八年级下学期数学试题及答案
八年级下册数学试题及答案
八年级下册数学试题及答案注意:根据提供的题目要求,由于无法提供具体的试题内容及答案,下文中将以示例的方式进行描述。
请根据实际情况和格式要求自行填写试题及答案。
八年级下册数学试题及答案1. 选择题(1) 计算表达式的值:6 + 3 × 2 - 8 ÷ 4 = ?解析:首先按照乘除优先于加减的原则进行计算。
答案:6 + 3 × 2 - 8 ÷ 4 = 6 + 6 - 2 = 10(2) 若正整数x满足4x - 6 = 18,则x的值为多少?解析:将已知的等式转化为求解x的方程。
答案:4x - 6 = 184x = 18 + 6 = 24x = 24 ÷ 4 = 62. 填空题(1) 已知α是锐角,则α的补角为__________。
解析:补角指两个角的度数之和为90°。
答案:90° - α(2) 如果a:b = 2:3,且b:c = 4:5,则a:c = ________。
解析:根据比例关系进行计算,a与b之间的比例系数乘积为2×3,b与c之间的比例系数乘积为4×5。
答案:2:3 = 8:12,4:5 = 12:15,故a:c = 8:15。
3. 解答题(1) 计算下列各式的值:(3x - 2)^2,其中x = 4。
解析:将x = 4代入表达式,进行平方运算。
答案:(3x - 2)^2 = (3×4 - 2)^2 = (12 - 2)^2 = 10^2 = 100(2) 一间房间的长是宽的3倍,周长是42米。
求房间的长和宽。
解析:设房间的宽为x,则房间的长为3x。
根据周长的计算公式,得到2(x + 3x) = 42。
答案:2(4x) = 428x = 42x = 42 ÷ 8 = 5.25因为房间的长和宽为整数,所以宽为5米,长为15米。
以上是八年级下册数学试题及答案的部分示例。
在实际应用中,根据具体的教材和题库准备试题,以及针对每一道题目提供合适的解析和答案解答。
八年级下册数学试题(附答案)
春季八年级期末调考数 学 试 题说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 第Ⅰ卷的答案选项用2B 铅笔填涂在机读卡上;第Ⅱ卷用蓝、黑色钢笔或圆珠笔直接答在试卷上.2. 本试卷满分120分,答题时间为120分钟. 交卷时只交第Ⅱ卷,第Ⅰ卷由学生自己保存.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,共36分) 在每小题给出的四个选项中,有且仅有一项是符合题目要求的. 1. 如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是A. △ABC ≌△DEFB. ∠DEF =90°C. EC =CFD. AC =DF2. 函数中自变量x 的取值范围为A. x ≥2B. x >-2C. x <-2D. x ≥-23. 边长为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形. 设穿过的时间为t ,大正方形内除去小正方形部分的面积为S (阴影部分). S 随t 变化而变化的大致图象为A B C D4. 已知正比例函数y =kx (k ≠0)中,y 随x 的增大而增大. 反比例函数y =-xk过点(3,y 1),(2,y 2)和(-3,y 3),则y 1,y 2,y 3的大小关系为A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 3>y 1>y 25. 如图是学校小卖部“六一”儿童节期间儿童玩具、糖果、其它421+=x y物品等的销售额的扇形统计图. 若玩具的销售额为1800元,那么 糖果的销售额是A. 3000元B. 300元C. 30%D. 900元 6. 下列命题错误的是 A . 有三条边相等的三角形全等 B . 有两条边和一个角对应相等的三角形全等C. 有一条边和一个角对应相等的等腰三角形全等D. 有一条边和一锐角对应相等的直角三角形全等7. 如图△ABC 是等腰三角形,以两腰AB 、AC 为边向外作正方 形ABDE 和正方形ACFG ,则图中全等三角形有( )对.A. 2B. 3C. 4D. 58. 如果把分式ba ab+2中的a 和b 都扩大到原来的9倍,那么分式的值A. 扩大到原来的9倍B. 缩小9倍C. 是原来的91D. 不变9. 如图,ABCD 的周长为18cm ,点O 是对角线AC 的中点,过点O 作EF 垂直于AC ,分别交DC 、AB 于E 、F , 连结AE ,则△ADE 的周长为 A. 5cm B. 8cm C. 9cm D. 10cm10. 下列命题中,能判断四边形ABCD 是矩形的命题有 ①AC =BD ,AC ⊥BD ;②OA =OB =OC =OD ;③∠A =∠B =∠C =90°;④AB CD ,∠A =90°.A. 1个 B .2个 C .3个 D .4个11. 函数y =-kx +k (k ≠0)与y =xk的大致图象可能是A B C D12. 某服装厂准备加工300套演出服装. 在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务. 设该厂原来每天加工x 套演出服装,则可列方程A.9260300=-x B.9602300=+x x C.960260300=+-x x D.960260300=--xx2009年春季八年级期末考试数 学 试 题全卷总分表第Ⅱ卷 非选择题(84分)二、填空题(本大题共8个小题,每小题3分,共24分)将解答结果直接填在题中的横线上.13. 在四边形ABCD 中,∠A:∠:B:∠C:∠D =1:2:1:2,则四边形ABCD 是 . 14. 一个纳米粒子的直径是0.000 000 035米,用科学记数 法表示为 米.15. 如图,在正方形ABCD 中,E 在BC 的延长线上,且 EC =AC ,AE 交CD 于点F ,则∠AFC = 度.16. 已知一组数据1,3,2,5,x 的平均数为3. 则样本的标准差为 . 17. 关于x 的方程32322=--+-xmx x 有增根,则m =. 18.已知点A(2,3)和点B (m ,-3)关于原点对称,则m = ;若点C 与点B 关于y 轴对称,则点C 的坐标为 . 19. 如图是甲、乙两地5月上旬的 日平均气温统计图,则甲、乙两地 这10天的日平均气温的方差大小 关系为:S 2甲 S 2乙.20. 已知等腰三角形的周长为10,底边为y ,腰为x. 请写出y 与x 的函数关系式及自变量x的取值范围 . 三、解答题(每题6分,共24分)21. 计算:20090-2)21(--+|-2008 |.22. 先化简,再求值:1311222+-+-+-x xx x x ,其中x =2.23. 解分式方程:93132-=--x x x .24. 作图题:在△ABC 中,∠C =90°,按下列 要求作图.(尺规作图,保留痕迹,不写作法)①作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;②连结CF ,作∠CFB 的平分线,交BC于点G . 四、几何证明题(本大题满分8分)25. 如图,在梯形ABCD 中,AB ∥DC ,AC 平分∠BCD ,AE ∥BC. 求证:四边形AECB 是菱形.五、几何证明题(本大题共9分)26. 如图,在等边△DAC 和等边△EBC 中,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 三点在同一条直线上.求证:(1)AE =BD ;(2)CM =CN.六、解答题(本大题共9分)27. 如图,反比例函数y =xm(x >0)的图象经过A 、B 两点,且A 点的坐标为(2,-4),点B 的横坐标为4. 请根据图象的信息解答:(1)求反比例函数的解析式; (2)若AB 所在的直线的解析式为 y =kx +b (k ≠0),求出k 和b 的值.(3)求△ABO 的面积.七、(本大题共10分)28. 甲、乙两同学本期十次数学测验成绩如下表:(1)甲同学十次数学测验成绩的众数是;乙同学十次数学测验成绩的中位数是 .(2)甲同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的平均分是 ;乙同学本期数学测验成绩的极差是 .(3)你认为甲、乙两位同学,谁的成绩更稳定?通过计算加以说明.2009年春季八年级期末调考数学试题参考答案一、选择题(本大题共12个小题,每小题3分,共36分)1.C2.B3.A4.D5.D6.B7.D8.A9.C 10.B 11.C 12.C二、填空题(本大题共8个小题,每小题3分,共24分) 13. 平行四边形 14. 3.5×10-8 15. 112.5 16.217. -1 18. -2;(2,-3) 19. < 20. y =10-2x (25<x <5)注:18题第一空1分,第二空2分. 20题的函数关系式1分,x 的取值范围2分.三、解答题(每题6分,共24分)21.(共6分)解:20090-2)21(--+|-2008 |=1-4+2008 ……………………(每项算对,各给1分)……4分 =2005 …………………………………………………………………2分22.(共6分)解:原式=13)1)(1(122+-+-++-x x x x x x ……………………………………1分 =)1)(1()1)(3()1)(1(122-+--+-++-x x x x x x x x …………………………1分 =)1)(1(34122-+-++-x x x x x=)1)(1(22-+-x x x =)1)(1()1(2-+-x x x …………………………1分=12+x ………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分另解:原式=13)1)(1()1(2+-+-+-x xx x x ………………………………………2分 =1311+-++-x xx x ………………………………………………1分 =12+x …………………………………………………………1分 当x =2时,12+x =122+=32………………………………………2分23.(共6分)解:方程两边同乘以(x +3)(x -3),约去分母,得 ……………1分 x (x +3)-(x 2-9)=3. ………………………………………2分 解这个整式方程,得x =-2. ………………………………………………………………1分 检验:把x =-2代入x 2-9,得(-2)2-9≠0,所以,x =-2是原方程的解. ………………………………………………2分 24.(共6分)作出了AB 边的垂直平分线给3分; 作出了∠CFB 的平分线给3分. 注:若未标明字母扣1分.四、几何证明题(本大题满分8分)25. 证明:∵AB ∥DC ,AE ∥BC ,∴四边形ABCD 是平行四边形. …………2分∵AC 平分∠BCD ,∴∠ACB =∠ACE. …………………………………………………………1分 又AB ∥CD ,∴∠BAC =∠ACE (两直线平行,内错角相等), ……………………1分 ∴∠ACB =∠BAC (等量代换), …………………………………………1分 ∴BA =BC (等角对等边), ………………………………………………1分∴四边形ABCE 是菱形(有一组邻边相等的平行四边形是菱形). ……2分注:①若证得AE =EC ,或证得四边相等得菱形参照给分;②未批理由可不扣分. 五、几何证明题(本大题共9分)26.(1)(5分)证明:∵△ACD 和△BCE 是等边三角形,∴∠ACD =∠BCE =60°,∴∠ACD +∠DCE =∠BCE +∠DCE , 即∠ACE =∠DCB. …………………2分 在△ACE 和△DCB 中,AC =DC ,EC =BC (等边三角形三边相等),八年级期末考试数学试题(第Ⅱ卷) 第11页(共8页)∠ACE =∠DCB (已证),∴△ACE ≌△DCB (S.A.S.), ………………………………………………2分∴AE =BD (全等三角形的对应边相等). ………………………………1分(2)(4分)证明:∵△ACE ≌△DCB (已证),∴∠EAC =∠BDC ,即∠MAC =∠NDC. ……………………………………………………1分∵∠ACD =∠BCE =60°(已证),A 、C 、B 三点共线,∴∠ACD +∠BCE +∠DCN =180°,∴∠MCN =60°,即∠ACM =∠DCN =60°. ………………………………………………1分又AC =DC ,∴△ACM ≌△DCN (A.S.A.), …………………………………………1分∴CM =CN. ……………………………………………………………1分六、解答题(本大题共9分)27. 解:(1)(2分)把A 点的坐标(2,-4)代入y =xm 得-4=2m ,m =-8, ∴反比例函数的解析式为y =x 8-(x >0).……2分 注:若解析式未标明x >0,则只给1分.(2)(3分)当x =4时,y =x8-=-2,∴B (4,-2). ………………………………1分 ∵A (2,-4),B (4,-2)在直线y =kx +b 上,∴⎩⎨⎧+=-+=-b k b k 4224 ………………………………………………………………………1分 解之得k =1,b =-6. ………………………………………………………………1分(3)(4分)解一:作辅助线如图,则C (4,-4). …………………………………1分 S △ABO =S 正方形ODCE -S △ODA -S △OEB -S △ABC ………………………………………2分 =4×4-21×2×4-21×4×2-21×2×2 =16-4-4-2=6. ……………………………………………………………………………1分解二:如图,取AB 中点M ,连结OM ,(或作OM ⊥AB )∵OA =OB =2224+=25,∴OM ⊥AB (或AM =BM ) ………………1分而AB =22BN AN +=2222+=22 …1分八年级期末考试数学试题(第Ⅱ卷) 第12页(共8页) ∴AM =21AB =2 ∴OM =22AM OA -=22)2()52(-=32 ……………………1分∴S △AOB =21AB ·OM =21×22×32=6. …………………………1分 解三:S △ABO =S 矩形ACOD +S梯ABED -S △AOC -S △BOE ……2分 =2×4+21(2+4)×2-21×4×2-21×4×2 =8+6-4-4=6. ……………………………………2分解四:延长AB 交x 轴、y 轴于M 、N ,则M (6,0),N (0,6).S △AOB =S △MON -S △AOM -S △BON= … =6. 按解一的给分方法给分.七、(本大题共10分)28.(1)、(2)小题每空1分,共5分;(3)小题共5分.(1)98;98.(2)99;99;24.(3)1012=甲S [()()()()()2222299979998999999979998-+-+-+-+- ()()()()()22222999999989910799999998-+-+-+-+-+][]01640141041101+++++++++= 6.776101=⨯= ……………………………………………………………2分 ()()()[]222299110998999108101-+⋯+-+-=乙S []222222222211)2(9)13()1(1)1()3()10(9101+-++-+-++-+-+-+= []121481169111910081101+++++++++= 8.56568101=⨯= …………………………………………………………2分 ∵22<乙甲S S ,∴甲的成绩更稳定. ………………………………………………………1分注:①若第(3)小题,不是通过计算而得出正确结论,只给2分;若计算2甲S 正确,2乙S不正确而得出正确结论共给3分.②此题旨在考查学生计算能力,引起教师对培养学生计算能力的高度重视八年级期末考试数学试题(第Ⅱ卷)第13页(共8页)。
八年级下册数学试题及答案
八年级下册数学试题及答案在这里,我为您提供一份八年级下册数学试题及答案,以满足您所需。
Part I:选择题(共40分)请从每题所给的四个选项中选出一个正确答案。
1. 已知函数y = 2x - 3,求当x = 4时,y的值是多少?A. 5B. 6C. 7D. 82. 以下哪个数字是有理数?A. πB. √2C. -5D. e3. 小倩拥有6本书,她卖了其中的3本。
这是一个什么比例?A. 1:3B. 2:1C. 3:2D. 3:14. 将一个整数n加上4,再除以3,得到的结果是7,则n的值是多少?A. 18B. 43C. 12D. 215. 一个螺旋线规律如下:0, 2, 4, 6, ...,则第10个数是多少?A. 12B. 14C. 16D. 186. 在一张长方形纸片上,纸片的宽度是纸片长度的一半。
如果纸片的周长是12厘米,纸片的面积是多少平方厘米?A. 12B. 16C. 18D. 247. 如果p = 5,q = 2,并且r = 3,那么p + 2q - r的值是多少?A. 3B. 5C. 9D. 118. 将一个圆形分成相等的12份,每份的圆心角是多少度?A. 10°B. 20°C. 30°D. 40°9. 以下哪个数字是一个无理数?A. -3B. 0C. 2D. √510. 在一个数字序列中,下一个数是前一个数的两倍。
已知前两个数分别是3和6,求该数列的第6个数。
A. 96B. 192C. 384D. 768Part II:解答题(共60分)请参考下面的题目,用文字或运算法则进行解答。
1. 在一个数字序列中,第一个数是2,第二个数是5,从第三个数开始,每个数都是前两个数的和。
请列出该数列的前10个数。
解答:2, 5, 7, 12, 19, 31, 50, 81, 131, 2122. 解方程:3x + 2 = 17解答:3x + 2 = 173x = 17 - 23x = 15x = 15 ÷ 3x = 53. 计算下列各题。
2022-2023学年度第二学期八年级数学期末考试试题附答案
八年级(下)期末试卷数学注意事项:本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题卡上,答在本试卷上无效.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡相应位置上)1.化简4的结果是A.-2 B.2 C.-4 D.42.若分式xx-1有意义,则x的取值范围是A.x>0 B.x≠0 C.x>1 D.x≠1 3.在下列事件中,是必然事件的是A.3天内将下雨B.367人中至少有2人的生日相同C.买一张电影票,座位号是奇数号D.在某妇幼保健医院里,下一个出生的婴儿是女孩4.南京奥林匹克体育中心是亚洲A级体育馆、世界第五代体育建筑的代表.如图是体育馆俯视图的示意图.下列说法正确的是A.这个图形是轴对称图形,但不是中心对称图形B.这个图形是中心对称图形,但不是轴对称图形C .这个图形既是中心对称图形,也是轴对称图形D .这个图形既不是中心对称图形,也不是轴对称图形5.已知点P(x1,y1)、Q(x2,y2)在反比例函数y =-1x 的图像上,若y1<y2<0,则x1与x2的大小关系是 A .x1<x2B .x1>x2C .x1=x2D .无法确定6.如图,在四边形ABCD 中,AD//BC ,AD =6cm ,BC =12cm ,点P 从A 出发以1cm/s 的速度向D 运动,点Q 从C 出发以2cm/s 的速度向B 运动.两点同时出发,当点P 运动到点D 时,点Q 也随之停止运动.若设运动的时间为t 秒,以点A 、B 、C 、D 、P 、Q 任意四个点为顶点的四边形中同时存在两个平行四边形,则t 的值是 A .1B .2C .3D .4(第6题)(第4题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) 7.化简:2aa2=▲.8.若式子x -2在实数范围内有意义,则x 的取值范围是▲.9.方程(x -1)-1=2的解是▲.10.某种油菜籽在相同条件下发芽试验的结果如下:这种油菜籽发芽的概率的估计值是▲.(结果精确到0.01) 11.比较大小:4-13▲12.(填“>”、“<”或“=”)12.如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =12cm ,点D 在边AB 上,AD =AC ,AE ⊥CD ,垂足为E ,点F 是BC 的中点,则EF =▲cm .13.如图,在△ABC 中,∠C =90°,△ABC 绕点A 按顺时针方向旋转26°得到△AED ,若AD//BC ,则∠BAE =(第13题)A BCD E(第14题) ABC D EF(第12题)14.如图,正比例函数y =k1x 与反比例函数y =k2x 的图像交于点A 、B ,若点A 的坐标为(1,2),则关于x 的不等式k1x >k2x 的解集是 ▲ .15.如图,在矩形纸片ABCD 中,AD =3,将矩形纸片折叠,边AD 、边点A 与点C 恰好落在同一点处, ▲ .16.如图,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点C 顺时针旋转90°得到△A'B'C ,若P 为边AB 上一动点,旋转后点P 的对应点为点P',则线段PP'长度的取值范围是 ▲ . 三、解答题(本大题共10小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:(第15题)(第16题)A C BB'A'(1)18×3÷2;(2)8+313-2+32.18.(5分)先化简,再求值:a2-1a2-2a +1÷a +1a -1-a -1a +1,其中a =-12.19.(8分)解方程:(1)9x =8x -1; (2)x -1x -2-3=1x -2.20.(6分)疫情期间,甲、乙两工厂每小时共做3500个KN95口罩,甲工厂做1600个KN95口罩所用的时间与乙工厂做1200个KN95口罩所用的时间相等.甲、乙两工厂每小时各做多少个KN95口罩?21.(6分)为了调查某校八年级360名学生的身高情况,随机抽取了20名男生与20名女生的身高数据,得到下列图表(图表中身高分组153cm~158cm 表示大于或等于153cm 而小于158cm ,其他类同):身高分组(cm ) 频数 153~158 1 158~163 2 163~168 6 168~173 7 173~178 3 178~183 1(1)写出本次调查的总体与样本;(2)根据调查结果,绘制抽取的40名学生的身高频数分布直方图; 身高/cm频数 014 12 10 8 6 4 2 163 183 153 178 158 173 168 153 cm~158 cm158 cm~163 cm168 cm~173 cm173 cm~178 cm 163 cm~168 cm八年级20名女生身高人数分布扇形统计图 八年级20名男生身高频数分布表(3)估计该校八年级学生身高在163cm~183cm范围内的学生人数.22.(5分)已知∠MAN,按要求完成下列尺规作图(不写作法,保留作图痕迹):(1)如图①,B、C分别在射线AM、AN上,求作□ABDC;(2)如图②,点O是∠MAN内一点,求作线段PQ,使P、Q(第22题图①)(第22题图②)23.(7分)在5×5的方格纸中,每个小正方形的边长为1,我们把三个顶点都是格点的三角形称为格点三角形.按要求完成下列问题:(1)在图①中,以AB为边画一个格点三角形,使其为等腰三角形;(2)在图②中,以AB为边画一个格点三角形,使其为钝角三角形且周长为6+32;(3)如图③,若以AB为边的格点三角形的面积为3,则这个三角形的周长为▲.24.(8分)如图,在菱形ABCD中,点O是对角线AC的中点,过点O的直线EF与边AD、BC交于点E、F,∠CAE=∠FEA,连接AF、CE.(1)求证:四边形AFCE是矩形;(2)若AB=5,AC=25,直接写出四边形AFCE的面积.EADO25.(8分)如图,点A 、B 是反比例函数y =8x的图像上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =-2x 的图像于点C 、D ,四边形ACBD 是平行四边形.(1)若点A 的横坐标为-4.①直接写出线段AC 的长度; ②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD26.(9分)已知,四边形ABCD 是正方形,点E 是正方形ABCD 所在平面内一动点(不与点D 重合),AB =AE ,过点B 作DE 的垂线交DE 所在直线于F ,连接CF .提出问题:当点E 运动时,线段CF 与线段DE 之间的数量关系是否发生改变? 探究问题:(1)首先考察点E 的一个特殊位置:当点E 与点B 重合(如图①)时,点F 与点B 也重合.用等式表示线段CF 与线段DE 之间的数量关系: ▲ ;(第26题图①)C D AB (E 、F )(2)然后考察点E 的一般位置,分两种情况:情况1:当点E 是正方形ABCD 内部一点(如图②)时; 情况2:当点E 是正方形ABCD 外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: ▲ .(第26题图②)FAC D EB(第26题图③)C D ABE F八年级(下)期末试卷 数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分. 一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每题2分,共20分) 7.2a8.x ≥29.x =1.510.0.9511.< 12.413.38 14.-1<x <0或x >115.6+2316.1225≤PP'≤42三、解答题(本大题共10小题,共68分)17.(6分) 解:(1)原式=54÷2…………………………………………………………………1分=27………………………………………………………………………2分=33.……………………………………………………………………3分 (2)原式=22+3-2+32……………………………………………………………5分=2+332.………………………………………………………………………6分18.(5分)解:原式=(a +1)(a -1)(a -1)2×a -1a +1-a -1a +1……………………………………………………2分 =1-a -1a +1=2a +1.…………………………………………………………………………3分当a=-12时,原式=2-12+1=4.………………………………………………………5分19.(8分)解:(1)方程两边同乘x(x-1),得9(x-1)=8x.………………………………………………………2分解这个整式方程,得x=9.………………………………………………………………3分检验:当x=9时,x(x-1)≠0,x=9是原方程的解.…………………………4分(2)方程两边同乘(x-2),得(x-1)-3(x-2)=1.………………………………………………6分解这个整式方程,得x=2.………………………………………………………………7分检验:当x=2时,x-2=0,x=2是增根,原方程无解.………………………8分20.(6分)解:设甲工厂每小时做x个KN95口罩.根据题意,得1600x=12003500-x,……………………………………………………………2分解这个方程,得x=2000.…………………………………………………………………4分经检验,x=2000是所列方程的解.当x=2000时,3500-x=1500.…………………………………………………………5分答:甲、乙两工厂每小时各做2000个、1500个KN95口罩.………………………6分21.(6分)解:(1)某校八年级360名学生的身高情况的全体是总体;抽取的20名男生与20名女生的身高情况是总体的一个样本;……………………………………………2分(2)如图所示:…………………………………………………………………………4分(3)(14+11+5+1)÷40×360=279(人)答:估计该校八年级学生身高在163cm~183cm范围内的学生人数约为279人.………………………………………………………………………………………6分22.(解四所(所求.………………………………………………………5分(第22题图①)(第22题图②)23.(7分)解:(1)如图①所示;(画出一个符合要求的三角形即可)……………………………2分(2)如图②所示;(画出一个符合要求的三角形即可)………………………………4分(3)32+10+2,42+25或32+34+2.……………………………………7分(第23题图①)AB(第23题图②)AB24.(8分)(1)证明∵四边形ABCD 是菱形, ∴AE//CF , ∴∠AEO =∠CFO , ∵点O 是AC 的中点, ∴OA =OC =12AC ,∵∠AOE =∠COF , ∴△AOE≌△COF .………………………………………………………………………3分∴OE =OF =12EF ,∵OA =OC , ∴四边形AFCE是平行四边形,…………………………………………………………4分∵∠OAE =∠AEO , ∴OA =OE , ∴AC =EF , ∴□AFCE是矩DAOE(第24题)形.………………………………………………………………………6分(2)8.……………………………………………………………………………………8分 25.(8分)解:(1)①AC的长度为2.5;……………………………………………………………2分②设点B 的横坐标为a . ∵BD ⊥x 轴, ∴xB =xD =a ,∵点B 、D 分别在反比例函数y =8x 、y =-2x 的图像上,∴yB =8a ,yD =-2a ,∴BD=10a,………………………………………………………………………………4分 ∵四边形ACBD 是平行四边形, ∴AC=BD=2.5,…………………………………………………………………………5分∴10a=2.5, 解这个方程,得a =4,经检验,a=4是原方程的解,∴点B的坐标为(4,2).…………………………………………………………………6分(2)②⑤.…………………………………………………………………………………8分26.(9分)解:(1)DE=2 CF;……………………………………………………………………3分(2)在情况1与情况2下都相同.……………………………………………………4分选择情况1证明:如图①,设BC与DF的交点为O,连接BE,过C作CG⊥CF 交DF于G.∵四边形ABCD是正方形,∴∠DAB=∠BCD=90°,AB=BC=CD=AD=AE,∵BF⊥DF,∴∠BFD=90°,∴∠CBF+∠BOF=∠CDF+∠COD=90°,∵∠BOF=∠COD,∴∠CBF=∠CDF,∵CG⊥CF,∴∠FCG=90°,FA CDEBG(第26题图①)O∴∠BCF +∠GCO =∠DCG +∠GCO =90°, ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°+12∠DAE ,∴∠BEF =180°-∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°, ∴BF=EF ,……………………………………………….………………………………6分∴EF =DG ,∴DE =DG +EG =EF +EG =FG , ∵∠FCG =90°,CF =CG , ∴FG =2CF ,∴DE=2CF .…………………………………………….………………………………7分选择情况2证明:如图②,设BF 与CD 的交点为O ,连接BE ,过C 作CG ⊥CF交DF 延长线于G .∵四边形ABCD 是正方形,∴∠DAB =∠BCD =90°,AB =BC =CD =AD =AE , ∵BF ⊥DF , ∴∠BFD =90°,∴∠CBF +∠BOC =∠CDF +∠DOF =90°, ∵∠BOC =∠DOF , ∴∠CBF =∠CDF , ∵CG ⊥CF , ∴∠FCG =90°,∴∠BCO +∠DCF =∠FCG +∠DCF , ∴∠BCF =∠DCG , ∴△BCF≌△DCG ,……………………………………….………………………………5分∴BF =DG ,CF =CG , ∵AB =AD =AE ,∴∠AED =∠ADE =90°-12∠DAE ,∠AEB =∠ABE =90°-12∠BAE=45°-12∠DAE ,∴∠BEF =∠AED -∠AEB =45°, ∴∠BEF =∠EBF =45°,O G(第26题图②)CDABEF∴BF=EF,……………………………………………….………………………………6分∴EF=DG,∴DE=EF-DF=DG-DF=FG,∵∠FCG=90°,CF=CG,∴FG=2CF,∴DE=2 CF.…………………………………………….………………………………7分(3)AF+CF=2DF或|AF-CF|=2 DF.………….…………………………………9分。
人教版八年级下学期期末考试数学试卷及答案(共四套)
人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。
12B。
8C。
$\frac{2}{3}$D。
$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。
5,12,13B。
1,2,5C。
1,3,2D。
4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。
$(x+2)^2=3$B。
$(x+2)^2=5$C。
$(x-2)^2=3$D。
$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。
矩形B。
菱形C。
正方形D。
无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。
$y=-x$B。
$y=x+1$C。
$y=-2x+1$D。
$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。
|。
8分。
|。
9分。
|。
10分。
|甲(频数)|。
4.|。
2.|。
3.|乙(频数)|。
3.|。
2.|。
5.|A。
$s_1^2>s_2^2$B。
$s_1^2=s_2^2$C。
$s_1^2<s_2^2$D。
无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。
1,0B。
-1,1C。
1,-1D。
无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。
八年级数学下学期期末测试卷(含答案)
八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。
八年级下学期数学试题及答案
八年级下学期数学试题班级:_______姓名:________考号:_________成绩________第I卷(选择题)一、单选题A. C. D.,由下列条件不能判断它是直角三角形的是(A. B. -+15.)6.则等于()A. B. C. D.7.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A. 1B.C. 4-2D. 3-48.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为(?)A. 6B. 10C. 8D. 129.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是(???? )A. 2B.C.D. 210.平行四边形四个内角的角平分线所围成的四边形是()的卷(非选择题)最简二次根式与-+16.如图,正方形ABCD的边长为5,点E在边AB上,且BE=2.若点P在对角线BD上移动,则PA+PE的最小值是__________.17.将五个边长都为2的正方形按如图所示摆放,点A1、A2、A3、A4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.18.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE其中正确的结论有?______ (填正确的序号)三、解答题19.计算下列各题(1)(2)20.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.AB = BC,D、E、F分别是BC23.交于=,求24.CP,求25.满足=0,C上一26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.参考答案与解析1.C【解析】分析:根据二次根式有意义的条件,被开方数为非负数,可直接列不等式求解.详解:∵式子有意义详解:根据二次根式的加减,可由与不是同类二次根式,因此不能计算,=,故不正确;故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.3.A【解析】分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得c=x5.B【解析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB=3,从而求出C=BC-BE=5-3=2.故选:A.点睛:本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.6.C【解析】试题解析:∵四边形MBND是菱形,∴MD=MB.x=yMD=MB=2x-y=y∴.故选C.∵∠BAE=22.5°,∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD-DE=4-4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,BE=4=4-2解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=?AF?BC=10.故选:B.点睛:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.9.C【解析】试题分析:由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCPCP=1=∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.B【解析】分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F、∠FGH、∠H都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD是平行四边形,ABE=∠BAD+∠【解析】试题分析:在△ABC和△CDE中,EC=AC∠ECD=∠CAB∠ACB=∠CED∴△ABC≌△CDE,∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,222∴三角形(2017)是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形(2017)的直角顶点的坐标是(8064,0).故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.13.-1【解析】分析:根据同类二次根式的性质,化为最简二次根式后,被开方数相同,可得关于a的方程即可求解.详解:(2-)(2+)=22-()2=4-5=-1故答案为:-1.点睛:此题主要考查了二次根式的运算,关键是观察式子的特点—利用平方差公式计算即可,比较简单.16.【解析】分析:作出点E关于BD的对称点E′交BC于E′,连接AE′与BDAE′=故答案为:.点睛:此题考查了轴对称-最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.17.4【解析】分析:连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.详解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,,而正方形的面积为故答案为:4.点睛:本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.①②【解析】分析:?先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.再根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形.在△ADE和△CDE中,∴△ADE≌△CDE,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∵AH=HE,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,点睛:此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.19.(1) 4;(2)+2【解析】分析:(1)根据二次根式的化简、分母有理化、零次幂的性质可求解;(2)根据二次根式的化简、零次幂的性质,绝对值的性质,负整指数幂的性质可求解.详解:(1)=2×+3-1)-1-=+2要熟练掌握,21.-【解析】分析:先算除法,后算减法,分式除以分式,把这个分式的分子分母颠倒,再和这个分式相乘.解析:当时,原式=22.(1)证明见解析;(2)24cm.【解析】试题分析:(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEFAB【解析】分析:(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:(1)证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,,AC=2BC=2点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.24.135°【解析】试题分析:根据同角的余角相等求出∠ACP=∠BCD,再利用“边角边”证明△ACP和△BCD全等,判断出△PCD是等腰直角三角形,再根据全等三角形对应边相等可得AP=BD,然后利用勾股定理逆定理判断出△BPD是直角三角形,∠BPD=90°,再根据∠BPC=∠BPD+∠CPD代入数据计算即可得解.试题解析:解:连接BD.【解析】分析:(1)根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;(2)根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;(3)利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D的坐标.详解:(1)根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OBPOC≌△DPE. ∴OC=PEOC=AB=3,PDO=∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°∴∠PDA=∠BPO∴在△POB和△DPA中,∴△POB≌△DPA(AAS)PA=OB= 3,,DA=PB= 6-3∴ OD=OA-DA=3-(6-3)=6-6∴ D(6-6,0)点睛:此题属于一次函数的综合题,涉及的知识有:全等三角形的判定与性质,中,∴△BAD ≌ △CA∵BD+CD=BC,∴CF+CD=BC;(3)、①CD-CF =BC.②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,。
2022-2023学年重庆八中八年级(下)期末数学试卷及答案解析
2022-2023学年重庆八中八年级(下)期末数学试卷一、选择题。
(本大题共10个小题,每小题4分,共40分,其中第10题是多项选择题)1.(4分)下列新能源汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(4分)要使分式有意义,则x的取值范围是()A.x≠﹣1B.x≠1C.x≠±1D.x≠03.(4分)在平行四边形ABCD中,若∠B+∠D=130°,则∠A的度数为()A.105°B.115°C.125°D.135°4.(4分)估计(+)×的值应在()A.3和4之间B.4和5之间C.5和6之间D.7和8之间5.(4分)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是()A.4:9B.2:3C.2:5D.4:256.(4分)有一个人患流感,经过两轮传染后共有64个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A.1+2x=64B.1+x2=64C.1+x+x2=64D.(1+x)2=64 7.(4分)如图,在菱形ABCD中,对角线AC与BD交于点O,在BD上取一点E,使得AE=BE,AB=10,AC=12,则BE长为()A.B.C.D.8.(4分)下列图形都是由同样大小的基本图形按一定规律所组成的,其中第①个图形中一共有5个基本图形,第②个图形中一共有8个基本图形,第③个图形中一共有11个基本图形,第④个图形中一共有14个基本图形,…,按此规律排列,则第⑧个图形中基本图形的个数为()A.23B.24C.26D.299.(4分)如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若△AED的周长是17,BD=8,则等边△ABC的面积是()A.B.C.D.(多选)10.(4分)在平面直角坐标系中,O为坐标原点,一次函数y1=kx+b(k≠0)的图象与反比例函数的图象相交于A(﹣3,5),B(a,﹣3)两点,与x 轴交于点C,下列结论正确的是()A.a=5B.反比例函数y2在每一象限内y随x的增大而增大C.一次函数y1与x轴的交点C是(2,0)D.S△AOB=16二、填空题。
天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)
2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。
八年级下学期数学期末测试卷 试题试卷 含答案解析(2)
八年级下期数学期末测试一.选择题1.9的平方根为()A.3B.﹣3C.±3D.2.下列式子中,为最简二次根式的是()A.B.C.D.3.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3B.y=3x﹣2C.y=3x+2D.y=3x﹣14.若式子在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2B.x≤1C.x>1且x≠2D.x<15.某超市销售A,B,C,D四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均单价是()A.1.95元B.2.15元C.2.25元D.2.75元6.下表是我市6个县(市)区今年某日最高气温(℃)的统计结果:地区孟州温县沁阳博爱武陟修武平均气温温度(℃)■302729283029则6个县(市)区该日最高气温(℃)的众数和中位数分别是()A.29,31B.30,29.5C.30,29D.30,37.如图,直线y=﹣x+b经过点(0,3),则关于x的不等式﹣x+b>0的解集是()A.x>2B.x<2C.x≥2D.x≤28.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB 的长度为()A.5B.6C.7D.259.如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5C.a:b:c=::D.a=6,b=10,c=1210.四边形ABCD的对角线AC与BD相交于点O,下列四组条件中,一定能判定四边形ABCD为平行四边形的是()A.AD∥BC B.OA=OC,OB=ODC.AD∥BC,AB=DC D.AC⊥BD11.如图,正方形ABCD的边长为2,动点P从点B出发,在正方形的边上沿B→C→D的方向运动到点D停止,设点P的运动路程为x,在下列图象中,能表示△P AD的面积y 关于x的函数关系的图象是()A.B.C.D.二.填空题12.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14,乙的方差是0.06,这5次短跑训练成绩较稳定的是.(填“甲”或“乙”)13.化简:=.14.如图,菱形ABCD的对角线AC、BD相交于点O,OE⊥AD,垂足为E,AC=8,BD=6,则OE的长为.15.如图,菱形ABCD的两条对角线AC、BD相交于点O,若AB=cm,BD=6cm,则菱形ABCD的面积是.16.若一组数据4,a,7,8,3的平均数是5,则这组数据的中位数是.17.一次函数y=kx﹣2的图象经过第一、三、四象限,且与两坐标轴围成的三角形的面积等于4,则k的值等于.18.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE =30°,DF=3,则AF的长为.19.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠ECD=°.三.解答题20.计算:.21.计算:(﹣2)2+﹣÷.22.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.23.在平面直角坐标系xOy中,已知一次函数y=kx+4与y=﹣x+b的图象都经过A(﹣2,0),且分别与y轴交于点B和点C.(1)填空:k=,b=;(2)设点D在直线y=﹣x+b上,且在y轴右侧,当△ABD的面积为15时,求点D 的坐标.24.小王花1200元从农贸市场购进批发价分别为每箱30元与50元的A、B两种水果进行销售,并分别以每箱35元与60元的价格售出,设购进A水果x箱,B水果y箱.(1)若小王将水果全部售出共赚了215元,则小王共购进A、B水果各多少箱?(2)若要求购进A水果的数量不得少于B水果的数量,则应该如何分配购进A、B水果的数量并全部售出才能获得最大利润,此时最大利润是多少?25.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB的延长线于点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)当∠BOD=°时,四边形BECD是菱形;(3)当∠A=50°,则当∠BOD=°时,四边形BECD是矩形.26.如图,正方形ABCD中,M为BC上的点,E是AD的延长线的点,且AE=AM,过E作EF⊥AM垂足为F,EF交DC于点N.(1)求证:AF=BM;(2)若AB=12,AF=5,求DE的长.27.某校七、八年级各有400名学生,为了了解疫情期间线上教学学生的学习情况,复学后,某校组织了一次数学测试,刘老师分别从七、八两个年级随机抽取各50名同学的成绩(百分制),并对数据(成绩)进行了整理、描述和分析,部分信息如下:a.七、八年级的频数分布直方图如下(数据分为5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.七年级学生成绩在80≤x<90的这一组是:808081818182828283858586868888899090c.七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级80.3m八年级78.276根据以上信息,回答下列问题:(1)表中m的值为;(2)在这次测试中,八年级80分以上(含80分)有人;(3)小江说:“这次考试没考好,只得了79分,但年级排名仍属于前50%”,请判断小江所在年级,并说明理由;(4)若85分及以上为“优秀”,请估计七年级达到“优秀”的人数.28.如图,在菱形ABCD中,∠ABC=60°,E是对角线AC上一点.F是线段BC延长线上一点,且CF=AE,连接BE.(1)发现问题如图①,若E是线段AC的中点,连接EF,其他条件不变,填空:线段BE与EF的数量关系是;(2)探究问题如图②,若E是线段AC上任意一点,连接EF,其他条件不变,猜想线段BE与EF的数量关系是什么?请证明你的猜想;(3)解决问题如图③,若E是线段AC延长线上任意一点,其他条件不变,且∠EBC=30°,AB=1,请直接写出AF的长度.参考答案一.选择题1.C.2.B.3.D.4.A.5.C.6.B.7.B.8.A.9.D.10.B.11.D.二.填空题12.乙.13..14..15.12cm2.16.4.17..18.3.19.57.5.三.解答题20.解:原式=﹣﹣2=4﹣﹣2=4﹣3.21.解:原式=3﹣4+2+2﹣3=7﹣5.22.解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.23.解:(1)将A(﹣2,0)代入y=kx+4得﹣2k+4=0,解得k=2,将A(﹣2,0)代入y=﹣x+b得1+b=0,解得b=﹣1;故答案为2,﹣1;(2)如图,过D作DE⊥BC于E,在y=2x+4中,令x=0,则y=4,∴B(0,4),在y=﹣x﹣1中,令x=0,则y=﹣1,∴C(0,﹣1),∴BC=5,+S△BCD=15,当△ABD的面积为15时,S△ABC即AO×BC+DE×BC=15,∴×2×5+×DE×5=15,∴DE=4,在y=﹣x﹣1中,令x=4,则y=﹣3,∴D(4,﹣3).24.解:(1)由题意可得,,解得,答:小王共购进A种水果25箱,B种水果9箱.(2)设利润为W元,W=(35﹣30)x+(60﹣50)y=5x+10×=﹣x+240.∵购进A水果的数量不得少于B水果的数量,∴x≥,解得:x≥15.∵﹣1<0,∴W随x的增大而减小,∴当x=15时,W取最大值,最大值为225,此时y=(1200﹣30×15)÷50=15.答:购进水果A、B的数量均为15箱并全部售出才能获得最大利润,此时最大利润为225元.25.(1)证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O为BC的中点,∴BO=CO,在△BOE和△COD中,,∴△BOE≌△COD(AAS);∴OE=OD,∴四边形BECD是平行四边形;(2)解:当∠BOD=90°时,四边形BECD是菱形;理由:∵四边形BECD是平行四边形,∴当∠BOD=90°时,四边形BECD是菱形;(3)解:若∠A=50°,则当∠BOD=100°时,四边形BECD是矩形.理由如下:∵四边形ABCD是平行四边形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四边形BECD是平行四边形,∴四边形BECD是矩形;故答案是:(2)90°;(3)100°.26.证明:(1)∵四边形ABCD是正方形∴∠ABC=90°,AD∥BC∴∠EAF=∠AMB,∵∠AFE=∠ABC=90°,AE=AM,∴△ABM≌△EF A(AAS)∴AF=BM(2)∵在Rt△ABM中,AB=12,AF=BM=5∴AM==13∵△ABM≌△EF A,∴AM=AE=13,∵四边形ABCD是正方形,∴AB=AD,∴DE=AE﹣AD=13﹣12=127.解:(1)由直方图中的数据可知,中位数是80≤x<90这一组第一个和第二个数的平均数,故m=(80+80)÷2=80,故答案为:80;(2)由频数分布直方图可得,在这次测试中,八年级80分以上(含80分)有400×=160(人),故答案为:160;(3)小江属于八年级,因为小江的成绩大于八年级成绩的中位数,而小于七年级成绩的中位数,故小江属于八年级;(4)400×=136(人),即七年级达到“优秀”的有136人.28.解:(1)猜想线段BE与EF的数量关系为:BE=EF;理由如下:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∴∠F=∠CEF=∠BCA=30°,∴∠CBE=∠F=30°,∴BE=EF.故答案为BE=EF.(2)猜想线段BE与EF的数量关系为:BE=EF;理由如下:过点E作EG∥BC交AB于点G,如图②所示:∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC,∠BCD=120°,AB∥CD,△ABC与△ACD都是等边三角形,∴∠ACD=60°,∠DCF=∠ABC=60°,AB=AC,∴∠ECF=120°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠BGE=120°=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF.(3)连接EF,过点E作EG∥BC交AB延长线于点G,如图③所示:∵四边形ABCD为菱形,∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠ECF=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∴BG=CE,∠AGE=∠ECF,又∵CF=AE,∴GE=CF,在△BGE和△CEF中,,∴△BGE≌△ECF(SAS),∴BE=EF,∵∠ABC=60°,∠EBC=30°,∴∠ABE=∠ABC+∠EBC=60°+30°=90°,∵△ABC是等边三角形,∴∠BAC=60°,∴∠BEA=180°﹣∠ABE﹣∠BAC=180°﹣90°﹣60°=30°,在Rt△ABE中,∠BEA=30°,∴AE=2AB=2×1=2,BE=,∴EF=,∵BE=EF,∴∠EBC=∠EFB=30°,∴∠BEF=180°﹣30°﹣30°=120°,∴∠AEF=∠BEF﹣∠BEA=120°﹣30°=90°,由勾股定理得:AF===.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下学期数学试题班级:_______姓名:________考号:_________成绩________第I卷选择题一、单选题1.若式子√x+1有意义,则x的取值范围是A. x≥1B. x≤1C. x≥-1D. x≤-12.下列运算正确的是A. √5?√3=√2B. √8?√2=√2C. √419=213D. √(2?√5)2=2?√53.△ABC的三边为a、b、c,由下列条件不能判断它是直角三角形的是A. ∠A: ∠B: ∠C =3∶4∶5B. ∠A=∠B+∠CC. a2=b+cb-cD. a:b:c =1∶2∶√34.如图,数轴上点A所表示的数是A. √5B. -√5+1C. √5+1D. √5-15.如图,平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC等于A. 1B. 2C. 3D. 46.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于A. 38B. 23C. 35D. 457.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF 的长为A. 1B. √2C. 4-2√2D. 3√2-48.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为A. 6B. 10C. 8D. 129.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是A. 2B. √2C. √3D. 2√310.平行四边形四个内角的角平分线所围成的四边形是A. 平行四边形B. 矩形C. 菱形D. 正方形11.在直线l上依次摆放着七个正方形如图所示;已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4的值为A. 6B. 5C. 4D. 312.如图,在直角坐标系中,已知点A﹣3,0、B0,4,对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2017的直角顶点的坐标为..A. 4032,0B. 4032,125C. 8064,0 D. 8052, 125第II卷非选择题评卷人得分二、填空题13.最简二次根式√5?6a与√2a+13也是同类二次根式,则a=________.14.命题“两直线平行,同位角相等”的逆命题是________________________15.2-√52+√5=__________.16.如图,正方形ABCD的边长为5,点E在边AB上,且BE=2.若点P在对角线BD上移动,则PA+PE的最小值是__________.17.将五个边长都为2的正方形按如图所示摆放,点A1、A2、A3、A4分别是四个正方形的中心,则图中四块阴影部分的面积的和为______.18.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④△AEF≌△CDE填正确的序号评卷人得分三、解答题计算下列各题1√3?1+√27?(√3?1)02√18+√92−(π?√2)0?|1?√2|+(12)?120.如图,在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.21.先化简在求值:xx+2?x2+2x+1x+2÷x2?1x?1,其中x=√3?222.如图,在△ABC中,AB = BC,D、E、F分别是BC、AC、AB边上的中点;1求证:四边形BDEF是菱形;2若AB =12cm,求菱形BDEF的周长.23.如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC 交于点O,且BE=BF,∠BEF=2∠BAC;1求证;OE=OF;2若BC=√3,求AB的长;24.如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度数25.在平面直角坐标系中,Aa,0,B0,b,a,b满足√a?b+|a?3√2|=0,C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.1求∠OAB的度数2当点P运动时,PE的长是否变化若变化,请说明理由;若不变,请求PE的长3若∠OPD=45度,求点D的坐标26.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点点D不与点B,C重合.以AD为边作正方形ADEF,连接CF.1如图1,当点D在线段BC上时.求证:CF+CD=BC;2如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;3如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2√2,对角线AE,DF相交于点O,连接OC.求OC的长度.参考答案与解析1.C解析分析:根据二次根式有意义的条件,被开方数为非负数,可直接列不等式求解.详解:∵式子√x+1有意义∴x+1≥0∴x≥-1故选:C.点睛:此题主要考查了二次根式有意义的条件,关键是利用被开方数为非负数列不等式求解.2.B解析分析:根据二次根式的相关性质化简结算即可判断.详解:根据二次根式的加减,可由√5与√3不是同类二次根式,因此不能计算,故不正确;根据二次根式的加减,可得√8−√2=2√2-√2=√2,故正确;根据二次根式的性质,可知√419=√379=√373,故不正确;根据二次根式的性质√a=|a|,可知√(2−√5)2=√5−2,故不正确.故选:B.点睛:此题主要考查了二次根式的化简,关键是灵活利用二次根式的性质对式子变形即可,比较简单,是常考题.3.A解析分析:根据直角三角形的概念,角的特点和勾股定理的逆定理逐一判断即可.详解:根据直角三角形的两锐角互余,可知180°×53+4+5=75°<90°,不是直角三角形,故正确;根据三角形的内角和定理,根据∠A+∠B+∠C=180°,且∠A=∠B+∠C,可得∠A=90°,是直角三角形,故不正确;根据平方差公式,化简原式为a2=b2-c2,即a2+c2=b2,根据勾股定理的逆定理,可知是直角三角形,故不正确;根据a、b、c的关系,可直接设a=x,b=2x,c=√3x,可知a2+c2=b2,可以构成直角三角形,故不正确.故选:A.点睛:此题主要考查了直角三角形的判定,关键是根据三角形的两锐角互余,三角形的内角和定理和勾股定理逆定理进行判断即可.4.D解析如图,BD=1--1=2,CD=1,∴BC=√BD2+CD2=√22+12=√5,∴BA=BC=√5,∴AD=√5-2∴OA=1+√5-2=√5-1,∴点A表示的数为√5-1.故选D5.B解析先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB=3,从而求出C=BC-BE=5-3=2.故选:A.点睛:本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.6.C解析试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x-y,x、y均为正数.在Rt△ABM中,AB2+AM2=BM2,即x2+y2=2x-y2,解得x=43y,∴MD=MB=2x-y=53y,∴AMMD =y5y3=35.故选C.7.C解析试题解析:在正方形ABCD 中,∠ABD=∠ADB=45°,∵∠BAE=22.5°, ∴∠DAE=90°-∠BAE=90°-22.5°=67.5°,在△ADE 中,∠AED=180°-45°-67.5°=67.5°,∴∠DAE=∠AED, ∴AD=DE=4,∵正方形的边长为4,∴BD=4√2,∴BE=BD-DE=4√2-4,∵EF ⊥AB,∠ABD=45°,∴△BEF 是等腰直角三角形,∴EF=√22BE=√22×4√2-4=4-2√2.故选C .考点:正方形的性质.8.B解析分析:因为BC 为AF 边上的高,要求△AFC 的面积,求得AF 即可,求证△AFD′≌△CFB ,得BF=D′F ,设D′F=x ,则在Rt △AFD ′中,根据勾股定理求x,∴AF=AB-BF .详解:根据折叠的性质,易证△AFD′≌△CFB,∴D′′F=BF,设D′F=x ,则AF=8-x,在Rt △AFD ′中,8-x 2=x 2+42,解之得:x=3,∴AF=AB-FB=8-3=5,∴S △AFC =12 AF BC=10.故选:B.点睛:本题考查了勾股定理的正确运用,本题中设D′F=x ,根据直角三角形AFD ′中运用勾股定理求x 是解题的关键.9.C解析试题分析:由OP 平分∠AOB,∠AOB=60°,CP=2,CP ∥OA,易得△OCP 是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE 的值,继而求得OP 的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM 的长. 解:∵OP 平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°, ∵CP ∥OA, ∴∠AOP=∠CPO, ∴∠COP=∠CPO, ∴OC=CP=2, ∵∠PCE=∠AOB=60°,PE ⊥OB, ∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2, ∵PD ⊥OA,点M 是OP 的中点,∴DM=OP=.故选:C .考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.10.B解析分析:作出图形,根据平行四边形的邻角互补以及角平分线的定义求出∠AEB=90°,同理可求∠F 、∠FGH 、∠H 都是90°,再根据四个角都是直角的四边形是矩形解答.详解:∵四边形ABCD 是平行四边形,∴∠BAD+∠ABC=180°,∵AE、BE 分别是∠BAD、∠ABC 的平分线,∴∠BAE+∠ABE=12∠BAD+12∠ABC=90°,∴∠FEH=90°,同理可求∠F=90°,∠FGH=90°,∠H=90°,∴四边形EFGH 是矩形.故选:B.点睛:本题考查了矩形的判定,平行四边形的邻角互补,角平分线的定义,注意整体思想的利用.11.C解析试题分析:在△ABC和△CDE中,EC=AC∠ECD=∠CAB∠ACB=∠CED∴△ABC≌△CDE,∴AB=CD,BC=DE,∴AB2+DE2=DE2+CD2=CE2=3,同理可证FG2+LK2=HL2=1,∴S1+S2+S3+S4=CE2+HL2=1+3=4.故选C考点:勾股定理点评:本题考查了全等三角形的证明,考查了勾股定理的灵活运用,本题中证明AB2+DE2=DE2+CD2=CE2是解题的关键12.C解析分析:观察不难发现,每3个三角形为一个循环组依次循环,用2017除以3,根据商是672,余1,可知三角形2017是第673个循环组的第一个三角形,直角顶点在x轴上,再根据一个循环组的距离为12,进行计算即可得解.详解:由图可知,每3个三角形为一个循环组依次循环,∵2017÷3=672……1,∴三角形2017是第673个循环组的第一个三角形,直角顶点的横坐标为:12×672=8064,∴三角形2017的直角顶点的坐标是8064,0.故选:C.点睛:本题考查了坐标与图形变化-旋转,仔细观察图形,发现每3个三角形为一个循环组依次循环是解题的关键,也是本题的难点.13.-1解析分析:根据同类二次根式的性质,化为最简二次根式后,被开方数相同,可得关于a的方程即可求解.详解:∵最简二次根式√5−6a与√2a+13也是同类二次根式∴5-6a=2a+13解得a=-1故答案为:-1.点睛:此题主要考查了同类二次根式,关键是明确同类二次根式的特点,化为最简二次根式后,被开方数相同,比较简单.14.同位角相等,两直线平行解析试题分析:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.根据互逆命题的定义可得“两直线平行,同位角相等”的逆命题是“同位角相等,两直线平行”.考点:互逆命题.15.-1解析分析:根据平方差公式和二次根式的性质计算即可.详解:2-√52+√5=22-√52=4-5=-1故答案为:-1.点睛:此题主要考查了二次根式的运算,关键是观察式子的特点—利用平方差公式计算即可,比较简单.16.√29解析分析:作出点E关于BD的对称点E′交BC于E′,连接AE′与BD交于点P,此时AP+PE最小,求出AE′的长即为最小值.详解:作出点E关于BD的对称点E′交BC于E′,连接AE′与BD交于点P,此时AP+PE最小,∵PE=PE′,∴AP+PE=AP+PE′=AE′,在Rt△ABE′中,AB=5,BE′=BE=2,根据勾股定理得:AE′=√29,则PA+PE的最小值为√29.故答案为:√29.点睛:此题考查了轴对称-最短线路问题,以及正方形的性质,熟练掌握各自的性质是解本题的关键.17.4解析分析:连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.详解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的1,而正方形的面积为4,4∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故答案为:4.点睛:本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.18.①②解析分析:先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.再根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形.详解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,{DE=DE ∠ADE=∠CDE AD=CD∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,{∠BAH=∠CDF AB=CD∠ABH=∠DCF∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,根据△AEF最长边AE和△CED的最长边CD不相等,可判断不是全等三角形,故④不正确.∴正确的是①②,故答案为①②.点睛:此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.√2+219.1 4√3;272解析分析:1根据二次根式的化简、分母有理化、零次幂的性质可求解;2根据二次根式的化简、零次幂的性质,绝对值的性质,负整指数幂的性质可求解.详解:12√3−1+√27−(√3−1)0=2×√3+12+3√3-1=4√32√18+√92−(π−√2)0−|1−√2|+(12)−1=3√2+3√22-1-√2+1+2=72√2+2点睛:此题主要考查了实数的运算,要熟练掌握,解答此题的关键是灵活利用二次根式的化简、分母有理化、零次幂的性质,绝对值的性质,负整指数幂的性质,进行计算即可,是常考题.20.答案见解析解析试题分析:根据平行四边形的性质得出OA=OC,AB∥CD,从而得到∠OAE=∠OCF,然后根据对顶角相等得出△OAE和△OCF全等,从而得出答案.试题解析:∵四边形ABCD是平行四边形, ∴OA=OC,AB∥CD ∴∠OAE=∠OCF ∵∠AOE=∠COF ∴△OAE≌△OCFASA ∴OE=OF考点:平行四边形的性质.21.-√33解析分析:先算除法,后算减法,分式除以分式,把这个分式的分子分母颠倒,再和这个分式相乘.解析:xx+2(x+1)2x+2?x?1(x+1)(x?1)=xx+2?x+1x+2=?1x+2当x=√3?2时,原式=?1√3?2+2=?√3322.1证明见解析;224cm.解析试题分析:1可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.2F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.1证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;2解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.点评:本题的关键是判断四边形BDEF是菱形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.23.1证明见解析;23.解析分析:1根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;2连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解:1证明:在矩形ABCD中,AB∥CD,∴∠BAC=∠FCO,在△AOE和△COF中,在△AOE和△COF中,,∴△AOE≌△COFAAS,∴OE=OF;2解:如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO, 又∵∠BEF=2∠BAC, 即2∠BAC+∠BAC=90°,解得∠BAC=30°, ∵BC=√3, ∴AC=2BC=2√3,∴AB=√AC2BC2=√(2√3)2?(3)2=3点睛:本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,2作辅助线并求出∠BAC=30°是解题的关键.24.135°解析试题分析:根据同角的余角相等求出∠ACP=∠BCD,再利用“边角边”证明△ACP和△BCD全等,判断出△PCD是等腰直角三角形,再根据全等三角形对应边相等可得AP=BD,然后利用勾股定理逆定理判断出△BPD是直角三角形,∠BPD=90°,再根据∠BPC=∠BPD+∠CPD代入数据计算即可得解.试题解析:解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD SAS.∴DB=PA=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8.又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.25.145°;23;36√2?6,0解析分析:1根据非负数的性质即可求得a、b的值,从而得到△AOB是等腰直角三角形,据此可求;2根据等腰直角三角形的性质以及三角形的外角的性质可以得到∠POC=∠DPE,即可得证△POC≌△DPE,则OC=PE,OC的长度可根据等腰直角三角形的性质可求;3利用等腰三角形的性质,以及外角的性质,证得∠POC=∠DPE,即可得到△POC≌△DPE,根据全等三角形的对应边相等,即可求得OD的长,从而求得D 的坐标.详解:1根据题意得:a=b,a-3=0.解得:a=b=3,∴OA=OB又∵∠AOB=90°,∴△AOB是等腰直角三角形,∠OAB=45°;2PE值不变;理由:∵△AOB是等腰直角三角形,且AC=BC, ∴∠AOC=∠BOC=45°,又因OC垂直AB于C,故PO=PD,∴∠POD=∠PDO. 又因∠POD=45°+∠POC,∠POD=45°+∠DPE∴∠POC=∠DPE;∴在△POC和△DPE中,{∠POC=∠DPE∠OCP=∠PEDPO=PD∴△POC≌△DPE. ∴OC=PE又因OC=12AB=3, ∴PE=33∵PO=PD, ∴∠POD=∠PDO=180°-∠OPD2=67.5°∴∠PDA=180°-∠PDO=180°-67.5°=112.5°∵∠POD=∠A+∠APD,∴∠APD=67.5°-45°=22.5°, ∴∠BPO=180°-∠OPD-∠APD=112.5°∴∠PDA=∠BPO∴在△POB和△DPA中,{∠PDA=∠BPO ∠PAD=∠OBP PO=PD∴△POB≌△DPAAASPA=OB= 3√2, ,DA=PB= 6-3√2∴ OD=OA-DA=3√2-6-3√2=6√2-6∴ D6√2-6,0点睛:此题属于一次函数的综合题,涉及的知识有:全等三角形的判定与性质,非负数的性质,三角形的外角性质与内角和定理,坐标与图形的性质,以及等腰三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.1证明见解析;2CF-CD=BC;3①CD-CF=BC;②2.解析试题分析:1、根据正方形的性质判定出△BAD和△CAF全等,从而得出BD=CF,根据BD+CD=BC得出答案;2、根据图形得出线段之间的关系;3、首先根据正方形的性质证明△BAD和△CAF全等,然后得出∠ACF=∠ABD=135°,从而说明△FCD为直角三角形,根据正方形的对角线得出DF的长度,然后根据直角三角形斜边上的中线的性质得出OC的长度.试题解析:1、∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,{AB=AC∠BAD=∠CAFAD=AF∴△BAD ≌△CAFSAS,∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;2、CF-CD=BC3、①CD-CF =BC.②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC, ∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°, ∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,{AB=AC∠BAD=∠CAFAD=AF∴△BAD ≌△CAFSAS,∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°, ∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为2√2且对角线AE、DF相交于点O,∴DF=√2AD=4,O为DF中点.∴OC=12DF=2.考点:三角形全等的判定与性质。