信号与系统感想

合集下载

浅谈《信号与系统》课程学习心得

浅谈《信号与系统》课程学习心得

浅谈《信号与系统》课程学习心得信号与系统的课程是大学里一门非常重要的基础课程,信号与系统课程以其强有力的工具性、应用性等特点,成为高等院校工科各专业的重要课程。

为帮助同学们在较短的时间内掌握好这门课程,我谈几点学习心得。

第一:重视概念和原理的理解。

这是一个老生常谈的问题,也是很多同学难以理解的问题。

其实理解概念最好的方法就是结合实际。

因此,在学习过程中,要善于把所学知识联系起来,尽量从日常生活、生产中发现问题并自己去解决问题。

当你真正解决了问题后,相信你会对概念的理解更加透彻。

这种方法看似简单,但往往很多同学没能做到,或者做到了却不能灵活运用。

第二:多思考。

这一点很多同学都知道,但在实际过程中往往没有坚持下去。

其实只要养成良好的习惯,遇到问题后认真思考,你会慢慢地发现自己的进步,成绩也会越来越好。

第三:要有意识培养自己归纳总结的习惯。

很多同学遇到一个问题,马上就开始想它有哪些表达式,然后就根据自己已有的表达式开始套用,殊不知很多时候一个问题的解决并不需要那么多复杂的公式和数字。

归纳总结的习惯能让你对问题的分析由浅入深,层层递进,有助于对问题的把握。

信号与系统这门课主要是对连续系统与离散系统之间的转换,如信号的时域和频域表示及傅立叶变换,而不是对这两个连续时间系统本身。

信号与系统这门课的主要目的在于培养和训练学生用时域和频域来分析和处理信号的能力,特别注重学生的抽象思维能力的培养。

在讲授过程中,要注重培养学生良好的思维品质和科学的研究方法,特别是“分类讨论”的科学研究方法。

信号与系统的主要内容包括以下四部分:信号与系统的概念;系统的时域分析;系统的频域分析;系统的性能分析。

这门课教学效果的优劣,对今后的课堂教学以至毕业设计都会产生直接影响。

因此,在课堂教学中,一定要认真备课,使用生动形象的语言,引导学生对概念、定理进行多次反复地强化,使他们的脑海里留下深刻的印象。

通过一段时间的努力,要求学生对信号与系统的课程基本内容有比较清晰的了解,对其核心概念和基本原理有比较深入的认识,提高分析问题和解决问题的能力,为后继课程打下扎实的基础。

《信号与系统》读后感

《信号与系统》读后感

《信号与系统》读后感《信号与系统》是一本电子信息类本科阶段的专业基础课教材,深入探讨了信号与系统的基本概念、理论和分析方法。

阅读这本书,让我对信号与系统有了更为系统和深入的理解,也为我后续的学习打下了坚实的基础。

首先,书中对信号与系统的基本概念进行了清晰、准确的阐述。

信号是信息的载体,而系统则是对信号进行处理的工具。

通过对信号的时域和频域分析,以及对系统的冲激响应和传递函数等内容的介绍,我逐渐理解了信号与系统的基本特性和工作原理。

其次,书中注重理论与实践的结合。

在介绍各种分析方法时,作者不仅详细讲解了它们的原理和应用步骤,还给出了丰富的实例和习题。

这些实例和习题不仅让我更好地理解了理论知识,也让我学会了如何运用这些理论去解决实际问题。

此外,书中还介绍了MATLAB等工程软件在信号与系统分析中的应用,这使我能够更加方便地进行实验和验证。

在阅读过程中,我还深刻感受到信号与系统在实际应用中的重要性。

无论是在通信、控制、图像处理等领域,还是在日常生活中的各种电子设备中,都离不开信号与系统的应用。

通过学习这本书,我不仅了解了信号与系统的基本原理,也学会了如何分析和设计信号与系统,使其能够更好地服务于人类的生产和生活。

同时,我也注意到这本书的一些特点。

它的结构严谨、对称,尤其是在介绍拉普拉斯变换与Z变换时,简直可以列表逐项比较。

此外,书中对通信系统的介绍也为后续的通信原理中的调制部分打下了基础。

然而,这本书也有一些不足之处,例如缺乏对流图和状态变量分析的介绍,以及对1阶和2阶系统的分析显得有些鸡肋,实际使用的滤波器都是高阶系统的。

总的来说,《信号与系统》是一本非常优秀的教材,它以系统的方式介绍了信号与系统的基本概念、理论和分析方法,让我对信号与系统有了更为深入和系统的理解。

同时,书中也注重理论与实践的结合,让我能够更好地应用所学知识解决实际问题。

虽然有一些不足之处,但这并不影响它作为一本优秀的教材所带来的价值和影响。

信号与系统课设心得体会

信号与系统课设心得体会

信号与系统课设心得体会信号与系统是电子信息类专业的一门重要课程,本课程主要涉及数字信号处理、模拟信号处理以及系统分析与设计等方面的知识。

在学习过程中,我们不仅通过理论学习了信号与系统的基本概念和原理,还进行了一些实践操作,完成了信号与系统的课设项目。

通过这个课设项目,我对信号与系统有了更深入的理解,也积累了一些实践经验。

以下是我的心得体会:首先,信号与系统的理论知识需要与实际应用相结合。

在课设项目中,我们需要根据实际问题设计信号处理系统,并对系统进行仿真和优化。

在这个过程中,只有理解信号与系统的基本原理,并能够将其应用到实际问题中,才能够设计出可行的解决方案。

因此,在学习信号与系统的理论知识时,我们应该多思考如何将这些理论知识应用到实际问题中,在实践中进行验证和优化。

其次,信号与系统的实验操作是加深理解的重要途径。

在信号与系统课程中,我们进行了一些实验,比如设计FIR滤波器、进行傅里叶变换等。

通过实际操作,我们可以更直观地感受到信号与系统的特性和处理方法。

实验操作让抽象的理论知识更具体化,增强了对信号与系统的理解。

因此,在学习过程中,我们应该积极参与实验操作,尽可能多地进行实践。

此外,信号与系统的问题解决能力需要锻炼。

在课设项目中,我们需要独立设计信号处理系统,并解决可能出现的问题。

这就要求我们具备较强的问题解决能力。

在实际操作中,我们可能会遇到各种各样的问题,比如仿真结果不符合预期、系统性能不稳定等。

在解决这些问题的过程中,我们需要运用信号与系统的知识和分析方法,找出问题所在,并采取相应的措施进行优化。

这个过程既是对理论知识的应用,也是对问题解决能力的锻炼。

最后,团队合作能力在信号与系统课设中也尤为重要。

在课设项目中,我们通常是以小组的形式进行工作。

每个人都承担着不同的任务,需要与其他成员密切合作,共同完成项目。

团队合作能力的好坏直接影响到项目的进展和成果的质量。

在团队中,我们需要相互协作、互相支持,合理分工,共同完成任务。

信号与系统学习心得

信号与系统学习心得

信号与系统学习心得经过几个星期对《信号与系统》的学习与认知,让我逐步的走进这充满神秘色彩的学科。

现在我对于这么学科已经有了一点浅浅的认识。

下面我就谈谈我对这门学科的认识。

所谓系统,是由若干相互联系、相互作用的单元组成的具有一定功能的有机整体。

根据系统处理的信号形式的不同,系统可分为三大类:连续时间系统、离散时间系统和混合系统。

而系统按其工作性质来说,可分为线性系统与非线性系统、时变系统与时不变系统、因果系统与非因果系统。

信号分析的内容十分广泛,分析方法也有多种。

目前最常用、最基本的两种方法是时域法与频域法。

时域法是研究信号的时域特性,如波形的参数、波形的变化、出现时间的先后、持续时间的长短、重复周期的大小和信号的时域分解与合成等、频域法,是将信号变换为另一种形式研究其频域特性。

信号与系统总是相伴存在的,信号经由系统才能传输。

最近我们学到了傅里叶级数。

由于上一学期在《高等数学》中对这一方面知识有了一定的学习,我对这一变换有了一点自己的感悟与认知。

以下就是我对傅里叶级数的一点总结:1.物理意义:付里叶级数是将信号在正交三角函数集上进行分解(投影),如果将指标系列类比为一个正交集,则指标上值的大小可类比为性能在这一指标集上的分解,或投影;分解的目的是为了更好地分析事物的特征,正交集中的每一元素代表一种成分,而分解后对应该元素的系数表征包含该成分的多少2.三角函数形式:)(t f 可以表示成:∑∞=++=+++++++++=111011*********)]sin()cos([)sin()2sin()sin()cos()2cos()cos()(n n n n n t nw b t nw a a t nw b t w b t w b t nw a t w a t w a a t f其中,0a 被称为直流分量)sin()cos(11t nw b t nw a n n +被称为 n 次谐波分量。

dt t f T K dtt f a T T T T ⎰⎰--==2/2/102/2/01111)(1)(dt t nw t f T Ka dtt nw t f a T T n T T n ⎰⎰--==2/2/112/2/11111)cos()(2)cos()(dt t nw t f T Kb dtt nw t f b T T n T T n ⎰⎰--==2/2/112/2/11111)sin()(2)sin()(注:奇函数傅里叶级数中无余弦分量;当f (t )为偶函数时b n =0,不含正弦项,只含直流项和余弦项。

信号与系统课程期末总结

信号与系统课程期末总结

信号与系统课程期末总结本学期历时一学期的《信号与系统》课程快要结束了,感触良多,在此特作如下总结:首先说说刚接触这门课程时的感受吧!《信号与系统》,顾名思义,就是研究信号和信号系统的课程,应该是属于电信学院的基础课程,感觉略紧张。

刚开课老师就说明了我们的学习方针:1.什么是信号?2.什么是系统?3.信号作用于系统产生什么响应?这是我们学习的大方向。

信号是消息的表现形式,消息是信号的具体内容;系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

信号主要分为确定性信号和随机信号,其中,确定性信号对于指定的某一时刻t,可确定以相应的函数值f,若干不连续点除外;随机信号则具有未可预知的不确定性。

信号又可分为时域信号和频域信号;课上,我们了解学习了信号输入系统的响应、连续时间系统的时域分析、离散时间系统的时域分析,还有傅立叶变换、拉普拉斯变换、z变换等等。

其中,三大变换是重中之重,也是《信号与系统》课程里面的难点,另外还有现行时不变系统等等知识点也是重难点,在学习的过程中应用比较广,也比较费劲。

好了,接下来就总结总结这半学期的学习感悟吧!老师多次说学习“三般变换”很重要——傅立叶变换、拉普拉斯变换、z变换,确实,这三般变化是这门课程重要内容,不过学习的过程是艰辛的,亚历山大呀!由此及彼,我也渐渐对学习有了更多感悟:学习过程中,我们不一定什么都懂、什么都明白,可以这样说,有不明白的地方很正常,这在将来的各方面的学习过程中也是必然会经常遇到的,但是无论如何我们不应该放弃,决不能抱着“破罐子破摔”的心态来自暴自弃。

Never !!!还有,我觉得老师经常说的一句话很有道理:“忽视基础将永远落后!”基础很重要,不仅仅是专业课程的学习,在其它方方面面的学习中都是一个真理,忽视基础将永远落后!历时半学期的《信号与系统》课程就快结束,在此,特别感谢王老师的辛勤教导,谢谢您!也同时谢谢助教师兄和师姐,谢谢!。

信号与系统思政心得体会

信号与系统思政心得体会

信号与系统思政心得体会在学习信号与系统的过程中,我深刻认识到信号与系统是一门综合性极强的学科,涉及到多个学科的知识和理论。

在不断的学习中,我不仅掌握了信号与系统的基础知识和理论,更重要的是,我对人生和社会也有了更深刻的认识和思考。

首先,学习信号与系统让我更加注重细节和规律。

信号与系统是一个充满细节的学科,其中的每个理论和公式都有其规律和特点。

对于我这样一个喜欢大而化之的人来说,信号与系统的学习是一个很好的锻炼和提高自己注重细节和规律能力的机会。

通过不断地学习和练习,我发现只有注重细节才能更好地理解和应用信号与系统的相关知识,也只有掌握规律,才能在实际应用中更加娴熟地运用这些知识。

其次,学习信号与系统让我更加注重系统性思维。

信号与系统是一个充满系统性思维的学科,其中的每个理论和公式都有其相互关联的系统结构和体系。

在学习信号与系统的过程中,我学会了如何从整体、系统的角度去看待问题,发现其中的内在联系和规律。

这样的思考方式不仅在学习信号与系统中有很大帮助,在日常生活和工作中也会有很大的作用,可以帮助我更好地理解事物的本质和关系,进而更加理性地做出决策和处理问题。

最后,学习信号与系统也深入了我对教育和未来发展的思考。

信号与系统这门学科要求学生具备较强的数学和物理基础,也需要较为全面的综合素质和创新能力。

在当前的社会背景下,未来的发展需要的正是这样的人才。

因此,我认为,学习信号与系统不仅是一项对自己成长和发展的投资,也是一项对国家和社会发展的关注和支持。

综上,学习信号与系统是一件很有意义的事情,它不仅让我掌握了实用的理论和技能,更在我对人生和社会有了更深刻的认识和思考。

信号与系统的学习,不仅仅是获得知识和技能的过程,更是一种态度和思维方式的培养。

我希望通过不断学习和实践,我能够更好地将信号与系统的理论和方法运用到实际的生活和工作中,为自己和社会创造更多的价值。

信号与系统学习感受

信号与系统学习感受

信号与系统学习感受先说书籍吧,我看的是奥本海姆的《信号与系统》,看完以后最强烈的感受是这本书的结构无比的严谨、对称。

尤其是拉普拉斯变换与Z变换,简直是可以列表逐项比较。

关于傅里叶变换,也讲的非常细致,从傅里叶级数,傅里叶变换,离散时间傅里叶变换层层过度。

与其他书籍不同,作者很早的就提出了系统函数的概念,方便对比分析系统函数与因果、稳定性的关系。

在采样那一章,不仅讲解了采样定理,而且讲解了更为实用的多速率信号处理的例子。

在讲解滤波时,不仅讲了理想滤波器,而且也提到了实际系统实用的非理想滤波器。

通信系统那一章为后续的通信原理中的调制部分也打下了基础。

而且几乎不讲时域分析,因为相比于时域分析,变换域分析是更有力的工具,没必要在上面浪费过多时间。

说一些缺点吧,就是跟现行的课本相比,没有将信号的流图以及状态变量的分析。

而多了系统稳定性的分析和对1阶和2阶系统的分析。

尤其是1阶和2阶系统的分析,感觉有点鸡肋,实际使用的滤波器都是高阶系统的。

而且现在有丰富的工具是可视化的分析,估计成书那会儿还没有吧。

再说视频,我看的是西安电子科技大学的视频。

很有特色,就是一门课分给好几个教授讲,每人只讲1到2章时域分析的时候非常强调线性系统的叠加性,从而引出了系统函数的概念,但是时域分析有些啰嗦,特别后面的算法方法,俨然就是变换域方法的结论。

傅里叶级数讲的稍微有点少,因为作者的观点是用傅里叶变换(包括周期信号的傅里叶变换)统一的分析问题,这一思路个人觉得是有可取之处的。

讲3种变换的老师讲的非常细致,经常动手自己算题。

后面的女老师讲课风格个人不是特别喜欢,不做评价。

最后说一下在我的工作中,这门课的知识的应用,先说傅里叶变换,其实学过数字信号处理都知道,实际使用的是FFT,用处最多的是分析功率谱和OFDM;虽然滤波器用到了很多的Z变换的知识,但是由于现在工具的完备,很多时候只要会调用滤波器设计参数即可了。

信号与系统课程总结(大全5篇)

信号与系统课程总结(大全5篇)

信号与系统课程总结(大全5篇)第一篇:信号与系统课程总结信号与系统总结一信号与系统的基本概念 1信号的概念信号是物质运动的表现形式;在通信系统中,信号是传送各种消息的工具。

2信号的分类①确定信号与随机信号取决于该信号是否能够由确定的数学函数表达②周期信号与非周期信号取决于该信号是否按某一固定周期重复出现③连续信号与离散信号取决于该信号是否在所有连续的时间值上都有定义④因果信号与非因果信号取决于该信号是否为有始信号(即当时间t小于0时,信号f(t)为零,大于0时,才有定义)3系统的概念即由若干相互联系,相互作用的单元组成的具有一定功能的有机整体 4系统的分类无记忆系统:即输出只与同时刻的激励有关记忆系统:输出不仅与同时刻的激励有关,而且与它过去的工作状态有关 5信号与系统的关系相互依存,缺一不可二连续系统的时域分析 1零输入响应与零状态响应零输入响应:仅有该时刻系统本身具有的起始状态引起的响应零状态响应:在起始状态为0的条件下,系统由外加激励信号引起的响应注:系统的全响应等于系统的零输入响应加上零状态响应2冲激响应与阶跃响应单位冲激响应:LTI系统在零状态条件下,由单位冲激响应信号所引起的响应单位阶跃响应:LTI系统在零状态条件下,由单位阶跃响应信号所引起的响应三傅里叶变换的性质与应用 1线性性质2脉冲展缩与频带变化时域压缩,则频域扩展时域扩展,则频域压缩 3信号的延时与相位移动当信号通过系统后仅有时间延迟而波形保持不变,则系统将使信号的所有频率分量相位滞后四拉普拉斯变换1傅里叶变换存在的条件:满足绝对可积条件注:增长的信号不存在傅里叶变换,例如指数函数 2卷积定理表明:两个时域函数卷积对应的拉氏变换为相应两象函数的乘积五系统函数与零、极点分析 1系统稳定性相关结论①稳定:若H(s)的全部极点位于s的左半平面,则系统是稳定的;②临界稳定:若H(s)在虚轴上有s=0的单极点或有一对共轭单极点,其余极点全在s的左半平面,则系统是临界稳定的;③不稳定:H(s)只要有一个极点位于s的右半平面,或者虚轴上有二阶或者二阶以上的重极点,则系统是不稳定的。

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会2022211204刘梦颉2022210960信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。

下面我将从实验总结、心得体会、意见与建议等三方面作以总结。

一.实验总结本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。

1.信号的分类与观察主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。

主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。

2.非正弦信号的频谱分析主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。

主要内容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。

3.信号的抽样与恢复主要目的是:验证抽样定理,观察了解PAM信号的形成过程。

主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。

4.模拟滤波器实验主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。

主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。

信号与系统课设心得体会600字

信号与系统课设心得体会600字

信号与系统课设心得体会600字信号与系统课设心得体会通过本学期的学习,我觉得信号与系统是一门十分重要的课程,对于我们的专业发展和未来工作都有着重要的意义。

学习这门课程,我也深刻感受到了信号与系统在科技发展进程中的重要性。

以下是我在学习信号与系统课设过程中所获得的心得体会。

首先,我认为学习信号与系统的独特之处在于让我明白了信号的本质,以及信号和系统之间的关系。

它不仅是一门关于信号分析和处理的课程,更是一门深入了解自然界中各种信号运作规律和各种工程领域应用的学科。

通过这门课程,我更加清晰地认识到了系统、信号处理和控制的基本原理,加深了我对工程学科及相关领域的理解。

其次,在课设过程中我学会了一种学习思维方法——思辨。

课设的一个显著特点就是需要我们从建模、信号特性、信号处理、系统实现以及自我创新等多个方面去思考问题,不断思辩,不断探索,不断推敲并反复验证。

这种思考方式不仅帮助我们建立更加清晰的思维逻辑和规范的工程设计流程,还能够培养我们的批判性、分析性和探索性思维。

其次,在课设过程中,我更加注意了遣词造句的准确性和简洁性。

毕竟,语言是有效沟通的最基本前提。

一个能够用精密、准确的语言清晰表达思想的人,不仅能够更好地沟通,而且能够更好地理解、表达和解决问题。

因此,在课设过程中,我不断调整自己的表达方式,不断总结、纠正自己的语言错误,不断锻炼语言表达的逻辑性和清晰性。

最后,我觉得本课设还有一个重要意义就是让我更好地理解和反思自己的专业方向和未来的职业规划,将技术和人文结合在一起,不断提升自己的思考和创新能力。

信号与系统是一个不断创新的领域,我们需要保持敬畏之心,一直不断地学习和实践,最后成为真正的信号与系统专家。

总之,信号与系统是一门挑战性十分大但十分有价值的课程,它不仅涉足到工程学科的各个方面,更是让我对于自己的技术人生有了更多的思考和启示。

在未来的学习和工作中,我将始终牢记学习信号与系统的重要性,将艰辛的课设经历变成持续成长和不断突破的动力,为自己的未来奋斗不止!。

信号与系统课设心得体会

信号与系统课设心得体会

信号与系统课设心得体会信号与系统是一门基础的电子信息类专业课程,是我大学阶段学习的的一门重要课程。

在课设过程中,我深刻体会到了信号与系统理论的重要性,以及在实际应用中的广泛运用。

以下是我对信号与系统课设的心得体会总结。

首先,信号与系统课设让我深入理解了信号与系统的基本原理和基本概念。

通过课设的实践过程,我不仅仅是简单地学习了相关的概念和理论知识,更加深入地理解了信号与系统的内涵和实质。

在实际操作中,我们需要对信号进行采样、还原、增强等处理,同时还需要对信号进行滤波、调制、解调等操作。

通过课设,我对这些操作的原理和方法有了更加深入的了解。

这对于我后续的学习和研究奠定了坚实的基础。

其次,信号与系统课设让我熟悉了信号与系统的常用工具和方法。

在课设过程中,我们使用了很多常见的信号与系统工具和方法,例如MATLAB编程、频谱分析、滤波器设计等。

这些工具和方法在实际应用中非常常见,对于解决电子信息系统中的实际问题非常有帮助。

通过课设的实践,我熟悉了这些工具和方法的使用,对于以后的工作和学习都极为有益。

另外,信号与系统课设培养了我分析和解决实际问题的能力。

在课设过程中,我们需要分析具体的实际问题,并根据问题的特点和要求,选择合适的信号与系统理论和方法进行处理。

这需要我们具备一定的分析和解决问题的能力。

通过课设,我逐渐提升了自己的问题分析和解决能力,同时也培养了我的团队协作能力。

在小组合作中,我们需要相互合作,共同解决问题,这培养了我与他人协作的能力,提高了团队合作的效率。

最后,信号与系统课设让我认识到了信号与系统在实际应用中的重要性和广泛性。

信号与系统理论和方法广泛应用于电子通信、图像处理、音频处理等领域。

在今天的数字化信息时代,信号与系统的应用越来越重要,它对于我们理解和掌握现代电子信息技术具有重要作用。

通过信号与系统课设的学习和实践,我更加深刻地认识到了这一点,也更加坚定了我在电子信息领域的学习和研究的决心。

信号与系统实训课程学习总结

信号与系统实训课程学习总结

信号与系统实训课程学习总结在信号与系统实训课程的学习中,我获得了许多宝贵的知识和经验。

通过实际操作和理论学习,我对信号和系统的概念、原理和应用有了更深入的理解。

本文将通过总结我在课程中所学到的内容,分享我对信号与系统的认识和体会。

一、信号与系统概述信号是对信息的表达和传递,系统是对信号进行处理和转换的工具。

信号与系统学科是电子信息工程、通信工程等专业的重要基础课程。

信号可以分为连续信号和离散信号,系统可以分为线性系统和非线性系统。

信号与系统的研究内容涉及信号的表示与运算、系统的性质和特性等方面。

二、实训内容与学习成果本课程的实训内容主要包括信号生成、信号变换、系统特性分析以及信号处理等方面。

其中,我主要学习了以下几个方面的内容:1. 信号生成:通过实际操作和仿真软件,在实验室中我学会了如何生成不同类型的信号,如正弦信号、方波信号、三角波信号等。

我了解到不同信号的特点和应用,并通过实验进一步加深对信号的认识。

2. 信号变换:信号变换是信号与系统研究的重要内容之一。

我学习了傅里叶变换和拉普拉斯变换的原理和应用,掌握了如何将时域信号转换到频域,并进一步理解了信号的频谱分析。

3. 系统特性分析:在学习了信号变换之后,我进一步学习了系统的特性分析。

包括系统的冲激响应、单位阶跃响应以及系统的稳定性等方面。

通过实验和练习,我熟悉了系统的特性分析方法和步骤。

4. 信号处理:信号处理是信号与系统学科的重要应用之一。

我学习了数字滤波器的原理和设计方法,了解了数字滤波器在实际应用中的重要性和作用。

通过实践,我掌握了数字滤波器的设计和调试技巧。

通过这些实训内容的学习,我不仅加深了对信号与系统的理论认识,更重要的是获得了实际应用的经验。

我学会了如何在实验中操作仪器设备,如何使用信号生成器、示波器、频谱分析仪等设备进行信号的测试和分析。

三、学习体会在信号与系统实训课程的学习中,我深刻体会到理论知识与实际操作的结合的重要性。

2024年信号与系统课设心得体会(2篇)

2024年信号与系统课设心得体会(2篇)

2024年信号与系统课设心得体会经过一周的课程设计,我学到了很多东西。

对于以前不理解的知识,通过试验的学习得到了理解,学会的知识也得到了进一步深化。

这学期开设的数字信号处理课程是信号与系统课程的延续,带着对信号与系统学习的兴趣,我满怀信心的开始了对数字信号处理这门课程的学习。

因为对信号与系统这门课程学习的还算透彻,所以以为数字信号处理这门课程也应该不在话下,但事实上并非如此。

信号与系统相对来说更倾向于对数学理论及公式的学习,需要理解的部分也较浅显易懂,计算也较简单,只是简单的接触并学习了一些信号的基本知识。

而数字信号处理是信号知识的深化学习,既重理论又重实践,理解起来也相当困难,特别是对于一些以前没接触过的概念,学习起来真有点寸步难行。

课程设计在刚接触的时候感觉很难,但我们并没有被困难所吓倒。

我们组的成员积极的复习课本上与用窗函数设计fir低通滤波器的相关知识,又从图书馆借来有关matlab语言及函数库的书籍,从中收获了不少知识,模糊的实验步骤渐渐清晰起来。

为了使设计的实验更严谨____,一周的时间我都充分的利用了起来,不仅是fir滤波器的知识,也将课本复习了一遍,这不仅仅加强了我们对fir滤波器知识的理解,也使后来的考试变得更有自信。

课程设计虽然结束了,但它带来的影响却是无穷尽的。

2024年信号与系统课设心得体会(2)信号与系统是电子信息类专业中非常重要的一门课程,对于理解和掌握信号处理与系统分析的基本概念和方法具有重要意义。

在2024年的信号与系统课设中,我深深感受到了这门课对于我的专业学习和未来的职业发展的重要性。

在完成课设的过程中,我不仅巩固了课堂上所学的理论知识,还提高了自己的动手能力和解决问题的能力。

下面我将结合课设的过程和收获,分享我的心得体会。

首先,在进行课设之前,我对于信号与系统的理论知识进行了系统的学习和复习。

通过阅读教材,参考相关资料,我对离散时间信号、连续时间信号以及线性时不变系统等基本概念和性质有了更加深入的了解。

【精选】信号与系统实验总结1

【精选】信号与系统实验总结1

【精选】信号与系统实验总结1为期三周的信号工程实习很快就结束了,回首过去的三周,内心充满感慨,虽然很累,但是收获很大,通过这次实践,我对自己的专业有了更系统的认识和了解,也让我对自己今后的学习有了明确的目标,对信号工程有了更加清晰的认识,我也从实践中获得了很大的经验,我想在今后的学习生活中,我还是要多去学习,多去实践,这次实习对我的成长是很重要的,我一共实习了三周,在这里,我学到了很多的实践技能,通过实践,提高了自己的专业知识,我也在实践中得到了很多的成长,在实践中不断的提高自己的专业知识,在实践中我也有一些心得。

一、工作的心得体会1、实践中发现的问题2、实践中的困难3、工作中的问题。

我们的实践是一个长期的过程,我们的工作是一个长期的工作,我们不能只停留在理论知识的学习上,还应该在实践中去实践,这样才能真正的提高我们的实践水平,才能够把我们的专业知识提高,我们在实践中遇到的不知道的问题,应该积极的去请教同事和前辈,他们都给与指导,让我们能够在今后的学习工作中有所进步,能够成长为合格的信号工程。

二、对信号工程知识的感悟这次实践中,我学到了很多的东西,也发现了自己的一些不足,我们在实践中不断的学习,这也提高了自己的专业水平,我们在学校学到的不是很多的专业知识,但是我们的这些专业知识是一些理论知识,我们在今后的学习当中应该要更加的努力才行。

这次实践我明白这样的一个道理,那就是:在我们学校里学到的知识在今后还是有限的,我们要多去实践,去发现,去更好的解决这些问题。

在今后的学习当中不断学习,才能够更好的提高我们的专业知识和综合能力,才能够真正的提高我们的专业水平,才能够真正的发挥我们自身的实践能力。

三、工作的心得体会在三周的实践中,我也遇到过一些困难,但是我没有放弃我的这次实践,我也没有因为一些困难而退缩过,我相信我是能够解决困难的。

我相信在以后的学习生涯中我会越发的优秀。

2024年信号与系统课设心得体会

2024年信号与系统课设心得体会

2024年信号与系统课设心得体会2024年信号与系统课设心得体会(____字)一、引言信号与系统是我大三上学期的一门重要课程,通过学习这门课程,我对于信号的理解和应用有了更深刻的认识。

在2024年信号与系统课设中,我选择了一个与数字信号处理相关的课题,通过设计一个数字音频滤波器实现对音频信号的处理和改变。

本文将对我在该课设中的心得体会进行详细的总结和阐述。

二、课设背景和目标在数字音频处理中,滤波器是一个非常重要的技术,可以对音频信号进行降噪、增强特定频段的声音等操作。

因此,我选择了设计一个数字音频滤波器作为本次课设的目标。

在课设开始之前,我首先对数字音频处理的基本原理和方法进行了一定的了解。

同时,我也研究了市面上一些成熟的音频滤波器的工作原理和算法,为我后续的设计提供了一定的参考。

三、课设过程和具体实现1. 信号的采集与处理在设计数字音频滤波器之前,我首先需要采集一段音频信号用于后续的处理。

我选择了一首流行歌曲的音频文件,并通过MATLAB将其读入到我的代码中。

读取音频文件后,我对音频信号进行了必要的预处理,包括对其进行采样和量化。

采样是将连续时间的信号转换为离散时间的信号,而量化则是将连续幅度的信号转换为离散幅度的信号。

通过这两个步骤,我得到了一段离散时间的音频信号。

2. 滤波器的设计与实现设计滤波器是整个课设的核心和重点。

在设计滤波器之前,我首先需要确定滤波器的类型和参数。

在研究了不同滤波器的工作原理和性能指标后,我选择了一个数字低通滤波器作为我的设计目标。

低通滤波器可以使频率低于一定阈值的部分通过,而将高于该阈值的频率部分削弱或滤除。

这样可以在一定程度上实现对音频信号的降噪和去除噪声的效果。

在确定了滤波器类型后,我开始设计滤波器的参数。

这包括滤波器的阶数、截止频率等。

通过调整这些参数,我可以改变滤波器的工作特性,从而实现对音频信号的不同处理效果。

3. 滤波器的实现与效果评估在确定了滤波器的参数之后,我开始使用MATLAB进行滤波器的实现。

信号与系统读后感

信号与系统读后感

信号与系统读后感今天,我怀着好奇心翻开了《信号与系统》这本书。

它使我大开眼界、受益匪浅!这本书的作者是数学家陈大燮和他的夫人戴煦(1901-1995)。

其中有许多精彩故事,比如:周期函数对称性质;频率分析和时域分析相结合;把连续信号转换成离散信号等等……这些问题让我产生很多疑惑,为什么会出现这样神奇而又简单的图像呢?为什么经过三个步骤就能确定函数的极值点位置?电视机显示器上每一帧都不同的画面是怎么做到的呢?真令我感叹数学知识的奥妙无穷啊!读完此书,我明白了科学研究必须具备严谨的态度。

要想得到正确答案,就需要大量仔细观察、认真思考、动手实践。

如果半途而废,那只能说明你没有耐心,缺乏勤奋刻苦钻研的精神。

同时,在遇到困难时要善于发挥自己的想象力和创造力,培养独立解决问题的能力。

但这并不意味着科学技术越来越复杂、高深。

要是以前就能够掌握的概念和方法,却总是理解不透彻或者推导不清楚,也会引起一些误解甚至混乱。

例如,牛顿第二定律的内容虽然已被反复强调,但用“苹果掉地”来类比仍然常见,但若能从形象化入手来理解,则更易懂、记忆更牢固。

所谓概括就是抓住关键词语进行提炼,把枯燥无味的物理模型变成鲜活直观的画面。

下次当老师讲课时,我们可以通过画图表示它,这样既加深印象又省去了很多麻烦。

数学的美丽之处还体现在它逻辑性特别强,看似毫无规律可循的数字和符号,往往蕴含着某种哲理,隐藏着背后深刻的道理,非常适合抽象思维的训练。

这是一本好书,使我受益匪浅。

《信号与系统》是由杨东,陈本兴编著的。

内容丰富,语言朴素,很有趣味性,将知识性和趣味性融合为一体。

内容包括绪论,周期信号和非周期信号,连续时间系统的时域分析,连续时间系统的频域分析,离散时间系统的时域分析,连续时间信号的复频域分析,离散时间信号的复频域分析,离散时间系统的 Z 域分析,连续时间系统的状态空间分析,连续系统的状态空间分析和离散系统的状态空间分析,状态变量分析初步。

《信号与系统》第二版写作后记

《信号与系统》第二版写作后记

《信号与系统》第二版写作后记我从这本书中发现了很多规律,虽然还没有仔细的去学习它们,但它已经在我心中扎下了根。

让我觉得自己的成绩不是那么的差。

也许你和我一样也喜欢这本书吧!下面就是我为你写的读后感。

1、知识点掌握的重要性。

学习就是靠积累,只有不断的积累才能获得更大的进步。

我一直坚信这个原则。

在学习信号与系统之前,看过第二版。

当时老师和我们说的这个内容都比较抽象,理解起来有点难度,不像高数和英语那样可以凭借几节课的突击而记住。

而且刚开始学习的时候,老师讲解的内容也不太清晰,有些同学感到压力很大,怕跟不上老师的教学进度。

其实这些都是很正常的想法。

我觉得现在的教育制度确实是不够完善,老师们总是会将一些复杂的问题简单化,把复杂的问题变得容易理解。

其实这样做有两方面的好处:首先,可以使老师的授课更加的生动有趣,激发起同学们对课程的学习兴趣,增加课堂上的活跃气氛;其次,同学们可以根据老师的讲课方式进行复习。

因为有些东西是重点,老师讲的时候自己应该努力的记住,而不是理解着,复习着。

因此,他们都会特别留意老师讲的重点知识。

其实在上课的时候,如果你觉得自己记住的不牢固,是很正常的,只要你及时的问老师或者课后多复习一下就可以了。

2、无条件要相信。

在做最后一道题时,我看到这句话:“每个人的基础是不同的,所以我们必须对每一位同学的情况进行具体分析,找出影响学生学习效果的关键因素,用心去提高学生的学习成绩”。

这句话深深的触动了我。

在课堂上,老师要认真观察每一位同学,尽量满足每一位同学的学习需求。

从每一位同学身上挖掘出自己的优势,并且给予充分的肯定,这样做一定会激发他们的学习热情,相反,如果老师总是抱怨学生的学习态度不端正,或者干脆放弃一些学生的学习,这样只会打击一部分学生的学习积极性,造成师生之间的隔阂,最终导致学生成绩不理想。

在这方面,老师也应该多向一些其他学校的老师请教一下,然后改进自己的教学方法,争取更大限度的调动学生的学习积极性。

信号与系统实验总结

信号与系统实验总结

信号与系统实验总结在信号与系统实验中,我们学习了许多关于信号与系统的基本原理和实际应用。

通过实验,我们深入理解了信号的特性和系统的行为,同时也掌握了一些实验技能和方法。

在这篇总结中,我将回顾和总结我们在信号与系统实验中所学到的知识和经验。

首先,我们学习了信号的基本概念和分类。

信号可以分为连续信号和离散信号,它们在时间和幅度上都有不同的特点和表现形式。

在实验中,我们通过示波器和数字采样仪观察和分析了各种信号的波形和频谱特性,加深了对信号的理解。

其次,我们了解了系统的基本特性和分类。

系统可以分为线性系统和非线性系统,时不变系统和时变系统,以及因果系统和非因果系统。

在实验中,我们通过搭建各种电路和系统模型,观察了它们对输入信号的响应和处理过程,从而对系统的性能有了更直观的认识。

接着,我们学习了信号与系统的时域分析和频域分析方法。

在时域分析中,我们掌握了信号的时域表示、卷积运算和系统的时域响应等内容;在频域分析中,我们学习了傅里叶变换和频谱分析的原理和方法。

通过实验,我们对这些分析方法有了更深入的了解,并且掌握了一些实际操作的技巧和技能。

最后,我们还进行了一些与实际应用相关的信号与系统实验。

比如,音频信号的处理与分析、数字滤波器的设计与实现、以及控制系统的建模与仿真等内容。

这些实验不仅加强了我们对课程知识的理解,也拓宽了我们对信号与系统在现实中的应用和意义的认识。

通过这些实验,我们不仅学到了知识,也提高了动手能力和实验技能。

在未来的学习和工作中,这些知识和经验都将对我们有很大的帮助。

希望我们能够继续保持学习的热情,不断积累经验,不断提高自己的能力,为将来的发展打下坚实的基础。

总之,通过信号与系统实验,我们不仅学到了知识,也获得了经验,这对我们的学习和发展都是非常宝贵的。

希望我们能够继续努力,不断前行,不断进步。

信号与系统,是一个广阔而深邃的领域,让我们一起努力,一起探索,一起成长!。

信号与系统感想(全文5篇)

信号与系统感想(全文5篇)

信号与系统感想(全文5篇)第一篇:信号与系统感想很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。

先说“卷积有什么用”这个问题。

(有人抢答,“卷积”是为了学习“信号与系统”这门课的后续章节而存在的。

我大吼一声,把他拖出去枪毙!)讲一个故事: 张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过“信号与系统”这门课程。

一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。

张三照做了,花了一个波形图。

“很好!”经理说。

然后经理给了张三一叠A4纸: “这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。

你分别测试以下我们产品的输出波形是什么吧!”这下张三懵了,他在心理想“上帝,帮帮我把,我怎么画出这些波形图呢?” 于是上帝出现了: “张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形”。

上帝接着说:“给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!” 张三照办了,“然后呢?”上帝又说,“对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。

你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。

”张三领悟了:“ 哦,输出的结果就积分出来啦!感谢上帝。

这个方法叫什么名字呢?”上帝说:“叫卷积!”从此,张三的工作轻松多了。

每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!张三愉快地工作着,直到有一天,平静的生活被打破。

经理拿来了一个小的电子设备,接到示波器上面,对张三说: “看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

很多朋友和我一样,工科电子类专业,学了一堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。

先说"卷积有什么用"这个问题。

(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。

我大吼一声,把他拖出去枪毙!)讲一个故事:张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。

一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。

张三照做了,花了一个波形图。

"很好!"经理说。

然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。

你分别测试以下我们产品的输出波形是什么吧!"这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。

上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"张三照办了,"然后呢?"上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。

你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。

"张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。

这个方法叫什么名字呢?"上帝说:"叫卷积!"从此,张三的工作轻松多了。

每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!张三愉快地工作着,直到有一天,平静的生活被打破。

经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。

张三,你来测试以下,连到我们的设备上,会产生什么输出波形!"张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"经理怒了:"反正你给我搞定,否则炒鱿鱼!"张三心想:"这次输入信号连公式都给出出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来""宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。

""我给你一个数学函数f,时间域无限的输入信号在f域有限的。

时间域波形混乱的输入信号在f域是整齐的容易看清楚的。

这样你就可以计算了""同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看""计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"张三谢过了上帝,保住了他的工作。

后来他知道了,f域的变换有一个名字,叫做傅利叶,什么什么... ...再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。

这次,张三开始学拉普拉斯了......后记:不是我们学的不好,是因为教材不好,老师讲的也不好。

很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。

这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。

做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲 ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义吗?到底什么是频率什么是系统?这一篇,我展开的说一下傅立叶变换F。

注意,傅立叶变换的名字F可以表示频率的概念(freqence),也可以包括其他任何概念,因为它只是一个概念模型,为了解决计算的问题而构造出来的(例如时域无限长的输入信号,怎么得到输出信号)。

我们把傅立叶变换看一个C语言的函数,信号的输出输出问题看为IO 的问题,然后任何难以求解的x->y的问题都可以用x->f(x)->f-1(x)->y来得到。

到底什么是频率?一个基本的假设: 任何信息都具有频率方面的特性,音频信号的声音高低,光的频谱,电子震荡的周期,等等,我们抽象出一个件谐振动的概念,数学名称就叫做频率。

想象在x-y 平面上有一个原子围绕原点做半径为1匀速圆周运动,把x轴想象成时间,那么该圆周运动在y轴上的投影就是一个sin(t)的波形。

相信中学生都能理解这个。

那么,不同的频率模型其实就对应了不同的圆周运动速度。

圆周运动的速度越快,sin(t)的波形越窄。

频率的缩放有两种模式(a) 老式的收音机都是用磁带作为音乐介质的,当我们快放的时候,我们会感觉歌唱的声音变得怪怪的,调子很高,那是因为"圆周运动"的速度增倍了,每一个声音分量的sin(t)输出变成了sin(nt)。

(b) 在CD/计算机上面快放或满放感觉歌手快唱或者慢唱,不会出现音调变高的现象:因为快放的时候采用了时域采样的方法,丢弃了一些波形,但是承载了信息的输出波形不会有宽窄的变化;满放时相反,时域信号填充拉长就可以了。

F变换得到的结果有负数/复数部分,有什么物理意义吗?解释: F变换是个数学工具,不具有直接的物理意义,负数/复数的存在只是为了计算的完整性。

信号与系统这们课的基本主旨是什么?对于通信和电子类的学生来说,很多情况下我们的工作是设计或者OSI七层模型当中的物理层技术,这种技术的复杂性首先在于你必须确立传输介质的电气特性,通常不同传输介质对于不同频率段的信号有不同的处理能力。

以太网线处理基带信号,广域网光线传出高频调制信号,移动通信,2G和3G分别需要有不同的载频特性。

那么这些介质(空气,电线,光纤等)对于某种频率的输入是否能够在传输了一定的距离之后得到基本不变的输入呢? 那么我们就要建立介质的频率相应数学模型。

同时,知道了介质的频率特性,如何设计在它上面传输的信号才能大到理论上的最大传输速率?----这就是信号与系统这们课带领我们进入的一个世界。

当然,信号与系统的应用不止这些,和香农的信息理论挂钩,它还可以用于信息处理(声音,图像),模式识别,智能控制等领域。

如果说,计算机专业的课程是数据表达的逻辑模型,那么信号与系统建立的就是更底层的,代表了某种物理意义的数学模型。

数据结构的知识能解决逻辑信息的编码和纠错,而信号的知识能帮我们设计出码流的物理载体(如果接受到的信号波形是混乱的,那我依据什么来判断这个是1还是0? 逻辑上的纠错就失去了意义)。

在工业控制领域,计算机的应用前提是各种数模转换,那么各种物理现象产生的连续模拟信号(温度,电阻,大小,压力,速度等) 如何被一个特定设备转换为有意义的数字信号,首先我们就要设计一个可用的数学转换模型。

如何设计系统?设计物理上的系统函数(连续的或离散的状态),有输入,有输出,而中间的处理过程和具体的物理实现相关,不是这们课关心的重点(电子电路设计?)。

信号与系统归根到底就是为了特定的需求来设计一个系统函数。

设计出系统函数的前提是把输入和输出都用函数来表示(例如sin(t))。

分析的方法就是把一个复杂的信号分解为若干个简单的信号累加,具体的过程就是一大堆微积分的东西,具体的数学运算不是这门课的中心思想。

那么系统有那些种类呢?(a) 按功能分类: 调制解调(信号抽样和重构),叠加,滤波,功放,相位调整,信号时钟同步,负反馈锁相环,以及若干子系统组成的一个更为复杂的系统----你可以画出系统流程图,是不是很接近编写程序的逻辑流程图? 确实在符号的空间里它们没有区别。

还有就是离散状态的数字信号处理(后续课程)。

(b) 按系统类别划分,无状态系统,有限状态机,线性系统等。

而物理层的连续系统函数,是一种复杂的线性系统。

最好的教材?符号系统的核心是集合论,不是微积分,没有集合论构造出来的系统,实现用到的微积分便毫无意义----你甚至不知道运算了半天到底是要作什么。

以计算机的观点来学习信号与系统,最好的教材之一就是<>,作者是UC Berkeley 的Edward A.Lee and Pravin Varaiya----先定义再实现,符合人类的思维习惯。

国内的教材通篇都是数学推导,就是不肯说这些推导是为了什么目的来做的,用来得到什么,建设什么,防止什么;不去从认识论和需求上讨论,通篇都是看不出目的的方法论,本末倒置了。

抽样定理是干什么的1.举个例子,打电话的时候,电话机发出的信号是PAM脉冲调幅,在电话线路上传的不是话音,而是话音通过信道编码转换后的脉冲序列,在收端恢复语音波形。

那么对于连续的说话人语音信号,如何转化成为一些列脉冲才能保证基本不失真,可以传输呢? 很明显,我们想到的就是取样,每隔M毫秒对话音采样一次看看电信号振幅,把振幅转换为脉冲编码,传输出去,在收莫比乌斯圈",这个纸条就只剩下一个"面"了。

概念是对客观世界的加工,反映到意识中的东西。

数的概念是这样被推广的: 什么数x使得x^2=-1? 实数轴显然不行,(-1)*(-1)=1。

那么如果存在一个抽象空间,它既包括真实世界的实数,也能包括想象出来的x^2=-1,那么我们称这个想象空间为"复数域"。

那么实数的运算法则就是复数域的一个特例。

为什么1*(-1)=-1? +-符号在复数域里面代表方向,-1就是"向后,转!"这样的命令,一个1在圆周运动180度以后变成了-1,这里,直线的数轴和圆周旋转,在复数的空间里面被统一了。

因此,(-1)*(-1)=1可以解释为"向后转"+"向后转"=回到原地。

那么复数域如何表示x^2=-1呢? 很简单,"向左转","向左转"两次相当于"向后转"。

相关文档
最新文档