递归和分治法
递归与分治算法心得
递归与分治算法心得
递归与分治算法是算法设计中常见的两种方法,它们在解决问题时都采用了“分而治之”的思想,将问题分解成更小的子问题,然后通过递归调用或者合并子问题的解来得到原问题的解。
通过我的学习和实践,我深刻认识到了递归与分治算法的重要性和优势。
首先,递归算法可以使问题的描述更加简单明了。
通过将问题转化为自身的子问题,我们可以建立起更为简洁优美的数学模型。
其次,递归算法可以使问题的解决过程更加自然。
在递归过程中,我们可以利用已知的子问题解决同类问题,实现代码的复用和模块化。
此外,递归算法还可以解决一些重要的数学问题,如斐波那契数列和二分查找等。
分治算法则更加注重问题的分解和合并。
它将问题划分成若干个规模相同或相近的子问题,然后将子问题的解合并起来得到原问题的解。
这种方法在解决某些复杂问题时具有很大的优势。
例如,在排序算法中,归并排序采用了分治算法的思想,将待排序的序列分成两个长度相等的子序列,然后递归地对子序列排序,最后将子序列合并成有序序列。
这种算法具有较高的稳定性和灵活性,常常被应用于海量数据的排序任务中。
总之,递归与分治算法是算法设计中不可或缺的两种方法。
在解决问题时,我们应该根据具体情况选择合适的算法,并在实践中不断探索、总结和优化。
只有这样,我们才能更好地应对日益复杂多变的计算机科学挑战。
五大常用算法
回溯法
基本概念 回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发 现原先选择并不是最优或达不到目标,就退回一步重新选择,这种走不通就退回再走的方 法称为回溯法。 基本思想 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解 空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结 点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回 溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍 才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束 。
Your company slogan
贪心算法
例 在漆黑的夜里,四位旅行者来到了一座狭窄而且没有护栏的桥边。如果不借助手电筒的 话,大家是无论如何也不敢过桥去的。不幸的是,四个人一共只带了一只手电筒,而桥窄得 只够让两个人同时过。如果各自单独过桥的话,四人所需要的时间分别是1、2、5、8分钟; 而如果两人同时过桥,所需要的时间就是走得比较慢的那个人单独行动时所需的时间。问题 是,如何设计一个方案,让这四人尽快过桥 。
2012年林清华等人提出一种新型快速中值滤波算法,主要应用于医学图像.文中方法利 用中值滤波算法对滤波窗口内其他像素点的排列顺序不作要求的特点,将基于排序寻找中 值的过程转换为基于分治查找中值的过程。在分治查找过程中,利用医学图像未受干扰时 图像中像素值的变化是渐变的特性,优先选用中心点附近的像素值进行分治查找,以达到
图1 动态规划决策过程示意图 实际应用中可以按以下几个简化的步骤进行设计: (1)分析最优解的性质,并刻画其结构特征。 (2)递归的定义最优解。 (3)以自底向上或自顶向下的记忆化方式(备忘录法)计算出最优值。 (4)根据计算最优值时得到的信息B→ 2 A←1 AC → 5 A←1 AD → 8 一共就是2+1+5+1+8=17分钟。
递归和分治法
递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。
它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。
下面,我们来详细了解一下递归和分治法。
1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。
递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。
分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。
主函数负责将问题分解,子函数负责解决子问题。
2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。
(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。
3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。
分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。
4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。
分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。
总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。
递归与分治ppt课件
2023/10/8
计算机算法设计与分析
3
Hanoi塔问题的时间复杂性
n Hanoi塔问题的时间复杂性为O(2n)。 n 证明:对n归纳证明move(n) = 2n – 1。 n 归纳基础:当n = 1, move(1) = 1 = 21 – 1。 n 归纳假设:当n k, move(n) = 2n – 1。 n 归纳步骤:当n= k + 1,移动次数为
2、除法,即n / b,的形式
2023/11/4
计算机算法设计与分析
21
递归算法的时间复杂性
n 若~为减法,即n – b,则有:
T(n) = aT(n – b) + D(n)
= a(aT(n – 2b) + D(n – b)) + D(n) =
k–1
k–1
= akT(1) + ai D(n – ib) = ak + ai D(n – ib)
n q最(n简, m单)情{ 形1:(1) q(n, 1)=1, q(1, mn)==1 n或, mm≥1=;1 n 递q(iin归ff,((mnn关)<=系==1):1q1)||(|((+|nm2(,)qmm<(qn=–(1,n1=)n,)–+1n1)q))(=rrnee–1ttmuu+rr,nqnm(01n);;, nnn>–≤1m)m,>n1>1; n 产i生f (n的=新= 情1) 况|| (:n < m) return 1 + q(n, n–1); n (3r)eqtu(nr,nmq)(n=,qm(n–,1m) +–1q)(n+–qm(,nm–m);, m} ), n>m>1 n (整4)数q(nn的, m划)分= q数(nρ,(n),=nq<(nm, n。)。
算法设计与分析:递归与分治法-实验报告(总8页)
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
算法之2章递归与分治
算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。
在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。
这自然导致递归过程的产生。
分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。
3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。
(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。
4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。
二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。
教你如何简单解决递归问题
教你如何简单解决递归问题递归问题是计算机科学中常见的一个概念,它在编程中经常被用到。
虽然递归算法能够帮助我们解决一些复杂的问题,但是在实际应用中,递归问题可能会导致效率低下、内存溢出等不良后果。
针对这些问题,本文将介绍一些简单有效的方法,帮助你解决递归问题,以提高程序的性能和效率。
1. 迭代代替递归递归算法的本质是函数不断调用自身,但是函数调用会产生额外的开销,尤其是在处理大规模的数据时。
为了简化递归问题,我们可以考虑使用迭代代替递归。
迭代算法使用循环结构来代替函数调用,从而减少开销,提高效率。
2. 减少递归深度递归算法的一个问题是递归深度过深,可能导致栈溢出。
为了解决这个问题,我们可以通过减少递归深度来降低风险。
一种常见的方法是使用尾递归优化。
尾递归是指在递归函数的最后一步调用自身,这样编译器可以将递归转化为迭代,从而减少递归深度。
3. 缓存中间结果递归算法的另一个问题是重复计算相同的子问题,这样会浪费时间和计算资源。
为了解决这个问题,我们可以使用缓存来存储中间结果。
缓存可以避免重复计算,提高计算效率。
一种常见的缓存方法是使用哈希表来记录已经计算过的结果,这样可以在下次遇到相同的子问题时直接查表而不需要重新计算。
4. 分治法分治法是一种常用的解决递归问题的方法。
其基本思想是将问题划分为多个子问题,然后分别解决这些子问题,并将结果合并得到最终的解。
分治法可以通过递归的方式来实现,但是由于分而治之的特点,它可以显著降低递归的复杂度。
5. 动态规划动态规划是一种高效解决递归问题的方法。
它基于问题的最优子结构特性,通过将问题分解为相互重叠的子问题,并使用递推的方式求解。
与递归算法相比,动态规划算法可以避免重复计算,提高效率。
总结:递归问题在计算机科学中广泛存在,但是在实际应用中,我们经常需要解决递归问题导致的效率低下、内存溢出等问题。
通过使用迭代代替递归、减少递归深度、缓存中间结果、分治法和动态规划等方法,我们可以简单解决递归问题,提高程序的性能和效率。
算法设计与分析(霍红卫)-第2章-分治法
第2章 分 治 法
我们可以很容易解决这个问题。利用这样一个事实:渐近 表示法只要求对n≥n0,T(n)≤cn lb n成立,其中n0是一个可以选择 的常数。由于对于n>3,递归方程并不直接依赖T(1),因此可设 n0=2,选择T(2)和T(3)作为归纳证明中的边界条件。由递归方程 可得T(2)=4和T(3)=5。此时只要选择c≥2,就会使得T(2)≤c·2·lb 2 和 T(3)≤c·3·lb 3 成 立 。 因 此 , 只 要 选 择 n0=2 和 c≥2 , 则 有 T(n)≤cn lb n成立。
3ic(n/4i)2=(3/16) icn2 i=0,1,…,log4n-1
深度为log4n的最后一层有3log4 n nlog4 3 个结点,每个结点的
开销为T(1),该层总开销为 nlog4 3T (1) ,即 Θ(nlog4 3)。
第2章 分 治 法
将所有层的开销相加得到整棵树的开销:
T (n) cn2
T(n)=2T(n/2)+n ≤2(c[n/2]lb[n/2])+n =cn lb n/2+n =cn lb n-cn lb 2+n =cn lb n-cn+n =cn lb n-(c-1)n
最后一步在c≥1时成立。≤cn lb n
第2章 分 治 法
下面证明猜测对于边界条件成立, 即证明对于选择的常 数c,T(n)≤cn lb n对于边界条件成立。 这个要求有时会产生 一些问题。 假设T(1)=1是递归方程的惟一边界条件,那么对 于n=1,T(1)≤c·1·lb 1=0与T(1)=1发生矛盾。因此,归纳法中 的归纳基础不成立。
3
cn2
3
2
cn2
3
递归和分治法
递归和分治法摘要:一、递归与分治法的概念1.递归:函数调用自身的思想2.分治法:把一个大问题分解成若干个小问题二、递归与分治法的联系与区别1.递归通常作为分治法的实现方式2.分治法不一定要用递归实现三、递归与分治法的应用实例1.快速排序算法2.归并排序算法3.汉诺塔问题正文:递归和分治法是两种在计算机科学中经常使用的解决问题的方法。
递归是一种函数调用自身的思想,即函数在执行过程中,会调用自身来完成某些操作。
而分治法则是把一个大问题分解成若干个小问题,然后逐个解决这些小问题,最后再把它们的解合并,得到大问题的解。
这两种方法在某些情况下可以相互转化,递归通常作为分治法的实现方式,但分治法不一定要用递归实现。
递归与分治法之间的联系在于,递归通常是分治法的实现方式。
在分治法中,我们会把一个大问题分解成若干个小问题,然后通过递归的方式,逐个解决这些小问题。
最后,再把它们的解合并,得到大问题的解。
在这个过程中,递归函数的调用栈会随着问题规模的减小而减小,最终回到原点,从而完成问题的求解。
然而,分治法并不一定要用递归实现。
在一些情况下,我们可以通过迭代的方式,逐个解决小问题,然后把它们的解合并。
这种方式虽然不是通过递归函数调用自身来实现的,但它仍然符合分治法的思想,即把大问题分解成小问题,逐个解决。
递归和分治法在实际问题中有很多应用。
例如,快速排序算法和归并排序算法都是基于分治法的思想设计的。
在快速排序算法中,我们选择一个基准元素,然后把数组中小于基准的元素放在左边,大于基准的元素放在右边,再对左右两个子数组递归地执行相同的操作,直到数组有序。
而在归并排序算法中,我们同样把数组分成左右两个子数组,然后递归地对它们进行排序,最后再把排序好的子数组合并成一个有序的数组。
另一个例子是汉诺塔问题。
在这个问题中,有三个柱子和一个大小不同的圆盘。
要求把圆盘从第一个柱子移动到第三个柱子,每次只能移动一个圆盘,并且大盘不能放在小盘上。
递归与分治算法
递归与分治算法
递归和分治算法是计算机科学中两种常见的算法设计技术。
递归是一种直接或间接调用自身函数或者方法的算法。
在递归算法中,函数在其定义中使用了函数自身的调用。
递归算法通常用于解决需要重复执行相同任务的问题,例如遍历树结构、递归搜索等。
递归算法的优点是代码简洁、易于理解,但需要注意递归深度的限制以及可能引发栈溢出的问题。
分治算法是一种将问题分解为多个子问题,并分别解决子问题的算法。
分治算法通过将大问题分解为小问题,并将小问题的解合并成大问题的解来解决问题。
分治算法通常用于排序、查找、矩阵乘法等问题。
分治算法的优点是可以将复杂问题分解为简单问题,降低问题的复杂度,但需要注意分解的子问题必须是相互独立的。
在实际应用中,递归和分治算法通常结合使用。
例如,快速排序算法就是一种典型的分治算法,它通过选择一个基准元素,将数组分为两个子数组,并对每个子数组递归地进行排序,最终合并两个有序子数组得到排序后的数组。
总之,递归和分治算法是计算机科学中重要的算法设计技术,它们可以有效地解决许多复杂的问题。
在实际应用中,需要根据问题的特点选择合适的算法,并注意算法的时间复杂度和空间复杂度。
启发式规则,分治法,递归,汉诺塔,排序算法
4.3 排序问题中的分治法
4.3.1 4.3.2 归并排序 快速排序
4.3.1 归并排序
二路归并排序的分治策略是: (1)划分:将待排序序列r1, r2, …, rn划分为两个 长度相等的子序列r1, …, rn/2和rn/2+1, …, rn; (2)求解子问题:分别对这两个子序列进行排 序,得到两个有序子序列;
二路归并排序的合并步的时间复杂性为O(n), 所以,二路归并排序算法存在如下递推式:
1 T (n) = 2T ( n 2 ) + n
n =1 n >1
根据1.2.4节的主定理,二路归并排序的时间代价是 O(nlog2n)。 二路归并排序在合并过程中需要与原始记录序列同 样数量的存储空间,因此其空间复杂性为O(n)。
第4章 分治法
4.1 概 述
4.2 递 归 4.3 排序问题中的分治法 4.4 组合问题中的分治法 4.5 几何问题中的分治法
4.1 概 述
4.1.1 分治法的设计思想 4.1.2 分治法的求解过程
4.1.1 分治法的设计思想
将一个难以直接解决的大问题,划分成一些规模较小的
子问题,以便各个击破,分而治之。更一般地说,将要求解
4.2 递 归
4.2.1 递归的定义
4.2.2 递归函数的运行轨迹
4.2.3 递归函数的内部执行过程
4.2.1 递归的定义
递归(Recursion)就是子程序(或函数)直 接调用自己或通过一系列调用语句间接调用自己, 是一种描述问题和解决问题的基本方法。 递归有两个基本要素: ⑴ 边界条件:确定递归到何时终止; ⑵ 递归模式:大问题是如何分解为小问题的。
分治法的典型情况
原问题 的规模是n
子问题1 的规模是n/2
递归和分治区别
递归和分治区别分治法的基本思想:将⼀个规模为n的问题分解为k个规模较⼩的⼦问题,这些⼦问题互相独⽴且与原问题相同。
递归地解这些问题,然后将各个⼦问题的解合并成原问题的解。
分治法所能解决的问题⼀般具有以下⼏个特征:该问题的规模缩⼩到⼀定的程度就可以容易地解决;因为问题的计算复杂性⼀般是随着问题规模的增加⽽增加,因此⼤部分问题满⾜这个特征。
该问题可以分解为若⼲个规模较⼩的相同问题,即该问题具有最优⼦结构性质这条特征是应⽤分治法的前提,它也是⼤多数问题可以满⾜的,此特征反映了递归思想的应⽤利⽤该问题分解出的⼦问题的解可以合并为该问题的解;能否利⽤分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,⽽不具备第三条特征,则可以考虑贪⼼算法或动态规划。
该问题所分解出的各个⼦问题是相互独⽴的,即⼦问题之间不包含公共的⼦问题。
这条特征涉及到分治法的效率,如果各⼦问题是不独⽴的,则分治法要做许多不必要的⼯作,重复地解公共的⼦问题,此时虽然也可⽤分治法,但⼀般⽤动态规划较好(例如记忆化搜索是分治转化为动归的⼀个经典, 要注意)。
分治法的复杂性分析:⼀个分治法将规模为n的问题分成k个规模为n/m的⼦问题去解时间复杂度多为O(n)递归的优点:结构清晰,可读性强,⽽且容易⽤数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很⼤⽅便。
缺点:递归算法的运⾏效率较低,⽆论是耗费的计算时间还是占⽤的存储空间都⽐⾮递归算法要多。
解决⽅法:在递归算法中消除递归调⽤,使其转化为⾮递归算法。
采⽤⼀个⽤户定义的栈来模拟系统的递归调⽤⼯作栈。
该⽅法通⽤性强,但本质上还是递归,只不过⼈⼯做了本来由编译器做的事情,优化效果不明显。
⽤递推来实现递归函数。
通过变换能将⼀些递归转化为尾递归(尾递归是极其重要的,不⽤尾递归,函数的堆栈耗⽤难以估量,需要保存很多中间函数的堆栈。
⽐如f(n, sum) = f(n-1) + value(n) + sum; 会保存n个函数调⽤堆栈,⽽使⽤尾递归f(n, sum) = f(n-1, sum+value(n)); 这样则只保留后⼀个函数堆栈即可,之前的可优化删去。
算法分类总结
算法分类总结1.分治法 关键词:递归(递归式)、⼤问题分解成⼦问题(⼦问题相互独⽴,且与原问题相同)、合并(⼦问题的解合并成原问题的解) 步骤: 1.分解。
将原问题分解成⼀系列⼦问题。
2.求解。
递归地求解各⼦问题。
若⼦问题⾜够⼩,则直接求解。
(递归式) 3.合并。
将⼦问题的解合并成原问题的解 ⽰例:归并排序;最⼤⼦段和问题;循环赛⽇程安排2.动态规划法 关键词:递归(递归式)、表记录(已解决的⼦问题的答案)、根据⼦问题求解原问题的解(⼦问题不独⽴)、最优解(可选项) 步骤: 1.找出最优解的性质,刻画其结构特征; 2.递归地定义最优解; 3.以⾃底向上的⽅式计算出最优值; 4.根据计算最优值时得到的信息,构造⼀个最优解 只需求出最优值,步骤4可以省略;若需求出问题的⼀个最优解,则必须执⾏步骤4。
适⽤环境: 1.最优⼦结构。
⼀个问题的最优解包含了其⼦问题的最优解。
2.重叠⼦问题。
原问题的递归算法可以反复地解同样的⼦问题,⽽不是总是产⽣新的⼦问题 ⽰例:0-1背包问题;矩阵链乘问题;最长公共⼦序列(LCS);3.贪⼼法 关键词:局部最优(较好的近似最优解,贪⼼)、简单、根据当前信息最选择,且不改变、 使⽤环境: 1.最优⼦结构。
⼀个问题的最优解包含了其⼦问题的最优解。
2.贪⼼选择性质。
问题的整体最优解可以通过⼀系列局部最优的选择(贪⼼选择)来得到 ⽰例:活动选择问题、背包问题、多机调度问题4.回溯法 关键词:通⽤的解题法、解空间树(深度优先遍历)、界限函数、所有解(找出满⾜条件的所有解) 步骤: 1.针对所给问题,定义问题的解空间。
问题的解空间应⾄少包含问题的⼀个(最优)解 2.确定易于搜索的解空间结构。
通常将解空间表⽰为树、图;解空间树的第i层到第i+1层边上的标号给出了变量的值;从树根到叶⼦的任⼀路径表⽰解空间的⼀个元素。
3.以深度优先的⽅式搜索整个解空间。
如果当前宽展节点处为死节点,则回溯⾄最近的⼀个活节点处。
算法设计与分析实验报告
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
数组反转算法
left = reverse_array(arr[:mid])
right = reverse_array(arr[mid:])
return right + left
```
以上就是几种常见的数组反转算法。根据实际情况选择适合的算法可以提高程序的效率。希望本文对您理解数组反转算法有所帮助!
```
二、辅助数组法
辅助数组法是一种使用额外空间的数组反转算法。其基本思路是创建一个与原数组长度相同的辅助数组,将原数组中的元素按相反的顺序存放到辅助数组中。下面是辅助数组法的具体步骤:
1.创建一个与原数组长度相同的辅助数组,用于存放反转后的元素。
2.从原数组的最后一个元素开始,依次将元素存放到辅助数组中。
1.定义两个指针left和right,初始时分别指向数组的首尾元素。
2.交换left和right指向的元素。
3. left指针向右移动一位,right指针向左移动一位。
4.重复步骤2和步骤3,直到left指针大于或等于right指针。
5.数组反转完成。
逐位交换法的时间复杂度为O(n),其中n是数组的长度。以下是逐位交换法的示例代码:
3.返回辅助数组作为结果。
辅助数组法的时间复杂度为O(n),其中n是数组的长度。以下是辅助数组法的示例代码:
```python
def reverse_array(arr):
n = len(arr)
result = [0] n
for i in range(n):
result[i] = arr[n - 1 - i]
return result
```
三、分治法
分治法是一种使用递归思想的数组反转算法。其基本思路是将数组划分为两个子问题,分别对子数组进行反转,并将结果合并起来。下面是分治法的具体步骤:
五大常用算法简介
五⼤常⽤算法简介1、递归与分治递归算法:直接或者间接不断反复调⽤⾃⾝来达到解决问题的⽅法。
这就要求原始问题可以分解成相同问题的⼦问题。
⽰例:阶乘、斐波纳契数列、汉诺塔问题斐波纳契数列:⼜称黄⾦分割数列,指的是这样⼀个数列:1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的⽅法定义:F1=1,F2=1,Fn=F(n-1)+F(n-2)(n>2,n∈N*))。
分治算法:待解决复杂的问题能够简化为⼏个若⼲个⼩规模相同的问题,然后逐步划分,达到易于解决的程度。
1、将原问题分解为n个规模较⼩的⼦问题,各⼦问题间独⽴存在,并且与原问题形式相同2、递归的解决各个⼦问题3、将各个⼦问题的解合并得到原问题的解⽰例:棋盘覆盖、找出伪币、求最值棋盘覆盖:在⼀个(2k)*(2k)个⽅格组成的棋盘上,有⼀个特殊⽅格与其他⽅格不同,称为特殊⽅格,称这样的棋盘为⼀个特殊棋盘。
要求对棋盘的其余部分⽤L型⽅块填满2、动态规划动态规划与分治法相似,都是组合⼦问题的解来解决原问题的解,与分治法的不同在于:分治法的⼦问题是相互独⽴存在的,⽽动态规划应⽤于⼦问题重叠的情况。
动态规划⽅法通常⽤来求解最优化问题,这类问题可以有很多可⾏解,每个解都有⼀个值,找到具有最优值的解称为问题的⼀个最优解,⽽不是最优解,可能有多个解都达到最优值。
设计动态规划算法的步骤:1、刻画⼀个最优解的结构特征2、递归地定义最优解的值3、计算最优解的值,通常采⽤⾃底向上的⽅法4、利⽤算出的信息构造⼀个最优解⽰例:0-1背包问题,钢条切割问题等。
3、贪⼼算法贪⼼算法是就问题⽽⾔,选择当下最好的选择,⽽不从整体最优考虑,通过局部最优希望导致全局最优。
贪⼼算法的要素1)贪⼼选择性质:可以通过局部最优选择来构造全局最优解。
换⾔之,直接做出在当前问题中看来最优的选择,⽽不必考虑⼦问题的解。
2)最优⼦结构:⼀个问题的最优解包含其⼦问题的最优解。
c++算法 概念
c++算法概念C++是一种高级编程语言,广泛应用于算法设计和开发中。
算法是一组解决特定问题的有序步骤,C++提供了丰富的数据结构和算法库,使得算法的实现变得更加简单和高效。
C++中的算法可以分为两大类:标准库算法和自定义算法。
标准库算法是C++标准库提供的一组通用算法,包括排序、查找、合并等功能。
这些算法已经在底层进行了高度的优化,可以快速处理大规模数据集。
自定义算法是根据具体问题的需求编写的算法,通常需要根据具体情况进行优化。
C++中的算法设计需要考虑以下几个方面:1.时间复杂度:算法的时间复杂度是衡量算法执行时间的指标,通常使用大O表示法表示。
较低的时间复杂度意味着算法执行速度更快。
2.空间复杂度:算法的空间复杂度是衡量算法所需内存空间的指标。
较低的空间复杂度意味着算法占用的内存更少。
3.数据结构选择:C++提供了多种数据结构,如数组、链表、堆、栈等。
在算法设计中,需要选择适合问题特性的数据结构,以提高算法的效率。
4.算法优化:对于一些复杂的问题,常常需要对算法进行优化。
例如,使用递归算法可以简化问题的表达,但也可能造成性能问题。
对算法进行优化可以提高程序的效率。
C++中的算法设计可以通过以下几种方式实现:1.迭代:迭代是一种重复执行一段代码的方式。
使用循环结构可以实现迭代算法,例如for循环和while循环。
2.递归:递归是一种通过调用自身来解决问题的方法。
递归算法可以简化问题的表达,但需要注意递归深度和递归结束条件,以避免出现无限递归的情况。
3.分治法:分治法是将一个大问题分解成多个小问题,并将小问题的解合并成大问题的解。
分治法常常使用递归算法来实现,例如归并排序和快速排序。
4.动态规划:动态规划是通过将问题分解成多个子问题,并将子问题的解保存起来,以避免重复计算。
动态规划常常使用迭代算法来实现,例如背包问题和斐波那契数列。
总之,C++中的算法设计是一门重要的技能,它可以帮助我们解决复杂的问题,并提高程序的效率。
leetcode解题方法总结
解题方法在LeetCode上取决于问题的类型和难度。
LeetCode包含各种算法和数据结构问题,因此解题方法也会有所不同。
以下是一些常见的LeetCode解题方法总结:1.暴力法:针对问题的所有可能情况逐一尝试。
虽然不是最高效的方法,但在某些情况下可以作为解题的起点。
2.递归:将问题分解为子问题,通过递归调用来解决。
递归通常用于解决树、图等数据结构相关的问题。
3.贪心算法:在每一步选择中都采取当前状态下最优的选择,从而希望能够找到全局最优解。
贪心算法常用于一些优化问题。
4.动态规划:将问题分解为子问题,并将子问题的解保存下来,以避免重复计算。
动态规划通常用于解决最优子结构问题,例如最长递增子序列、背包问题等。
5.分治法:将问题分解为多个独立且相似的子问题,递归地解决这些子问题,然后组合它们的解来解决原始问题。
分治法通常用于解决数组、链表、树等问题。
6.双指针法:使用两个指针在数组或链表中移动,以解决一些查找、排序、判定问题。
双指针法通常用于解决数组中的两数之和、链表中的环问题等。
7.栈和队列:使用栈(Stack)和队列(Queue)来解决一些需要后进先出或先进先出顺序的问题。
栈和队列常用于解决括号匹配、逆波兰表达式计算等问题。
8.哈希表:使用哈希表来存储和查找数据,以提高查找效率。
哈希表通常用于解决一些查找、去重、计数等问题。
9.位运算:使用位运算来解决一些位操作相关的问题,如位与、位或、位异或等。
位运算常用于解决位运算、二进制操作等问题。
10.图算法:使用深度优先搜索(DFS)和广度优先搜索(BFS)等图算法来解决图相关的问题。
图算法常用于解决连通性、遍历等问题。
11.排序:使用排序算法解决一些排序相关的问题。
排序算法常用于解决查找、求中位数等问题。
在解LeetCode题目时,通常需要结合问题的具体特点选择合适的解题方法。
熟悉不同的算法和数据结构,并灵活运用它们,有助于更高效地解决各类问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
递归和分治法
摘要:
一、递归与分治法的概念
1.递归:函数调用自身的思想
2.分治法:把一个大问题分解成若干个小问题
二、递归与分治法的联系与区别
1.递归通常作为分治法的实现方式
2.分治法不一定要用递归实现
三、递归与分治法的应用实例
1.快速排序算法
2.归并排序算法
3.汉诺塔问题
正文:
递归和分治法是两种在计算机科学中经常使用的解决问题的方法。
递归是一种函数调用自身的思想,即函数在执行过程中,会调用自身来完成某些操作。
而分治法则是把一个大问题分解成若干个小问题,然后逐个解决这些小问题,最后再把它们的解合并,得到大问题的解。
这两种方法在某些情况下可以相互转化,递归通常作为分治法的实现方式,但分治法不一定要用递归实现。
递归与分治法之间的联系在于,递归通常是分治法的实现方式。
在分治法中,我们会把一个大问题分解成若干个小问题,然后通过递归的方式,逐个解决这些小问题。
最后,再把它们的解合并,得到大问题的解。
在这个过程中,
递归函数的调用栈会随着问题规模的减小而减小,最终回到原点,从而完成问题的求解。
然而,分治法并不一定要用递归实现。
在一些情况下,我们可以通过迭代的方式,逐个解决小问题,然后把它们的解合并。
这种方式虽然不是通过递归函数调用自身来实现的,但它仍然符合分治法的思想,即把大问题分解成小问题,逐个解决。
递归和分治法在实际问题中有很多应用。
例如,快速排序算法和归并排序算法都是基于分治法的思想设计的。
在快速排序算法中,我们选择一个基准元素,然后把数组中小于基准的元素放在左边,大于基准的元素放在右边,再对左右两个子数组递归地执行相同的操作,直到数组有序。
而在归并排序算法中,我们同样把数组分成左右两个子数组,然后递归地对它们进行排序,最后再把排序好的子数组合并成一个有序的数组。
另一个例子是汉诺塔问题。
在这个问题中,有三个柱子和一个大小不同的圆盘。
要求把圆盘从第一个柱子移动到第三个柱子,每次只能移动一个圆盘,并且大盘不能放在小盘上。
解决这个问题的方式也是采用分治法,通过递归地移动圆盘,最终把圆盘从第一个柱子移动到第三个柱子。
总之,递归和分治法是两种在计算机科学中经常使用的解决问题的方法。
递归通常作为分治法的实现方式,但分治法不一定要用递归实现。