信号发生器设计与实现实验报告(一)

合集下载

低频信号发生器设计与实现报告

低频信号发生器设计与实现报告

仪器科学与电气工程学院本科生“六个一”工程之课外实验项目报告低频信号发生器的设计与实现专业:测控技术与仪器姓名:刘雪锋学号:65090215时间:2011年11月一、实验目的:练习基本技能:常用测试仪器使用、电路安装、测试、调试;初步学会查阅电子器件英文说明书;训练基本单元电路设计、调试、测试。

二、实验内容:设计一个低频信号发生器,可输出方波、矩形波、三角波、锯齿波、正弦波。

频率和幅度可调;矩形波占空比可调;锯齿波上升、下降时间可调;根据电路原理图的具体结构,安装单元电路;测输出幅度、频率、失真度、上升沿、下降沿、观察三角波线性度;不得使用8038模块;写出设计与总计报告,说明电路原理、特点、测试结果、结果分析。

三、总体设计方案:(一)总体设计原理框图产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波转换成方波,再由积分电路将方波变成三角波;也可以先由振荡器产生方波,再经积分电路产生三角波,再经过滤波电路产生正弦波等等。

我选用的是前一种方案,上图为总体设计流程。

(二)各部分电路图及其原理1、正弦波产生电路及其原理:正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入反馈电路,并创造条件,使其产生稳定可靠的振荡。

电路接通电源的一瞬间,由于电路中电流从零突变到某一值,它包含着很多的交流谐波,经过选频网络选出频率为f0的信号,一方面由输出端输出,另一方面经正反馈网络传送回到输入端,经放大和选频,这样周而复始,不断地反复,只要反馈信号大于初始信号,震荡就逐渐变强,最后稳定的震荡起来。

我所设计的正弦波震荡电路为RC 串并联式正弦波震荡电路,又被称为文氏桥电路。

这个电路由两部分组成,即放大电路和选频网络,放大电路为由集成运741放所组成的电压串联负反馈放大电路,选频网络兼作正反馈网络,它具有电路简单、易起振、频率可调等特点被大量应用于低频振荡电路,电路图如下所示 :我选用的电阻R和电容C分别为100kΩ的电位器和0.1μf瓷片电容,这样根据在C不变的情况下,改变电位器R的值可以改变电路的震荡频率,但由于两个R的阻值要相等才能震荡出正弦波,所以我在实际焊制电路时两个R采用一个同轴电位器。

正弦波信号发生器实验报告

正弦波信号发生器实验报告

正弦波信号发生器实验报告
实验名称:正弦波信号发生器实验
实验目的:了解正弦波的基本属性,掌握正弦波信号的发生方法,对正弦波信号进行基本的测量和分析。

实验器材:函数发生器、示波器、万用表。

实验原理:正弦波(Sine Wave)是最常见的一种周期波形,其特点是正弦曲线的波形,具有完全的周期性和对称性。

在电路和信号处理系统中,正弦波信号非常常见,在很多实际应用中具有重要的作用。

函数发生器是一种能够产生各种各样波形的仪器,包括正弦波、方波、三角波等等。

而在产生正弦波信号的过程中,函数发生器利用一个内部的振荡器电路来产生振荡信号,再将其经过信号调制映射到正弦波的形式。

实验步骤:
1.将函数发生器的输出端口连接到示波器的输入端口,并将函数发生器的频率设定在1kHz左右。

2.打开示波器,选择一个适合的纵向和横向刻度,并将其垂直和水平方向校准至
合适位置,以显示正弦波的波形。

3.选择函数发生器的正弦波输出模式,调整幅度与频率,以获得所需的正弦波信号,可使用万用表对其进行精确测量。

实验结果:经过实验,我们成功产生了一路1kHz左右的正弦波信号,并使用示波器和万用表进行了基本的测量和分析,包括正弦波的频率、幅度、相位等基本特性。

实验结论:通过本次实验,我们深入了解了正弦波的特性及用途,掌握了正弦波信号发生器的基本使用方法,熟悉了正弦波信号的测量和分析方法,并在实践中获得了相应的实验数据。

这些知识和经验对我们今后的学习和工作将有非常重要的作用。

信号发生器实验报告

信号发生器实验报告

信号发⽣器实验报告信号发⽣器F组组长:***组员:***、*** 2013年8⽉12⽇星期⼀1系统⽅案 (4)1.1系统⽅案论证与选择 (4)1.2⽅案描述 (4)2理论分析与计算 (5)3电路与程序设计 (6)3.1电路的设计 (6)3.1.1 ICL8038模块电路 (6)3.1.2 放⼤电路 (6)3.2程序的设计 (7)4测试⽅案与测试结果 (9)4.1测试仪器与结果 (9)4.2调试出现的问题及解决⽅案 (9)5 ⼩结 (10)本系统设计的是信号发⽣器,是以 ICL8038和 STC89C51为核⼼设计的数控及扫频函数信号发⽣器。

ICL8038作为函数信号源结合外围电路产⽣占空⽐和频率可调的正弦波、⽅波、三⾓波;该函数信号发⽣器的频率可调范围1~100kHz,波形稳定,⽆明显失真。

单⽚机控制LCD12864液晶显⽰频率、频段和波形名称。

关键字:信号发⽣器ICL8038、 STC89C51、波形、LCD12864信号发⽣器实验报告1系统⽅案1.1系统⽅案论证与选择⽅案⼀:由单⽚机内部产⽣波形,经DAC0832输出,然后再经过uA741放⼤信号后,最后经过CD4046和CD4518组成的锁相环放⼤频率输出波形,可是输出的波形频率太低,达不到设计要求。

⽅案⼆:采⽤单⽚机对信号发⽣器MAX038芯⽚进⾏程序控制的函数发⽣器,该发⽣器有正弦波、三⾓波和⽅波信号三种波形,输出信号频率在0.1Hz~100MHz 范围内。

MAX038为核⼼构成硬件电路能⾃动地反馈控制输出频率,通过按键选择波形,调节频率,可是MAX038芯⽚价格太⾼,过于昂贵。

⽅案三:利⽤芯⽚ICL8038产⽣正弦波、⽅波和三⾓波三种波形,根据电阻和电容的不同可以调节波形的频率和占空⽐,产⽣的波形频率⾜够⼤,能达到设计要求,⽽且ICL8038价格⽐较便宜,设计起来成本较低。

综上所述,所以选择第三个⽅案来设计信号发⽣器。

1.2⽅案描述本次设计⽅案是由ICL8038芯⽚和外围电路产⽣三种波形,由公式:,改变电阻和电容的⼤⼩可以改变波形的频率,有开关控制频段和波形并给单⽚机⼀个信号,由单⽚机识别并在LCD液晶屏上显⽰,电路的系统法案框图为下图1所⽰:图1 总系统框图2理论分析与计算如图2,占空⽐和频率调节电路:图2 占空⽐和频率调节电路所有波形的对称性都可以通过调节外部定时电阻来调节。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告信号发生器实验报告引言信号发生器是电子实验室中常见的一种仪器,用于产生各种类型的电信号。

本次实验旨在探究信号发生器的原理和应用,以及对其进行一系列的测试和测量。

一、信号发生器的原理信号发生器是一种能够产生不同频率、幅度和波形的电信号的设备。

其主要由振荡电路、放大电路和输出电路组成。

振荡电路负责产生稳定的基准信号,放大电路将基准信号放大到合适的幅度,输出电路将信号输出到外部设备。

二、信号发生器的应用1. 电子器件测试:信号发生器可以用于测试电子器件的频率响应、幅度响应等特性。

通过改变信号发生器的频率和幅度,可以模拟不同工作条件下的电子器件性能。

2. 通信系统调试:在通信系统的调试过程中,信号发生器可以用于模拟各种信号,如语音信号、数据信号等。

通过调整信号发生器的参数,可以测试通信系统的传输质量和容量。

3. 音频设备测试:信号发生器可以用于测试音频设备的频率响应、失真等特性。

通过产生不同频率和幅度的信号,可以对音频设备进行全面的测试和评估。

三、实验过程1. 测试频率响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的频率,并记录待测设备的输出结果。

通过绘制频率响应曲线,可以了解待测设备在不同频率下的响应情况。

2. 测试幅度响应:将信号发生器连接到待测设备的输入端,逐渐改变信号发生器的输出幅度,并记录待测设备的输出结果。

通过绘制幅度响应曲线,可以了解待测设备对不同幅度信号的响应情况。

3. 测试波形输出:将信号发生器连接到示波器,通过改变信号发生器的波形设置,观察示波器上的波形变化。

通过比较不同波形的特征,可以了解信号发生器的波形生成能力。

四、实验结果与分析1. 频率响应:根据实验数据绘制的频率响应曲线显示,待测设备在低频段具有较好的响应能力,而在高频段则逐渐衰减。

这可能是由于待测设备的电路结构和元件特性导致的。

2. 幅度响应:根据实验数据绘制的幅度响应曲线显示,待测设备对于低幅度信号的响应较差,而对于高幅度信号的响应较好。

信号发生器设计与实现实验报告

信号发生器设计与实现实验报告

信号发生器设计与实现实验报告实验报告:信号发生器的设计与实现一、引言信号发生器是一种能够产生各种类型的电信号的仪器,广泛应用于电子测量、通信系统调试、音频设备测试等领域。

本实验旨在设计并实现一个简单的信号发生器,以产生多种类型的电信号,并对其进行相应的测试和分析。

二、设计与实现1. 设计思路信号发生器的设计主要包括以下几个方面的考虑:信号类型的选择、频率范围的确定、输出幅度的调节以及相关控制电路的设计。

在信号类型的选择上,常见的信号类型有正弦波、方波、三角波等。

根据实际需求,本实验选择了正弦波和方波两种信号类型进行设计。

频率范围的确定需要考虑实际应用中最低和最高频率的要求。

在本实验中,我们选择了10Hz到10kHz的频率范围。

输出幅度的调节可以通过控制信号发生器的增益来实现。

本实验采用了可调电阻来控制输出信号的幅度。

相关控制电路的设计包括频率选择电路、幅度调节电路等。

这些电路的设计需要根据信号发生器的具体要求进行选择和设计。

2. 电路设计2.1 正弦波发生电路正弦波发生电路的设计采用了著名的Wien桥电路。

这个电路能够通过调节电容和电阻的比例来产生不同频率的正弦波信号。

2.2 方波发生电路方波发生电路的设计采用了555定时器作为主要的控制元件。

通过控制555的触发电平和放电电平,可以产生不同频率的方波信号。

3. 系统实现根据上述设计思路和电路设计,我们完成了信号发生器的系统实现。

通过逐步调试和优化,确保了系统的正常运行和性能的稳定。

三、实验结果与分析1. 正弦波信号测试通过将信号发生器接入示波器,我们成功地产生了频率为1kHz的正弦波信号。

通过示波器的显示,我们可以清晰地观察到正弦波的周期、幅度和波形等特征。

2. 方波信号测试通过将信号发生器接入示波器,我们成功地产生了频率为5kHz的方波信号。

通过示波器的显示,我们可以清晰地观察到方波的上升时间、下降时间和占空比等特征。

四、实验总结通过本次实验,我们设计并实现了一个简单的信号发生器,能够产生正弦波和方波两种类型的信号。

实验报告信号发生器的作用

实验报告信号发生器的作用

实验报告信号发生器的作用信号发生器是一种用于产生稳定的、周期性的电信号的仪器。

它可以用于各种不同的应用,包括电子实验、通信、电子产品测试和测量等领域。

在实验中,信号发生器是非常重要的工具,它可以产生各种类型的信号,用于对电路、设备和系统进行测试、分析和研究。

首先,信号发生器可以用来测试和评估电路的性能。

通过产生不同频率、振幅和波形的信号,可以测试电路的频率响应、幅频特性、相位特性和非线性特性等。

这对于评估电路的工作状况、找出故障和优化设计非常重要。

信号发生器还可以模拟各种不同的输入信号,用于测试电路在不同输入条件下的响应和性能。

其次,信号发生器可以用于通信领域的测试和研究。

在通信系统中,信号发生器可以产生各种调制信号、载波信号和时钟信号,用于测试和调试无线电、电视、卫星和光纤通信系统等。

它可以模拟不同的调制方式、协议和调制深度,并通过改变信号特性来评估通信系统的性能和稳定性。

此外,信号发生器还可以用于电子产品的测试和验证。

在电子产品的生产线上,信号发生器可以用来验证电路板、芯片和组件的工作状况和参数。

通过产生各种信号,并输入到待测试的电子产品中,可以检测和测量产品在不同工作条件下的响应和性能,以确保产品的质量和可靠性。

最后,信号发生器还可以用于科学研究和教学实验。

在科学研究中,信号发生器可以用于产生周期性的信号,用于研究和分析材料、元件和系统的特性和行为。

在教学实验中,信号发生器可以用来演示和解释电子原理、信号处理和通信原理等相关概念和理论,帮助学生理解和掌握相关知识。

综上所述,信号发生器在实验中的作用是非常重要的。

它可以产生各种类型的信号,用于测试、分析和研究电路、设备和系统的性能和行为。

无论是在科学研究、工程实践还是教学实验中,信号发生器都发挥着不可替代的作用,对于推动技术的发展和培养人才都起到关键的作用。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告一、信号发生器广泛应用于电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域。

采用集成运放和分立元件相结合的方式,利用迟滞比较器电路产生方波信号,以及充分利用差分电路进行电路转换,从而设计出一个能变换出三角波、正弦波、方波的简易信号发生器。

通过对电路分析,确定了元器件的参数,并利用protuse 软件仿真电路的理想输出结果,克服了设计低频信号发生器电路方面存在的技术难题,使得设计的低频信号发生器结构简单,实现方便。

该设计可产生低于10 Hz 的各波形输出,并已应用于实验操作。

信号发生器一般指能自动产生正弦波、方波、三角波电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

这里,采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于10 Hz 的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。

该电路已经用于实际电路的实验操作。

原理框架图:二、电源硬件电路图的设计(1)单片机的选择根据初步设计方案的分析,设计这样的一个简单的应用系统,可以选择带有EPROM 的单片机,应用程序直接存贮在片内,不用在外部扩展程序存储器,电路可以简化。

ATMEL 公司生产的AT89C 系列单片机,AT89C 系列与C51系列的单片机相比有两大优势:第一,片内程序存储器采用闪存存储器,使程序的写入更加方便;第二,提供了更小尺寸的芯片,使整个硬件电路的体积更小。

它以较小的体积、良好的性能价格备受亲密。

在家电产品、工业控制、计算机产品、医疗器械、汽车工业等应用方面成为用户降低成本的首选器件。

因此,我们可选用AT89C2051单片机。

该芯片的功能与MCS-系列单片机完全兼容,并且还具有程序加密等功能,物美价廉,经济实用。

AT89C2051是ATMEL公司生产的带2K字节课编程闪速存储器的8位COMS单计算机,工作电压范围为2.7~6V,全静态工作频率为0~24MHZ。

函数信号发生器实验报告

函数信号发生器实验报告

函数信号发生器实验报告函数信号发生器实验报告引言函数信号发生器是一种广泛应用于电子实验室中的仪器设备,用于产生各种形式的电信号。

本实验旨在通过对函数信号发生器的使用和实验验证,进一步了解信号发生器的原理和应用。

一、实验目的本实验的主要目的是:1. 熟悉函数信号发生器的基本操作;2. 掌握函数信号发生器产生不同形式信号的方法;3. 通过实验验证信号发生器的输出特性。

二、实验原理函数信号发生器是一种能够产生各种形式信号的仪器,其基本原理是通过内部电路将直流电压转换为不同形式的交流信号。

常见的信号形式包括正弦波、方波、三角波等。

三、实验步骤1. 打开函数信号发生器的电源,并将输出连接到示波器的输入端。

2. 调节函数信号发生器的频率、幅度和偏置等参数,观察示波器上的波形变化。

3. 逐步调节函数信号发生器的参数,产生不同形式的信号,并记录下相应的参数设置和观察结果。

4. 将函数信号发生器的输出连接到其他电路中,观察信号在不同电路中的响应情况。

四、实验结果与分析在实验过程中,我们通过调节函数信号发生器的频率、幅度和偏置等参数,成功产生了正弦波、方波和三角波等不同形式的信号。

通过示波器观察到的波形,我们可以看出不同形式的信号在频率和振幅上的差异。

在进一步的实验中,我们将函数信号发生器的输出连接到其他电路中,例如放大电路和滤波电路。

观察到信号在不同电路中的响应情况,我们可以了解到信号发生器在实际应用中的作用和效果。

五、实验总结通过本次实验,我们对函数信号发生器的基本操作和原理有了更深入的了解。

我们学会了如何通过调节函数信号发生器的参数来产生不同形式的信号,并通过连接到其他电路中观察信号的响应情况。

在实验过程中,我们也遇到了一些问题和困难,例如在调节参数时需要注意避免过大的幅度和频率,以免对电路和仪器造成损坏。

此外,我们还需要注意信号发生器的精度和稳定性,以保证实验结果的准确性。

通过本次实验,我们进一步认识到函数信号发生器在电子实验中的重要性和广泛应用。

函数信号发生器实验报告

函数信号发生器实验报告

函数发生器设计(1)一、设计任务和指标要求1、可调频率范围为10Hz~100Hz 。

2、可输出三角波、方波、正弦波。

、可输出三角波、方波、正弦波。

3、三角波、方波、正弦波信号输出的峰-峰值0~5V 可调。

可调。

4、三角波、方波、正弦波信号输出的直流电平-3V~3V 可调。

可调。

5、输出阻抗约600Ω。

二、电路构成及元件参数的选择 1、振荡器、振荡器由于指标要求的振荡频率不高,由于指标要求的振荡频率不高,对波形非线性无特殊要求。

对波形非线性无特殊要求。

对波形非线性无特殊要求。

采用图采用图1所示的电路。

所示的电路。

同时同时产生三角波和方波。

产生三角波和方波。

图1 振荡电路振荡电路振荡电路根据输出口的信号幅度要求,可得最大的信号幅度输出为:根据输出口的信号幅度要求,可得最大的信号幅度输出为:V M =5/2+3=5.5V 采用对称双电源工作(±V CC ),电源电压选择为:,电源电压选择为: V CC ≥V M +2V=7.5V 取V CC =9V选取3.3V 的稳压二极管,工作电流取5mA ,则:,则: V Z =V DZ +V D =3.3+0.7=4V 为方波输出的峰值电压。

为方波输出的峰值电压。

OM Z CC Z 3Z Z V -V V -1.5V -V 9-1.5-4R ==700ΩI I 5»=()1AR4R2R1R3DZ DZRW2AR5R7CVozVosR6Vi+取680680ΩΩ。

取8.2K 8.2KΩΩ。

R 1=R 2/3=8.2/1.5=5.47(K Ω)取5.1K Ω。

三角波输出的电压峰值为:三角波输出的电压峰值为:V OSM =V Z R 1/R 2=4×5.1/8.2=2.489(V ) R 4=R 1∥R 2=3.14 K Ω取3K Ω。

Z Z V 4RW=8K 0.1~0.2I 0.15==W ´()()取10K Ω。

R 6=RW/9=10/9=1.11(K Ω)取1K Ω。

实验1 示波器函数信号发生器的原理及使用(实验报告)

实验1 示波器函数信号发生器的原理及使用(实验报告)

实验1 示波器、函数信号发生器的原理及使用【实验目的】1. 了解示波器、函数信号发生器的工作原理。

2. 学习调节函数信号发生器产生波形及正确设置参数的方法。

3. 学习用示波器观察测量信号波形的电压参数和时间参数。

4. 通过李萨如图形学习用示波器观察两个信号之间的关系。

【实验仪器】1. 示波器DS5042型,1台。

2. 函数信号发生器DG1022型,1台。

3. 电缆线(BNC型插头),2条。

【实验内容与步骤】1. 利用示波器观测信号的电压和频率(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。

图1-1 函数信号发生器生成的正、余弦信号的波形(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表表1-1 正余弦信号的电压和时间参数的测量电压参数(V)时间参数峰峰值最大值最小值频率(Hz)周期(ms)正弦信号3sin(200πt)余弦信号3cos(200πt)2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形(1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。

图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形(3)实验指导教师检查并签字。

指导教师签字:3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形(1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45º),观测并记录两正弦信号的李萨如图形于图1-3中。

(2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135º),观测并记录两正弦信号的李萨如图形于图1-3中。

函数信号发生器实验报告

函数信号发生器实验报告

青海师范大学课程设计报告课程设计名称:函数信号发生器专业班级:电子信息工程学生姓名:***学号:***********同组人员:郭延森安福成涂秋雨指导教师:***课程设计时间:2015年12月目录1 设计任务、要求以及文献综述2 原理综述和设计方案2.1 系统设计思路2.2设计方案及可行性2.3 系统功能块的划分2.4 总体工作过程3 单元电路设计3.1 安装前的准备工作3.2 万用表的安装过程4 结束语1设计任务、要求在现代电子学的各个领域,常常需要高精度且频率可方便调节的信号发生器。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路称为函数信号发生器,又名信号源或振荡器。

函数信号发生器与正弦波信号发生器相比具有体积小、功耗少、价格低等优点, 最主要的是函数信号发生器的输出波形较为灵活, 有三种波形(方波、三角波和正弦波)可供选择,在生产实践,电路实验,设备检测和科技领域中有着广泛的应用。

该函数信号发生器可产生三种波形,方波,三角波,正弦波,具有数字显示输出信号频率和电压幅值功能,其产生频率信号范围1HZ~100kHZ,输出信号幅值范围0~10V,信号产生电路由比较器,积分器,差动放大器构成,频率计部分由时基电路、计数显示电路等构成。

幅值输出部分由峰值检测电路和芯片7107等构成。

技术要求:1. 信号频率范围 1Hz~100kHz;2. 输出波形应有:方波、三角波、正弦波;3. 输出信号幅值范围0~10V;4. 具有数字显示输出信号频率和电压幅值功能。

2原理叙述和设计方案2.1 系统设计思路函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件(如低频信号函数发生器S101全部采用晶体管),也可以是集成器件(如单片集成电路函数信号发生器ICL8038)。

产生方波、正弦波、三角波的方案也有多种,如先产生方波,再根据积分器转换为三角波,最后通过差分放大电路转换为正弦波。

信号产生实验实验报告

信号产生实验实验报告

信号产生实验实验报告信号产生实验实验报告引言:在现代科学技术的发展中,信号产生是一项十分重要的实验。

无论是通信领域、电子工程还是生物医学等领域,信号产生都扮演着至关重要的角色。

本实验旨在通过实际操作,探索信号产生的原理和方法,以及对信号的性质和特点进行分析和研究。

一、实验目的本实验的主要目的是掌握信号产生的基本原理和方法,了解信号的性质和特点,并能够运用所学知识进行实际应用。

二、实验器材和原材料1. 信号发生器2. 示波器3. 电阻、电容、电感等元件4. 电源5. 连接线等三、实验步骤1. 准备工作:检查实验器材的正常工作状态,确保实验环境安全。

2. 连接信号发生器和示波器:使用连接线将信号发生器和示波器连接起来,确保信号的输出能够被示波器正确地接收和显示。

3. 选择信号类型:在信号发生器上选择所需的信号类型,如正弦波、方波、三角波等。

4. 调节信号参数:通过调节信号发生器上的频率、幅度等参数,改变信号的特性,观察示波器上信号的变化。

5. 添加电阻、电容等元件:通过在信号发生器和示波器之间添加电阻、电容等元件,改变信号的波形,观察信号的变化。

6. 记录观察结果:根据实验过程中的观察结果,记录信号的特性和变化规律,分析信号产生的原理和机制。

四、实验结果和分析通过实验观察和记录,我们发现信号的产生与频率、幅度、波形等参数密切相关。

当我们改变信号发生器上的频率时,示波器上的信号波形也会相应地发生变化。

当频率较低时,信号呈现出较为缓慢的变化,而当频率较高时,信号则呈现出较为快速的变化。

此外,当我们改变信号发生器上的幅度时,示波器上的信号振幅也会相应地发生变化。

通过添加电阻、电容等元件,我们还可以改变信号的波形,例如将正弦波转换为方波或三角波。

五、实验总结通过本次实验,我们深入了解了信号产生的原理和方法,掌握了信号的性质和特点。

信号产生在现代科学技术中具有广泛的应用,例如在通信领域中,信号的产生和传输是实现信息交流的基础;在电子工程中,信号的产生和处理是实现电路功能的关键;在生物医学领域中,信号的产生和检测是实现生物信号分析和诊断的重要手段。

信号发生器实验报告

信号发生器实验报告

信号发生器实验报告摘要:本实验旨在通过使用信号发生器,对不同频率和幅度的信号进行产生和测量,探索信号发生器的基本原理和应用。

通过实验可以进一步理解信号发生器的工作原理以及频率和幅度的关系,并掌握信号发生器的操作方法。

1.引言2.原理3.实验步骤3.1准备工作:将信号发生器连接到电源,打开电源开关,并等待设备启动。

3.2选择频率:根据需要选择一个特定的频率,调整频率控制旋钮,并观察频率显示器上的数值变化。

3.3设置幅度:根据需要选择一个特定的幅度,调整幅度控制旋钮,并观察幅度显示器上的数值变化。

3.4选择波形:根据需要选择合适的波形,如正弦波、方波、三角波等,调整波形控制旋钮,并观察波形。

3.5连接测量仪器:将信号输出端口连接到示波器或其他测量仪器上。

根据需要选择不同的接口和线缆。

3.6测量信号参数:根据需要使用示波器或其他测量仪器,测量并记录信号的频率、幅度等参数。

4.实验结果通过实验,我们成功地产生了不同频率和幅度的信号,并使用示波器对其进行了测量。

根据测量数据,我们制作了频率-幅度图和波形图,对信号的特性进行了分析和比较。

5.讨论与分析在实验中,我们观察到信号发生器能够准确地产生所需的信号,并且改变频率和幅度时,输出信号的特性也相应改变。

通过对信号的测量,我们验证了信号发生器的性能和准确性。

6.实验总结通过本次实验,我们学习和掌握了信号发生器的基本原理和应用。

实验中我们成功地产生了不同频率和幅度的信号,并对其进行了测量和分析。

通过这些实验,我们进一步加深了对信号发生器的理解和应用能力。

信号发生器实验报告

信号发生器实验报告

信号发生器摘要函数发生器是一种在科研和生产中经常用到的基本波形产生器,集成函数波形发生器一般都采用ICL8038或5G8038。

本文介绍由单片机AT89S52和D/A转换器DAC0832及LM35组成的函数波形发生器,该电路能够产生正弦波、方波和三角波信号,频率能在100Hz~100kHz范围内可调。

关键词:函数波形发生器;单片机AT89S52; D/A转换器DAC0832;LM358;电位器;稳压管;二极管;第一部分:系统需求分析一、概论信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

本设计要求实现一个信号发生器,能够产生正弦波,三角波和方波信号。

二、技术指标(1)输出信号频率在100Hz~100kHz范围内可调;(2)输出信号频率稳定度优于10-3;(3)在1k 负载条件下,输出正弦波信号的电压峰-峰值Vopp在0~5V范围内可调;三、要求(1)信号发生器能产生正弦波、方波和三角波三种周期性波形(2)输出信号波形无明显失真;(3)自制稳压电源。

第二部分:方案设计与论证一、方案论证与比较函数信号产生方案对于函数信号产生电路,一般有多种实现方案,如模拟电路实现方案、数字电路实现方案(如DDS 方式)、模数结合的实现方案等。

数字电路的实现方案:一般可事先在存储器里存储好函数信号波形,再用D/A 转换器进行逐点恢复。

这种方案的波形精度主要取决于函数信号波形的存储点数、D/A 转换器的转换速度、以及整个电路的时序处理等。

函数信号发生器设计实验报告

函数信号发生器设计实验报告

函数信号发生器的设计实验报告院系:电子工程学院班级:2012211209**:***班内序号:学号:实验目的:设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us(误差<20%);3,三角波Uopp = 8V(误差<20%);4,正弦波Uopp≥1V。

设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

Ⅰ、方波—三角波产生电路设计方波输出幅度由稳压管的稳压值决定,即限制在(Uz+UD)之间。

方波经积分得到三角波,幅度为Uo2m=±(Uz+UD)方波和三角波的震荡频率相同,为f=1/T=āRf/4R1R2C,式中ā为电位器RW 的滑动比(即滑动头对地电阻与电位器总电阻之比)。

即调节RW可改变振荡频率。

根据两个运放的转换速率的比较,在产生方波的时候选用转换速率快的LM318,这样保证生成的方波上下长短一致,用LM741则会不均匀。

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告

简单正弦信号发生器设计实验报告专业:电子信息工程班级课题名称:简单正弦信号发生器设计一:实验要求(1)设计一个正弦信号发生器,要求ROM是8位数据线,8位地址。

256个8位波形数据的mif文件通过两种方式建立,一种用Quartus II的专用编辑器建立,另一种是使用附录的mif文件生成器建立。

首先创建原理图工程,调用LPM_ROM等模块;在原理图编辑窗中绘制电路图,全程编译,对设计进行时序仿真,根据仿真波形说明此电路的功能,引脚锁定编译,编程下载于FPGA中,用实验系统上的DAC0832做波形输出,用示波器来观察波形。

完成实验报告。

(2)学习使用Quartus II的In-System Memory Content Editor来观察FPGA 中的LPM_ROM中的z形波数据,并在在线改变数据后,从示波器上观察对应的输出波形的改变情况。

(3)学习使用Quartus II的Signal Tap II观察FPGA的正弦波形。

二:实验原理正弦信号发生器的结构框图由四个部分组成:(1)计数器或地址发生器,用来作为正弦波数据ROM的地址信号发生器。

ROM中的数据将随地址数据的递增而输出波形数据,然后由DAC输出波形。

(2)正弦信号数据ROM,含64个8位数据。

(3)原理图顶层设计。

(4)8位D/A。

DAC的输出接示波器。

三:实验内容1、定制初始化波形数据文件:建立.mif格式文件。

File—new—other files,选择 Memory Initialization File选项,选择64点8位的正弦数据,弹出表格后输入教材图4-38中的数据。

然后以romd.mif的名字保存至新建的文件夹中。

2、定制LPM_ROM元件:利用MegaWizard Plug-In Manager定制正弦信号数据ROM宏功能块,并将以上的波形数据加载于此ROM中。

并以data_rom.vhd名字将生成的用于例化的波形数据ROM文件保存至上述文件夹中。

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告

反馈移位型序列信号发生器的设计实验报告引言移位型序列信号发生器是一种能够产生特定序列的电路或设备,其在通信、计算机科学、数字信号处理等领域中有着广泛的应用。

在本实验中,我们设计了一种基于移位寄存器的移位型序列信号发生器,并对其进行了性能测试和分析。

本报告将对该实验的设计、实现和测试结果进行详细说明。

实验设计1.移位寄存器基本原理移位寄存器是一种常用的数字电路元件,其可以实现对二进制数据的移位、存储和输出。

它由若干个触发器组成,每个触发器接收相邻位的信号,并向右或向左移位。

例如,在一个4位移位寄存器中,初始存储的数据为1010,当向右移位时,数据变为0101。

2.移位型序列发生器的基本原理移位型序列发生器是一种利用移位寄存器和异或门构成的电路,用于产生特定的数字序列。

该电路的工作原理如下:将初始数据存储到移位寄存器中,然后依次对寄存器中的每个元素进行移位操作,并将移位后的数据与某个固定的数进行异或运算,得到输出序列的每一位。

例如,一个长度为4的序列发生器,初始数据为1010,异或运算的固定数为0011,则输出序列为1101、1110、0111、1011、0101、1010、1001、0100。

3.实验设计本实验中,我们设计了一个4位移位型序列发生器。

其基本原理如下图所示:图1. 移位型序列发生器电路图该电路由4个D触发器、2个与门和1个异或门组成。

其中,D触发器用于存储移位后的数据,两个与门用于控制移位寄存器的移位方向,异或门用于计算输出序列的每一位。

初始数据为1010,异或运算的固定数为0011。

具体实现过程如下:(1)首先将初始数据1010存储到4个D触发器中。

(2)然后依次进行4次移位操作,每次移位后将移位后的数据输入到异或门中进行计算,并将计算结果存储到一个新的移位寄存器中。

(3)当新的移位寄存器中存储的数据与初始数据相同时,停止计算,输出序列结束。

实验实现根据上述设计原理,我们完成了移位型序列发生器的实现。

2FSK2PSK信号产生器实验实验报告1

2FSK2PSK信号产生器实验实验报告1

2FSK/2PSK实验报告姓名:学号:地点:教师:(一)试验原理2FSK/2PSK信号产生器一. 2FSK基本原理在通信领域, 为了传送信息, 一般都将原始信号进行某种变换使其变成适合于通信传输的信号形式。

在数字通信系统中, 一般将原始信号(图像、声音等)经过量化编码变成二进制码流, 称为基带信号。

但数字基带信号一般不适合于直接传输, 例如, 通过公共电话网络传输数字信号时, 由于电话网络带宽在4KHZ 以下, 因此数字信号不能直接在上面传输。

此时可将数字信号进行调制后再进行传输, FSK即为一种常用的数字调制方式。

FSK又称频移键控, 它是利用载频频率的变化来传递数字信息。

数字调频信号可以分为相位离散和相位连续两种。

若两个载频由不同的独立振荡器提供, 它们之间的相位互不相关, 就称为相位离散的数字调频信号;若两个频率由同一振荡器提供, 只是对其中一个载频进行分频, 这样产生的两个载频就是相位连续的数字调频信号。

二. 2FSK信号产生器由于FSK为模拟信号, 而FPGA只能产生数字信号, 因此, 需对正弦信号采样再经过数/模变换得到所需的FSK信号。

FSK信号发生器框图如下图所示, 整个系统共分为分频器, m序列产生器, 跳变检测, 正弦波信号发生器和DAC(数/模变换器)等五部分, 其中前四部分由FPGA器件完成。

图1 FSK信号发生器框图2. 1 分频器本设计的数据速率为1.2kb/s, 要求产生1.2kHz 和2.4kHz两个正弦信号。

对每个码元持续周期所对应正弦信号取100个采样点, 因此要求能产生两个时钟信号: 1.2kHz(数据速率)和120kHz(正弦波信号产生器输入时钟)。

基准时钟由外部时钟输入, 因此需设计一个模100分频器产生120kHz信号, 再设计一个模100分频器产生1.2kHz信号。

2.2m序列产生器m序列是伪随机序列的一种, 它的显著特点是: (1)随机特性;(2)预先可确定性;(3)循环特性, 从而在通信领域得到了广泛的应用。

信号发生器实验报告(波形发生器实验报告)

信号发生器实验报告(波形发生器实验报告)

信号发生器一、实验目的1、掌握集成运算放大器的使用方法,加深对集成运算放大器工作原理的理解。

2、掌握用运算放大器构成波形发生器的设计方法。

3、掌握波形发生器电路调试和制作方法 。

二、设计任务设计并制作一个波形发生电路,可以同时输出正弦、方波、三角波三路波形信号。

三、具体要求〔1〕可以同时输出正弦、方波、三角波三路波形信号,波形人眼观察无失真。

〔2〕利用一个按钮,可以切换输出波形信号。

〔3〕频率为1-2KHz 连续可调,波形幅度不作要求。

〔4〕可以自行设计并采用除集成运放外的其他设计方案〔5〕正弦波发生器要求频率连续可调,方波输出要有限幅环节,积分电路要保证电路不出现积分饱和失真。

四、设计思路根本功能:首先采用RC 桥式正弦波振荡器产生正弦波,然后通过整形电路(比拟器)将正弦波变换成方波,通过幅值控制和功率放大电路后由积分电路将方波变成三角波,最后通过切换开关可以同时输出三种信号。

五、具体电路设计方案Ⅰ、RC 桥式正弦波振荡器图1图2电路的振荡频率为:RCf π210=将电阻12k ,62k 及电容100n ,22n ,4.4n 分别代入得频率调节范围为:24.7Hz~127.6Hz ,116.7Hz~603.2Hz ,583.7Hz~3015Hz 。

因为低档的最高频率高于高档的最低频率,所以符合实验中频率连续可调的要求。

如左图1所示,正弦波振荡器采用RC 桥式振荡器产生频率可调的正弦信号。

J 1a 、J 1b 、J 2a 、J 2b 为频率粗调,通过J 1 J 2 切换三组电容,改变频率倍率。

R P1采用双联线性电位器50k ,便于频率细调,可获得所需要的输出频率。

R P2 采用200k 的电位器,调整R P2可改变电路A f 大小,使得电路满足自激振荡条件,另外也可改变正弦波失真度,同时使正弦波趋于稳定。

下列图2为起振波形。

RP2 R4 R13 组成负反应支路,作为稳幅环节。

R13与D1、D2并联,实现振荡幅度的自动稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

信号发生器设计与实现实验报告(一)
信号发生器设计与实现实验报告
1. 引言
•介绍信号发生器的作用和重要性
•提出本实验的目的和研究重点
2. 实验原理
•详细介绍信号发生器的基本原理
•解释信号发生器的工作方式和内部结构
3. 实验设备和材料
•列举使用到的实验设备和材料
•概述它们在实验中的作用和使用方法
4. 实验步骤
1.第一步:设置实验仪器
–详细描述如何设置信号发生器和接收器
–解释各个参数的设置意义和范围
2.第二步:生成标准信号
–介绍如何使用信号发生器生成标准信号
–提供示例参数设置和操作步骤
3.第三步:测量信号参数
–阐述如何通过接收器测量信号的频率、幅度等参数
–解释测量原理和相关工具的使用方法
5. 实验结果分析
•展示实验结果数据和测量值
•分析实验结果与设定值之间的差异
•探讨可能的误差来源和改进措施
6. 结论
•总结实验的目的、方法和结果
•强调实验的重要性和实际应用
7. 参考文献
•引用使用到的参考资料、教材和相关文献
8. 致谢
•表达对参与实验的人员、设备提供者等的感谢之情
以上是一份符合Markdown格式的信号发生器设计与实现实验报告的基本结构。

在每个部分中,使用标题和副标题进行内容分类和组织。

尽量使用简洁明了的语言和清晰的逻辑,使读者易于理解实验的过程和结果。

9. 实验讨论
9.1 实验步骤的有效性
•分析实验步骤的合理性和可行性
•探讨实验过程中可能存在的困难和解决方法
9.2 实验结果的可靠性
•讨论实验数据的准确性和可重复性
•提出实验结果可能存在的误差来源和影响因素
9.3 设备性能的评价
•对使用的信号发生器和接收器的性能进行评价
•分析其在实验中的表现和优缺点
9.4 实验改进的建议
•根据本次实验的经验,提出改进实验方法的建议
•探讨如何提高实验的效率和结果的精确度
10. 实验应用展望
•探讨信号发生器在其他领域的应用前景
•分析信号发生器在科研和工程实践中的价值和重要性
11. 结语
•总结全文的主要内容和观点
•强调本次实验的价值和对个人学习的意义
以上是继续完整的信号发生器设计与实现实验报告。

在实验讨论部分,针对实验步骤、结果、设备和改进进行深入分析和讨论。

在实验应用展望中,展示了信号发生器的广泛应用前景。

在结语中,对全文进行总结和概括,强调实验的重要性和个人的收获。

通过合理的组织和内容的补充,使实验报告更加完整和丰富。

相关文档
最新文档