3338a a =-+……3分35a =.……5分(2)解:原式2222a b ab b =--+……3分22a ab =-.……5分 17.解:原式322223x x y xy x y xy y =++---……3分33x y =-.……5分 当1x =,2y =-时,原式()33129=--=.……7分18.解:(1)①AED ∠;……1分②ADE ∠; ③AED ∠;……3分④等角对等边.……4分(2)证明:∵ABC △是等边三角形,∴60BAC ABC ∠=∠=︒.……5分 ∵BE 和AD 分别为ABC ∠和BAC ∠的平分线,∴1302ABD ABC ∠=∠=︒,1302BAD BAC ∠=∠=︒. ∵ADE ∠为ABD △的外角,∴60ADE ABD BAD ∠=∠+∠=︒.……7分∵AE AD =,∴ADE △是等边三角形.……8分 19.解:(1)2211985-=⨯.……3分(2)第n 个等式:()()2221218n n n +--=.……5分证明:∵等式左边()()212121218n n n n n =++-+-+==等式右边,∴等式成立.……8分 20.解:(1)C.……2分(2)能,分解因式的结果为()42x +.……4分 (3)设22y x x =+.原式()()6425y y =+-+……5分()22211y y y =++=+……6分()()2222211x x x ⎡⎤=++=+⎣⎦……7分()41x =+.……8分21.解:由题意,得BE CF =,1EF AB CD =+=米.∵AB CD =,∴12AB CD ==米.……2分 在Rt AEB △中,∵90E ∠=︒,60ABE ∠=︒,∴30EAB ∠=︒,∴1124BE AB ==米,∴14CF BE ==米,……6分∴12BC EF BE CF =--=米. 答:BC 的长度为12米.……8分 22.解:(1)∵()2222x y x xy y +=++,又∵3x y +=,225x y +=,∴952xy =+,∴2xy =.……4分 (2)5.……7分 提示:设3y x =-,则()33x y x x +=+-=.∵()32x x -=,即2xy =,∴()()222222323225x x x y x y xy +-=+=+-=-⨯=.(3)∵两块直角三角板全等,∴AO CO =,BO DO =,90AOB COD ∠=∠=︒.……8分 ∵点A ,O ,D 在同一直线上,点B ,O ,C 也在同一直线上, ∴18090AOC COD ∠=︒-∠=︒,90BOD AOC ∠=∠=︒. 设AO CO x ==,BO DO y ==.∵14AD AO OD x y =+=+=, 又∵22115022AOC BOD S S x y +=+=△△,∴22100x y +=,解得48xy =,……11分 ∴112422AOBS OA OB xy =⋅==△.答:一块直角三角板的面积为24.……13分 23.解:(1)=.……2分 (2)=.……4分理由:∵ED 垂直平分AC ,∴AD CD =,∴A ACD ∠=∠.……5分 ∵90ACB ∠=︒,∴90A B ACD BCD ∠+∠=∠+∠=︒, ∴B BCD ∠=∠,∴BD CD =,∴AD BD =.……7分 (3)FP 平分HFG ∠.……8分理由:如图,作MF 的垂直平分线交FP 于点O ,连接OM ,ON .∵PM FH ⊥,PN FG ⊥,∴MPF △和NPF △都是直角三角形. 由(2)中所证可知OF OP OM ==.作线段FN 的垂直平分线也必经过FP 的中点O ,……10分 ∴OM OP OF ON ===.又∵MN FP ⊥,∴90OKM OKN ∠=∠=︒.∵OK OK =,∴Rt Rt OKM OKN ≌△△,∴MK NK =,∴FKM FKN ≌△△,∴MFK NFK ∠=∠,即FP 平分HFG ∠.……13分。
2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题
2023-2024学年江苏省苏州市星海实验初级中学八年级上学期12月月考数学试题1.下列曲线不能表示y是x的函数的是()A.B.C.D.2.如图,表示了自变量x与因变量y的关系,当x每增加1时,y增加()A.1B.3C.6D.123.下列图形中,表示一次函数与正比例函数(为常数,且)的图象的是()A.B.C.D.4.一辆快车和一辆慢车按相同的路线从地行驶到地,所行驶的路程与时间的函数图象如图所示,下列说法不正确的是()A.快车追上慢车需小时B.慢车的速度是千米时C.,两地相距千米D.快车比慢车早到小时5.若一次函数的图象不经过第二象限,则()A .,B .,C .,D .,6.若是关于的方程的解,则一次函数的图象与轴的交点坐标是()A .B .C .D .7.在平面直角坐标系中,将函数的图象向上平移个单位长度,使其与的交点在位于第二象限,则的取值范围为()A .B .C .D .8.如图,在平面直角坐标系xoy 中,,线段,B 为的中点.点C 在y 轴上滑滑动,当线段长为最小值时点D 的坐标是()A .B .C .D .9.在平面直角坐标系中,一次函数的图象与y 轴交点坐标为__________.10.若点在函数的图象上,则代数式的值为________.11.已知一次函数的图象经过,两点,则________.(填“”“<”或“=”)12.已知一次函数的图象与直线平行,且经过点关于y 轴的对称点,则该函数的表达式为________.13.如图,直线过点与直线交于点,则不等式的解集为______.14.已知:如图(1),长方形中,E 是边上一点,且,,点P 从B 出发,沿折线匀速运动,运动到点C 停止.P 的运动速度为2,运动时间为t (s ),的面积为y ().y 与t 的函数关系式图象如图(2),则下列结论:①;②;③;④当时,为等腰三角形;⑤当时,.其中正确的是______.15.我们知道,若.则有或.如图,直线与分别交轴于点、,则不等式的解集是______.16.已知两个函数图像的表达式分别为:,,,与相交于,求__________.17.已知一次函数.(1)为何值时,它的图象经过原点;(2)为何值时,它的图象经过点.18.某校甲、乙两班参加植树活动.乙班先植树20棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为(棵),乙班植树的总量为(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),分别与x之间的部分函数图象如图所示.(1)当时,分别求与x之间的函数关系式.(2)如果甲、乙两班均保持前4个小时的工作效率,通过计算说明,当时,甲、乙两班植树的总量之和能否超过180棵.19.如图,在正方形网格中(图中每个小正方形的边长均为1个单位长度),若点的坐标为,点的坐标为,请按要求解决下列问题:(1)在图中建立正确的平面直角坐标系;(2)点的坐标为_____________;(3)的面积为_____________;(4)如果的面积为1,且点在轴上,则点的坐标为_____________;(5)如果的周长最小,且点在轴上,则的周长最小值为_____________,点的坐标为_____________.20.如图,已知直线与坐标轴分别交于A,B两点,与直线交于点.(1)求t,b的值;(2)若点在线段上运动,过点M作直线平行于y轴,该直线与直线交于点N,与x轴交于点D,如图所示.①若,求四边形的面积;②若M是线段的3等分点,求m的值.21.某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台冰箱进价1500元,每台空调的进价1200元.现在商场准备一次购进这两种家电共100台,设购进电冰箱台,这100台家电的销售利润为元,(1)求出与之间的函数关系式;(2)要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16400元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调()元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,求出这100台家电销售时的最大利润.22.如图1,等腰直角三角形中,,,过点作交于点,过点作交于点,易得,我们称这种全等模型为“型全等”.如图2,在直角坐标系中,直线:分别与轴,轴交于点、(,).(1)求的值和点的坐标;(2)在第二象限构造等腰直角,使得,求点的坐标;(3)将直线绕点旋转得到,求的函数表达式.。
浙江省金华市金华海亮外国语学校2022-2023学年八年级上学期12月月考数学试题(wd无答案)
浙江省金华市金华海亮外国语学校2022-2023学年八年级上学期12月月考数学试题(wd无答案)一、单选题(★) 1. 下列图案不是..轴对称图形的是()A.B.C.D.(★) 2. 下列长度的三条线段能首尾相接构成三角形的是()A.,,B.,,C.,,D.,,(★) 3. 在平面直角坐标系中,点关于x轴对称的点的坐标为()A.B.C.D.(★) 4. 不等式的解集在数轴上表示正确的是()A.B.C.D.(★★★) 5. 在下列四个命题中,是真命题的是()A.有两边及其中一边上的高线对应相等的两个三角形全等;B.有两个内角是60°的三角形是等边三角形;C.垂直于同一条直线的两条直线平行;D.等腰三角形一腰上的高与另一腰的夹角是20°,则顶角是70°.(★) 6. 如图,已知所在直线是的对称轴,点E、F是上的两点,若的面积为18.则图中阴影部分的面积是()A.6B.12C.9D.无法确定(★★) 7. 如图所示,两个三角形全等,则等于A.B.C.D.(★) 8. 如图,在中,,分别以点A和点B为圆心,大于的长为半径作弧相交于点D和点E,直线交于点F,交于点G,连接,若,则的周长为()A.B.C.D.8(★★) 9. 若点,,在一次函数(是常数)的图象上,则,,的大小关系是()A.B.C.D.(★★★) 10. 为预防新冠疫情,民生大院入口的正上方A 处装有红外线激光测温仪(如图所示),测温仪离地面的距离AB=2.4 米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为 1.8 米的市民CD 正对门缓慢走到离门 0.8 米的地方时(即BC=0.8 米),测温仪自动显示体温,则人头顶离测温仪的距离AD 等于()A.1.0 米B.1.2 米C.1.25 米D.1.5 米二、填空题(★) 11. 命题“等腰三角形的两个底角相等”的逆命题是 _________ .(★) 12. 一次函数的图象不经过第 ____________ 象限.(★) 13. 已知一个等腰三角形的一个内角为40°,则它的顶角等于______.(★★★) 14. 如图,是的角平分线,若,,则 ______ .(★) 15. 小明和小亮的家分别位于新华书店的东西两边,他们相约同时出发到新华书店购买书籍,小明骑车小亮步行.小明、小亮到新华书店的距离(m),(m)与时间(min)之间的关系如图所示,经过 ______ min,他们途中到书店的距离相等.(★★★) 16. 如图,的两条直角边,.分别以的三边为边作三个正方形.若四个阴影部分面积分别为,,,,则的值为 ____________ ,的值为 ____________ .三、解答题(★) 17. 如图,在中,,,求的度数.(★) 18. 如图,,,.求证:.(★★) 19. 如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?(★) 20. 在如图所示的正方形网格中建立平面直角坐标系,的顶点坐标分别为,,,请按要求解答下列问题:(1)画出关于x轴对称的,并写出点A的对应点的坐标为(______,______);(2)平行于y轴的直线l经过,画出关于直线l对称的图形,并写出的坐标为(______,______);(★★) 21. (1)解不等式:,并把它的解集在数轴上表示出来.(2)解不等式组:.(★★★) 22. 一次函数的图象经过点和,与轴交于点.(1)试求这个一次函数的解析式;(2)求一次函数的图象与两坐标轴围成的三角形面积.(★★★) 23. 如图,是边长是的等边三角形,动点,同时从,两点出发,分别沿,方向匀速移动,其中点运动的速度是,点运动的速度是,当点到达点时,、两点都停止运动,设运动时间为,解答下列问题:(1)当点到达点时,与的位置关系如何?请说明理由.(2)在点与点的运动过程中,是否能成为等边三角形?若能,请求出,若不能,请说明理由.(3)则当为何值时,是直角三角形?(★★★) 24. 通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,,过点B作于点C,过点D作于点E.由,得.又,可以推理得到.进而得到AC =_______,BC=______.我们把这个数学模型称为“K字”模型或“一线三等角”模型;【模型应用】(2)①如图2,,连接,且于点F,与直线交于点G.求证:点G是的中点;②如图3,在平面直角坐标系xOy中,点A的坐标为,点B为平面内任一点.若是以为斜边的等腰直角三角形,请直接写出点B的坐标.。
扬州市江都区2022-2023学年第一学期初二数学12月月考试题及解析
(2)如图2,在 中, , ,若点 是边 下方一点, ,探索线段 、 、 之间的数量关系,并说明理由;
【知识应用】
(3)如图3,两块斜边长都为 的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离 的平方为多少?
答案与解析
一.选择题(本大题共8小题,每小题3分,共24分)
1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()
A.5cmB.4cmC.2cmD.3cm
4.在 , , , ,0.1010010001…(每两个1之间,逐次多一个0)中,无理数的个数有()
A.2个B.3个C.4个D.5个
5.在平面直角坐标系中,点A,B坐标分别为(1,0),(3,2),连接AB,将线段AB平移后得到线段A'B',点A的对应点A'坐标为(2,1),则点B'坐标为()
A.4个B.6个C.7个D.8个
二.填空题(本大题共10小题,每小题3分,共30分)
9.36的平方根是______.
10.已知一个直角三角形的两边长分别为6和8,则第三边长为_________.
11.如图,在 中, , ,则 __________.
12.点P(m,m+2)在平面直角坐标系的y轴上,则点P的坐标是______.
7.如图,有一张直角三角形纸片, , , ,现将 折叠,使边 与 重合,折痕为 ,则 的长为()
A. B. C. D.
【答案】C
【解析】
【分析】先根据勾股定理求出BC的长度,再由折叠的性质可得CE=DE,设 ,然后在 中利用勾股定理即可求出x的值.
【详解】∵ , ,
∴
由折叠可知CE=DE,AC=AD,
2012-2013学年八年级12月月考数学试题
时间:120分钟 分值:150分一、选择题(每小题3分,共27分)1、下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( ).A . B. C. D.2、下列说法中,不是..一般平行四边形的特征的是( ) A 、对边平行且相等 B 、对角线互相平分 C 、是轴对称图形 D 、对角相等3、在如图的网格中,以格点A 、B 、C 、D 、E 、F 中的4个点为顶点,你能画出平行四边形的个数为 ( )A .2个B .3个C .4个 13.5个 4、横坐标和纵坐标都是正数的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5、下列图形中,不一定为菱形的是( )A 、两条对角线互相垂直平分的四边形B 、四条边都相等的四边形C 、有一条对角线平分一个内角的平行四边形D 、由两个全等的三角形拼成的图形6、如图,在一块形状为直角梯形的草坪中,修建了一条由A →M →N →C 的小路(M 、N 分别是AB 、CD 的中点).极少数同学为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们仅少走了( )F7、矩形ABCD 中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是( )A .(0,3)B .(3,0)C .(0,5)D .(5,0)8、如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,CE=CF 。
若∠BEC=80°,则∠EFD 的度数为( )A 、20°B 、25°C 、35°D 、40°9、如图,已知四边形ABCD 中,R 、P 分别是BC 、CD 上的点,E 、F 分别是AP 、RP 的中点,当点P 在CD 上RP DC AEF第8题 第3题 第6题从C向D移动而点R不动时,那么下列结论成立的是()A、线段EF的长逐渐增大B、线段EF的长逐渐减小C、线段EF的长不变D、线段EF的长与点P的位置有关二、填空题(每小题3分,共27分)10、在平行四边形ABCD中,已知AB=8,周长等于24,则AD= 。
2013-2014学年八年级数学12月月考试题 (新人教版 第31套)
2013年秋武汉部分学校八年级12月份调研考试数学试卷一、选择题(每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请将各题正确答案的代号填入到答题卷相应的答题卡中。
1. 在等腰三角形、圆、长方形、正方形、直角三角形中,一定是轴对称图形的有( )个。
A. 1 B. 2 C. 3 D. 42. 下列计算正确的是( )。
A. -2(x 2y 3)2=-4x 4y 6B. 8x 3-3x 2-x 3=4x 3C. a 2b (-2ab 2)=-2a 3b3 D. -(x-y )2=-x 2-2xy-y 23. 下列分解因式正确的是( )。
A. x 2-y 2=(x+y )2B. m 2+2mn+n 2=(m-n)2C. ab 2x-aby=ab(x-y)D. 4x 2-8xy+4y 2=4(x-y)24. 在直角坐标系中,点P (a ,2)与点A (-3,m )关于y 轴对称,则a 、m 的值分别为( )。
A. 3,-2 B. -3,-2 C. 3,2 D. -3,25. 一个三角形的底边为4m ,高为m+4n ,它的面积为( )。
A. m 2+4mnB. 4m 2+8mnC. 2m 2+8mnD. 8m 2+4mn6. 如图,在△ABC 中,∠A=72°,AB=AC ,BD 平分∠ABC ,且BD=BE ,点D 、E 分别在AC 、BC 上,则∠DEB=( )。
A. 76°B. 75.5°C. 76.5°D. 75°7. 如图,已知AB ∥CD ,AB=CD ,添加条件( )能使△ABE ≌△CDF 。
A. AF=EFB. ∠B=∠CC. EF=CED. AF=CE8. 如图,△ABC 中,∠ACB=90°,AC=4,BC=3,AB=5,CH⊥AB 于H ,则CH 的长为( )。
A. 2.4B. 3C. 2.2D. 3.29. 如图,已知等边△ABC 中,点D 、E 分别在边AB 、BC 上,把△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1、EB 1分别交边AC 于M 、H 点,若∠ADM=50°,则∠EHC 的度数为( )。
泰州市姜堰区2022-2023学年第一学期初二数学12月月考试题及解析
泰州市姜堰区2022-2023学年第一学期初二数学12月月考试题一、选择题(本大题共有6小题,每小题3分,共18分.)1.(3分)下列微信表情图标属于轴对称图形的是()A.B.C.D.2.(3分)下列各式中正确的是()A.B.C.=±4 D.=33.(3分)在实数:3.14159,,1.010010001…,,π,中,是无理数的共()A.1个B.2个C.3个D.4个4.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1图象上的不同的两个点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>25.(3分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x6.(3分)下列说法:①正比例函数一定是一次函数,一次函数不一定是正比例函数;②函数y=kx+b(k、b是常数)是一次函数;③对于函数y=﹣3x+2,当x<0时,y>0;④已知一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则m<2,n<4,其中正确的有()个.A.1 B.2 C.3 D.4二、填空题(本大题共有10小题,每小题3分,共30分.)7.(3分)如图,△ABC≌△DBC,∠A=43°,∠ACD=78°,则∠ABC=.8.(3分)用四舍五入法取近似值:699506(精确到千位):.9.(3分)把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为.10.(3分)点P(﹣3,5)关于y轴的对称点的坐标是.11.(3分)若点P(a,b)在一次函数y=3x+4的图象上,则代数式1﹣6a+2b=.12.(3分)如图,在平面直角坐标系中,O为坐标原点,若将A(3,1)绕点O逆时针旋转90°得到点A',则点A'的坐标是.13.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.14.(3分)当一次函数y=(2m﹣5)x+3m﹣3的图象与y轴的交点在x轴的上方时,m满足的条件是.15.(3分)若点A(8,0),B(0,n),且直线AB与坐标轴围成的三角形面积为12,则n=.16.(3分)在等腰三角形ABC中,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有且只有一个度数时,x的取值范围是.三、解答题(本大题共有10小题,共102分)17.(10分)计算与解方程(1)(π﹣3)0﹣|﹣3|+(﹣)﹣2﹣(2)(x+2)2﹣9=0.18.(8分)已知y=y1+y2,y1与x+3成正比例,y2与x﹣2成正比例,且x=3时,y=4;x=1时,y=2,求y与x之间的函数表达式.19.(8分)如图,已知△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出△ABC沿y轴向下平移3个单位得到△A2B2C2;(3)在y轴上求作一点P,使△P AC的周长最小,并直接写出点P的坐标.20.(10分)如图,在△ABC和△DBC中,AC和BD相交于点O,OB=OC,试从①AB=CD,②AC=DB 这两个条件中任选一个作为补充条件,证明∠A=∠D.你选择的条件是.(只填序号),请写出证明过程.21.(10分)如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合.(1)证明:AE=AF;(2)求DF的长.22.(10分)已知一次函数y=(4m+1)x﹣(m+1).(1)当m为何值时,y随x的增大而增大?(2)当m为何值时,一次函数的图象经过第二、三、四象限?23.(10分)如图,一根长10m的梯子AB斜靠在墙上,梯子的顶端A到地面的距离AO为8m,P为AB 中点.(1)当梯子的顶端A下滑1m时,求梯子底端B向外滑行的距离?(2)请判断在木棍滑动的过程中,点P到点O的距离是否变化,若不变,则求出OP的长度,若变化,请说明理由;(3)直接写出木棍滑动的过程中△AOB面积的最大值.24.(10分)甲、乙两人驾车都从P地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人分别到达Q地后停止.已知P、Q两地相距200km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发h,解释图象中点B与点C的实际意义;(2)求甲、乙两人的速度.25.(12分)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据如表组织的信息,解答以下问题.脐橙品种A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元)1200 1600 1000(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.26.(14分)已知:如图,平面直角坐标系中,A(3,0),B(0,3),C(﹣3,0),过点C的直线绕C 旋转,交y轴于点D,交线段AB于点E.(1)求直线AB的解析式;(2)若△OCD与△BDE的面积相等,求直线CE的解析式;(3)若点P(m+1,6m+3)是该平面直角系内的点.①求点P的纵坐标随横坐标变化的函数表达式;②若点P在该△AOB内,求m的取值范围.答案与解析一、选择题(本大题共有6小题,每小题3分,共18分.)1.(3分)下列微信表情图标属于轴对称图形的是()A.B.C.D.【分析】结合轴对称图形的概念求解即可.【解答】解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)下列各式中正确的是()A.B.C.=±4 D.=3【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、=2,故选项错误;B、=1,故选项正确;C、=4,故选项错误;D、=3,故选项错误.故选:B.【点评】本题考查了算术平方根和立方根的概念.算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.3.(3分)在实数:3.14159,,1.010010001…,,π,中,是无理数的共()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,,实数:3.14159,,1.010010001…,π,,中,无理数有1.010010001…,π,,共3个.故选:C.【点评】本题主要考查了无理数的定义,掌握无理数的定义是解题的关键,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.(3分)若A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1图象上的不同的两个点,记m=(x1﹣x2)(y1﹣y2),则当m<0时,a的取值范围是()A.a<0 B.a>0 C.a<2 D.a>2【分析】根据一次函数的性质知,当k<0时,判断出y随x的增大而减小.【解答】解:∵A(x1,y1)、B(x2,y2)是一次函数y=ax﹣2x+1=(a﹣2)x+1图象上的不同的两点,m =(x1﹣x2)(y1﹣y2)<0,∴该函数图象是y随x的增大而减小,∴a﹣2<0,解得a<2.故选:C.【点评】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.5.(3分)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x【分析】设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,易知OB=3,利用三角形的面积公式和已知条件求出A的坐标即可得到该直线l的解析式.【解答】解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,B过A作AC⊥OC于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴S△AOB=4+1=5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(﹣,3),设直线方程为y=kx,则3=﹣k,k=﹣,∴直线l解析式为y=﹣x,故选:D.【点评】此题考查了面积相等问题、用待定系数法求一次函数的解析式以及正方形的性质,此题难度较大,解题的关键是作AB⊥y轴,作AC⊥x轴,根据题意即得到:直角三角形ABO,利用三角形的面积公式求出AB的长.6.(3分)下列说法:①正比例函数一定是一次函数,一次函数不一定是正比例函数;②函数y=kx+b(k、b是常数)是一次函数;③对于函数y=﹣3x+2,当x<0时,y>0;④已知一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则m<2,n<4,其中正确的有()个.A.1 B.2 C.3 D.4【分析】根据一次函数和正比例函数的定义以及一次函数的性质判断即可.【解答】解:①正比例函数一定是一次函数,一次函数不一定是正比例函数,故正确;②函数y=kx+b(k、b是常数,k≠0)是一次函数,故错误;③对于函数y=﹣3x+2,当x<0时,y>2,故错误;④一次函数y=(2﹣m)x﹣4+n,当函数图象不经过第二象限,则2﹣m>0,﹣4+n≤0,解得m<2,n≤4,故错误.故正确的是①.故选:A.【点评】本题主要考查一次函数与正比例函数的定义,一次函数的性质,熟知以两者之间的联系以及一次函数的性质是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.)7.(3分)如图,△ABC≌△DBC,∠A=43°,∠ACD=78°,则∠ABC=98°.【分析】根据全等三角形的性质求出∠D=∠A=43°,∠ABC=∠DBC,∠ACB=∠DCB,求出∠DCB,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△DBC,∠A=43°,∴∠D=∠A=43°,∠ABC=∠DBC,∠ACB=∠DCB,∵∠ACD=78°,∴∠BCD=∠ACB=39°,∴∠DBC=180°﹣∠D﹣∠DCB=98°,故答案为:98°.【点评】本题考查了全等三角形的性质的应用,能根据全等三角形的性质得出∠D=∠A=45°,∠ABC=∠DBC,∠ACB=∠DCB是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8.(3分)用四舍五入法取近似值:699506(精确到千位):7.00×105.【分析】先用科学记数法表示,然后把百位上的数字5进行四舍五入即可.【解答】解:精确到千位,699506≈7.00×105.故答案为:7.00×105.【点评】本题考查了近似数和有效数字,近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.9.(3分)把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为y=﹣5x﹣1.【分析】根据平移的规则“上加下减”即可得出结论.【解答】解:把直线y=﹣5x+1沿y轴向下平移2个单位,所得直线的函数关系式为y=﹣5x+1﹣2,即y =﹣5x﹣1.故答案为:y=﹣5x﹣1.【点评】本题考查了一次函数图象与几何变换,解题的关键是牢记图形平移的规则“左加右减,上加下减”.本题属于基础题,难度不大,解决该题型题目时,熟练掌握图形平移的规则是关键.10.(3分)点P(﹣3,5)关于y轴的对称点的坐标是(3,5).【分析】利用关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而求出即可.【解答】解:点P(﹣3,5)关于y轴的对称点的坐标是:(3,5).故答案为:(3,5).【点评】此题主要考查了关于y轴对称的性质,正确把握横纵坐标的关系是解题关键.11.(3分)若点P(a,b)在一次函数y=3x+4的图象上,则代数式1﹣6a+2b=9.【分析】将点P坐标代入一次函数解析式可得a与b的关系,进而求解.【解答】解:将(a,b)代入y=3x+4得b=3a+4,∴b﹣3a=4,∴1﹣6a+2b=1+2(b﹣3a)=1+8=9,故答案为:9.【点评】本题考查一次函数图象上点的坐标特征,解题关键是掌握一次函数与方程的关系,通过整体思想求解.12.(3分)如图,在平面直角坐标系中,O为坐标原点,若将A(3,1)绕点O逆时针旋转90°得到点A',则点A'的坐标是(﹣1,3).【分析】利用旋转变换的性质正确作出图形,可得结论.【解答】解:如图,观察图象可知,A′(﹣1,3),故答案为:(﹣1,3).【点评】本题考查坐标与图形变化﹣旋转,解题的关键是学会利用图象法解决问题.13.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于6.【分析】分别以AC,BC为边向△ABC的外部作正方形,则AC2=4S1,BC2=4S2,由勾股定理可得S=4(S1+S2),进而可求解AB的长.【解答】解:分别以AC,BC为边向△ABC的外部作正方形,则AC2=4S1,BC2=4S2,在Rt△ABC中AC2+BC2=AB2,∵AB2=S,∴S=4S1+4S2=4(S1+S2),∵S1+S2=9,∴S=4×9=36,∴AB=6.故答案为6.【点评】本题主要考查勾股定理,分别以AC,BC为边向△ABC的外部作正方形,利用勾股定理列算式时解题的关键.14.(3分)当一次函数y=(2m﹣5)x+3m﹣3的图象与y轴的交点在x轴的上方时,m满足的条件是m >1且m≠.【分析】根据一次函数图象与系数的关系得到2m﹣5≠0且3m﹣3>0,然后解不等式即可.【解答】解:根据题意得2m﹣5≠0且3m﹣3>0,解得m>1且m≠,故答案为:m>1且m≠.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴.15.(3分)若点A(8,0),B(0,n),且直线AB与坐标轴围成的三角形面积为12,则n=±3.【分析】根据直线AB与坐标轴围成的三角形面积为12,可得8|n|÷2=12,进一步求解即可.【解答】解:根据题意,得8|n|÷2=12,解得|n|=3,解得n=±3,故答案为:±3.【点评】本题考查了一次函数与三角形面积,熟练掌握一次函数图象上点的坐标特征是解题的关键.16.(3分)在等腰三角形ABC中,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰三角形ABC中,设∠A=x°,当∠B有且只有一个度数时,x的取值范围是90°≤X<180°或X=60°.【分析】分两种情况:①当90≤x<180时,∠A只能为顶角,得到∠B的度数只有一个;②当0<x<90时,当x=60时,等腰三角形ABC是等边三角形,得到∠B的度数只有一个,于是得到结论.【解答】解:分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,当x=60时,等腰三角形ABC是等边三角形,∴∠B的度数只有一个,∴当∠B只有一个度数时,x的取值范围为90≤x<180或60;故答案为:90°≤X<180°或X=60°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,进行分类讨论是解题的关键.三、解答题(本大题共有10小题,共102分)17.(10分)计算与解方程(1)(π﹣3)0﹣|﹣3|+(﹣)﹣2﹣(2)(x+2)2﹣9=0.【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质分别化简,进而得出答案;(2)直接利用平方根的性质化简,进而得出答案.【解答】解:(1)原式=1﹣(3﹣)+9﹣=1﹣3++9﹣=7;(2)(x+2)2﹣9=0,(x+2)2=9,则x+2=±3,解得:x=﹣或x=.【点评】本题主要考查了实数的运算,掌握正确化简各数是关键.18.(8分)已知y=y1+y2,y1与x+3成正比例,y2与x﹣2成正比例,且x=3时,y=4;x=1时,y=2,求y与x之间的函数表达式.【分析】设y1=k(x+3),y2=d(x﹣2),则y=y1+y2=k(x+3)+d(x﹣2)=(k+d)x+3k﹣2d,将x=3时,y=4;x=1时,y=2分别代入解析式即可得到k,d的值.【解答】解:∵y1与x+3成正比例,y2与x﹣2成正比例,∴可设y1=k(x+3),y2=d(x﹣2),则y=y1+y2=k(x+3)+d(x﹣2)=(k+d)x+3k﹣2d,当x=3时,y=4;x=1时,y=2,可知,整理得,解得.故函数解析式为y=x+1.【点评】本题考查了待定系数法求一次函数解析式,熟悉正比例函数的定义,根据题意得到方程组是解题的关键.19.(8分)如图,已知△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1;(2)画出△ABC沿y轴向下平移3个单位得到△A2B2C2;(3)在y轴上求作一点P,使△P AC的周长最小,并直接写出点P的坐标.【分析】(1)分别作出AB,C的对应点A1,B1,C1即可.(2)分别作出AB,C的对应点A2,B2,C2即可.(3)连接AC1交y轴于P,连接PC,点P即为所求作.【解答】解:(1)如图,△A1B1C1;即为所求作.(2)如图,△A2B2C2即为所求作.(3)如图,点P即为所求作,P.【点评】本题考查作图﹣轴对称变换,解题的关键是理解题意,灵活运用所学知识解决问题.20.(10分)如图,在△ABC和△DBC中,AC和BD相交于点O,OB=OC,试从①AB=CD,②AC=DB 这两个条件中任选一个作为补充条件,证明∠A=∠D.你选择的条件是②.(只填序号),请写出证明过程.【分析】选择②,证明△AOB≌△DOC,即可解决问题.【解答】解:选择②,证明:∵AC=DB,OB=OC,∴AO=DO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠A=∠D.故答案为:②.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AOB≌△DOC.21.(10分)如图,将一个边长分别为4、8的长方形纸片ABCD折叠,使C点与A点重合.(1)证明:AE=AF;(2)求DF的长.【分析】(1)先过点F作FG⊥BC于G.利用勾股定理可求出AE,再利用翻折变换的知识,可得到AE=CE,∠AEF=∠CEF,再利用平行线可得∠AEF=∠AFE,故有AE=AF.(2)根据折叠的性质得到AE=CE,根据勾股定理即可得到结论;(2)设DF=D′F=x,则AF=4﹣x,在Rt△AD′F中利用勾股定理即可得出x的值.【解答】(1)证明:过点F作FG⊥BC于G,∵EF是直角梯形AECD的折痕,∴AE=CE,∠AEF=∠CEF.又∵AD∥BC,∴∠AEF=∠AFE,∴AE=AF;、(2)解:设DF=D′F=x,则AF=4﹣x,在Rt△AD′F中,AF2=AD′2+D′F2,(4﹣x)2=22+x2,解得:x=1.5,故线段DF的长是1.5.【点评】本题考查了翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.22.(10分)已知一次函数y=(4m+1)x﹣(m+1).(1)当m为何值时,y随x的增大而增大?(2)当m为何值时,一次函数的图象经过第二、三、四象限?【分析】(1)当4m+1>0时,y随x的增大而增大;(2)当4m+1<0且m+1>0时,图象经过第二、三、四象限.【解答】解:(1)依题意得:4m+1>0,解得m>﹣,即当m>﹣时,y随x的增大而增大;(2)依题意得:4m+1<0且m+1>0,解得﹣1<m<﹣.即当﹣1<m<﹣时,图象经过第二、三、四象限.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.函数值y随x的增大而减小⇔k <0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y =kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.23.(10分)如图,一根长10m的梯子AB斜靠在墙上,梯子的顶端A到地面的距离AO为8m,P为AB 中点.(1)当梯子的顶端A下滑1m时,求梯子底端B向外滑行的距离?(2)请判断在木棍滑动的过程中,点P到点O的距离是否变化,若不变,则求出OP的长度,若变化,请说明理由;(3)直接写出木棍滑动的过程中△AOB面积的最大值25m2.【分析】(1)由勾股定理求出BC及B'C的长,则可得出答案;(2)根据直角三角形斜边上中线等于斜边的一半得出OP=AB,即可得出答案;(3)当△AOB的斜边上的高h等于中线OP时,△AOB的面积最大.【解答】解:(1)∵Rt△ABC中,AC=8m,AB=10m,∴BC==6m,∵Rt△A'B'C中,A'C=8﹣1=7m,A'B'=10m,∴B'C==(m),∴BB′=B'C﹣BC=(﹣6)m.(2)在木棍滑动的过程中,点P到点O的距离不变,OP是5m.理由:在木棍滑动的过程中,AB的长是不变的,∵P为AB中点,AB=10m,∴OP=AB=5m;(3)如图,h为AB上的高,若h与OP不相等,则总有h<OP,故根据三角形面积公式,有h与OP相等时△AOB的面积最大,此时,S△AOB=AB•h=×10×5=25(m2).∴△AOB的最大面积为25m2.故答案为:25m2.【点评】此题考查了勾股定理,直角三角形的性质,三角形面积公式;理解△AOB的面积什么情况最大是解决本题的关键.24.(10分)甲、乙两人驾车都从P地出发,沿一条笔直的公路匀速前往Q地,乙先出发一段时间后甲再出发,甲、乙两人分别到达Q地后停止.已知P、Q两地相距200km,设乙行驶的时间为t(h),甲、乙两人之间的距离为y(km),表示y与t函数关系的部分图象如图所示.请解决以下问题:(1)由图象可知,甲比乙迟出发1h,解释图象中点B与点C的实际意义;(2)求甲、乙两人的速度.【分析】(1)根据函数图象中的数据可以求得线段BC所在直线的函数表达式,根据图形可以写出点B和点C的实际意义;(2)根据题意和函数图象中的数据可以求得甲的速度.【解答】解:(1)由图象可知,甲比乙迟出发1h;设线段BC所在直线的函数解析式为y=kx+b,根据题意得:,解得:,∴线段BC所在直线的函数解析式为y=15x﹣40;点B:乙出发小时时,甲乙两人相遇;点C:乙行驶5小时时,甲乙两人相距35千米;故答案为:1;(2)设甲的速度为v1km/h,设乙的速度为v2km/h,由题意得:,解得,答:甲的速度为40km/h,乙的速度为25km/h.【点评】本题考查了一次函数的应用,掌握一次函数的性质和数形结合的思想是关键.25.(12分)我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据如表组织的信息,解答以下问题.脐橙品种A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元)1200 1600 1000(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【解答】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20﹣x﹣y),则有:6x+5y+4(20﹣x﹣y)=100,整理得:y=﹣2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,﹣2x+20,x.由题意得:,解得:4≤x≤8,因为x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(﹣2x+20)×16+4x×10=﹣48x+1600,∵k=﹣48<0,∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=﹣48×4+1600=1408(百元)=14.08(万元),答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点评】本题考查了一次函数的应用,解决的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.26.(14分)已知:如图,平面直角坐标系中,A(3,0),B(0,3),C(﹣3,0),过点C的直线绕C 旋转,交y轴于点D,交线段AB于点E.(1)求直线AB的解析式;(2)若△OCD与△BDE的面积相等,求直线CE的解析式;(3)若点P(m+1,6m+3)是该平面直角系内的点.①求点P的纵坐标随横坐标变化的函数表达式;②若点P在该△AOB内,求m的取值范围.【分析】(1)根据A、B的坐标和三角形的内角和定理求出∠OAB的度数即可;设直线AB的解析式为y =kx+b,把A、B的坐标代入得出方程组,求出方程组的解即可;(2)推出三角形AOB和三角形ACE的面积相等,根据面积公式求出E的纵坐标,代入直线AB的解析式,求出E的横坐标,设直线CE的解析式是:y=mx+n,利用待定系数法求出直线EC的解析式,进而即可求得点D的坐标.(3)①根据点坐标特征,消去m得到y与x关系式即可得出答案;②求出直线y=6x﹣3与y=﹣x+3的交点,y=6x﹣3与x轴的交点,若点P在△AOB的内部,只需要<m+1<即可;【解答】解:(1)∵B(0,3),A(3,0),设直线AB的解析式为y=kx+b.∴,解得,∴直线AB的解析式为y=﹣x+3;(2)∵S△COD=S△BDE,∴S△COD+S四边形AODE=S△BDE+S四边形AODE,即S△ACE=S△AOB,∵点E在线段AB上,∴点E在第一象限,且y E>0,∴×AC×y E=×OA×OB,∴×6×y E=×3×3,y E=,把y=代入直线AB的解析式得:=﹣x+3,∴x=,设直线CE的解析式是:y=mx+n,∵C(﹣3,0),E(,)代入得:,解得:m=,n=1,∴直线CE的解析式为y=x+1;(3)①∵P(m+1,6m+3)是平面直角坐标系的点,∴x=m+1,y=6m+3,∴y=6(x﹣1)+3,∴y=6x﹣3,即点P的纵坐标随横坐标变化的函数表达式是y=6x﹣3;②由①可知点P在一次函数y=6x﹣3的图象上,∴,解得,∴y=6x﹣3与y=﹣x+3的交点为(,),当6x﹣3=0时,x=,∴y=6x﹣3与x轴的交点(,0),∵点P在△AOB的内部,∴,∴﹣<m<﹣.【点评】本题是一次函数综合题,考查了一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点,综合运用这些性质进行推理和计算是解此题的关键.。
扬州市江都区丁沟中学2022-2023学年八年级上学期12月月考数学试题(含解析)
扬州市江都区丁沟中学2022-2023学年八年级上学期12月月考数学试题一、选择题(每题3分,共24分)1. 下列图形中,轴对称图形的个数为( )A. 1个B. 2 个C. 3个D. 4个2. 在平面直角坐标系中,点A (﹣4,2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 点P (3,-1)关于x 轴对称的点的坐标是( )A. (-3,1)B. (-3,-1)C. (1,-3)D. (3,1) 4. 下列说法正确的是( )A. 8的立方根是2B. 2=±C. 4的平方根是2D. 2=- 5. 如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm6. 下列命题: a ,a ,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.正确的有( )A. 1个B. 2个C. 3个D. 4个7. 在同一平面直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为1l ,2l ,则下列图象中可能正确的是( )A. B. C. D.8. 如图,∠MON =90°,OB =4,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两条角平分线所在的直线相交于点F ,则点A 在运动过程中线段BF 的最小值为( )A. 4B.C. 8二、填空题(每题3分,共30分)9. 在π,-,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有____个.10. 由四舍五入得到的近似数3.17×104精确到______位.11. 直角三角形两直角边长为a ,b 20b -=,则第三边长为_____.12. 已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.14. 3,则实数a 的范围______.15. 已知3y -与x 成正比例,且2x =-时,y 的值为7,求y 与x 的函数关系式_____.16. 如图,将ABC 绕点()02C ,旋转180︒得到A B C ''',设点A 的坐标为()a b ,,则点A '的坐标可表示为_____.17. 已知正比例函数2y x =的图像过点()11,x y 、()22,x y ,若215x x -=,则21y y -=_____.18. 如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____三.简答题(共66分)19. 计算(1)()20133|3π-⎛⎫--+- ⎪⎝⎭(2)解方程:24(1)90--=x20. 如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.21. 已知一次函数()371y m x m =-+-.(1)当m 为何值时,函数图象经过原点?(2)若图象不经过第三象限,求m 的取值范围.(3)不论m 取何值,直线恒过一定点P ,求定点P 坐标.22. 在直角坐标系内,一次函数y kx b =+的图象经过三点()()()4,0,0,2,3A B C m -.(1)求这个一次函数解析式(2)求m 的值.(3)若点P 在直线y kx b =+上且到y 轴的距离是3,求点P 的坐标.23. 在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.24. 如图,ABC 中,AD 是ABC 的边BC 上的高,E 、F 分别是AB AC 、的中点,132021AC AB BC ===、、(1)求四边形AEDF 的周长;(2)求ABC 的面积.25. 如图,一次函数的图像与x 轴、y 轴分别交于A 、B 两点,且A 、B 的坐标分别为(4,0),(0,3). (1)求一次函数的表达式.(2)点C 在线段OA 上,沿BC 将△OBC 翻折,O 点恰好落在AB 上的D 处,求直线BC 的表达式.26. 在一平直的河岸l 同侧有两A B 、村,A 村位于河流/正南4,km B 村位于A 村东8km 南7km 处,现要在河岸边建一水厂C 为两村供水,要求管道长度最少,请你确定选址方案,并求出所需最短管道长度.27. 如图,长方形ABCD,AB=9,AD=4.E为CD边上一点,CE=6.(1)求AE的长.(2)点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒,则当t为何值时,△PAE为等腰三角形?△如图(1)放置,其中小三角形的斜边与大三角形的一直角边重合.28. 两个等腰直角ABC、MNP△绕AB中点D旋转,使两直角边分别与AC、BC交于点E、F,求证:(1)如图(2)将小MNP222+=;AE BF EF△绕直角顶点C旋转,使它的斜边CM与直角边CP延长线分别与AB交于点(2)如图(3)将小MNP与E、F,求证:222+=;AE BF EF△的周长等于正方形周长的一(3)在正方形ABCD中,E、F分别是边BC、CD上的点,满足CEF半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的边长?若能,指出三角形状,并证明;若不能,请说明理由.答案与解析一、选择题(每题3分,共24分)1. 下列图形中,轴对称图形的个数为()A. 1个B. 2 个C. 3个D. 4个【答案】B【解析】【分析】轴对称图形沿图上的某条直线对折后能够完全重合;根据所给图形试着寻找对称轴,并判断对称轴两边的部分折叠后能否重合,据此即可解答.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;故选B.【点睛】此题考查轴对称图形的辨识,解题关键在于识别图形.2. 在平面直角坐标系中,点A(﹣4,2)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答.【详解】点A(﹣4,2)在第二象限.故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-),记住各象限内点的坐标的符号是解决的关键.3. 点P(3,-1)关于x轴对称的点的坐标是( )A. (-3,1)B. (-3,-1)C. (1,-3)D. (3,1)【答案】D【解析】【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标改变符号,进而得出答案.【详解】解:点P(3,-1)关于x轴对称的点的坐标是:(3,1).故选:D.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.4. 下列说法正确的是()A. 8的立方根是2B. 2=± C. 4的平方根是2 D. 2=-【答案】A【解析】【分析】根据平方根和立方根的概念即可求出答案.【详解】解:A. 8的立方根是2,故正确;B. 2=,故错误;C. 4的平方根是±2,故错误;D. 2=,故错误;故选A.【点睛】本题考查平方根、立方根的概念,解题的关键是根据相关定义解答问题.5. 如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm【答案】A【解析】【分析】根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.故选:A.【点睛】主要考查了勾股定理解直角三角形.6. 下列命题:a,a,(3)无限小数都是无理数,(4)有限小数都是有理数,(5)实数分为正实数和负实数两类.正确的有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】(1),(2)根据平方根和立方根的性质即可判断;(3)根据无限不循环小数是无理数即可判定;(4)根据有理数的定义即可判定;(5)根据实数分为正实数,负实数和0即可判定.【详解】(1)a ,故说法正确;(2)|a |,故说法错误;(3)无限不循环小数是无理数,故说法错误;(4)有限小数都是有理数,故说法正确;(5)0既不是正数,也不是负数,此题漏掉了0,故说法错误.故选B.【点睛】本题考查实数,解题的关键是熟练掌握平方根和立方根、无理数、有理数的定义,实数的分类. 7. 在同一平面直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为1l ,2l ,则下列图象中可能正确的是( )A. B. C. D.【答案】A【解析】【分析】由y kx b =+中k ,b 的符号以及直线的倾斜程度逐一分析各选项,结合排除法可得答案.【详解】解:因为2k k <,所以直线1l 比直线2l 的倾斜度小,当0k >时,20k >,b 与b -恰好符号相反,故A 符合,∵k 与2k 符号相同,可排除选项B ,∵b 与b -恰好符号相反,可排除选项D ,选项C 中,直线1l 比直线2l 的倾斜度更大,可排除选项C ,故选:A .【点睛】本题考查一次函数图象的知识,注意掌握k 的大小表示倾斜度的大小,由此可比较k 的大小. 8. 如图,∠MON =90°,OB =4,点A 是直线OM 上的一个动点,连结AB ,作∠MAB 与∠ABN 的角平分线AF 与BF ,两条角平分线所在的直线相交于点F ,则点A 在运动过程中线段BF 的最小值为( )A. 4B.C. 8【答案】D【解析】【分析】分情况讨论:当点A在射线OM上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB于G,由角平分线的性质得出FH=FG,FG=FE,得出FH=FE,证出点F在∠MON的角平分线上;当点A在射线OM的反向延长线上时,同理得出点F在∠MON的角平分线上;当BF⊥OF时,BF取最小值,证出△BOF 是等腰直角三角形,即可得出答案.【详解】解:当点A在射线OM上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB于G,如图1所示:∵AF与BF分别是∠MAB与∠ABN的角平分线,∴FH=FG,FG=FE,∴FH=FE,∴点F在∠MON的角平分线上;当点A在射线OM的反向延长线上时,过F作FE⊥ON于E,FH⊥OM于H,FG⊥AB交AB的延长线于G,如图2所示:∵AF与BF分别是∠MAB与∠ABN的角平分线,∴FH=FG,FG=FE,∴FH=FE,∴点F在∠MON的角平分线上;综上所述,点F在∠MON的角平分线上,∴当BF⊥OF时,BF取最小值,∵∠MON=90°,OB=4,∴∠FON =12∠MON =45°,∴△BOF 是等腰直角三角形,∴BF =2OB = 故选D .【点睛】本题考查了角平分线的判定与性质、等腰直角三角形的判定与性质、以及勾股定理等知识;熟练掌握角平分线的判定与性质是解题的关键.二、填空题(每题3分,共30分)9. 在π,-130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有____个.【答案】3.【解析】【详解】试题解析:在π,,130.5757757775…(相邻两个5之间的7的个数逐次加1)中,无理数有π,,0.5757757775…(相邻两个5之间的7的个数逐次加1)共3个,考点:无理数.10. 由四舍五入得到的近似数3.17×104精确到______位.【答案】百【解析】【分析】根据用科学记数法表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数解答.【详解】解:3.17×104=31700,∴近似数3.17×104精确到百位,故答案为:百.【点睛】本题考查的是科学记数法与有效数字,用科学记数法表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.11. 直角三角形两直角边长为a ,b 20b -=,则第三边长为_____.【解析】【分析】根据非负数的和为0,每个非负数均为0,求出,a b ,再利用勾股定理进行计算即可得解.【详解】解:20b -=,∴10,20a b -=-=,解得,1,2a b ==,由勾股定理得,斜边==【点睛】本题考查勾股定理.熟练掌握非负数的和为0,每个非负数均为0,是解题的关键.12. 已知点(2,1)P m m -,当m =____时,点P 在二、四象限的角平分线上.【答案】13【解析】【分析】根据第二四象限角平分线上点的横坐标与纵坐标互为相反数列方程求解即可.【详解】解:∵点P (2m ,m-1)在二、四象限的角平分线上,∴2m=-(m-1),解得m=13. 故答案为:13. 【点睛】本题考查了点的坐标,熟记第二四象限角平分线上点的横坐标与纵坐标互为相反数是解题的关键.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】【分析】设ADC α∠=,然后根据AC AD DB ==,102BAC ∠=︒,表示出B ∠和BAD ∠的度数,最后根据三角形的内角和定理求出ADC ∠的度数.【详解】解:AC AD DB ==,B BAD ∴∠=∠,ADC C ∠=∠, 设ADC α∠=,2B BAD α∴∠=∠=,102BAC ∠=︒,1022DAC α∴∠=︒-,在ADC ∆中,180ADC C DAC ∠+∠+∠=︒,21021802αα∴+︒-=︒,解得:52︒=α.故答案为:52.【点睛】本题考查了等腰三角形的性质,解题的关键是掌握①等腰三角形的两腰相等;②等腰三角形的两个底角相等.14. 3,则实数a 的范围______.【答案】916a ≤<【解析】【分析】根据无理数的大小估计解答即可.3,所以,34,所以实数a 的范围9≤a <16.故答案为:9≤a <16.【点睛】本题考查了无理数问题,关键根据无理数的大小估计.15. 已知3y -与x 成正比例,且2x =-时,y 的值为7,求y 与x 的函数关系式_____.【答案】23y x =-+【解析】【分析】设函数关系式为3y kx -=,将2x =-时,y 值为7代入求出k 即可得到答案.【详解】解:∵3y -与x 成正比例,∴3y kx -=,∵当2x =-时,7y =,∴2k =-,∴32y x -=-,∴y 与x 的函数关系式是:23y x =-+.故答案为:23y x =-+.【点睛】此题考查求函数关系式,设函数解析式后将x 与y 的对应值代入解答.16. 如图,将ABC 绕点()02C ,旋转180︒得到A B C ''',设点A 的坐标为()a b ,,则点A '的坐标可表示为_____.【答案】(),4a b --【解析】【分析】设A '的坐标为()m n ,,由于A A '、关于C 点对称,则02m a += ,22n b += . 【详解】设A '的坐标为()m n ,, A 和A '关于点()0,2C 对称,∴ 02m a += ,22n b +=, 解得m a =-,4n b =-∴点A '的坐标(),4a b --.【点睛】本题考查旋转的性质,解题的关键是明确对称点的性质.17. 已知正比例函数2y x =的图像过点()11,x y 、()22,x y ,若215x x -=,则21y y -=_____. 【答案】10【解析】【分析】把点的坐标代入函数解析式,再变形即可得到答案.【详解】解:正比例函数2y x =的图像过点()11,x y 、()22,x y ,112y x ∴=,222y x =, 215x x -=,()2121212222510y y x x x x ∴-=-=-=⨯=,故答案为:10.【点睛】本题考查了一次函数图像上点的坐标特征,利用整体代入思想解题是关键.18. 如图,△ ABC 中,∠BAC =90°,AB =3,AC =4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED ,连 CE ,则线段 CE 的长等于_____【答案】75【解析】 【详解】如图,过点A 作AH ⊥BC 于点H ,连接BE 交AD 于点O ,∵△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,∴BC 5=,AD =BD =2.5, ∴12BC ·AH =12AC ·AB ,即2.5AH =6,∴AH =2.4,由折叠的性质可知,AE =AB ,DE =DB =DC ,∴AD 是BE 的垂直平分线,△BCE 是直角三角形,∴S △ADB =12AD ·OB =12BD ·AH ,∴OB =AH =2.4,∴BE =4.8,∴CE 75=. 故答案为:75. 【点睛】本题的解题要点有:(1)读懂题意,画出符合要求的图形;(2)作AH ⊥BC 于点H ,连接BE 交AD 于点O ,利用面积法求出AH 和OB 的长;(3)一个三角形中,若一边上的中线等于这边的一半,则这边所对的角是直角.三.简答题(共66分)19. 计算(1)()20133|3π-⎛⎫--+- ⎪⎝⎭ (2)解方程:24(1)90--=x【答案】(1)7 (2)122.50.5x x ==-,【解析】【分析】(1)根据零指数幂、绝对值、负指数幂以及二次根式的有关运算法则求解即可;(2)利用直接开平方法解一元二次方程即可.【小问1详解】解:()20133|3π-⎛⎫--+- ⎪⎝⎭139=-+7=;【小问2详解】解:方程整理得:()2914x -=, 开方得:312x -=±, 解得:122.50.5x x ==-,.【点睛】此题考查了实数的有关运算以及解一元二次方程,解题的关键是掌握实数的有关运算法则以及一元二次方程的求解方法.20. 如图,在平面直角坐标系xOy 中,点()0,8A ,点()6,8B .(1)只用直尺(没有刻度)和圆规,求作一个点P ,使点P 同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P 到,A B 两点的距离相等;②点P 到两条坐标轴的距离相等.(2)写出(1)中作出的点P 的坐标.【答案】(1)见解析;(2)(3,3),(3,-3)【解析】【分析】(1)点P 到A ,B 两点的距离相等,即作AB 的垂直平分线,点P 到两条坐标轴的距离相等,即作角的平分线,两线的交点就是点P 的位置.(2)根据坐标系读出点P 的坐标.【详解】解:(1)作图如图,点P 即为所求作的点.(2)设AB 的中垂线交AB 于E ,交x 轴于F ,由作图可得,EF ⊥AB ,EF ⊥x 轴,且OF=3,∵OP 是坐标轴的角平分线,∴P (3,3),同理可得:P (3,-3),综上所述:符合题意的点的坐标为:(3,3),(3,-3).【点睛】本题主要考查了线段垂直平分线上的点到线段两端的距离相等和角平分线上的点到角两边的距离相等.21. 已知一次函数()371y m x m =-+-.(1)当m 为何值时,函数图象经过原点?(2)若图象不经过第三象限,求m 的取值范围.(3)不论m 取何值,直线恒过一定点P ,求定点P 坐标.【答案】(1)1m =(2)713m ≤<(3)14,33⎛⎫- ⎪⎝⎭【解析】【分析】(1)根据一次函数的图象与系数的关系列式求解即可;(2)根据一次函数的图象与系数的关系列式求解即可;(3)对一次函数解析式进行变形,然后根据恒过一定点P ,得出310x +=,求出此时x ,y 的值,进而可得定点P 的坐标.【小问1详解】解:∵函数图象经过原点,∴10m -=,解得:1m =;【小问2详解】解:∵函数图象不经过第三象限,∴370m -<,10m -≥, 解得:713m ≤<; 【小问3详解】解:()()3713713171y m x m mx x m x m x =-+-=-+-=+--,∵不论m 取何值,直线恒过一定点P ,∴310x +=, 解得:13x , 此时147133y ⎛⎫=-⨯--= ⎪⎝⎭, 即不论m 取何值,直线恒过一定点P ,定点P 的坐标为14,33⎛⎫- ⎪⎝⎭. 【点睛】本题考查了一次函数的图象和性质,解答本题时注意:0k >时,直线必经过一、三象限;0k <时,直线必经过二、四象限;0b >时,直线与y 轴正半轴相交;0b =时,直线过原点;0b <时,直线与y 轴负半轴相交.22. 在直角坐标系内,一次函数y kx b =+的图象经过三点()()()4,0,0,2,3A B C m -.(1)求这个一次函数解析式(2)求m 的值.(3)若点P 在直线y kx b =+上且到y 轴的距离是3,求点P 的坐标.【答案】(1)122y x =-+ (2)10m = (3)13,2⎛⎫ ⎪⎝⎭或73,2⎛⎫- ⎪⎝⎭【解析】【分析】(1)待定系数法求解解析式即可;(2)将点C 代入解析式,进行求解即可;(3)根据点P 到y 轴的距离是3,得到P 点的横坐标为3或3-,代入解析式进行求解即可.【小问1详解】解:∵一次函数y kx b =+的图象经过三点()()4,0,0,2A B ,则:402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩,∴这个一次函数解析式为:122y x =-+; 【小问2详解】解:把(),3C m -代入:122y x =-+中得:1322m -=-+,解得:10m =; 【小问3详解】设(),P x y ,∵点P 在直线122y x =-+上且到y 轴的距离是3, ∴3x =±,当3x =时,113222y =-⨯+=, 当3x =-时,17(3)222y =-⨯-+=, ∴点P 的坐标是13,2⎛⎫ ⎪⎝⎭或73,2⎛⎫- ⎪⎝⎭. 【点睛】本题考查一次函数图象上的点.熟练掌握直线上的点,满足一次函数的解析式,是解题的关键. 23. 在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴,y 轴的垂线.与坐标轴围成矩形OAPB 的周长的数值与面积的数值相等,则点P 是和谐点.(1)判断点()1,2M ,()4,4N 是否为和谐点,并说明理由;(2)若和谐点()(),30P a a >在直线y x b =-+(b 为常数)上,求,a b 的值.【答案】(1)点M 不是和谐点,点N 是和谐点;(2),a b 的值分别是6,9【解析】【分析】(1)根据和谐点的定义。
福建省福州第十五中学2022-2023学年八年级上学期数学12月月考试题(含答案解析)
福建省福州第十五中学2022-2023学年八年级上学期数学12月月考试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带第______块去()A .1B .2C .3D .43.下列各式中,不能用...平方差公式计算的是()A .()()x y x y ---B .()()x y x y -+--C .()()x y x y +-+D .()()x y x y --+4.如图,在ABC 中,B C ∠=∠,BF CD =,BD CE =,50FDE ∠= ,则B ∠的度数是()A .50︒B .60︒C .70︒D .80︒5.若x m +与3x -的乘积中不含常数项,则m 的值为()A .3-B .3C .0D .16.如图,点O 在ABC 内,且到三边的距离相等,若∠A=60°,则∠BOC 的大小为()A .135°B .120°C .90°D .60°7.计算:()2023202220.5⨯-=()A .1-B .1C .0.5D .0.5-8.如图,在ABC 中,18,30,AC C BAD AD BC ∠∠===⊥ ,垂足为D ,BE 平分ABC ∠交AD 于点E ,则DE 的长为()AB .3C .D .69.如图,点D 在线段BC 上,若BC =DE ,AC =DC ,AB =EC ,且∠ACE =180°—∠ABC—2x°,则下列角中,大小为x°的角是A .∠EFCB .∠ABC C .∠FDCD .∠DFC10.如图,等边△ABC 中,BD ⊥AC 于D ,QD =15,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =20,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为()A .35B .40C .50D .60二、填空题11.已知点()2,M b -和点(),1N a 关于x 轴对称,则=a ______.12.如图,已知ABC DBE ≌,点D 在AC 上,BC 与DE 交于点P .若160ABE ∠=︒,30DBC ∠=︒,则ABD ∠=______.13.当23m =时,则8m =______.14.如图,在ABC 中,AB AC =,36A ∠=︒,AB 的垂直平分线MN 交AC 于点D ,则DBC ∠=______.15.已知ABC 中,AB AC =,40A ∠=︒,BD AC ⊥,重足为D ,点E 在直线BC 上,若CD CE =,则BDE ∠的度数为______.16.如图所示,在ABC ∆中,70A ∠=︒,90B Ð=°,点A 关于BC 的对称点是A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',若ABC ∆的面积是2,则A B C '''∆的面积是________.三、解答题17.计算:(1)()()2323743a a a a a -+⋅-÷-(2)()()231231x y x y +--+18.先化简,再求值:()()231a b ab ab a -÷--,其中2a =-.19.如图,已知ABC 的三个顶点坐标分别为()1,2A -,()1,4B --,()2,3C -.(1)画出ABC 关于y 轴对称的图形111A B C △,则坐标1C 为______;(2)若ABD △与ABC 全等,则点D 的坐标为______(点C 与点D 不重合)20.如阁,点E ,F 在线段BC 上,A D ∠=∠,B C ∠=∠,BE CF =,AF 与DE 交于点M .求证:ME MF =.21.尺规作图(不写作法,保留作图痕迹).如图,Rt ABC △中,90C ∠=︒,30B ∠=︒.(1)作出AB 边上的高CD ;(2)若CE 是ABC 的一条角平分线,求ECD ∠的度数.22.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形(请画出图形,写出已知、求证、证明的过程).23.如图,在ABC 中,ABC ∠的平分线与AC 的垂直平分线相交于点P ,过点P 作PF BC ⊥于点F ,PE AB ⊥交BA 的延长线于点E .(1)求证:AE CF =;(2)若7cm AB =,15cm BC =,求AE 的长.24.数学活动课上,老师准备了若干个如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a 、宽为b 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(1)若要拼出一个面积为()()23a b a b ++的矩形,则需要A 号卡片______张,B 号卡片______张,C 号卡片_____张.(2)观察图2,请你写出下列三个代数式:()2a b +,22a b +,ab 之间的等量关系______;根据得出的等量关系,解决如下问题:已知()()22202120232022x x -+-=,求()22022x -的值.(3)两个正方形ABCD ,AEFG 如图3摆放,边长分别为x ,y .若22x y 34+=,2BE =,求图中阴影部分面积和.25.在三角形ABC 中,90ABC ∠=︒.(1)将ABC 沿着AC 翻折得到ADC △,求证:AC 平分BAD ∠;(2)过B 作BE AC ⊥于点E ,在BE 的延长线上取一点D ,使得DE BE >,连接AD 、CD ,过点C 作CG AB ∥,分别与BD ,AD 交于点F ,G ,点M 在边AB 上,连接MC 并延长,交BD 于点N ,过D 作DH MC ⊥于H ,2BCG DCG ∠=∠,且45BMC BDC ∠=∠+︒.①求证:BMN 是等腰三角形;②若BD AE CH =+,探究AB 与BC 的数量关系.参考答案:1.B【分析】根据轴对称图形的定义∶如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,判断即可.【详解】解:A 、选项不是轴对称图形,故此选项不符合题意;B 、选项是轴对称图形,故此选项符合题意;C 、选项不是轴对称图形,故此选项不符合题意;D 、选项不是轴对称图形,故此选项不符合题意;故选:B .【点睛】此题考查的是轴对称图形的判定,利用轴对称图形的定义判断一个图形是否为轴对称图形是解决此题的关键.2.D【分析】根据全等三角形的判定方法解答即可.【详解】解:由图可知,带第4块去,满足全等三角形的判定ASA ,可以配一块与原来大小一样的三角形玻璃,故选:D .【点睛】本题考查全等三角形判定方法的应用,熟练掌握三角形的判定方法是解答的关键.3.D【分析】利用平方差公式的结构特征进行判断即可.【详解】解:A.()()=()()x y x y x y x y ----+-=y 2-x 2,∴不符合题意;B.2222()()()x y x y x y x y -+--=--=-,∴不符合题意;C.22()()()()x y x y y x y x y x +-+=+-=-∴不符合题意;D.2()()()()()x y x y x y x y x y --+=---=--,不能用平方差公式进行计算,∴符合题意;故选:D .【点睛】本题主要考查了平方差公式,掌握运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.4.A【分析】证明BFD CDE △≌△得到BFD CDE ∠=∠,再利用三角形的外角性质证得50B FDE ∠=∠=︒即可求解.【详解】解:在BFD △和CDE 中,BF CD B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴()BFD CDE SAS ≌,∴BFD CDE ∠=∠,∵CDF B BFD FDE CDE ∠=∠+∠=∠+∠,∴50B FDE ∠=∠=︒,故选:A .【点睛】本题考查全等三角形的判定与性质、三角形的外角性质,会利用三角形外角性质证得B FDE ∠=∠是解答的关键.5.C【分析】先利用多项式乘以多项式运算法则求出积,再令常数项为0求解即可.【详解】解:()()3x m x +-233x x mx m=-+-()233x m x m =+--,∵乘积中不含常数项,∴30m -=,∴0m =.故选:C .【点睛】本题考查多项式乘以多项式,解答的关键是熟练掌握运算法则,注意不含某一项就是说此项的系数等于0.6.B【分析】由条件可知O 为三角形三个内角的角平分线的交点,则可知∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°-∠A ),在△BOC 中利用三角形的内角和定理可求得∠BOC .【详解】∵O 到三边的距离相等∴BO 平分∠ABC ,CO 平分∠ACB∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°−∠A)∵∠A=60°∴∠OBC+∠OCB=60°∴∠BOC=180°−(∠OBC+∠OCB)=180°−60°=120°故选B.【点睛】本题考查了角平分线的性质,熟练掌握角平分线把一个角分成两个相等的角是解题的关键.7.D【分析】利用积的乘方的逆运算法则和有理数的乘方运算法则求解即可.【详解】解:()2023202220.5⨯-()2023202220.5=-⨯()202220.50.5=-⨯⨯10.5=-⨯0.5=-,故选:D .【点睛】本题考查积的乘方的逆运算、有理数的乘方,掌握积的乘方公式是解答的关键.8.B【分析】根据30°角所对直角边等于斜边一半,求出AD ,再根据角平分线,得到AE =2ED 即可.【详解】解:∵18,30,AC C BAD AD BC ∠∠===⊥ ,∴192AD AC ==,60ABC ∠=︒,∵BE 平分ABC ∠,∴30ABE DBE BAD ∠=∠=∠=︒,∴1,2BE AE DE BE ==,∴133DE AD ==,故选:B .【点睛】本题考查了直角三角形的性质和等腰三角形的判定,解题关键是熟练运用30°角所对直角边等于斜边的一半这一性质,推导线段之间的关系.9.C【分析】根据三组边相等,先证明△ABC≌△CED,得到∠ABC=∠E,∠ACB=∠CDE,再推出∠EFC=2x°,由此得到∠FDC=x°【详解】∵BC=DE,AC=DC,AB=EC,∴△ABC≌△CED,∴∠ABC=∠E,∠ACB=∠CDE,∵∠ACE+∠E+∠EFC=180°,∴∠ACE=180°-∠E-∠EFC=180°-∠ABC-∠EFC,∵∠ACE=180°—∠ABC—2x°,∴∠EFC=2x°,∵∠EFC=∠FDC+∠ACB,且∠ACB=∠FDC,∴∠FDC=x°,故选:C.【点睛】此题考查三角形全等的判定及性质定理,根据全等得到对应角相等,根据等角之间的代换得到结果.10.C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=20+15=35cm,∴AB =AC =2AD =70,作点Q 关于BD 的对称点Q ′,连接PQ ′交BD 于E ,连接QE ,此时PE +EQ 的值最小.最小值为PE +PQ =PE +EQ ′=PQ ′,∴QD =DQ ′=15(cm ),∴AQ ′=AD +DQ ′=35+15=50(cm)∵BP =20(cm ),∴AP =AB -BP =70-20=50(cm )∴AP =AQ ′=50(cm ),∵∠A =60°,∴△APQ ′是等边三角形,∴PQ ′=PA =50(cm ),∴PE +QE 的最小值为50cm .故选:C .【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.11.2-【分析】根据关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【详解】解:∵点()2,M b -和点(),1N a 关于x 轴对称,∴2a =-,1b =-,故答案为:2-.【点睛】此题主要考查了关于x 轴的对称点的坐标,关键是掌握点的坐标的变化规律.12.65︒##65度【分析】根据ABC DBE ≌可求出ABD CBE ∠=∠,由题意可知()12ABD CBE ABE DBC ∠=∠=∠-∠,由此即可求解.【详解】解:∵ABC DBE ≌,∴ABC DBC ∠=∠,即ABD DBC DBC CBE ∠+∠=∠+∠,∴ABD CBE ∠=∠,∵160ABE ∠=︒,30DBC ∠=︒,∴160ABD DBC CBE ABE ∠+∠+∠=∠=︒,∴()()11160306522ABD CBE ABE DBC ∠=∠=∠-∠=⨯︒-︒=︒.故答案为:65︒【点睛】本题主要考查的全等三角形中对应角的关系,理解全等三角形中对应角相等,找出角与角的和差关系是解题的关键.13.27【分析】利用幂的乘方的逆运算法则和整体代入求解即可.【详解】解:当23m =时,()()333822327m m m ====,故答案为:27.【点睛】本题考查幂的乘方、代数式求值,熟练掌握幂的乘方的逆运算,能将8m 化为()32m 是解答的关键.14.36︒##36度【分析】先根据线段垂直平分线的性质得到AD BD =,再根据等腰三角形的性质求解即可.【详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴AD BD =,∴36ABD A ∠=∠=︒,∵在ABC 中,AB AC =,36A ∠=︒,∴()1180722ABC A ∠=︒-∠=︒,∴723636DBC ABC ABD ∠=∠-∠=︒-︒=︒,故答案为:36︒.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质,熟练掌握线段垂直平分线的性质和等腰三角形的性质是解答的关键.15.35°或125°【分析】根据题意分当E 在C 点左侧和当E 在C 点右侧两种情况进行讨论,并结合等腰三角形等腰等角的性质进行分析求解即可.【详解】解:当E 在C 点左侧如图,∵AB AC =,40A ∠=︒,∴70,C ABC ︒∠=∠=∵CD CE =,∴55CDE CED ︒∠=∠=,∵BD AC ⊥,∴BDE BDC CDE 905535︒︒︒∠=∠-∠=-=;当E 在C 点右侧如图,∵AB AC =,40A ∠=︒,∴70,C ABC ︒∠=∠=∵CD CE =,∴70352CDE CED ︒︒∠=∠==,∵BD AC ⊥,∴9035125BDE BDC CDE ︒︒︒∠=∠+∠=+=.故答案为:35°或125°.【点睛】本题考查等腰三角形的性质,熟练掌握等腰三角形等腰等角的性质以及结合分类讨论的思维进行分析是解题的关键.16.6【分析】连接BB '并延长交A C ''于D ,交AC 于E ,连接BA '、BC ',先证ABC A BC ''∆∆≌,然后证明BD BE EB '==,则13A BC ABC S S '''''∆∆=,得3A B C ABC S S '''∆∆=,从而得解.【详解】解:如图所示,连接BB '并延长交A C ''于D ,交AC 于E ,连接BA '、BC ', 点A 关于BC 的对称点A ',点B 关于AC 的对称点是B ',点C 关于AB 的对称点是C ',,,AB A B BC BC ABC A BC ''''∴==∠=∠,AC 垂直平分BB ',(SAS)ABC A BC ''∴∆∆≌,ABC A BC S S ''∆∆∴=,A AA C ''∠=∠,AC A C ''∴∥,BD A C ''∴⊥,根据全等三角形对应边上的高相等,BD BE EB '∴==,13A BC ABC S S '''''∆∆∴=,13ABC A B C S S '''∆∆∴=,3326A B C ABC S S '''∆∆∴==⨯=.【点睛】此题考查了轴对称的性质、三角形全等的判定与性质、平行线的判定与性质、三角形的面积等知识,熟练掌握轴对称的性质与三角形全等的判定与性质是解答此题的关键.17.(1)6519a a +(2)224961x y y -+-【分析】(1)利用积的乘方、同底数幂的乘法、单项式除以单项式的运算法则求解即可;(2)利用平方差公式和完全平方公式求解即可.【详解】(1)解:()()2323743a a a a a -+⋅-÷-656163a a a =++6519a a =+;(2)解:()()231231x y x y +--+()()231231x y x y ⎡⎤⎡⎤=+---⎣⎦⎣⎦()()22231x y =--()224961x y y =--+224961x y y =-+-.【点睛】本题考查了整式的混合运算,涉及积的乘方、同底数幂的乘法、单项式除以单项式、合并同类项、乘法公式,熟记完全平方公式和平方差公式,掌握相关的运算法则并正确求解是解答的关键.18.22a -,6-【分析】先利用多项式除以单项式的运算法则和完全平方公式去括号,再合并化简原式,再代值求解即可.【详解】解:()()231a b ab ab a -÷--()3221a b ab ab ab a a =÷-÷--+22121a a a =--+-22a =-,当2a =-时,原式()222=⨯--6=-.【点睛】本题考查整式的混合运算及其求值,熟练掌握整式混合运算法则并正确求解是解答的关键.19.(1)图见解析,()2,3--(2)()4,3--,()4,1-,()2,1【分析】(1)先描出A 、B 、C 关于y 轴对称的对应点1A 、1B 、1C ,然后顺次连接即可画出图形和点1C 坐标;(2)根据全等三角形的性质即可确定点D 的坐标.【详解】(1)解:如图,111A B C △即为所求作,点1C 坐标为()2,3--,故答案为()2,3--;(2)解:如图,根据网格特点,1ABD 、2ABD △、3ABD 均与ABC 全等,故点D 坐标为()4,3--,()4,1-,()2,1故答案为:()4,3--,()4,1-,()2,1.【点睛】本题考查作图-轴对称变换、全等三角形的性质,熟练掌握相关知识并正确画出图形是解答的关键.20.见解析【分析】证明ABF DCE ≌△△得到AFB DEC ∠=∠,根据等腰三角形的判定即可证得结论.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在ABF △和DCE △中,A DBC BF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()ABF DCE AAS ≌,∴AFB DEC ∠=∠,∴ME MF =.【点睛】本题考查等腰三角形的判定、全等三角形的判定与性质,会利用等角对等边证明边相等是解答的关键.21.(1)见解析(2)15︒【分析】(1)根据尺规作图-作垂线的方法步骤作图即可;(2)根据角平分线的定义求得45BCE ∠=︒,再根据直角三角形的两个锐角互余求得60BCD ∠=︒,再进而可求解.【详解】(1)解:如图,线段CD即为所求作;(2)解:如图,线段CE 是ACB ∠的平分线,则1452BCE ACE ACB ∠=∠=∠=︒∵CD 是AB 边上的高,∴90CDB ∠=︒,又30B ∠=︒,∴9060BCD B ∠=︒-∠=︒,∴604515ECD BCD BCE ∠=∠-∠=︒-︒=︒.【点睛】本题考查尺规作图-作垂线、作角平分线、直角三角形的两个锐角互余、角平分线的定义以及角度的运算,解答的关键是熟悉基本尺规作图的方法以及角之间的运算.22.见解析.【分析】根据题意画出图形,即可写出已知、求证,根据平行线的判定和性质、三角形的外角性质即可证明.【详解】已知:如图:∠DAC 是△ABC 的外角,AE 平分∠DAC ,AE ∥BC .求证:△ABC 为等腰三角形.证明:∵AE ∥BC ,∴∠EAD =∠B ,∠EAC =∠C ,∵AE 平分∠DAC ,∴∠EAD =∠EAC ,∴∠B =∠C ,∴AB =AC ,∴△ABC 为等腰三角形.【点睛】本题考查了等腰三角形的判定、平行线的判定和性质、三角形的外角性质,解决本题的关键是准确画出图形及会进行角的等量代换23.(1)见解析(2)4AE =【分析】(1)先根据线段垂直平分线的性质和角平分线的性质得到PA PC =,PE PF =,再利用HL 定理证明Rt PEA Rt PFC ≌,利用全等三角形的性质可得结论;(2)证明Rt PEB Rt PFB ≌得到BE BF =,进而可求解.【详解】(1)证明:如图,连接PA ,PC ,∵ABC ∠的平分线与AC 的垂直平分线相交于点P ,PE AB ⊥,PF BC ⊥,∴PA PC =,PE PF =,90°PEA PFC ∠=∠=,在Rt PEA 和Rt PFC ,PA PC PE PF =⎧⎨=⎩,∴()Rt PEA Rt PFC HL ≌,∴AE CF =;(2)解:在Rt PEB 和Rt PFB 中,PB PB PE PF=⎧⎨=⎩,∴()Rt PEB Rt PFB HL ≌,∴BE BF =,∴AE F B C A BC +=-,∵7cm AB =,15cm BC =,∴715AE AE +=-,∴4AE =.【点睛】本题考查角平分线的性质、线段垂直平分线的性质、全等三角形的判定与性质,熟练掌握角平分线的性质、线段垂直平分线的性质,利用全等三角形的性质证明边相等是解答的关键.24.(1)3,2,7(2)()2222a b a b ab +=++,1010(3)8【分析】(1)计算()()23a b a b ++,再根据三个纸片的面积可求解;(2)用两种方法表示出大正方形的面积,即可得出三者的关系;设2021a x =-,2023b x =-,则2b a -=,()4044222022a b x x +=-=-,222022a b +=,利用等量关系求出ab 即可求解;(3)根据图形得到2x y -=,2DG BE ==,利用完全平方公式分别求得xy 和x y +即可求解.【详解】(1)解:()()23a b a b ++22362a ab ab b =+++22372a ab b =++,又A 种纸片的面积为2a ,B 种纸片的面积为2b ,C 种纸片的面积为ab ,∴需A 种纸片3张,B 种纸片2张,C 种纸片7张,故答案为:3,2,7;(2)解:由图2知,大正方形的面积为()2a b +,又可以为222a b ab ++,∴()2222a b a b ab +=++,故答案为:()2222a b a b ab +=++;设2021a x =-,2023b x =-,则2b a -=,222022a b +=,()4044222022a b x x +=-=-,∵()2222b a a b ab -=+-,∴420222ab =-,则1009ab =,∵()2222a b a b ab +=++,∴()242022202221009x -=+⨯,∴()220221010x -=;(3)解:由题意和图形知,2x y -=,2DG BE ==,则()22242x y x y xy -==+-,则15xy =,∴()222264x y x y xy +=++=,∴8x y +=或8x y +=-(舍去),阴影部分的面积和为112222S x y =⨯+⨯⨯x y =+8=.【点睛】本题考查多项式乘多项式与图形面积、完全平方公式的几何背景及其应用,理解题意,看懂图形,会利用不同方法表示面积,并灵活运用所得结论是解答的关键.25.(1)见解析(2)①见解析;②2AB BC=【分析】(1)根据折叠性质得到BAC DAC ∠=∠即可得到结论;(2)①根据题意画出图形,先根据平行线的性质和三角形的外角性质证得45BFC MBF BDC ∠=∠=∠+︒,结合已知和等腰三角形的判定可证得结论;②过D 作DQ BC ⊥交BC 延长线于Q ,先证QCD 是等腰直角三角形,得CQ DQ =,再证DCH DCE ≌ ,得CH CE =,则BD AE CH AE CE AC =+=+=,然后证明ABC BQD ≌,得BC QD QC ==,AB BQ =,进而得出结论.【详解】(1)解:∵ABC 沿着AC 翻折得到ADC △,∴BAC DAC ∠=∠,∴AC 平分BAD ∠;(2)解:①如图,∵CG AB ∥,∴180BCG ABC ∠+∠=︒,BMC MCF ∠=∠,MBF BFC ∠=∠,∵2BCG DCG ∠=∠,90ABC ∠=︒,∴902BCG DCG ∠=︒=∠,则45DCG ∠=,∵BFC ∠是CDF 的一个外角,∴45BFC BDC DCG BDC ∠=∠+∠=∠+︒,∴45MBF BDC ∠=∠+︒,∵45BMC BDC ∠=∠+︒,∴BMC MBF ∠=∠,∴BMN 是等腰三角形;②2AB BC =,理由:过D 作DQ BC ⊥交BC 延长线于Q ,由①知,BMC MBF ∠=∠,∵90BMC BCM ∠+∠=︒,90MBF CBN ∠+∠=︒,∴BCM CBN ∠=∠,∴22DNC BCM CBN BCM CBN ∠=∠+∠=∠=∠,∵BE AC ⊥,∴90MBF BAC ∠+∠=︒,∴BAC CBN BCM ACG ∠=∠=∠=∠,∵90BCG QCG ∠=∠=︒,45DCG ∠=︒,∴45QCD ∠=︒,∴QCD 是等腰直角三角形,∴CQ DQ =,∵45BDC QCD CBN CBN ∠=∠-∠=︒-∠,∴45245DCH BDC DNC CBN CBN CBN ∠=∠+∠=︒-∠+∠=︒+∠,∵4545DCE DCG ACG ACG CBN ∠=∠+∠=︒+∠=︒+∠,∴DCH DCE ∠=∠,∵DH MC ⊥,∴90H DEC ∠=∠=︒,又CD CD =,∴()DCH DCE AAS ≌,∴CH CE =,∵BD AE CH AE CE =+=+,∴BD AC =,又∵90ABC Q ∠=∠=︒,BAC QBD ∠=∠,∴()ABC BQD AAS ≌,∴BC QD QC ==,AB BQ =,∵2BQ BC QC BC =+=,∴2AB BC =.【点睛】本题考查了翻折性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的性质、直角三角形的性质、平行线的性质以及三角形的外角性质等知识;本题综合性强,熟练掌握等腰三角形的性质,证明三角形全等是解题的关键,属于中考常考题型.。
2019-2020年初二数学12月月考试题及答案
说明:l.本卷共 4 页,考试用时 90 分钟.满分为 100 分. 2.解答过程写在答题卡相应位置上,监考教师只收答题卡. 3. 非选择题必须用黑色字迹的钢笔或签字笔作答;画图时用2B铅笔并描清晰.
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)在每小题列出的四个选项中, 只有一个是正确的,请将下列各题的正确选项填写在答题卡相应的位置上.
40cm 题 19 图
y
20.(6 分)作图并回答问 题:
(1)如题 20 图,在平面直角坐标系中,将坐标分别
4
是(0,3),(1,0),(2,2),(3,0),(4,3)的
3
五个点用线段依次连接起来得到图案①,请 画
出图案①;
1
(2)若将上述各点的坐标进行如下变化:
-4 -3 -2 -1 0 1 2 3 4 x
y
(1)设直线 AB 的关系式为 ykxb ,求 k、b 的值;
C
(2)求△OAC 的面积;
(3)是否存在点 M,使△OMC 的面积是△OAC 的
1
A
面积的 1 ?若存在,直接写出此时点 M 的坐标; 2
画出函数 y 2x 3 的图象,并结合
图象回答下列问题: (1)y 的值随 x 值的增大而 ___ _ _
(填“增大”或“减小”); (2)图象与 x 轴的交点坐标是 ____ _ ;
图象与 y 轴的交点坐标是 ___ __ ; (3)当
y 5 4 3 2 1 5 4 3 2 1O 1 2 3 4 5 x 1 2 3 4 5
横坐标分别乘以-1,纵坐标保持不变.
-1
将所得的新的五个点用线段依次连接起来得到
八年级数学12月月考试题含解析试题
上南中学南校2021-2021学年度八年级数学12月月考试题一、选择题〔每一小题2 分,一共12 分〕1.以下二次根式中,最简二次根式是〔〕A. B.C.D.2.方程x2=4x 的解是〔〕A.x=4 B.x=2 C.x=4 或者x=0 D.x=03.以下命题中真命题是〔〕 A.同旁内角相等,两直线平行 B.两锐角之和为钝角C.到角的两边间隔相等的点在这个角的平分线上D.直角三角形斜边上的中线等于斜边的一半4.如图,在△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于点D,BC=8,BD=5,那么点D 到AB 的间隔是〔〕A.3 B.4 C.5 D.65.如图,一棵树在一次强台风中于离地面3 米处折断倒下,倒下局部与地面成30°角,这棵树在折断前的高度为〔〕A.6 米 B.9 米 C.12 米D.15 米6.在Rt△ABC 中,∠C=90°,∠B=15°,AC=2,假如将这个三角形折叠,使得点B 与点A 重合,折痕交AB 于点M,交BC 于点N,那么BN 等于〔〕A.2 B.4 C.6 D.8二、填空题〔每一小题3 分,一共36 分〕7.计算:= .8.方程〔x﹣1〕2﹣4=0 的解为.9.在实数范围内分解因式:3x2﹣6x+1= .10.命题“等腰三角形的两个底角相等〞的逆命题是.11.假如关于x 的一元二次方程x2﹣x+a=0 有两个不相等的实数根,那么a 的取值范围是.12.△ABC 中,AD 是∠BAC 的平分线,DE⊥AB,垂足是 E,DF⊥AC,垂足是 F,且△ABC 的面积为28,AC=4,AB=10,那么DE= .13.平面内到点O 的间隔等于3 厘米的点的轨迹是.14.在 Rt△ABC 中,∠C=90°,AB=,BC= ,那么∠B= 度.15.点C 在x 轴上,点C 到点A〔﹣1,4〕与点B 的间隔相等,那么点C 的坐标为.16.在△ABC 中,AB=AC,∠A=120°,D 是BC 的中点,DE⊥AB,垂足是E,那么AE:BE= .17.如图,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.假设斜边AB=4,那么图中阴影局部的面积为.18.在△ABC 中,AB=,AC=2,BC 边上的高为,那么BC 的长是.三、解答题〔19、20 题,每一小题6 分;21、22 每一小题7 分,一共26 分〕19.计算:.20.用配方法解方程:4x2﹣2x﹣1=0.21.要对一块长60 米,宽40 米的矩形荒地ABCD 进展绿化和硬化、设计方案如下图,矩形P、 Q 为两块绿地,其余为硬化路面,P、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的,求P、Q 两块绿地周围的硬化路面的宽.22.:如图,Rt△ABC 和Rt△ADC,∠ABC=∠ADC=90°,点E 是AC 的中点.求证:∠EBD=∠EDB.四、解答题23.如下图,在 Rt△ABC 中,∠C=90°,∠A=30°.〔1〕尺规作图:作线段AB 的垂直平分线l〔保存作图痕迹,不写作法〕;在已作的图形中,假设l 分别交AB、AC 及BC 的延长线于点D、E、F,连接BE.求证:EF=2DE.24.:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交AB 于E,交BC 于点D.〔1〕求证:DE=DC.假设 DE=2,求△ABC 三边的长?25.:如图,在△ABC 中,∠C=90°,∠B=30°,AC=6,点D 在边BC 上,AD 平分∠CAB,E 为AC 上的一个动点〔不与A、C 重合〕,EF⊥AB,垂足为F.〔1〕求证:AD=DB;设CE=x,BF=y,求y 关于x 的函数解析式;〔3〕当∠DEF=90°时,求 BF 的长?上南中学南校2021~2021 学年度八年级上学期月考数学试卷〔12 月份〕〔1-3班〕参考答案与试题解析一、选择题〔每一小题2 分,一共12 分〕1.以下二次根式中,最简二次根式是〔〕A. B.C.D.【考点】最简二次根式.【分析】断定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否那么就不是.【解答】解:A、被开方数含分母,不是最简二次根式,故 A 选项错误;B、=2,被开方数含能开得尽方的因数,不是最简二次根式,故B 选项错误;C、满足最简二次根式的定义,是最简二次根式,故 C 选项正确;D、,被开方数含能开得尽方的因数,不是最简二次根式,故D 选项错误.应选:C.【点评】此题考察了满足是最简二次根式的两个条件:〔1〕被开方数不含分母;被开方数不含能开得尽方的因数或者因式.2.方程x2=4x 的解是〔〕A.x=4 B.x=2 C.x=4 或者x=0 D.x=0【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】此题可先进展移项得到:x2﹣4x=0,然后提取出公因式 x,两式相乘为 0,那么这两个单项式必有一项为0.【解答】解:原方程可化为:x2﹣4x=0,提取公因式:x〔x﹣4〕=0,∴x=0 或者x=4.应选:C.【点评】此题考察了运用提取公因式的方法解一元二次方程的方法.3.以下命题中真命题是〔〕 A.同旁内角相等,两直线平行 B.两锐角之和为钝角C.到角的两边间隔相等的点在这个角的平分线上D.直角三角形斜边上的中线等于斜边的一半【考点】直角三角形斜边上的中线;角的计算;平行线的断定;角平分线的性质.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、因为同旁内角互补,两直线平行,故本选项错误; B、两锐角之和不一定为钝角,例如 25°+35°=60°仍为锐角,故本选项错误;C、到角的两边间隔相等的点不一定在这个角的平分线上,故本选项错误; D、直角三角形斜边上的中线等于斜边的一半,故本选项正确.应选D.【点评】主要考察命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.如图,在△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于点D,BC=8,BD=5,那么点D 到AB 的间隔是〔〕A.3 B.4 C.5 D.6【考点】角平分线的性质.【专题】计算题.【分析】根据角平分线的性质可得,DE=DC,根据BD=5,BC=8,求得CD 即可求解.【解答】解:∵∠C=90°,AD 是△ABC 中∠CAB 的角平分线,DE⊥AB 于 E,∴DE=DC,∴BD=5,BC=8,∴DC=BC﹣CD=8﹣5=3,∴DE=3.应选A.【点评】此题主要考察角平分线的性质:角的平分线上的点到角的两边的间隔相等.5.如图,一棵树在一次强台风中于离地面3 米处折断倒下,倒下局部与地面成30°角,这棵树在折断前的高度为〔〕A.6 米 B.9 米 C.12 米D.15 米【考点】含30 度角的直角三角形.【专题】常规题型.【分析】根据直角三角形中 30°角所对的直角边等于斜边的一半,求出折断局部的长度,再加上离地面的间隔就是折断前树的高度.【解答】解:如图,根据题意BC=3 米,∵∠BAC=30°,∴AB=2BC=2×3=6 米,∴3+6=9 米.应选B.【点评】此题主要考察了含30 度角的直角三角形的性质,比拟简单,熟记性质是解题的关键.6.在Rt△ABC 中,∠C=90°,∠B=15°,AC=2,假如将这个三角形折叠,使得点B 与点A 重合,折痕交AB 于点M,交BC 于点N,那么BN 等于〔〕A.2 B.4 C.6 D.8【考点】翻折变换〔折叠问题〕.【分析】连接AN.根据题意,得MN 是AB 的垂直平分线,那么AN=BN,∠BAN=∠B=15°.根据三角形外角的性质,得∠ANC=30°,再根据 30°直角三角形的性质即可求解.【解答】解:如图,连接AN.根据题意,得MN 是AB 的垂直平分线,那么AN=BN,∠BAN=∠B=15°.根据三角形外角的性质,得∠ANC=30°,所以AN=2AC=4,那么BN=4.应选B.【点评】此题综合运用了折叠的性质、线段垂直平分线的性质、30°直角三角形的性质.二、填空题〔每一小题3 分,一共36 分〕7.计算:= .【考点】二次根式的加减法.【专题】计算题.【分析】先化简=2 ,再合并同类二次根式即可.【解答】解:=2 ﹣= .故答案为:.【点评】此题主要考察了二次根式的加减,属于根底题型.8.方程〔x﹣1〕2﹣4=0 的解为﹣1,3 .【考点】解一元二次方程-直接方法.【分析】直接利用方法解方程得出答案.【解答】解:〔x﹣1〕2﹣4=0 那么x﹣1=±2,解得:x1=﹣1,x2=3.故答案为:﹣1,3.【点评】此题主要考察了直接方法解方程,正确方是解题关键.9.在实数范围内分解因式:3x2﹣6x+1= 3〔x﹣〕〔x﹣〕.【考点】实数范围内分解因式.【分析】先将代数式变形为一个平方形式与另一个数的差,再用平方差公式分解因式.【解答】解:3x2﹣6x+1=3〔x2﹣2x+ 〕=3[〔x﹣1〕2﹣=3〔x﹣1+〕〔x﹣1﹣〕=3〔x﹣〕〔x﹣〕.故答案为3〔x﹣〕〔x﹣〕.【点评】此题主要考察实数范围内分解因式,其中涉及完全平方公式和平方差公式.10.命题“等腰三角形的两个底角相等〞的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形〞,结论是“这个三角形两底角相等〞,所以命题“等腰三角形的两个底角相等〞的逆命题是“两个角相等三角形是等腰三角形〞.【点评】根据逆命题的概念来答复:对于两个命题,假如一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.11.假如关于 x 的一元二次方程 x2﹣x+a=0 有两个不相等的实数根,那么 a 的取值范围是.【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,方程x2﹣x+a=0 有两个不相等的实数根,方程必须满足△=b2﹣4ac>0,即可求得.【解答】解:x 的一元二次方程x2﹣x+a=0 有两个不相等的实数根,∴△=b2﹣4ac=1﹣4a>0,解得a<.【点评】此题考察了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.12.△ABC 中,AD 是∠BAC 的平分线,DE⊥AB,垂足是 E,DF⊥AC,垂足是 F,且△ABC 的面积为 28,AC=4,AB=10,那么 DE= 4 .【考点】角平分线的性质;三角形的面积.【专题】计算题.【分析】根据角平分线性质得出 DE=DF,根据三角形的面积公式得出AB×DE+AC×DF=28,代入求出即可.【解答】解:∵AD 是∠BAC 的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC 的面积为28,∴S△ABD+S△ACD=28,∴AB×DE+ AC×DF=28,即:10DE+4DE=56, DE=4.故答案为:4.【点评】此题主要考察对三角形的面积,角平分线性质等知识点的理解和掌握,能求出DE=DF 是解此题的关键.13.平面内到点O 的间隔等于3 厘米的点的轨迹是以点O 为圆心,3 厘米长为半径的圆.【考点】轨迹.【分析】只需根据圆的定义就可解决问题.【解答】解:平面内到点O 的间隔等于3 厘米的点的轨迹是以点O 为圆心,3 厘米长为半径的圆.故答案为:以点O 为圆心,3 厘米长为半径的圆.【点评】此题主要考察的是圆的定义,其中圆是到定点的间隔等于定长的点的集合.14.在Rt△ABC 中,∠C=90°,AB=,BC= ,那么∠B= 60 度.【考点】解直角三角形.【分析】在直角三角形中,利用 30°角所对的直角边是斜边的一半的逆定理推知∠A=30°;然后根据直角三角形的两个锐角互为余角求得∠B=60°.【解答】解:在Rt△ABC 中,∵∠C=90°,AB= ,BC= ,∴BC= AB,∴∠A=30°,∴∠B=60°〔直角三角形的两个锐角互为余角〕.故答案是:60°.【点评】此题考察理解直角三角形.在直角三角形中,要纯熟掌握直角三角形的边角关系是解题的关键.15.点C 在x 轴上,点C 到点A〔﹣1,4〕与点B 的间隔相等,那么点C 的坐标为.【考点】两点间的间隔公式.【专题】计算题.【分析】设点C 的坐标为〔x,0〕,根据两点间的间隔公式列式求解即可,两点间的间隔公式:d= .【解答】解:设点C 坐标为〔x,0〕.利用两点间的间隔公式,得 AC=,BC= .根据题意,得 AC=BC,∴AC2=BC2.即〔x﹣2〕2+25=〔x+1〕2+16.解得x=2.所以,点C 的坐标是.【点评】此题考察了两点间的间隔公式,熟记公式与纯熟解方程是解答此题的关键.16.在△ABC 中,AB=AC,∠A=120°,D 是 BC 的中点,DE⊥AB,垂足是 E,那么 AE:BE= 1:3 .【考点】含30 度角的直角三角形;等腰三角形的性质.【分析】易得∠B=30°,∠BAD=60°,AD⊥BC,那么在△ADE 中,AD=2AE;在△ABD 中,AB=2AD,即得AB=4AE,即可得出结果.【解答】解:连接AD,如下图:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵D 是BC 中点,∴AD⊥BC 且 AD 平分∠BAC,∴∠BAD=60°,∴∠ADB=90°,∴AD= AB,又∵DE⊥AB,∴∠DEA=90°,∠ADE=∠DEA﹣∠BAD=90°﹣60°=30°,∴AE= AD,∴AE= AB,∴BE=3AE,∴AE:BE=1:3;故答案为:1:3.【点评】此题主要考察等腰三角形的性质、含30 度角的直角三角形的性质;由含30 度角的直角三角形的性得出AE=AB 是解决问题的关键.17.如图,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.假设斜边AB=4,那么图中阴影局部的面积为 8 .【考点】勾股定理;等腰直角三角形.【专题】计算题.【分析】根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.那么阴影局部的面积即为以斜边为斜边的等腰直角三角形的面积的2 倍.【解答】解:在Rt△AHC 中,AC2=AH2+HC2,AH=HC,∴AC2=2AH2,∴HC=AH= ,同理;CF=BF= ,BE=AE=,在Rt△ABC 中,AB2=AC2+BC2,AB=4,S 阴影=S△AHC+S△BFC+S△AEB=HC•AH+ CF•BF+ AE•BE,= ×+ ×+ ×= 〔AC2+BC2+AB2〕= 〔AB2+AB2〕= ×2AB2= AB2= ×42=8.故答案为 8.【点评】此题考察了勾股定理的知识,难度适中,解题关键是运用勾股定理证明三个等腰直角三角形的面积之间的关系.18.在△ABC 中,AB=,AC=2,BC 边上的高为,那么 BC 的长是 4cm 或者2cm .【考点】勾股定理.【分析】首先应分两种情况进展讨论,∠C 是锐角和钝角两种情况.在直角△ABD 和直角△ACD 中,利用勾股定理求得 BD,CD 的长,当∠C 是锐角时,BC=BD+CD;当∠C 是钝角时,BC=BD﹣CD,据此即可求解.【解答】解:在直角△ABD 中,BD== =3;在直角△ACD 中,CD== =1.当∠C 是锐角时〔如图1〕,D 在线段BC 上,BC=BD+CD=3+1=4;当∠C 是钝角时,D 在线段BC 的延长线上时〔如图2〕,BC=BD﹣CD=3﹣1=2cm.那么BC 的长是4cm 或者2cm.故答案是:4cm 或者2cm.【点评】此题主要考察了利用勾股定理解决一般三角形的计算,转化为直角三角形的运算,关键是注意到分情况讨论,容易无视的是第二种情况.三、解答题〔19、20 题,每一小题6 分;21、22 每一小题7 分,一共26 分〕19.计算:.【考点】二次根式的乘除法.【分析】首先根据二次根式的乘除法法那么进展运算,化简,最后进展乘法运算,把结果化为最简二次根式即可.【解答】解:原式==== .【点评】此题主要考察二次根式的乘除法法那么,关键在于对法那么的纯熟运用,注意结果要化为最简.20.用配方法解方程:4x2﹣2x﹣1=0.【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:〔1〕把常数项移到等号的右边;把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方.【解答】解:移项得:4x2﹣2x=1,把二次项的系数化为1 得:4〔x2﹣x〕=1,配方得:4〔x2﹣x+ 〕= ,〔x﹣〕2= ,∴x﹣=±,∴原方程的解为:x1= ,x2= .【点评】此题主要考察了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2 的倍数.21.要对一块长60 米,宽40 米的矩形荒地ABCD 进展绿化和硬化、设计方案如下图,矩形P、 Q 为两块绿地,其余为硬化路面,P、Q 两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD 面积的,求P、Q 两块绿地周围的硬化路面的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】可把P,Q 通过平移看做一个矩形,设P、Q 两块绿地周围的硬化路面的宽都为x 米,用含x的代数式分别表示出绿地的长为60﹣3x,宽为40﹣2x,利用“两块绿地面积的和为矩形ABCD 面积的〞作为相等关系列方程求解即可.【解答】解:设P、Q 两块绿地周围的硬化路面的宽都为x 米,根据题意,得解之得x1=10,x2=30经检验,x2=30 不符合题意,舍去.答:两块绿地周围的硬化路面宽都为10 米.【点评】解题的关键是通过平移的方法,把分开的两块绿地合成一块长方形的绿地,利用其面积是矩形ABCD 面积的作为相等关系列方程.22.:如图,Rt△ABC 和Rt△ADC,∠ABC=∠ADC=90°,点E 是AC 的中点.求证:∠EBD=∠EDB.【考点】直角三角形斜边上的中线;等腰三角形的性质.【专题】证明题.【分析】根据直角三角形斜边上中线的性质推出 EB=AC,ED= AC,得到EB=ED,根据等腰三角形的性质推出即可.【解答】证明:∵∠ABC=90°,且点E 是AC 的中点,∴EB= AC,同理:ED= AC,∴EB=ED,∴∠EBD=∠EDB.【点评】此题主要考察对等腰三角形的性质,直角三角形的斜边上的中线等知识点的理解和掌握,能推出EB=ED 是解此题的关键.四、解答题23.如下图,在 Rt△ABC 中,∠C=90°,∠A=30°.〔1〕尺规作图:作线段AB 的垂直平分线l〔保存作图痕迹,不写作法〕;在已作的图形中,假设l 分别交AB、AC 及BC 的延长线于点D、E、F,连接BE.求证:EF=2DE.【考点】线段垂直平分线的性质;含30 度角的直角三角形.【专题】作图题;证明题.【分析】∠A=30°易证∠F=30°,因此 EF=2EC.要证EF=2DE,只要证明EC=DE,而根据角平分线上的点到角两边的间隔相等即可得到.【解答】〔1〕解:直线l 即为所求.分别以AB 为圆心,以任意长为半径,两圆相交于两点,连接此两点即可.作图正确.证明:在Rt△ABC 中,∵∠A=30°,∠ABC=60°.又∵l 为线段 AB 的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∠AED=∠BED=60°,∴∠EBC=30°=∠EBA,∠FEC=60°.又∵ED⊥AB,EC⊥BC,∴ED=EC.在 Rt△ECF 中,∠FEC=60°,∴∠EFC=30°,∴EF=2EC,∴EF=2ED.【点评】此题主要考察了直角三角形中有一个角是30 度,30 度的锐角所对的直角边等于斜边的一半.24.:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交AB 于E,交BC 于点D.〔1〕求证:DE=DC.假设 DE=2,求△ABC 三边的长?【考点】角平分线的性质;线段垂直平分线的性质;勾股定理.【分析】〔1〕DE 是AB 的垂直平分线,故连接AD 那么有AD=DB,再通过求证AD 是∠A 的平分线,根据角平分线的性质解答即可;知道DE 的长,可求出CD 的长,继而求出BC、AC 和AB 的长.【解答】解:〔1〕连接AD,那么AD=DB.∴∠DAE=∠B=30°,又∠CAB=90°﹣∠B=60°,∴∠DAC=30°.∴AD 平分∠CAB.∴DE=DC.假设DE=2,那么CD=2,AD=BD=4,∴BC=6.∴,∴AB=4 .故△ABC 三边分别为2、4 、6.【点评】此题考察了角平分线和垂直平分线的性质及勾股定理的知识,难度不大,注意这些知识的综合应用.25.:如图,在△ABC 中,∠C=90°,∠B=30°,AC=6,点D 在边BC 上,AD 平分∠CAB,E 为AC 上的一个动点〔不与A、C 重合〕,EF⊥AB,垂足为F.〔1〕求证:AD=DB;设CE=x,BF=y,求y 关于x 的函数解析式;〔3〕当∠DEF=90°时,求 BF 的长?【考点】含 30 度角的直角三角形;三角形内角和定理;三角形的外角性质;等腰三角形的断定与性质;勾股定理.【专题】计算题;证明题.【分析】〔1〕求出∠CAB、∠DAB,推出∠DAB=∠B 即可;求出AE=6﹣x,AF=,根据勾股定理求出AB,即可求出答案;〔3〕求出DE=2x,求出AE=DE=6﹣x,得到方程,求出方程的解,即可求出答案.【解答】〔1〕证明:在△ABC 中,∵∠C=90°,∠B=30°,∴∠CAB=60°,又∵AD 平分∠CAB,∴∠DAB=∠DAC= ∠CAB=30°,∴∠DAB=∠B,∴AD=DB.解:在△AEF 中,∵∠AFE=90°,∠EAF=60°,∴∠AEF=30°,∴AE=AC﹣EC=6﹣x,AF= ,在 Rt△ABC 中,∵∠B=30°,AC=6,∴AB=12,∴BF=AB﹣AF=12﹣x,∴y=9+ x,答:y 关于x 的函数解析式是y=9+ x〔0<x<6〕.〔3〕解:当∠DEF=90°时,∠CED=180°﹣∠AEF﹣∠FED=60°,∴∠EDC=30°,ED=2x,∵∠C=90°,∠DAC=30°,∴∠ADC=60°,∴∠EDA=60°﹣30°=30°=∠DAE,∴ED=AE=6﹣x.∴有2x=6﹣x,得x=2,此时,y=9+ ×2=10,答:BF 的长为10.【点评】此题主要考察对等腰三角形的性质和断定,三角形的内角和定理,勾股定理,三角形的角平分线性质,含 30 度角的直角三角形等知识点的理解和掌握,综合运用这些性质进展推理是解此题的关励志赠言经典语录精选句;挥动**,放飞梦想。
浙江省湖州市浔溪中学2014-2015学年八年级数学12月月考试题(无答案)
浙江省湖州市浔溪中学2014-2015学年八年级数学12月月考试题(无答案)(时间90分钟,满分100分)亲爱的同学:祝贺你完成了前一阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥聪明才智,认真审题,细心解答,祝你成功!一、 选择题(每小题3分,共30分),3.不等式x +1<0的解集在数轴上表示正确的是( )A .B .C .D . 4.要证明命题“若a >b 则a 2>b 2”是假命题,下列a ,b 的值不能作为反例的是( ) b=6.如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=5,AE=8,则BE 的长度是′全等的条件是(A. AC=A ′C ′,BC=B ′C ′ B. ∠A=∠A ′,AB=A ′B ′C. AC=A ′C ′,AB=A ′B ′D. ∠B=∠B ′,BC=B ′C ′8.点A (3,y 1,),B (-2,y 2)都在直线32+-=x y 上,则y 1与y 2的大小关系是( )29.某航空公司规定,旅客乘机所携带行李的运费y (元)与其质量x (kg )由(如图所示)D B A C E(-二、 填空题(每小题3分,共24分)11.正比例函数y kx =的图像经过一点(2,-6),则它的解析式是 .12.命题“同位角相等,两直线平行”的逆命题是 命题.(填真或假) 13.不等式2x-4>0的解集是 .14.如果A 地在B 地的北偏东30°方向,那么B 地在A 地的 方向.15.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是 .16.如图,△ABC 中,∠C=90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若AB=10,AC=6,则△ACD 的周长为 .17.直线l 1:y=k 1x+b 与直线l 2:y=k 2x+c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x+b <k 2x+c 的解集为 .18.如图,在平面直角坐标系中,线段OA 1=1,OA 1与x 轴的夹角为30°,线段A 1A 2=1,A 2A 1⊥OA 1,垂足为A 1;线段A 2A 3=1,A 3A 2⊥A 1A 2,垂足为A 2;线段A 3A 4=1,A 4A 3⊥A 2A 3,垂足为A 3;…按此规律,点A 2012的坐标为 ..三、解答题(本大题共6小题,共46分)19.(6分)解不等式(组).(1)2x+7>3x ﹣2 (2)(第15题) (第16题) (第17题) (第18题) {112x +≤124x -<20.(6分)如图,AB=AC ,请你添加一个条件,使△ABE ≌△ACD ,(1(2)根据上述添加的条件证明△ABE ≌△ACD .21.(8分)已知一次函数y=kx+b 的图象经过点A (-4,0),B (2,6)两点.(1)求一次函数y=kx+b 的表达式. (2)在直角坐标系中,画出这个函数的图象. (3)求这个一次函数与坐标轴围成的三角形面积.22.(8分)如图,△ABC 是边长为2的等边三角形,将△ABC 沿直线BC 向右平移,使点B 与点C 重合,得到△DCE ,连接BD ,交AC 于点F.(1)猜想AC 与BD 的位置关系,并证明你的结论;(2)求线段BD 的长.(第21题)23.(8分)某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万,公司可投入的购车款不超过55万元(1)符合公司要求的购买方案有几种?请说明理由.(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可以租出,要使这10辆车的租金不低于1500元,那么应选择以上那种方案?24.(10分)如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=3,OB=5,点D为y轴上一点,其坐标为(0,1),点P从点A出发以每秒1个单位的速度沿线段AC—CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒。
2023-2024学年安徽省芜湖市无为市八年级(上)月考数学试卷(12月份)+答案解析
2023-2024学年安徽省芜湖市无为市八年级(上)月考数学试卷(12月份)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2023亚运会在中国杭州举行,下列图形中是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成三角形的是()A.9,7,16B.,,C.4,10,7D.6,8,153.已知点与点关于y轴对称,则点在()A.第一象限B.第二象限C.第三象限D.第四象限4.化简的结果是()A. B. C. D.5.如图,若≌,,,则()A.1B.5C.6D.106.若,,则M与N的大小关系为()A. B.C. D.M与N的大小由x的取值而定7.方建平同学设计一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆为衣架的固定点;如图2,当衣架收拢时,,点C是OB上的任意一点,此时若AC最短,则OC的长度是()A.4cmB.8cmC.10cmD.12cm8.在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取,,则各个因式的值分别是,,,于是就可以把“018162”作为一个六位数的密码.对于多项式,取,时,上述方法产生的密码的个数为()A.4B.5C.6D.79.如图,≌,,记,,当时,与之间的数量关系为()A. B. C. D.10.如图所示,在中,,BD平分,P为线段BD上一动点,Q为边AB上一动点,当的值最小时,的度数是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
11.若五边形的内角中有一个角为,则其余四个内角之和为______.12.若,则a的取值范围是______.13.如图,点P是的平分线OC上一点,于点D,点M是OB上一个动点.若,则点P到边OB的最小值是______.14.数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B种纸片是边长为b的正方形,C种纸片是长为a、宽为b的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形.观察图2,请写出,,ab之间的数量关系:______.两个正方形ABCD,AEFG如图3摆放,边长分别为x,若,,则图中阴影部分面积和为______.三、解答题:本题共9小题,共90分。
山东省日照市新营中学2020-2021学年上学期八年级12月月考数学试卷
2020-2021学年度上学期初二数学阶段性检测(三)一、选择题(共12小题,每小题3分,满分36分) 1.下列计算中正确的是()A.a 2+a 3=2a 5B.a 4÷a=a 4C.a 2·a 4=a 8D.(-a 2)3=-a 610.将边长分别为a 和b 的两个正方形如图所示放置,则图中阴影部分的面积是()A. 21b 2B. 21a 2C. 21a 2−21b 2D.21 ab 11.当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()的是()A. 0<k <21B.21 <k <1C. 1<k <23D.23 <k <2 二、填空题:(每题4分,共24分)13. 若3x =4,9y =7,则3x −2y 的值为___.14. 当x =______ 时,分式3x 2−3(x −1)(x −3)的值为 0.16若16)3-m 22++x x (是完全平方式,则m 的值等于____。
18.已知,则代数式的值为我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”。
这个三角形给出了(a +b )n (n =1,2,3,4,…)的展开式的系数规律(按a 的次数由大到小的顺序):(3))723)(723--+-y x y x ( (4)[]b a a b a b ab b a a 22322)()(÷----20. 分解因式:(每小题3分,共12分)(1)mn n 9m 3- (2)222y x xy --(2)322344xy y x y x ++ (4)22216)4x x -+(21. 先化简后求值:(8分)(1)012),2()1)(1(2-1-222=-----+a a a a a a a 其中,)((2)若2x-y=10,求代数式[]y y x y y x y x 4)(2)()222÷-+--+(的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省无锡市天一实验学校2016-2017学年八年级数学12月月考试题
一、选择题(每题3分,共30分)
1.下列图形中既是轴对称图形又是中心对称图形的是(▲)
A .
B .
C .
D .
2.关于函数12
y x =,下列结论正确的是(▲) A .函数图象必经过点(1,2) B .函数图象经过第二、四象限
C .y 随x 的增大而增大
D .不论x 取何值,总有0y >
3.已知一次函数y=kx+b 的图象经过第一、二、三象限,则b 的值可以是(▲)
A .﹣2
B .﹣1
C .0
D .2
4.如图,平行四边形ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件使△ABE ≌△CDF ,则添加的条件不能是(▲)
A .AE=CF
B .BE=FD
C .BF=DE
D .∠1=∠2
(第4题)(第5题)(第8题)
5.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数为(▲)
A .35°
B .40°
C .50°
D .65°
6.已知一次函数3y kx =+,当x 增加3时,y 减少2,则k 的值是(▲) A.23- B.32- C.23 D.32
7.下列说法:(1)矩形的对角线相互垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分;(5)顺次连接平行四边形各边中点所得到的四边形是矩形。
其中正确的个数是 (▲)
A .1个 B.2个 C.3个 D.4个
8.如图,在平面直角坐标系中,点A (﹣1,m )在直线y=2x+3上,连结OA ,将线段OA 绕点O 顺时针旋转90°,点A 的对应点B 恰好落在直线y=﹣x+b 上,则b 的值为(▲)
A .﹣2
B .1
C .32
D .2 9.在ABCD 中,AD=8,A
E 平分∠BAD 交BC 于点E ,D
F 平分∠ADC 交BC 于点F ,且EF=2,则AB 的长为(▲)
A .3
B .5
C .2或3
D .3或5
10.已知=1,
2m x n x +=-+,若规定1,1,m n m n y m n m n +-≥⎧=⎨-+<⎩,则y 的最小值为(▲) A .0 B .1 C .﹣1 D .2
二、填空题(每空2分,共16分)
11.
函数2
y x =-中,自变量x 的取值范围是▲. 12. 在Y ABCD 中,对角线AC 、BD 相交于点O,AC=10,BD=6,AD=4,,则Y ABCD 的面积等于▲.
13. 如图,在Rt △ABC 中,∠ACB=90°,点D ,E ,F 分别为AB ,AC ,BC 的中点.若CD=5,则EF 的长为▲.
14. 已知一次函数y=(2m ﹣2)x+m+1的图象与y 轴交点在x 轴上方,则m 取值范围是▲. 15.一次函数y=-2x+b 与坐标轴围成的三角形的面积为4,则b 的值为▲.
(第13题) (第16题) (第17题) (第18题)
16.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=10,点A 、B 的坐标分别为(1,0)、(7,0),将△ABC 沿x 轴向右平移,当点C 落在直线y=2x ﹣8上时,线段BC 扫过的面积为▲.cm 2.
17. 已知函数y ax b =-和y kx =的图象交于点P ,则根据图象可知,关于x ,y 的二元一次方程组y ax b y kx
=-⎧⎨=⎩的解是▲. 18.如图,在矩形ABCD 中,AD=2,点P 是直线AD 上一动点,若满足△PBC 是等腰三角形的点P 有且只有3个,则AB 的长为▲.
三、解答题(共8题,共54分)
19.(本题6分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).
(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;
(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;
(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.
(第21题图) (第22题图)
20.(本题5分)已知y-3与4x-2成正比例,且当x=1时,y=5.
(1)求y 与x 的函数关系式;
(2)求当x=-2时的函数值.
21. (本题4分)如图,在矩形ABCD 中,对角线AC 与BD 相交于点O ,AE ⊥BD 于E ,
若BE :ED=1:3.求∠BAE 的度数;
22.(本题7分)如图,在菱形ABCD 中,AB=2,∠DAB=60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN .
(1)求证:四边形AMDN 是平行四边形;
(2)填空:①当AM 的值为▲时,四边形AMDN 是矩形;
②当AM 的值为▲时,四边形AMDN 是菱形.
23 (本题8分)如图,直线y=﹣x+3与坐标轴分别交于点A ,B ,与直线y=x 交于点C ,线段OA 上的点Q 以每秒1个长度单位的速度从点O 出发向点A 作匀速运动,运动时间为t 秒,连结CQ .
(1)求出点C 的坐标;
(2)若CQ 平分△OAC 的面积,求直线CQ 对应的函数关系式.
(3)若△OQC 是等腰直角三角形,则t 的值为▲;
24.(本题8分)甲、乙两地之间有一条笔直的公路,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为1y 米,小亮与甲地的距离为2y 米,小明与小亮之间的距离为s 米,小明行走的时间为x 分钟.1y 、2y 与x 之间的函数图象如图1,s 与x 之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中2y (米)与x (分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s (米)与x (分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s (米)与x (分钟)之间的函数图象,并确定a 的值.
25. (本题8分)如图①,将ABCD 置于直角坐标系中,其中BC 边在x 轴上(B 在C 的左侧),点D 坐标为(0,4),直线MN :y=x ﹣6沿着x 轴的负方向以每秒1个单位的长度平移,设在平移过程中该直线被□ABC D 截得的线段长度为m ,平移时间为t (s ),m 与t 的函数图象如图②所示.
(1)填空:点C 的坐标为▲;在平移过程中,该直线先经过B 、D 中的哪一点?▲;(填“B”或“D”)
(2)点B 的坐标为▲,a=▲.
(3)求图②中线段EF 的函数关系式;
26.(本题8分)在平面直角坐标系中,点P从原点O出发,每次向上平移2个单位长度或向右平移1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点P从点O出发,平移1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
(2)观察发现:
任一次平移,点P可能到达的点在我们学过的一种函数的图象上,如:平移1次后在函数▲的图象上;平移2次后在函数▲的图象上…由此我们知道,平移n次后在函数▲的图象上.(请填写相应的解析式)
(3)探索运用:
点P从点O出发经过n次平移后,到达直线y=x上的点Q,且平移的路径长不小于50,不超过56,求点Q的坐标.。