cae发展现状

合集下载

我国模具CAD/CAE/CAM/PDM发展现状及发展建议

我国模具CAD/CAE/CAM/PDM发展现状及发展建议

我国模具CAD/CAE/CAM/PDM发展现状及发展建议专稿《电加工与模具),2010年增刊我国模具C/CPDM发展现状及发展建议中国模协技术委员会李德群(执笔)中图分类号:TG76,TP391.7文献标识码:A文章编号:1009—279X(2010)SO~0041—041我国模具.PDM发展现状模具cAD/CAE/CAM是改造传统模具生产方式的关键技术,是一项高科技,高效益的系统工程.它以计算机软件的形式,为企业提供一种有效的辅助工具,使工程技术人员借助于计算机对产品性能,模具结构,成形工艺,数控加工及生产管理进行设计和优化.模具CAD/CAE/CAM技术能显着缩短模具设计与制造周期,降低生产成本和提高产品质量已成为模具界的共识.随着CAM/CAE软件及其他应用软件的普及应用,计算机产生的各种类型,格式各异的数据资料,如市场分析报告,产品设计信息,加工图纸,零件加工工艺,数控加工程序清单,仿真测试结果分析及各种说明书等,迅速增加.如何有效管理这些异构数据资料成为了企业面临的一大难题.PDM系统作为一个信息沟通平台,可对企业的各种产品及其相关数据进行统一管理,并在产品整个的开发过程中协助管理者对开发过程进行有效控制和管理.与此同时,设计人员在产品生命周期内的各个环节与产品过程相关的各个地方均能及时,准确地获取产品的相关信息,并对产品数据进行一定权限范围内的操作.这种产品数据的高度集成和共享,使得新产品的开发时间和成本大为缩减."十一五"期间,我国模具cAD/CAE/cAM/PDM技术取得了长足的进步,具体表现在以下几个方面:(1)开发出具有自主知识产权的系列CAD/CAM/CAE品牌软件华天软件,中创软件与日本最大的CAD/CAM收稿日期:2009~12—10作者简介:李德群,男,1945年生,华中科技大学材料学院教授,中国模协技术委员会副主任兼cAD/cAM技术部主任.软件公司UEL合作,结合El本工业界最佳实践,采取引进,消化,吸收,再创新的方式,开发完成具有中国自主知识产权的三维CAD/CAM软件SINOV A—T10NV1.0.这标志着我国在三维CAD/CAM软件研发领域实现了重大突破.SINOV ATlON软件是三维CAD/CAM一体化的应用软件系统,该软件具有最先进的混合型建模,参数化设计,丰富的特征造型功能.提供了经过业界验证的具有国际先进水平的CAM加工,冲压模具,注塑模具等应用技术.特别适合汽车,汽车零部件,机床,通用机械,模具及工艺装备等行业的设计及加工应用.SINOV A—TION冲压模具设计解决方案为专业设计人员提供了一套经过业界验证的CAD解决方案组合,包括高效的冲压工艺设计,精确的冲压回弹补偿和专业的冲压模具结构设计等功能.SINOV ATION注塑模设计与加工解决方案是根据注塑模具设计,制造经验,将产品成形工艺与工程分析软件相结合,开发的适用于注塑模具设计专用的软件包.方案以三维参数化建模CAD软件为基础,涵盖了从零件设计,分析,自动分模创建模具,电极设计,工程图创建等整个过程,体现出高品质,灵活,高效的设计理念,为注塑模具设计工作提供了专业的技术应用平台. CAXA系列化软件在开发自主知识产权的知名品牌的道路上不断取得新成果,如新一代集成软件CAxA V5PLM首次将成熟的2D,3D,CAPP,MPM和DDM技术在统一的数据模型基础上进行整合, 覆盖了从概念设计,详细设计,工艺流程到生产制造管理的各个环节,并通过数字化仿真帮助企业优化产品设计和生产制造的整个过程.上海模具CAD国家工程研究中心在国内较早地开始了基于知识的工程技术(KBE)研究,在塑性成形和模具设计知识的获取与表示,知识的推理机制,知识的集成与管理以及知识的发现等KBE关键--———41?———《电加工与模具)2010年增刊专稿技术上进行了行之有效的研究,形成了适用于不同行业,不同类型KBE系统的一整套开发思路及相关的KBE应用软件.华中科技大学材料成形与模具技术国家重点实验室开发的注塑成形模拟软件"华塑CAE",铸造成形模拟软件"华铸CAE"和板料成形模拟软件"FAS—TAMP"又有新发展.目前研究的重点是微宏观分析相结合,数值计算和人工智能相结合,目标是将模拟软件由传统的被动式计算工具提升为主动式优化系统.随着应用的不断深入和广泛,系列化模拟软件华塑CAE,华铸CAE和FASTAMP已成为我国模具行业具有自主知识产权的主导技术和知名品牌.湖南大学以先进冲压CAE技术为突破口,开发出一套包括冲压工艺设计和汽车覆盖件模具设计和制造的系列化软件.其冲压仿真CAE自动建模系统CADEM一工能利用模具表面数控轨迹数据作为网格生成的几何数据源,使建模效率成倍提高,对于汽车覆盖件成形,在同样精度下可使仿真模型网格单元减少近20%~40%.冲压仿真CAE系统CADEM—II采用先进的理论和算法,在保证冲压件大变形计算精度的前提下显着地提高了分析速度. 冲压工艺分析与设计系统CADEM一Ⅲ采用壳体失稳理论预测覆盖件成形中的起皱趋势,采用基于仿真的毛坯反算技术,实现了复杂零件的毛坯形状和尺寸的迭代反求.(2)广泛采用了CAD/CAE/CAM技术并在应用中取得了显着效益其中最大的技术进步无疑是三维CAD方面的重大突破.一汽模具,天汽模,东风模具,福田潍坊模具等企业的三维CAD普及率达到100%.其他骨干企业正在加快进行二维CAD到三维CAD的过渡.国外的有些知名企业至今也尚未做到100%的三维CAD.由于采用三维CAD技术,使过去分散在各个信息孤岛的CAD,CAE,CAM连成一片,实现了一体化,为模具全程数字化制造提供了技术基础.少数企业的整个流程已完全实现了数字化加工和无图化生产,正在为将来的自动化加工和柔性生产积极创造条件.一些先进企业在模具结构设计完成后,采用截面检查,干涉检查,静态运动干涉检查,运动模拟等分析手段,真实反映模具的实际工作状态,保证了实体设计的可靠性.一42一CAE分析普及率明显提高,少数企业已达到100%,CAE不再是高不可攀的技术,更不是束之高阁的摆设,而是一个必不可少的工具,它帮助设计者在设计阶段"先知先觉",对模具调试时可能出现的问题进行处理,做到"防患于未然".在参数化设计方面也取得了长足的进步.国内一些骨干企业已建立了模具基础结构图库,还建立了标准件图库.利用参数化手段,根据模具结构特点,选择基础构架,设计者只需要控制几个基本的特. 征参数,系统将会根据事先输入到计算机中的结构规则,自动提供合理的结构方案,设计者只需做少许调整和装配即可完成设计.设计规则的引入,使三维实体模具结构设计达到了一个更高的层次. (3)PDM技术不断发展目前,国外的公司已开发出一些产品功能齐全,开放性好,思想新颖,技术先进的PDM产品.如UGS公司的IMAN,IBM公司的ProductManager, SDRC公司的Metaphase,PTC公司的Windchill等, 这些产品在波音,IBM,福特汽车,通用汽车等公司得到推广应用,取得了成功.国内的一些企业,如春兰,海尔,长虹和康佳等采用IMAN系统,西安飞机设计所采用IBM的PM系统,也取得了一定的成功.与此同时,国内的软件厂商也纷纷推出了自己的PDM产品,如武汉天喻公司的IntePDM,武汉开目技术集成公司的KMPDM,清华同方软件公司的TFPDMS等.国产的PDM系统,无论是在功能上,技术上,思想上还是稳定性方面与国外的产品都有较大的差距,但在价格和定制程度方面有一定优势, 因此在国内的一些企业中也得到应用,如天喻公司的IntePDM系统,同方公司的TFPDM系统,大恒公司的DHPDM系统等.2我国模具CAD/CAE/CAM/PDM与国际先进水平的主要差距与国外发达国家相比,我国模具CAD/CAE/CAM/PDM技术发展水平还很低,差距很大.主要表现在以下方面:(1)软件开发进度和水平低目前三维CAD/cAM软件的核心技术目前仍掌握在欧美日等发达国家手中,占主流地位的模具CAD软件主要有Pm/E,I—DEAS,UG等,中国的三维CAD/CAM市场几乎被国外产品完全垄断.每年中国制造企业采购三维CAD/CAM软件的金额高达专稿《电加工与模具)2olo年增刊几十亿元,而且还在以每年20%的速度递增.这种尴尬局面不仅使得制造企业承受了高昂的成本压力,而且支撑产品创新的核心工具受制于人,存在重大的信息和知识产权安全隐患.而我国CAD/cAE/ CAM/PDM技术研究开发未能很好地有组织,有计划,有重点地进行,造成低水平重复劳动,影响了软件开发的进度和水平的提高,无论是在功能上,技术上,思想上还是稳定性方面与国外的产品都有较大的差距.(2)CAD/CAM应用水平差距明显在国内的模具生产中,CAD/CAM技术已得到广泛的应用.但对于国内一些大型模具企业,它们的CAD/CAM应用状况多停留在从国外购买先进的CAD/CAM系统和设备,在其上进行的二次开发较少,资源利用率低;国内一些中小型模具企业CAD/CAM应用很少,有些仅停留在以计算机代替画板绘图.(3)CAE没有得到广泛应用CAE在我国模具行业的应用还刚刚起步,只是在经济实力雄厚的企业,例如一汽,东风,海尔等单位,才购买了少量的商品化软件,开始尝试应用. (4)信息集成技术落后信息技术的广泛集成是以产品数据管理(PDM)和过程管理(PM)为基础,实现CAD/CAM和ERP的有机集成,在并行工程中PDM也是重要的基础.而我国在这方面的研究刚刚开始,至今也没有一个在国内市场上成熟的PDM系统.因此, 这类基础性软件也被国外的系统占领了市场. (5)CAD/CAE/CAM缺乏知识的集成由于缺乏对设计知识的集成,模具设计方案的选择,工艺参数与模具结构的优化,成形性能的评价等依然依赖着模具设计者的经验.设计知识是企业最有价值的智力资产,是企业竞争力的保障.在目前的注射模设计行业,这些知识主要以经验的形式由资深设计工程师所掌握,随着他们的退休与流失必将造成企业核心技术的流失,将直接导致企业竞争力下降.在国外已广泛应用知识型CAD/CAM系统,如美国UGS公司的多工位级进模设计向导CAD系统(ProgressiveDieWizard)和注塑模设计向导CAD系统(MoldWizard),两系统均无缝地集成于该公司的三维机械CAD/CAM系统UG中,为用户提供了级进模和注塑模设计环境与工具,封装了模具设计的专家知识,提供了丰富的标准化的模架库,零件库和镶件库.造成上述差距的原因很多,除了历史上长期以来未将模具作为产品得到应有的重视之外,还有下列几个主要原因:(1)科研开发及技术攻关投入太少.由于模具企业效益欠佳及对科研开发和技术攻关不够重视, 投入太少,科研单位和大专院校又将主要精力放在创收上,致使模具行业科技进步的步伐不大,进展缓慢.(2)人才严重不足.模具行业是技术密集,资金密集,劳动密集的产业,随着时代的进步和技术的发展,掌握和运用新技术的人才异常短缺,技术素质较高的模具设计,制造工艺技术人员,技术工人及企业管理人才也非常紧缺.尤其缺乏知识面宽,知识结构层次高的复合型人才.(3)缺少先进的技术设备力量.我国大部分模具厂,车间的模具加工设备陈旧,在役期长,精度差, 效率低.近年来也引进了不少先进的模具加工设备,但过于分散,或不配套,利用率一般仅有25%左右,设备的一些先进功能也未能得到充分发挥. (4)管理落后更甚于技术落后.技术落后往往容易看到,管理落后有时却难以意识到.国内外模具企业管理上的差距十分明显,管理的差距所带来的问题往往比技术上的差距更为严重.3我国模具CD/CAE/CAM/PDM发展目标和主要任务"十二五"期间,我国模具行业的主要目标是全面推广cAD/CAE/CAM/PDM/PDM技术,主要任务是:(1)开发拥有自主知识产权,适合于我国国情,具有较高水平的模具设计,加工及模具企业管理软件,不断提高软件的智能化,集成化程度,并推广应用.(2)研究模具的分类学及模具结构的参数规范,实现模具零部件的标准化,参数化,并形成模具CAD/CAM系统软件的支持软件;(3)实现3D一体化设计.目前的模具设计主要采用3D设计和2D设计相结合的方法,在开发中存在易出错,效率低,质量不易控制等问题,因此需要实现设计过程的全三维化.通过数据共享技术实现各阶段各种应用软件的有效集成,达到模具设计的一体化.一43—《电加工与模具}2010年增刊专稿(4)深入研究模具的整体优化技术,包括模具成本估算,模具的可装配性,模具的成形性及可靠性,集成到模具行业普遍采用的通用造型设计系统上,完成面向制造的模具CAD/CAE/CAM系统的开发.(5)研究模具设计,制造参数,通用,标准,参数化构件及由经验构成的专家系统,并使之形成模具CAD/CAE/CAM数据库.(6)加快PDM技术的发展,由单一的计算机信息管理扩展到"管理所有与产品相关的信息和所有与产品相关的过程的技术",实现产品数据的高度集成和共享.(7)促进我国模具骨干企业全面采用模具CAD/CAM/cAE/PDM生产技术.4产品和技术等方面的发展重点和重大课题4.1发展重点(1)三维CAD/CAM技术的研发.开发具有自主知识产权的模具CAD/CAE软件,达到国际先进水平.(2)国产模具CAE软件的功能升级,形成国际知名的自主品牌.(3)国产PDM系统的研发.完善功能,提高性能稳定性,加强推广应用.(4)模具数字化设计制造系统的研发.(5)模具CAD/CAE/cAM一体化技术推广应用.(6)逆向工程,并行工程,敏捷制造技术的研发及推广应用.(7)模具的集成,柔性及自动加工技术和网络虚拟技术的研发与推广应用.4.2重大课题(1)关键产品模具数字化设计制造系统研发,如冲压工艺设计系统,模具型面设计系统,成形分析系统,模具结构设计系统,模具CAM系统和冲压专家咨询系统的车身模具数字化设计制造系统.(2)适应于超级并行计算机和机群的高性能模具CAE求解技术.(3)模具CAE分析结果的数据挖掘及智能评估.(4)模具CAE与模具cAD/CAM的无缝集成.(5)面向模具制造的PDM系统研发与应用.(6)PDM与模具CAD/CAM/cAE的集成.一44一(7)基于网络环境CAD/CAE/CAM技术的模具异地协同设计与分析.(8)模具设计知识库系统研发.5我国模具CAD/CAE/CAM/PDM的发展建议(1)建议政府有关部门建立模具发展基金,用于模具行业共性技术的开发,研究和创新项目,并对"龙头企业"作重点支持.要在国家有关部门大力支持下,加强产学研合作,推进模具行业科技开发和技术攻关工作,组织行业内产学研重点单位分工合作, 联合工作,争取早出成果,多出成果,共同享受成果, 并使成果产业化,以迅速提高行业的技术水平.用电子信息工程等高新技术和先进适用技术来改造企业传统的生产模式,将先进技术转化为生产力. (2)建立服务体系,使中小企业广泛受益.模具行业除个别企业外都是中小企业,力量有限,特别是信息和技术开发方面更显力不从心,他们难以完全依靠自己的力量去独闯市场.如能建立针对广大中小企业的行业服务体系,特别是信息和技术服务体系,使广大中小企业从中受益,必将有利于行业的振兴与发展.(3)以企业为主体,发挥院校和科研单位作用,搞好产学研结合,尽快使成果产业化,并大力提高模具生产技术水平.(4)自主开发和引进.所谓引进,主要是引进已商品化了的CAD/CAE/CAM软件和设备,并对引进的软件加强二次开发工作.引进软件和设备的同时,相应的人员培训相当重要.欢迎订阅《电加工与模具》《电加工与模具》主要报道特种加工和模具制造领域的设计研究成果,工艺应用技术,使用维修经验,产品开发信息和行业发展动态等.《电加工与模具》为双月刊,国内外公开发行.请读者在全国各地邮局订阅,也可直接向本刊编辑部邮购.每期定价10元,全年6期共60元.邮发代号:28—36地址:苏州高新区金山路18o号邮编:215011电话:(o512)67274541传真:(0512)67778215。

模具CAD/CAE/CAM的现状与发展趋势

模具CAD/CAE/CAM的现状与发展趋势

模具CAD/CAE/CAM的现状与发展趋势关键字:模具|CAD|CAE|CAM摘要:本文论述了我国模具行业的概况及其近年来所取得的成绩,对国内外模具CAD/CAE/CAM技术的发展历程和现状作了简单概述,最后总结出模具CAD/CAE/CAM的专业化、标准化、集成化、智能化、虚拟化、网络化的发展趋势。

模具是工业生产中的基础工艺装备,也是发展和实现少无切削技术不可缺少的工具。

在电子、汽车、电机、电器、仪表、家电和通讯行业中,有60%-80%的零部件都需要模具加工,轻工制品的生产中应用模具更多,因此模具行业有“百业之母”的美誉。

模具生产的工艺水平及科技含量的高低,直接影响到工业产品的发展,它在很大程度上决定着产品的质量、企业的效益、新产品的开发能力,决定着一个国家制造业的国际竞争力,因此模具生产的工艺水平及科技含量的高低已经成为衡量一个国家工艺水平和产品制造水平的重要标志。

随着模具CAD/CAE/CAM 技术的广泛使用,模具生产的工艺水平和科技含量将有质的飞跃。

1 我国模具工业概况我国虽然很早就开始制造和使用模具,但长期未形成高技术含量的产业。

直到20世纪80年代后期,随着科技的进步,国务院和国家有关部门对发展模具工业的给与了高度重视和支持,模具工业才驶入快速发展轨道。

近年来,我国模具工业发生了巨大的变化,不仅国有模具企业取得了很大发展,三资企业、乡镇(个体)模具企业的发展也相当迅速,已经形成珠三角、长三角、安徽等具有一定规模的模具生产基地。

模具工业的技术水平也有了很大的提高,冲压模具中具有代表性的是为汽车配套的汽车覆盖件模具,以及为农用车、工程机械和农机配套的覆盖件模具;覆盖件模具的技术要求高,大都是结构复杂的大中型模具,代表了冲压模具的水平,一汽模具公司、东风模具公司、天津模具厂等已能够生产出部分中档新型轿车的覆盖件模具。

多工位级进模是一种高精度、高效率、长寿命的模具,是技术密集型模具的重要代表,美国UGS 公司与我国华中科技大学合作在UG-NX软件平台上开发出基于三维几何模型的级进模CAD/CAM软件NX-PDW。

cadcaecam的发展现状及应用领域

cadcaecam的发展现状及应用领域

cadcaecam的发展现状及应用领域50-60年代初CAD技术处于准备和酝酿时期,被动式的图形处理是这阶段CAD技术的特征。

60年代CAD技术得到蓬勃发展并进入应用时期,这阶段提出了计算机图形学、交互技术、分层存储符号的数据结构等新思想,从而为CAD 技术的进一步发展和应用打下了理论基础。

70年代CAD技术进入广泛使用时期,1970 年美国Applicon公司首先推出了面向企业的CAD商品化系统。

80年代CAD技术进入迅猛发展时期,这阶段的技术特征是CAD技术从大中企业向小企业扩展;从发达国家向发展中国家扩展;从用于产品设计发展到用于工程设计和工艺设计。

90年代以后CAD技术进入开放式、标准化、集成化和智能化的发展时期,这阶段的CAD技术都具有良好的开放性,图形接口、功能日趋标准化。

微机加视窗操作系统与工作站加Unix操作系统在因特网的环境下构成CAD系统的主流工作平台,同时网络技术的发展使得CAD/CAE/CAM集成化体系摆脱空间的约束,能够更好地适应现代企业的生产布局及生产管理的要求。

在CAD系统中,正文、图形、图像、语音等多媒体技术和人工智能、专家系统等高新技术得到综合应用,大大提高了CAD自动化设计的程度,智能CAD应运而生。

智能CAD把工程数据库及管理系统、知识库及专家系统、拟人化用户介面管理系统集于一体。

CAD体系结构大体可分为基础层、支撑层和应用层三个层次。

基础层由计算机及外围设备和系统软件组成。

随着网络的广泛使用,异地协同虚拟CAD环境将是CAD支撑层的主要发展趋势。

应用层针对不同应用领域的需求,有各自的CAD专用软件来支援相应的CAD工作。

CAE主要指用计算机对工程和产品进行性能与安全可靠性分析,对其未来的工作状态和运行行为进行模拟,及早发现设计缺陷,并证实未来工程、产品功能和性能的可用性与可靠性。

CAE软件是迅速发展中的计算力学、计算数学、相关的工程科学、工程管理学与现代计算技术相结合,而形成的一种综合性、知识密集型信息产品。

模具CAD/CAE/CAM的现状与发展趋势

模具CAD/CAE/CAM的现状与发展趋势

模具CAD/CAE/CAM的现状与发展趋势模具CAD/CAE/CAM是制造行业的一个重要分支,它涉及产品设计、
模具制造、模具仿真、模具加工等各个环节。

近年来,随着世界经济的发
展和技术革新,模具CAD/CAE/CAM发展日新月异,现正迎来一次真正的
革命。

CAD是计算机辅助设计的缩写,它是一种非常先进的计算机辅助设计
工具,可以很大程度上提高产品的质量和效率。

CAD技术发展至今,在模
具设计领域的应用也越来越广泛。

目前,CAD技术已成为模具设计不可或缺的工具,它可以帮助模具制
造企业提高模具设计质量,提高模具制造效率。

比如针对模具异型加工,CAD技术可以帮助模具制造企业准确地确定模具的设计参数,为模具制造
流程提供理论支持。

除了提高模具设计和制造的效率,CAD还可以带来更多优势。

比如,
模具CAD可以更好地实现虚拟模具设计,从而减少模具设计中的错误;模
具CAD可以更好地实现快速原型设计,从而缩短产品开发周期。

此外,随着计算机技术的发展,CAD技术也将迎来新的发展趋势。

未来,CAD技术将会越来越强大,模具设计制造的智能化程度也会不断提高。

CAE软件及其运用现状分析

CAE软件及其运用现状分析

CAE软件及其运用现状分析一、在工程设计中的应用:1.结构分析:CAE软件可以通过有限元分析方法对产品的结构进行强度、刚度等性能分析,并进行结构优化,提高产品的可靠性和安全性。

2.流体力学:CAE软件可以模拟液体和气体在管道、容器、风洞等中的流动行为,优化流体系统的设计和效率。

3.热传导:CAE软件可以分析热传导现象,并进行热交换器、散热器等热管理系统的设计和优化。

4.电磁场分析:CAE软件可以模拟电磁场的传播和分布情况,帮助设计电路、电感、变压器等电子产品。

二、CAE软件的特点:1.高度精确性:CAE软件基于数学模型和物理原理进行分析和仿真,具有高度精确性,可以准确预测产品在不同工况下的性能。

2.高效性和节省成本:使用CAE软件可以快速进行多种分析和优化,避免了繁琐的实验过程,减少了时间和成本的浪费。

3.多学科集成:CAE软件可以模拟多学科的物理现象,并进行多学科的集成分析,帮助工程师进行全面的设计优化。

4.交互性和可视化:CAE软件具有友好的用户界面和可视化结果展示,工程师可以直观地观察和分析产品的性能。

三、CAE软件的发展趋势:1.多物理场耦合分析:随着工程领域的不断发展,产品的设计越来越复杂,多种物理场之间的耦合效应也变得重要。

未来的CAE软件将更加注重多物理场之间的耦合分析和优化。

2.大规模计算能力:CAE分析需要进行大规模的数值计算,需要庞大的计算资源支持。

未来的CAE软件将更加注重提高计算能力和效率,以满足工程师复杂问题的分析需求。

3.智能化和自动化:未来的CAE软件将更加注重智能化和自动化的功能,通过模型预测和优化算法等技术,提供更精确、高效的分析和优化结果。

4.云计算和协同工作:云计算可以提供大量的计算资源,并实现CAE 软件在云端的远程使用和数据共享。

未来的CAE软件将更趋向于在云端进行分析和协同工作,提高工程师的工作效率和沟通效果。

总之,CAE软件的应用不断拓宽,涉及的行业和领域越来越广泛,未来的发展空间也非常广阔。

CAE技术在机械设计领域中的应用现状及发展趋势

CAE技术在机械设计领域中的应用现状及发展趋势

信息化工业CA E 技术是计算机技术和工程分析技术相结合形成的新兴的多学科交叉技术。

CA E 源于C o m p u t e r A i d e d E n g i ne er i n g的中文翻译,泛指用计算机辅助分析、计算和仿真在内的一切研发活动,其核心是基于计算力学的有限元分析技术[1,2]。

21世纪是信息时代,随着计算机技术的高速发展,CA E技术取得了长足进步,作为一项跨学科的数值模拟分析技术,越来越受到科技界和工程界的重视。

以美国福特汽车为例,在2000年引用CA E 技术之后,与20世纪90年代初期相比较,新车的开发周期由原来的36个月降低为12~18个月,开发后期设计修改率减少50%,原型车制造和实验成本减少50%,投资收益提高50%[3]。

丰田和马自达等主流汽车也从CA E的应用中大大受益,减少了实机测试的次数和成本,缩短了开发周期,使投资收益大大提高。

CA E技术在其他的机械设计领域中也发挥了作用,目前,航空航天、医疗器械、重工机械等行业对CA E 技术的应用都非常重视,CA E 在产品设计的质量、寿命、性能和成本等方面发挥的作用已经无可替代。

可以说,CA E技术的应用程度已经成为衡量一个国家科学技术水平和工业现代化程度的重要标志,以美国为首的发达国家甚至将CA E技术作为“事关国家竞争力和国家安全的战略技术”。

1 CAE技术在开发流程中的应用状况在CA E 技术没有被产品开发利用之前,传统的产品开发流程是一个由设计者主导,辅助CA D工具,进行反复设计的过程。

设计者完成产品的设计后,提交制造部门进行生产,然后对样机进行实机测试。

如果产品的功能不满足设计要求,就重新设计,再试做,如此循环,直到全部满足设计要求为止。

这是一个周期长、耗费高的过程,已经不能满足现代产品开发周期的要求。

随着各种数值分析方法及力学理论的不断发展与完善,加之高速、大容量计算机的出现与推广,使高精度、大规模计算成为可能,从而推动了CA E技术的飞速发展。

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」

CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」CAE行业发展现状及趋势分析,CAE咨询细分市场快速发展「图」一、CAE行业概述CAE(Computer Aided Engineering),即计算机辅助工程,是广泛应用于工业制造业产品研发设计过程中的一种技术工具,通过模拟产品在结构强度、热传导、刚度、运动学等方面的工作状态和表现,CAE可为产品功能、性能的可用性和可靠性提供依据,为企业产品设计提供决策支持,可助力企业降低设计风险、优化设计方案、提升设计效率。

根据软件的适用范围进行划分,CAE软件可以分为通用CAE 软件和专用CAE软件两类。

CAE软件分类情况数据来源:华经产业研究院整理中国CAE行业发展至今,主要历经了起步、缓慢发展以及快速发展三个阶段:起步阶段从1970到1989年,上世纪70年代初,在CAE理论研究和软件开发工作的支撑下,中国本土涌现了一批具有自主知识产权的有限元分析软件。

但是软件的通用性和适用范围相对局限、缺乏整体竞争力限制了此类本土CAE软件的市场化及产业化进程。

缓慢发展阶段从1990到2005年,国外CAE软件厂商进入中国市场,对中国本土CAE软件厂商产生了较大冲击。

本土CAE软件的发展在这一时期则面临一定的制约,受限于资金投入不足等因素,本土CAE软件从基础研究到工程应用、再到软件商业化的进程受阻,本土CAE软件厂商的发展在此阶段发展缓慢。

快速发展阶段从2006年至今,在这一时期,本土CAE软件厂商技术研发水平和行业竞争力逐渐提升,对于中、小、微型企业产品研发设计的市场需求的增长,CAE咨询细分领域也呈现出快速发展的态势。

行业下游汽车、工程机械、航空航天等行业的市场需求持续增大,刺激了CAE市场容量的释放。

中国CAE行业发展历程数据来源:华经产业研究院整理中国CAE行业由上游的软件开发基础设施、中游软件开发及应用以及下游应用领域组成。

上游的软件开发基础设施主要包括软件求解器、基础软件产品以及硬件设备等;中游软件开发及应用主要包括CAE软件开发以及CAE咨询等;下游应用领域主是汽车、工程机械、航空航天、电子、交通运输等行业。

2024年CAE市场发展现状

2024年CAE市场发展现状

2024年CAE市场发展现状1. 引言计算机辅助工程(Computer-Aided Engineering,简称CAE)是一种利用计算机软件来进行工程设计、分析和优化的技术。

近年来,CAE市场取得了快速发展,其在各个领域的应用越来越广泛。

本文将介绍CAE市场的现状,并探讨其发展趋势。

2. CAE市场规模根据市场研究机构的数据显示,CAE市场在过去几年中保持了稳定增长的态势。

据预测,到2025年,全球CAE市场规模将达到xxx亿美元。

这一增长主要受益于工程领域的数字化转型,以及制造业和汽车行业对CAE技术的广泛应用。

3. CAE市场应用领域CAE技术在各个行业中都得到了广泛应用。

以下是一些主要应用领域的介绍:3.1 汽车行业CAE在汽车行业中的应用非常广泛。

汽车制造商利用CAE技术进行车身设计、碰撞测试、空气动力学分析等,大大缩短了产品开发周期,并提高了产品质量和安全性。

3.2 能源行业在能源行业中,CAE技术被用于优化发电厂和核电站的设计,以及提高发电效率和安全性。

此外,CAE还可以用于风力发电机组和太阳能电池板的设计和优化。

3.3 航空航天行业航空航天行业对CAE技术的需求也非常大。

CAE可以用于飞机的结构设计、翼型优化、气动导航分析等。

借助CAE技术,航空航天企业可以更好地理解飞机的性能,并提高研发效率。

3.4 电子行业在电子行业中,CAE技术被广泛用于电路设计和电子元件的热分析。

借助CAE软件的仿真功能,设计人员可以在实际制造之前模拟电路的性能,并进行选材和优化。

4. CAE技术发展趋势CAE技术在不断发展和演进中,以下是几个主要的发展趋势:4.1 云计算随着云计算的普及,越来越多的CAE软件开始支持云端部署和运行。

这使得用户可以随时随地使用CAE工具,无需安装和维护复杂的软件环境。

4.2 多物理场耦合未来的CAE软件将更加注重多物理场的耦合。

例如,在进行汽车碰撞仿真时,需要综合考虑结构、材料、动力学等方面的因素。

cae软件的现状与实施方法

cae软件的现状与实施方法

cae软件的现状与实施方法CAE软件的现状与实施方法CAE(计算机辅助工程)软件是一种基于计算机技术的工程分析工具,它可以帮助工程师在设计和制造过程中进行模拟和分析,以便更好地理解和优化产品性能。

CAE软件在工程领域中应用广泛,包括机械、航空、汽车、电子、建筑等多个行业。

本文将介绍CAE软件的现状和实施方法。

一、CAE软件的现状1.市场规模CAE软件市场规模不断扩大,预计到2025年将达到240亿美元。

其中,机械行业是最大的应用领域,占据了市场份额的40%以上。

此外,航空、汽车、电子、建筑等行业也在不断增长。

2.技术发展CAE软件的技术不断发展,主要表现在以下几个方面:(1)多物理场耦合分析:CAE软件可以模拟多种物理场的相互作用,如结构、流体、热、电磁等,以更准确地预测产品性能。

(2)高性能计算:CAE软件可以利用高性能计算技术,加速计算速度,提高分析效率。

(3)云计算:CAE软件可以通过云计算技术,实现分布式计算和协同工作,提高团队协作效率。

3.应用领域CAE软件的应用领域不断扩大,主要表现在以下几个方面:(1)仿真设计:CAE软件可以帮助工程师进行产品设计和优化,以减少试错成本和时间。

(2)产品测试:CAE软件可以模拟产品在不同环境下的工作情况,以便进行产品测试和验证。

(3)生产制造:CAE软件可以帮助工程师进行生产制造过程的模拟和优化,以提高生产效率和质量。

二、CAE软件的实施方法1.需求分析在实施CAE软件之前,需要进行需求分析,明确软件的应用场景和功能需求。

需求分析应该包括以下几个方面:(1)应用场景:明确软件的应用领域和具体应用场景。

(2)功能需求:明确软件需要具备的功能和性能要求。

(3)数据需求:明确软件需要处理的数据类型和数据量。

2.软件选择根据需求分析的结果,选择适合的CAE软件。

选择软件时应该考虑以下几个方面:(1)功能和性能:软件需要具备所需的功能和性能要求。

(2)易用性:软件应该易于学习和使用。

2024年CAE市场调研报告

2024年CAE市场调研报告

2024年CAE市场调研报告背景介绍计算机辅助工程(Computer-Aided Engineering,简称CAE)是利用计算机技术辅助进行工程设计、分析与优化的方法。

随着计算机技术的不断发展和应用,CAE市场也呈现出蓬勃的发展态势。

本报告将通过对CAE市场的调研,全面分析市场现状、发展趋势以及影响因素,为相关企业提供参考依据。

市场规模CAE市场在过去十年中呈现出稳步增长的趋势。

根据调研数据显示,2019年全球CAE市场规模达到X亿美元,相比2018年的Y亿美元增长了Z%。

预计2025年,CAE市场规模将达到A亿美元,年均增长率为B%。

市场规模的增长主要受益于以下几个方面。

市场驱动因素1. 产品创新和技术进步随着计算机硬件和软件技术的不断进步,CAE软件在功能性和性能方面得到了极大的提升。

新一代的CAE软件具有更高效的计算能力、更准确的仿真结果和更友好的用户界面,大大提高了工程师的工作效率和产品的质量。

产品创新和技术进步是推动市场增长的关键驱动因素之一。

2. 自动化需求的增加随着工业自动化水平的不断提高,对CAE软件的需求也越来越大。

自动化对工程师的技术要求更高,需要对复杂系统进行全面的仿真和优化。

CAE软件通过虚拟建模、仿真分析和数据处理等功能,能够更好地满足自动化需求,提高生产效率和工作质量。

3. 环保和节能要求的提高环保和节能已经成为全球各个行业的重要发展趋势。

CAE软件可以帮助工程师在产品设计过程中模拟和优化能源消耗,提供更具环保性和节能性的解决方案。

在环保和节能要求日益提高的背景下,CAE市场将得到更广泛的应用。

市场竞争态势CAE市场竞争激烈,主要的竞争对手包括ANSYS、Dassault Systemes、Siemens PLM Software等国际知名公司。

这些公司凭借强大的研发实力、丰富的客户资源和领先的解决方案,在市场中占据重要地位。

此外,还有许多中小型企业通过专业化定位和差异化竞争在市场中获得一定份额。

CAE技术的发展、应用及我国推广现状

CAE技术的发展、应用及我国推广现状

CAE技术的发展、应用及我国推广现状[引言]:模具是生产各种工业产品的重要工艺装备,随着塑料工业的迅速发展以及塑料制品在航空、航天、电子、机械、船舶和汽车等工业部门的推广应用,产品对模具的要求越来越高,传统的模具设计方法已无法适应产品更新换代和提高质量的要求。

计算机辅助工程(CAE)技术已成为塑料产品开发、模具设计及产品加工中这些薄弱环节的最有效的途经。

同传统的模具设计相比,CAE技术无论在提高生产率、保证产品质量,还是在降低成本、减轻劳动强度等方面,都具有很大优越性。

近几年,CAE技术在汽车、家电、电子通讯、化工和日用品等领域逐步地得到了广泛应用。

一、CAE技术--模具设计的发展趋势目前,世界塑料成型CAE软件市场由美国上市公司Moldflow公司主导,该公司是专业从事注塑成型CAE软件和咨询公司,自1976年发行了世界上第一套流动分析软件以来,一直在此领域居领先地位。

利用CAE技术可以在模具加工前,在计算机上对整个注塑成型过程进行模拟分析,准确预测熔体的填充、保压、冷却情况,以及制品中的应力分布、分子和纤维取向分布、制品的收缩和翘曲变形等情况,以便设计者能尽早发现问题,及时修改制件和模具设计,而不是等到试模以后再返修模具。

这不仅是对传统模具设计方法的一次突破,而且对减少甚至避免模具返修报废、提高制品质量和降低成本等,都有着重大的技术经济意义。

在今天,塑料模具的设计不但要采用CAD技术,而且还要采用CAE技术。

这是发展的必然趋势。

注塑成型分两个阶段,即开发/设计阶段(包括产品设计、模具设计和模具制造)和生产阶段(包括购买材料、试模和成型)。

传统的注塑方法是在正式生产前,由于设计人员凭经验与直觉设计模具,模具装配完毕后,通常需要几次试模,发现问题后,不仅需要重新设置工艺参数,甚至还需要修改塑料制品和模具设计,这势必增加生产成本,延长产品开发周期。

采用CAE技术,可以完全代替试模,CAE技术提供了从制品设计到生产的完整解决方案,在模具制造之前,预测塑料熔体在型腔中的整个成型过程,帮助研判潜在的问题,有效地防止问题发生,大大缩短了开发周期,降低生产成本。

计算机辅助工程(cae)在我国应用的现状和未来发展的趋势

计算机辅助工程(cae)在我国应用的现状和未来发展的趋势

计算机辅助工程(cae)在我国应用的现状和未来发展的趋势计算机辅助工程(CAE)在我国应用的现状和未来发展的趋势导语:计算机辅助工程(CAE)是利用计算机软件和硬件设备来辅助工程设计、测试和分析的一种技术手段。

随着科技的不断发展,CAE在我国的应用越来越广泛,涉及领域也越来越多。

本文将对CAE在我国的现状和未来发展趋势进行全面评估和探讨,以期能更深入地理解这一重要的工程技术手段。

一、CAE在我国的现状1.1 CAE技术在工程设计中的应用在我国,CAE技术在工程设计中的应用已经非常普遍。

无论是机械制造、航空航天、汽车工业,还是建筑设计、电子电气等领域,都离不开CAE技术的支持。

通过CAE技术,工程师们可以进行虚拟设计、分析和优化,大大提高了工作效率和设计质量。

1.2 CAE技术在工程仿真和测试中的应用另外,在工程仿真和测试领域,CAE技术也扮演着重要角色。

通过建立模型、进行仿真分析,工程师们可以事先发现设计中的缺陷和问题,并加以改进,避免了大量的实际试验和测试成本。

1.3 CAE技术在高新技术领域的应用随着我国高新技术产业的快速发展,CAE技术在航空航天、新能源、新材料等领域的应用也越来越广泛。

飞机设计、石油勘探、材料研发等领域都需要大量的CAE技术支持。

二、CAE在我国的未来发展趋势2.1 人工智能与CAE技术的结合随着人工智能技术的发展,相信未来CAE技术会与人工智能技术相结合,实现更智能化的工程设计和仿真。

通过机器学习和深度学习等技术,CAE可以更准确地模拟真实环境,增强工程设计的智能化和自适应性。

2.2 多物理场耦合仿真技术的发展在未来,多物理场耦合仿真技术将是CAE发展的一个重要方向。

工程设计中经常涉及到多种物理场的耦合,如结构力学、流体动力学、热传导等。

未来CAE技术会更多地关注多物理场的耦合仿真,以实现更真实的工程仿真分析。

2.3 CAE技术在智能制造中的应用随着工业4.0的发展,智能制造将成为未来的发展趋势。

汽车开发中CAE技术应用的现状和发展

汽车开发中CAE技术应用的现状和发展

汽车开发中CAE技术应用的现状和发展CAE技术为汽车行业的高速发展提供具有中心价值地位的技术保障,可以为企业带来巨大的技术经济效益。

在汽车发展历史上,至今还没有什么技术能与CAE技术相比,为汽车企业带来巨大的回报。

汽车行业是一个高速发展的行业,其竞争日趋激烈。

随着新产品推出的速度越来越快,CAE在汽车行业的应用越来越多,水平也在逐步提高。

统计结果表明,应用 CAE 技术后,新车开发期的费用占开发成本的比例从80%~90%下降到 8%~12%。

例如:美国福特汽车公司2000年应用CAE后,其新车型开发周期从3 6个月降低到12~18个月;开发后期设计修改率减少50%;原型车制造和试验成本减少50 %;投资收益提高50%。

汽车CAE分析概要图CAE应用分类笼统地讲,汽车的每一个部件都可以做CAE分析,但主要包括以下3大关键部分:1、整车该部分的CAE通常要做运动学、动力学仿真,以模拟如车辆行驶的平顺性、舒适性和可通过性。

这需要建立整车的虚拟样机,以确定整车参数。

通常要确定的主要整车参数有:行驶性、操纵稳定性、振动、噪声和舒适性;轮胎、悬架的配备;车身的动静刚度、强度、寿命评价和车身固有频率;驾驶室通风、隔热、噪声;车身外流场特性、发动机舱的气流和热交换;主动安全性与被动安全性水平等。

2、大总成或者大的子系统汽车通常划分为4大系统:车身、底盘、发动机、电子电器系统。

整车分析确定的参数,分解到各个总成后,需要对各总成进行CAE分析,以确定这些参数可以在各总成实现。

3、零部件和小总成这部分主要是对零部件(子总成)做CAE分析,如车门、车门密封条、发动机缸体、悬架、面板、曲轴活塞、进排气系统、轮胎、轮毂等,以确定它们的力学特性是否符合总体设计要求,或者优化以进一步改进初始设计。

通过对这些关键部分的CAE仿真分析,可以在概念设计阶段就把握好产品各个方面的性能,排除问题。

这对于汽车行业来说极为重要,因为问题发现越早,解决问题的代价就越低。

CAE的发展趋势及现状

CAE的发展趋势及现状

CAE软件的现状及发展趋势摘要:随着CAE应用领域的扩大和专业深度的纵深发展,为了更好地让CAE 技术真正发挥作用,让CAE技术进入设计流程之中,就需要协同CAE集成环境。

CAE系统的开放性和集成性是用户的主要关注点。

本文对CAD/CAE 一体化技术、CAE数据信息分析及技术的应用前景都作了阐述,为其进一步开发提供参考。

CAE是一种在二维或是三维几何形体CAD的基础上,运用有限元(FE) '边界元(BE)、混合元(ME)、刚性元(RE)、优先差分和最优化等数值计算方法并结合计算机图形技术、建模技术、数据管理及处理技术的基于对象的设计与分析的综合技术和过程。

关键字:CAE技术数据信息分析及技术概述计算机辅助工程(CAE),从字面上讲它包括工程和制造业信息化的所有方面,但是传统的CAE主要指用计算机对工程和产品的功能、性能与安全可靠性进行计算、优化设计,对未来的工作状态和运行行为进行模拟仿真,及早发现设计缺陨,改进和优化设计方案,证实未来工程/产品的可用性与可靠性。

工程师进行创新设计的重要手段和工具,工程和制造企业的生命力在于工程/产品的创新,而对于工程师来说,实现创新的关键,除了设计思想和概念之外,最主要的技术手段,就是采用先进可靠的CAE软件.科学家进行创新研究的重要手段,科学计算是现代科学家进行科学和技术研究的三大手段之一。

它可以帮助科学家揭示用物质实验手段尚不能表现的科学奥秘和科学规律。

它也是工程科学家的研究成果一理论、方法和科学数据一的归属之一,做成软件和数据库,成为推动工程和社会进步的最新生产力。

CAE软件是迅速发展中的计算力学、计算数学、相关的工程科学、工程管理学与现代计算机科学和技术相结合,而形成的一种综合性、知识密集型信息产品。

CAE软件分类针对特定类型的工程/产品所开发的用于产品性能分析、预测和优化计算的软件,称为专用CAE软件。

可以对多种类型的工程/产品的工程行为进行计算分析,模拟仿真,性能预测、评价与优化的软件,称为通用CAE软件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cae发展现状
现代自动化技术的广泛应用使得计算机辅助工程(Computer-Aided Engineering,CAE)在工业领域得到了快速发展。

CAE 是利用计算机技术和软件工具来进行工程分析和仿真的过程,可用于设计、开发和优化产品、工作流程和生产线等。

CAE的发展现状是多样化的,涉及到各个不同领域的应用。

在汽车工业中,CAE在车身结构的强度和刚度分析、碰撞仿真以及车辆性能优化方面发挥着重要作用。

通过CAE技术,汽车制造商可以在实际生产之前进行虚拟实验和测试,从而提高产品质量和安全性。

在航空航天领域,CAE被广泛用于飞机结构设计、飞行仿真和机载系统优化。

通过使用CAE软件,航空工程师能够在设计阶段就对飞机进行各种扰动和应力分析,以评估结构的安全性和性能。

此外,CAE还在能源领域、建筑工程和制造业等方面具有重要的应用。

在能源领域,CAE被用于设计和分析发电厂、风力涡轮机、太阳能电池板等能源设备。

在建筑工程中,CAE 可以帮助工程师进行结构分析、热力仿真和风电荷载分析等。

而在制造业中,CAE被用于机械零件的设计和制造过程中的仿真和优化。

随着计算能力的不断提升和软件工具的不断更新,CAE在工程领域的应用也在不断扩大。

据预测,未来CAE领域将更加强调与其他工程软件和系统的集成,以实现更高效的设计和仿
真过程。

此外,随着人工智能和机器学习技术的普及,CAE 还将更好地支持自动化和智能化的工程设计和分析。

总之,CAE在工程领域的发展前景广阔,其应用范围涵盖了许多不同的行业和领域。

由于CAE能够提供准确、高效和经济的工程分析和仿真解决方案,预计它将继续在未来的工程实践中发挥重要作用。

相关文档
最新文档