2019高考数学一轮复习第11章计数原理和概率第2课时排列与组合练习理

合集下载

【高优指导】高考数学一轮复习 第十一章 计数原理 11.2 排列与组合名师课件 理 北师大版

【高优指导】高考数学一轮复习 第十一章 计数原理 11.2 排列与组合名师课件 理 北师大版

-11-
考点1
考点2
考点3 知识方法 易错易混
考点1排列问题
例13名女生和5名男生排成一排.
(1)如果女生全排在一起,有多少种不同排法?
(2)如果女生都不相邻,有多少种排法?
(3)如果女生不站两端,有多少种排法?
(4)其中甲必须排在乙前面(可不邻),有多少种排法?
(5)其中甲不站左端,乙不站右端,有多少种排法?
由分类加法计数原理,共有A77 + A16 ·A16 ·A66=30 960(种). (方法二:特殊位置法)先排最左边,除去甲外,有A17种,余下 7 个 位置全排,有A77种,但应剔除乙在最右边时的排法A16 ·A66种,因此共有 A17 ·A77 − A16 ·A66=30 960(种). (方法三:间接法)8 个人全排,共A88种,其中,不合条件的有甲在最 左边时,有A77种,乙在最右边时,有A77种,其中都包含了甲在最左边,同 时乙在最右边的情形,有A66种.因此共有A88-2A77 + A66=30 960(种).
2.排列数与组合数的概念
名称
定义
排列数 组合数
从 n 个不同元素中取出 m(m≤n) 个元素的所有不同
排列的个数 组合的个数
-4-
3.排列数、组合数的公式及性质
(1)排列数公式:A������������ =n(n-1)(n-2)…(n-m+1)=(������-���������!���)!.
(2)全排列:A������������ =n×(n-1)×(n-2)×…×2×1=n!. (3)组合数的计算公式:
方仅写一条毕业留言,那么全班共写了
条毕业留言.(用
数字作答)
关闭
该问题是一个排列问题,故共有A240=40×39=1 560 条毕业留言.

北师版高考总复习一轮理科数精品课件 第11章 计数原理 第2节 排列与组合

北师版高考总复习一轮理科数精品课件 第11章 计数原理 第2节 排列与组合
(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至
少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都
可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.
对点训练2某课外活动小组共13人,其中男生8人,女生5人,并且男、女各有
一名队长.现从中选5人主持某活动,依下列条件各有多少种选择?
视节目的现场录制,5人坐一排.若小明的父母都与他相邻,则不同坐法的种
数为(
)
A.6
B.12
C.24
D.48
(2)用0,1,2,3,4,5这6个数字能组成奇数数字互不相邻的六位数(无重复数字)
个.
答案:(1)B (2)132
解析:(1)将小明父母与小明三人进行捆绑,
其中小明居于中间,形成一个元素,
与其他两个元素进行排序,则A22 A33 =12,故所求的坐法种数为 12,故选 B.
人有A35 种方法,最后将他们看作一个整体与剩下的 2 人全排列,有A33 种方法,
故共有A22 ·A35 ·A33 =720(种)方法.
A 77
(7)有A 2 =2
2
520(种)方法.
(8)(方法 1 特殊元素法)甲在最右边时,其他的可全排,有A66 种;甲不在最右边
时,可从余下 5 个位置中任选一个,有A15 种,而乙可排在除去最右边位置后剩
有C42 A22 =12(种)情况,则一共有 4+12=16(种)情况.
考向2.相邻与相间问题
典例突破
例4.(2021湖南长沙模拟)一次表彰大会上,计划安排5名优秀学生代表上台
发言,这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高
二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则

高考数学一轮复习第十一章计数原理11-2排列与组合学案理含解析北师大版

高考数学一轮复习第十一章计数原理11-2排列与组合学案理含解析北师大版

11.2排列与组合必备知识预案自诊知识梳理1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照排成一列组合合成一组2.排列数与组合数的概念名称定义排列数从n个不同元素中取出m(m≤n)个元素的所有不同的个数组合数的个数3.排列数、组合数的公式及性质公式(1)A n m=n(n-1)(n-2)·…·(n-m+1)=n!(n-m)!(2)A n m=A n mA m m=n(n-1)(n-2)·…·(n-m+1)m!=n!m!(n-m)!性质(1)0!= ;A n n=n×(n-1)×(n-2)×…×2×1=n!(2)A n m=A n n-m;An+1m=A n m +A n m-11.A n m=(n-m+1)A n m-1.2.A n m=n A n-1m-1.3.(n+1)!-n!=n·n!.4.k A n k=n A n-1k-1.5.A n m=nmAn-1m-1=nn-mAn-1m=n-m+1mA n m-1.考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)所有元素完全相同的两个排列为相同排列.()(2)一个组合中取出的元素讲究元素的先后顺序.()(3)两个组合相同的充要条件是其中的元素完全相同.()(4)若组合式C A A=C A A,则x=m成立.()(5)排列中,给出的n个元素各不相同,被取出的元素也各不相同的情况.即如果某个元素已被取出,则这个元素就不再取了.()2.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行,长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”.现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游,则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.7163.将A,B,C,D,E这5名同学从左至右排成一排,则A与B相邻且A与C之间恰好有一名同学的排法种数为()A.18B.20C.21D.224.2020年7月1日迎来了我国建党99周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为()A.20.5元B.21元C.21.5元D.22元5.(2020广西柳州抽测)将4名学生分别安排到甲、乙、丙三地参加社会实践活动,每个地方至少安排一名学生参加,则不同的安排方案共有种.关键能力学案突破考点简单的排列应用题(多考向探究)考向1在与不在问题——特殊元素(或位置)优先法〖例1〗6人站成一排,其中甲不能站在排头,乙不能站在排尾的不同排法共有种.解题心得解此类问题常用“元素分析法”“位置分析法”.元素分析法——即以元素为主,优先考虑特殊元素的要求,再考虑其他元素;位置分析法——即以位置为主,优先考虑特殊位置的要求,再考虑其他位置.变式发散6人站成一排,则甲既不站排头又不站排尾的站法有种.对点训练16个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种考向2相邻问题——捆绑法〖例2〗3名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为( )A.2B.9C.72D.36解题心得在实际排列问题中,某些元素要求必须相邻时,可以先将这些元素看成一个整体,与其他元素排列后,再考虑相邻元素的内部排序,这种方法称为“捆绑法”.对点训练2某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为( )A.16B.18C.24D.32考向3 不相邻问题——插空法〖例3〗某校高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是( )A.1 800B.3 600C.4 320D.5 040解题心得某些元素要求不相邻时,可以先安排其他元素,再将这些不相邻元素插入已排好的元素的空隙或两端位置,这种方法称为“插空法”.对点训练3某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,同类节目不相邻的排法种数是( )A.72B.120C.144D.168考向4 定序问题——等几率法〖例4〗有4名男生,3名女生,其中3名女生高矮各不相同,将7名学生排成一行,要求从左到右,女生从矮到高排列(不一定相邻),不同的排法共有 种.解题心得若有(m+n )个元素排成一列,其中有m 个元素之间的顺序固定不变,则将这(m+n )个元素排成一列,共有A A +A A +A 种不同的排法,然后固定其他的n 个元素的位置不动,把这m 个元素变换顺序,共有A A A 种排法,其中只有一个排列是我们所需要的排列,因而共有A A +A A +AA A A 种不同的排法.对点训练47个人排成一队参观某项目,其中A ,B ,C 三人进入展厅的次序必须是先B 再A 后C ,则不同的列队方式种数为( )A.120B.240C.420D.840考点 组合问题〖例5〗某市工商局对35种商品进行抽样检查,已知其中有15种不合格商品.现从35种商品中选取3种.(1)其中某一种不合格商品必须在内,不同的取法有多少种?(2)其中某一种不合格商品不能在内,不同的取法有多少种?(3)恰有2种不合格商品在内,不同的取法有多少种?(4)至少有2种不合格商品在内,不同的取法有多少种?(5)至多有2种不合格商品在内,不同的取法有多少种?解题心得组合问题的两类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.对点训练5(1)从4男2女共6名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,不同选法共有()A.156种B.168种C.180种D.240种(2)2020年国庆假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A.18种B.24种C.48种D.36种考点分组与分配问题〖例6〗按下列要求分配6本不同的书,各有多少种不同的分配方法?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本.解题心得分组、分配问题的一般解题思路是先分组再分配.(1)分组问题属于“组合”问题.①对于整体均分,不管它们的顺序如何,都是一种情况,所以分组后一定要除以组数的阶乘;②对于部分均分,即若有m组元素个数相同,则分组时应除以m!;③对于不等分组,只需先分组,后排列.(2)分配问题属于“排列”问题.①相同元素的“分配”问题,常用的方法是采用“隔板法”;②不同元素的“分配”问题,利用分步乘法计数原理,分两步完成,第一步是分组,第二步是发放;③限制条件的分配问题常采用分类法求解.对点训练6(1)某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的编号,则不同的分配方案的种数为()A.280B.455C.355D.350(2)(2020新高考全国1,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种(3)在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在a,b,c三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有()A.96种B.124种C.130种D.150种11.2排列与组合必备知识·预案自诊知识梳理1.一定的顺序2.排列组合3.(1)1考点自诊1.(1)×(2)×(3)√(4)×(5)√2.B4名同学去旅游的所有情况有44=256(种),恰有一个地方未被选中共有C41·C42C21A22·A33=144(种)情况,所以恰有一个地方未被选中的概率为p=144256=916.故选B.3.B当A,C之间为B时,看成一个整体进行排列,共有A22·A33=12(种),当A,C之间不是B时,先在A,C之间插入D,E中的任意一个,然后B在A之前或之后,再将这四个人看成一个整体,与剩余一个进行排列,共有C21·A22·A22=8(种),所以共有20种不同的排法.故选B.4.B利用捆绑法可求得照片的总数为A33A44=144,则每名老党员需要支付的照片费为144×0.5+72×0.756=21(元).故选B.5.36第一步,先从4名学生中任取两人组成一组,与剩下2人组成三组,有C42=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三地,则有A33=6(种)不同的方法.故共有6×6=36(种)不同的安排方案.关键能力·学案突破例1504(方法1特殊元素法)分两类:第1类,甲先从中间四个位置选一个站好,有A41种站法.乙不站排尾,则乙可从除排尾之外的4个位置中选一个站好,共有A41种站法.其余四人任意排,有A44种站法.故共有A41A41A44种站法.第2类,甲站排尾,此时,乙不再特殊,共有A55种站法.根据分类加法计数原理,共有A41A41A44+ A55=504(种)不同的站法.(方法2特殊位置法)排头与排尾特殊,故可以从排头与排尾入手.分三类:第1类,从除甲、乙之外的4人中选2人站排头、排尾,有A42A44种站法.第2类,甲站排尾,有A55种站法.第3类,乙站排头,有A55种站法(其中重合部分:乙站排头,甲站排尾,有A44种站法).根据分类加法计数原理,共有A42A44+A55+A55−A44=504(种)不同的站法.(方法3间接法)6人站成一排有A66种站法,甲站排头或乙站排尾有2A55种站法,甲站排头且乙站排尾有A44种站法,故共有A66-2A55+A44=504(种)不同的站法.变式发散480先安排甲的位置(既不站排头又不站排尾),再安排其他5人的位置,分为两步:第1步,将甲排在除排头、排尾的任意位置上,有A41种站法;第2步,余下5人站在剩下的5个位置上,有A55种站法.由分步乘法计数原理可知,共有A41A55=480(种)不同的站法.对点训练1B 分两类:第1类,甲在最左端,有A 55=5×4×3×2×1=120(种)不同的排法;第2类,乙在最左端,甲不在最右端,有4A 44=4×4×3×2×1=96(种)不同的排法.所以共有120+96=216(种)不同的排法.例2C 可分两步完成:第1步,把3名女生作为一个整体,看成一个元素,3名男生作为一个整体,看成一个元素,两个元素排成一排有A 22种排法;第2步,3名女生排在一起有A 33种排法,3名男生排在一起有A 33种排法,故排法种数为A 22A 33A 33=72.对点训练2C 将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A 33=6(种)方法,再将捆绑在一起的4个车位插入4个空位中,有4种方法,故共有4×6=24(种)方法.例3B 先排除舞蹈节目以外的5个节目,共A 55种排法,再把2个舞蹈节目插在6个空位中,有A 62种排法,所以共有A 55A 62=3600(种)排法.对点训练3B 先安排小品节目和相声节目,然后让歌舞节目去插空.安排小品节目和相声节目的顺序有三种:“小品,小品,相声”“小品,相声,小品”和“相声,小品,小品”.对于第一种情况,形式为“□小品歌舞小品□相声□”,有A 22C 31A 32=36(种)安排方法;同理,第三种情况也有36种安排方法;对于第二种情况,三个节目形成4个空,其形式为“□小品□相声□小品□”,有A 22A 43=48(种)安排方法,故共有36+36+48=120(种)安排方法.例4840 7名学生的排列共有A 77种,其中女生的排列共有A 33种,按照从左到右,女生从矮到高的排列只是其中的一种,故有A 77A 33=A 74=840(种)不同的排法. 对点训练4D 根据题意,先将7人排成一列,有A 77种排法,其中A ,B ,C 三人进入展厅的次序必须是先B 再A 后C ,即A ,B ,C 三人顺序一定,则不同的列队方式有A 77A 33=840(种). 例5解(1)从余下的34种商品中,选取2种,有C 342=561(种)取法,故某一种不合格商品必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C 343种或者C 353−C 342=C 343=5984(种)取法.故某一种不合格商品不能在内的不同取法有5984种.(3)从20种合格商品中选取1种,从15种不合格商品中选取2种,有C 201C 152=2100(种)取法.故恰有2种不合格商品在内的不同的取法有2100种.(4)选取2种不合格商品有C 201C 152种取法,选取3种不合格商品有C 153种取法,共有C 201C 152+C 153=2100+455=2555(种)取法.故至少有2种不合格商品在内的不同的取法有2555种.(5)任意选取3种的总数为C 353,因此共有C 353−C 153=6545-455=6090(种)取法.故至多有2种不合格商品在内的不同的取法有6090种.对点训练5(1)B (2)B (1)从4男2女共6名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队有C 61·C 51·C 42=6×5×4×32=180(种)选法,服务队中没有女生的选法有C 41·C 31·C 22=4×3×1=12(种),所以要求服务队中至少有1名女生,不同选法共有180-12=168(种)选法.故选B .(2)由题意,第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个为C 32=3(种),然后分别从选择的班级中再选择一个学生为C 21C 21=4,故有3×4=12(种);第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,为C 31=3,然后再从剩下的两个班级中分别选择一人为C 21C 21=4,这时共有3×4=12(种),根据分类加法计数原理得,共有12+12=24(种)不同的乘车方式.故选B .例6解(1)先从6本书中选1本,有C 61种分配方法;再从剩余5本书中选择2本,有C 52种分配方法,剩余的就是3本书,有C 33种分配方法,所以总共有C 61C 52C 33=60(种)分配方法.(2)由(1)可知分组后共有60种方法,分别分给甲、乙、丙后的方法有C 61C 52C 33A 33=360(种).(3)从6本书中选择2本书,有C 62种分配方法;再从剩余4本书中选择2本书,有C 42种分配方法;剩余的就是2本书,有C 22种分配方法,所以有C 62C 42C 22=90(种)分配方法.但是,该过程有重复.假如6本书分别为A ,B ,C ,D ,E ,F ,若三个步骤分别选出的是(AB ),(CD ),(EF ).则所有情况为(AB ,CD ,EF ),(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,AB ,CD ),(EF ,CD ,AB ).所以分配方法共有C 62C 42C 22A 33=15(种).(4)由(3)可知,将三份分别分给甲、乙、丙三人,则分配方法有C 62C 42C 22A 33×A 33=90(种).(5)从6本书中选4本书的方法有C 64种,从剩余2本书中选1本书有C 21种,因为在最后两本书的选择中发生了重复,所以分配方法总共有C 64C 21A 22=15(种).(6)由(5)可知,将三份分别分给甲、乙、丙三人即可,则分配方法有C 64C 21A 22×A 33=90(种).对点训练6(1)B (2)C (3)D (1)每个实验室人数分配有三种情况,即1,2,4;1,3,3;2,2,3.当实验室的人数为1,2,4时,分配方案有C 71C 62C 44=105(种);当实验室的人数为1,3,3时,分配方案有C 71C 63C 33=140(种);当实验室的人数为2,2,3时,分配方案有C 72C 52C 33=210(种).故不同的分配方案有455种.故选B.(2)甲场馆安排1名有C 61种方法,乙场馆安排2名有C 52种方法,丙场馆安排3名有C 33种方法,所以共有C 61·C 52·C 33=60(种)方法,故选C .(3)根据题意,分2步进行分析:①五个参会国要在a ,b ,c 三家酒店选择一家,且这三家至少有一个参会国入住,所以可以把5个国家人分成三组,一种是1,1,3,另一种是1,2,2.当按照1,1,3来分时共有C 53=10(种)分组方法;当按照1,2,2来分时共有C 52C 32A 22=15(种)分组方法,则一共有10+15=25(种)分组方法;②将分好的三组对应三家酒店,有A 33=6(种)对应方法;则安排方法共有25×6=150(种).故选D .。

近年届高考数学一轮复习第十篇计数原理、概率、随机变量及其分布第2节排列与组合训练理新人教版(202

近年届高考数学一轮复习第十篇计数原理、概率、随机变量及其分布第2节排列与组合训练理新人教版(202

2019届高考数学一轮复习第十篇计数原理、概率、随机变量及其分布第2节排列与组合训练理新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习第十篇计数原理、概率、随机变量及其分布第2节排列与组合训练理新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习第十篇计数原理、概率、随机变量及其分布第2节排列与组合训练理新人教版的全部内容。

第2节排列与组合【选题明细表】知识点、方法题号排列1,5,12组合2,7排列与组合的综合应用3,4,6,8,9,10,11,13,14基础巩固(时间:30分钟)1。

(2017·濮阳市一模)某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段只保留其中的2个商业广告,新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则不同的播放顺序共有( B )(A)60种(B)120种(C)144种 (D)300种解析:要在该时间段只保留其中的2个商业广告,有=20种方法,增播一个商业广告,利用插空法有3种方法,再在2个空中,插入两个不同的公益宣传广告,共有2种方法,根据分步乘法计数原理,共有20×3×2=120种方法.故选B。

2.(2017·太原市一模)现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各三张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同的取法种数为( C )(A)135 (B)172 (C)189 (D)162解析:由题意,不考虑特殊情况,共有种取法,其中每一种卡片各取三张,有4种取法,两张红色卡片,共有种取法,故所求的取法共有—4-=189种.故选C。

北师版高考总复习一轮理科数精品课件 第11章 计数原理 指点迷津(十二) 排列、组合问题的解题策略

北师版高考总复习一轮理科数精品课件 第11章 计数原理 指点迷津(十二) 排列、组合问题的解题策略
②若0不在个位,此时必须在2或4中任取1个,作为个位数字,有2种取法,
0不能作为百位数字,则百位数字有4种取法,十位数字也有4种取法,
此时共有2×4×4=32(个)没有重复数字的三位偶数.
综合可得,共有20+32=52(个)没有重复数字的三位偶数.故选C.
解题策略 解题需要注意偶数的末位数字以及0不能在首位等性质,对于每
一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用
分类加法计数原理和分步乘法计数原理将问题合成,从而得到问题的答案,
每个比较复杂的问题都要用到这种解题策略.
本 课 结 束
解:先把30 030分解成质因数的乘积形式30 030=2×3×5×7×11×13.
依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,
所有的偶因数有C50 + C51 + C52 + C53 + C54 + C55 =25=32(个).
解题策略 分解与合成策略是排列组合问题的一种最基本的解题策略,把
第十一章
指点迷津(十二) 排列、组合问题的解题策略
排列、组合一直是不少学生学习中的难点,通过我们平时做的练习,不难发
现排列、组合问题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字
庞大,难以验证,在高考中极易丢分.本文为学生提供了解决排列、组合问
题的基本策略,遵循这些策略能较大程度地提高解决问题的能力.
第二步,分到三个班的不同分法有A33 =6(种).
故不同的分配方案为 6×6=36(种).故选 D.
解题策略 排列组合的应用问题,一般按先选再排,先分组再分配的处理原
则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

60 高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第二节 排列与组合)

第二节排列与组合1.排列、组合的定义A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!C m n=A m nA m m=n n-1n-2…n-m+1m!(1)C m n=C n-mn:从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的方法数.(2)C m n+C m-1n=C m n+1:从n+1个不同元素中取出m个元素可分以下两种情况:①不含特殊元素A有C m n种方法;②含特殊元素A有C m-1n种方法.考点一排列问题[典例精析]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.[解](1)从7人中选5人排列,有A57=7×6×5×4×3=2 520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5 040(种).(3)法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3 600(种).法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3 600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1 440(种).[解题技法]求解排列应用问题的6种主要方法[题组训练]1.(2019·太原联考)高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则不同排法的种数是()A.1 800B.3 600C.4 320D.5 040解析:选B先排除舞蹈节目以外的5个节目,共A55种,再把2个舞蹈节目插在6个空位中,有A26种,所以共有A55A26=3 600(种).2.(2019·石家庄模拟)用数字0,1,2,3,4组成没有重复数字且大于3 000的四位数,这样的四位数有()A.250个B.249个C.48个D.24个解析:选C①当千位上的数字为4时,满足条件的四位数有A34=24(个);②当千位上的数字为3时,满足条件的四位数有A34=24(个).由分类加法计数原理得满足条件的四位数共有24+24=48(个),故选C.3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有()A.1 108种B.1 008种C.960种D.504种解析:选B将丙、丁两人进行捆绑,看成一人.将6人全排列有A22A66种排法;将甲排在排头,有A22A55种排法;乙排在排尾,有A22A55种排法;甲排在排头,乙排在排尾,有A22A44种排法.则甲不能在排头,乙不能在排尾,丙、丁两人必须相邻的不同排法共有A22A66-A22A55-A22A55+A22A44=1 008(种).考点二组合问题[典例精析]某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同取法有多少种?(2)其中某一种假货不能在内,不同取法有多少种?(3)恰有2种假货在内,不同取法有多少种?(4)至少有2种假货在内,不同取法有多少种?(5)至多有2种假货在内,不同取法有多少种?[解](1)从余下的34种商品中,选取2种有C234=561(种)取法,所以某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984(种)取法.所以某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100(种)取法.所以恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).所以至少有2种假货在内的不同的取法有2 555种.(5)法一:(间接法)选取3种商品的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.法二:(直接法)共有选取方式C320+C220C115+C120C215=6 090(种).所以至多有2种假货在内的不同的取法有6 090种.[解题技法]组合问题的2类题型及求解方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外的元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解.用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.[题组训练]1.(2018·南宁二中、柳州高中第二次联考)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个相邻,则不同的选法种数是()A.72B.70C.66D.64解析:选D从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法.2.(2019·辽宁五校协作体联考)在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务.已知:①食物投掷地点有远、近两处;②由于Grace年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处.那么不同的搜寻方案有()A.10种B.40种C.70种D.80种解析:选B若Grace不参与任务,则需要从剩下的5位小孩中任意挑出1位陪同,有C15种挑法,再从剩下的4位小孩中挑出2位搜寻远处,有C24种挑法,最后剩下的2位小孩搜寻近处,因此一共有C15C24=30种搜寻方案;若Grace参与任务,则其只能去近处,需要从剩下的5位小孩中挑出2位搜寻近处,有C25种挑法,剩下3位小孩去搜寻远处,因此共有C25=10种搜寻方案.综上,一共有30+10=40种搜寻方案.3.(2018·全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C 36-C 34=20-4=16(种).答案:16考点三 分组、分配问题考法(一) 整体均分问题[例1] 国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.[解析] 先把6个毕业生平均分成3组,有C 26C 24C 22A 33=15(种)方法.再将3组毕业生分到3所学校,有A 33=6(种)方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90(种)分派方法. [答案] 90考法(二) 部分均分问题[例2] 有4名优秀学生A ,B ,C ,D 全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.[解析] 先把4名学生分为2,1,1共3组,有C 24C 12C 11A 22=6(种)分法,再将3组对应3个学校,有A 33=6(种)情况,则共有6×6=36(种)不同的保送方案.[答案] 36考法(三) 不等分问题[例3] 若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] 将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种取法;第2步,在余下的5名教师中任取2名作为一组,有C 25种取法;第3步,余下的3名教师作为一组,有C 33种取法.根据分步乘法计数原理,共有C 16C 25C 33=60种取法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.[答案] 360[题组训练]1.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).2.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有______种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150 考点四 排列、组合的综合问题[典例精析](1)从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.300B.216C.180D.162(2)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有________个.(用数字作答)[解析] (1)分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 23·C 22·A 44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C 12·C 23·(A 44-A 33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个).(2)当个位、十位和百位上的数字为三个偶数时,若选出的三个偶数含有0,则千位上把剩余数字中任意一个放上即可,方法数是C 23A 33C 14=72;若选出的三个偶数不含0,则千位上只能从剩余的非0数字中选一个放上,方法数是A 33C 13=18,故这种情况下符合要求的四位数共有72+18=90(个).当个位、十位和百位上的数字为一个偶数、两个奇数时,若选出的偶数是0,则再选出两个奇数,千位上只要在剩余数字中选一个放上即可,方法数为C23A33C14=72;若选出的偶数不是0,则再选出两个奇数后,千位上只能从剩余的非0数字中选一个放上,方法数是C13 C23A33C13=162,故这种情况下符合要求的四位数共有72+162=234(个).根据分类加法计数原理,可得符合要求的四位数共有90+234=324(个).[答案](1)C(2)324[解题技法]解决排列、组合综合问题的方法(1)仔细审题,判断是组合问题还是排列问题,要按元素的性质分类,按事件发生的过程进行分步.(2)以元素为主时,先满足特殊元素的要求,再考虑其他元素;以位置为主时,先满足特殊位置的要求,再考虑其他位置.(3)对于有附加条件的比较复杂的排列、组合问题,要周密分析,设计出合理的方案,一般先把复杂问题分解成若干个简单的基本问题,然后应用分类加法计数原理或分步乘法计数原理来解决,一般遵循先选后排的原则.[题组训练]1.(2019·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法.2.(2019·成都诊断)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若甲、乙之中只有一人参加,有C12·C46·A55=3 600(种);若甲、乙两人都参加,有C22·A36·A=241 440(种).则不同的安排种数为3 600+1 440=5 040.答案:5 040[课时跟踪检测]A级1.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为()A.16B.18C.24D.32解析:选C将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6(种)方法,再将捆绑在一起的4个车位插入4个空当中,有4种方法,故共有4×6=24(种)方法.2.(2019·惠州调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A.24B.18C.16D.10解析:选D分两种情况,第一种:最后体验甲景区,则有A33种可选的路线;第二种:不在最后体验甲景区,则有C12·A22种可选的路线.所以小李可选的旅游路线数为A33+C12·A22=10.3.(2019·开封模拟)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为()A.6B.12C.18D.19解析:选D从六科中选考三科的选法有C36种,其中不选物理、政治、历史中任意一科的选法有1种,因此学生甲的选考方法共有C36-1=19种.4.(2019·沈阳教学质量监测)若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有()A.4种B.8种C.12种D.24种解析:选B将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8种站法.5.(2018·甘肃二诊)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有()A.18种B.24种C.36种D.48种解析:选C若甲、乙抢的是一个6元和一个8元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22A23=12种;若甲、乙抢的是一个8和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A22C23=6种;若甲、乙抢的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A23=6种,根据分类加法计数原理可得,共有12+12+6+6=36种情况.6.(2019·南昌调研)某校毕业典礼上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校毕业典礼节目演出顺序的编排方案共有()A.120种B.156种C.188种D.240种解析:选A记演出顺序为1~6号,按甲的编排进行分类,①当甲在1号位置时,丙、丁相邻的情况有4种,则有C14A22A33=48种;②当甲在2号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种;③当甲在3号位置时,丙、丁相邻的情况有3种,共有C13A22A33=36种.所以编排方案共有48+36+36=120种.7.从5名学生中选出4名分别参加数学、物理、化学、生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为()A.48B.72C.90D.96解析:选D由于甲不参加生物竞赛,则安排甲参加另外3场竞赛或甲不参加任何竞赛.①当甲参加另外3场竞赛时,共有C13A34=72种选择方案;②当甲学生不参加任何竞赛时,共有A44=24种选择方案.综上所述,所有参赛方案有72+24=96(种).8.某班上午有五节课,分别安排语文、数学、英语、物理、化学各一节课.要求语文与化学相邻,数学与物理不相邻,且数学课不排第一节,则不同排课方案的种数是()A.16B.24C.8D.12解析:选A根据题意,分三步进行分析,①要求语文与化学相邻,将语文和化学看成一个整体,考虑其顺序,有A22=2种情况;②将这个整体与英语全排列,有A22=2种情况,排好后,有3个空位;③数学课不排第一节,有2个空位可选,在剩下的2个空位中任选1个,安排物理,有2种情况,则数学、物理的安排方法有2×2=4种,则不同排课方案的种数是2×2×4=16.9.(2019·洛阳第一次统考)某校有4个社团向高一学生招收新成员,现有3名同学,每人只选报1个社团,恰有2个社团没有同学选报的报法有________种.(用数字作答)解析:第一步,选2名同学报名某个社团,有C 23C 14=12种报法;第二步,从剩余的3个社团里选一个社团安排另一名同学,有C 13C 11=3种报法.由分步乘法计数原理得共有12×3=36种报法.答案:3610.(2018·莆田期中)某学校需从3名男生和2名女生中选出4人,分派到甲、乙、丙三地参加义工活动,其中甲地需要选派2人且至少有1名女生,乙地和丙地各需要选派1人,则不同的选派方法有________种.(用数字作答)解析:由题设可分两类:一是甲地只选派1名女生,先考虑甲地有C 12C 13种情形,后考虑乙、丙两地,有A 23种情形,共有C 12C 13A 23=36种情形;二是甲地选派2名女生,则甲地有C 22种情形,乙、丙两地有A 23种情形,共有C 22A 23=6种情形.由分类加法计数原理可知共有36+6=42种情形.答案:4211.(2018·南阳二模)如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.若填入A 方格的数字大于B 方格的数字,则不同的填法共有______种.(用数字作答)解析:根据题意,对于A ,B 两个方格,可在1,2,3,4中任选2个,大的放进A 方格,小的放进B 方格,有C 24=6种情况,对于C ,D 两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种.答案:96B 级1.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种 解析:选A 将4名学生均分为2个小组共有C 24C 22A 22=3(种)分法;将2个小组的同学分给2名教师共有A 22=2(种)分法;最后将2个小组的人员分配到甲、乙两地有A 22=2(种)分法.故不同的安排方案共有3×2×2=12(种).2.(2019·马鞍山模拟)某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为( )A.5 400B.3 000C.150D.1 500解析:选D 分两步: 第一步:从5个培训项目中选取3个,共C 35种情况;第二步:5位教师分成两类:①选择选出的3个培训项目的教师人数分别为1人,1人,3人,共C 35C 12C 11A 22种情况;②选择选出的3个培训项目的教师人数分别为1人,2人,2人,共C 25C 23C 11A 22种情况.故选择情况数为C 35⎝⎛⎭⎫C 35C 12C 11A 22+C 25C 23C 11A 22A 33=1 500(种). 3.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子中,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是( )A.40B.60C.80D.100解析:选A 根据题意,有且只有三个盒子的编号与放入的小球编号相同,在六个盒子中任选3个,放入与其编号相同的小球,有C 36=20种选法,剩下的三个盒子的编号与放入的小球编号不相同,假设这三个盒子的编号为4,5,6,则4号小球可以放入5,6号盒子,有2种选法,剩下的2个小球放入剩下的两个盒子,有1种情况,则不同的放法总数是20×2×1=40.4.(2019·赣州联考)将标号分别为1,2,3,4,5,6的6个小球放入3个不同的盒子中.若每个盒子放2个,其中标号为1,2的小球放入同一盒子中,则不同的放法共有( )A.12种B.16种C.18种D.36种解析:选C 先将标号为1,2的小球放入盒子,有3种情况;再将剩下的4个球平均放入剩下的2个盒子中,共有C 24·C 222!·A 22=6(种)情况,所以不同的放法共有3×6=18(种). 5.将A ,B ,C ,D ,E 排成一列,要求A ,B ,C 在排列中顺序为“A ,B ,C ”或“C ,B ,A ”(可以不相邻),这样的排列数有__________种.解析:五个元素没有限制全排列数为A 55,由于要求A ,B ,C 的次序一定(按A ,B ,C 或C ,B ,A ),故除以这三个元素的全排列A 33,可得这样的排列数有A 55A 33×2=40(种). 答案:406.如图,∠MON 的边OM 上有四点A 1,A 2,A 3,A 4,ON 上有三点B 1,B 2,B 3,则以O ,A 1,A 2,A 3,A 4,B 1,B 2,B 3为顶点的三角形个数为________.解析:用间接法.先从这8个点中任取3个点,最多构成三角形C 38个,再减去三点共线的情形即可.共有C 38-C 35-C 34=42(个).答案:427.将7个相同的小球放入4个不同的盒子中.(1)不出现空盒时的放入方式共有多少种?(2)可出现空盒时的放入方式共有多少种?解:(1)将7个相同的小球排成一排,在中间形成的6个空当中插入无区别的3个“隔板”将球分成4份,每一种插入隔板的方式对应一种球的放入方式,则共有C36=20种不同的放入方式.(2)每种放入方式相当于将7个相同的小球与3个相同的“隔板”进行一次排列,即从10个位置中选3个位置安排隔板,故共有C310=120种不同的放入方式.。

高考数学一轮总复习 第十一章 计数原理 11.1 排列、组合(理) 新人教B版

高考数学一轮总复习 第十一章 计数原理 11.1 排列、组合(理) 新人教B版
高考理数
§11.1 排列、组合
知识清单
1.计数原理 (1)分类加法计数原理 完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同 的方法,……,在第n类方案中有mn种不同的方法,则完成这件事情共有N= m1+m2+…+mn 种不 同的方法. (2)分步乘法计数原理 完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同 的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N= m1·m2·…·mn 种不同的 方法. (3)两个原理的区别 分类加法计数原理与分步乘法计数原理都涉及完成一件事情的不同方法的种数.它们的区别在 于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;
2 2
·A
7 7
=10
080种排法.
(3)插空法.先排4名男生有A
4 4
种排法,再将5名女生插空,有A 55
种排法,故共有A 44
A·55
=2 880种排法.
1-1 用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相
邻,这样的六位数的个数是
.(用数字作答)
解法二:“至少有1名女运动员”的反面为“全是男运动员”,可用间接法求解.
从10人中任选5人有 C
5 种选法,其中全是男运动员的选法有
10
C
5种.
6
所以“至少有1名女运动员”的选法为 C
5-
10
C
=5 246(种).
6
(3)解法一:可分类求解:
“只有男队长”的选法有 C
4 种;

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合

高考总复习一轮数学精品课件 第十一章 计数原理、概率、随机变量及其分布 第二节 排列与组合
比赛,在下列情形中各有多少种选派方法?
(1)男运动员3名,女运动员2名;
(2)至少有1名女运动员;
(3)队长中至少有1人参加;
(4)既要有队长,又要有女运动员.
解 (1)分两步完成:第 1 步,选 3 名男运动员,有C63 种选派方法;第 2 步,选 2 名女
运动员,有C42 种选派方法.由分步乘法计数原理可得,共有C63 × C42 =120 种选派
A.1 800
B.3 600
C.4 320
)
D.5 040
(3)(2024九省联考)甲、乙、丙等5人站成一排,且甲不在两端,乙和丙之间
恰有2人,则不同排法共有(
A.20种
B.16种
)
C.12种
D.8种
答案 (1)B (2)B
(3)B
解析 (1)因为 A 在 B 的前面出场,且 A,B 都不在 3 号位置,则情况如下:
n!.
-1

4.kC =nC-1 .
5.C
=


-1
C-1
=


6.A
=
C
·A


.

-

C-1
=
- +1

-1
·C .
对点演练
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)所有元素完全相同的两个排列为相同排列.( × )
(2)两个组合相同的充要条件是其中的元素完全相同.( √
有 2C84 + C83 =196 种选派方法.
5
(方法 2 间接法)从 10 人中任选 5 人有C10
种选派方法,其中不选队长的选派

2019高考数学一轮复习 第11章 计数原理和概率 第2课时 排列与组合练习 理

2019高考数学一轮复习 第11章 计数原理和概率 第2课时 排列与组合练习 理

第2课时排列与组合1.若A2n3=10A n3,则n=( )A.1 B.8C.9 D.10答案 B解析原式等价于2n(2n-1)(2n-2)=10n(n-1)(n-2),整理得n=8.2.(2017·东北四市联考)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法( )A.10 B.16C.20 D.24答案 C解析一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A52=20种坐法.3.(2017·广东汕头模拟)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种答案 B解析分两类:第一类是取出1本画册,3本集邮册,此时赠送方法有C41=4种;第二类是取出2本画册,2本集邮册,此时赠送方法有C42=6种,故赠送方法共有4+6=10种.4.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A.324 B.328C.360 D.648答案 B解析首先应考虑“0”是特殊元素,当0排在末位时,有A92=9×8=72个,当0不排在末位时,有A41A81A81=4×8×8=256个,于是由分类加法计算原理,得符合题意的偶数共有72+256=328个.5.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有( )A.A55·A42种B.A55·A52种C.A55·A62种D.A77-2A66种答案 A解析先排大人,有A55种排法,再排小孩,有A42种排法(插空法).故有A42·A55种不同的排法.6.(2018·山东临沂重点中学模拟)马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有( )A.60种B.20种C.10种D.8种答案 C2017年高考“最后三十天”专题透析分析先安排四盏不亮的路灯,再利用“插入法”,插入三盏亮的路灯,即可得结果.解析根据题意,可分两步:第一步,先安排四盏不亮的路灯,有1种情况;第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C53=10(种)情况.故不同的开灯方案共有10×1=10(种),故选C.解题技巧破解此类题的关键点:一是“定元”,确定要求不相邻的元素及其个数;二是“插空”,先排无位置要求的几个元素(注意是“有序”还是“无序”),再把规定不相邻的元素插入无位置要求的元素的两端和元素之间的空位;三是“计数”,根据两个计数原理求出不同的排列总数.易错提醒本题的易错点有两处:一是“有序”“无序”识别不清,如本题,先安排四盏不亮的路灯时误以为“有序”,得到A44种不同的排法,导致结果出错;二是插入的空位漏算头尾两处,导致出错.7.(2014·四川,理)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种答案 B解析根据甲、乙的位置要求分类解决,分两类.第一类:甲在左端,有A55=5×4×3×2×1=120种方法;第二类:乙在最左端,有4A44=4×4×3×2×1=96种方法.所以共有120+96=216种方法.8.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有( )A.288个B.240个C.144个D.126个答案 B解析对个位是0和个位不是0两类情形分类计算;对每一类情形按“个位——最高位——中间三位”分步计数:①个位是0并且比20 000大的五位偶数有1×4×A43=96个;②个位不是0并且比20 000大的五位偶数有2×3×A43=144个;故共有96+144=240个.本题考查两个基本原理,是典型的源于教材的题目.9.若把英语单词“error”中字母的拼写顺序写错了,则可能出现错误的种数是( )A.20种B.19种C.10种D.9种答案 B解析“error”由5个字母组成,其中3个相同,这相当于5个人站队,只要给e、o选定位置,其余三个相同的字母r,位置固定,即所有拼写方式为A52,error拼写错误的种数为A52-1=19.10.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为( )A.56 B.63好教育云平台——教育因你我而变2C.72 D.78答案 D解析若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种.故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.11.(2018·沧州七校联考)身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数共有( )A.24 B.28C.36 D.48答案 D解析分类计数原理,按红红之间有蓝无蓝两类来分.(1)当红红之间有蓝时,则有A22A42=24种;(2)当红红之间无蓝时,则有C21A22C21C31=24种.因此,这五个人排成一行,穿相同颜色衣服的人不能相邻,则有48种排法.故选D.12.安排7位工作人员在10月1日到10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和10月2日的不同的安排方法共有__________种.答案 2 400解析共有A52A55=2 400种不同的安排方法.13.一份试卷有10道考题,分为A,B两组,每组5题,要求考生选答6题,但每组最多选4题,则每位考生有________种选答方案.答案200解析分三类:A组4题B组2题,A组3题B组3题,A组2题B组4题.共有C54C52+C53C53+C52C54=50+100+50=200种.14.(2017·沧州七校联考)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为________个.答案210解析若个位数和百位数是0,8,则方法数是A22A82=112;若个位数和百位数是1,9,则由于首位不能排0,则方法数是A22C71C71=98,故总数是112+98=210.15.(2017·四川成都二诊)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有________种.答案180解析从7个专业选3个,有C73=35种选法,甲、乙同时兼报的有C22·C51=5种选法,则专业共有35-5=30种选法,则按照专业顺序进行报考的方法种数为A33×30=180.16.用0,1,2,…,9十个数字组成五位数,其中3个奇数与2个偶数且数字不重复的五位数有________个.答案11 04032017年高考“最后三十天”专题透析解析一类:含有数字0:C53C41C41A44=3 840.二类:没有数字0:C53C42A55=7 200.由分类加法计数原理得:共有11 040.17.甲、乙两人从4门课程中各选2门,求(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不同的选法有多少种?答案(1)24 (2)30解析(1)甲、乙两人从4门课程中各选2门,且甲、乙所选课程中恰有1门相同的选法种数共有C42C21C21=24种.(2)甲、乙两人从4门课程中各选两门不同的选法种数为C42C42,又甲乙两人所选的两门课程都相同的选法种数为C42种,因此满足条件的不同选法种数为C42C42-C42=30种.18.从1到9的9个数字中取3个偶数4个奇数,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中,3个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起,奇数也排在一起的有几个?答案(1)100 800个(2)14 400个(3)5 760个解析(1)分三步完成:第一步,在4个偶数中取3个,有C43种情况;第二步,在5个奇数中取4个,有C54种情况;第三步,3个偶数和4个奇数进行排列,有A77种情况.所以符合题意的七位数有C43C54A77=100 800个.(2)上述七位数中,3个偶数排在一起的有C43C54A55A33=14 400个.(3)上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C43C54A33A44A22=5 760个.1.(2018·广东佛山一中月考)以正六边形的顶点和中心为三角形的顶点,可以构造不同的三角形的个数为( )A.35 B.32C.30 D.27答案 B解析从7个点中选3个点有C73种情况,其中三点共线的情况有3种,故可以构造不同的三角形的个数为C73-3=32.2.(2018·山东师大附中模拟)甲、乙、丙三人轮流值日,从周一到周六每人值班两天,若甲不值周一,乙不值周六,则可以排出不同的值日表有( )A.50种B.72种C.48种D.42种答案 D解析C41·C42·C22+C42·C32·C22=42,故选D.好教育云平台——教育因你我而变43.某电视台从录制的5个新闻报道和4个人物专访中选出5个,准备在7月1日于7月5日中每天播出一个,若新闻报道不少于3个,则不同的播出方法共有( )A.81种B.810种C.9 600种D.9 720种答案 D解析(C53C42+C54C41+C55)·A55=9 720种.4.(2017·山东师大附中模拟)从5名男医生,4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A.70种B.80种C.100种D.140种答案 A解析从9名医生中任选3名有C93=84种,都是男医生和都是女医生的有C53+C43=14种,男、女医生都有的选法为84-14=70种.5.(2016·四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72答案 D解析C31×A44=72.选D.6.(名师原创)“整治裸官”“小官巨贪”“拍蝇打虎”“境外追逃”“回马枪”成为2016年中国反腐的5个焦点.某大学新闻系学生用2017年元旦的时间调查社会对这些热点的关注度,若准备按顺序分别调查其中的4个热点,则“整治裸官”作为其中的一个调查热点,但不作为第一个调查热点的种数为________.答案72解析先从“小官巨贪”“拍蝇打虎”“境外追逃”“回马枪”这4个热点中选出3个,有C43种不同的选法;在调查时,“整治裸官”安排的顺序有A31种可能情况,其余三个热点顺序有A33种,故不同调查顺序的总数为C43A31A33=72.7.(2017·天津)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)答案 1 080解析一个数字是偶数、三个数字是奇数的四位数有C41C53A44=960(个),四个数字都是奇数的四位数有A54=120(个),则至多有一个数字是偶数的四位数一共有960+120=1 080(个).8.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)答案660解析分两步,第一步,选出4人,由于至少1名女生,故有C84-C64=55种不同的选法;第二步,从4人中选出队长、副队长各1人,有A42=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.56好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析百度文库是百度发布的供网友在线分享文档的平台。

2019高考数学一轮复习第11章计数原理和概率专题研究排列组合的综合应用练习理

2019高考数学一轮复习第11章计数原理和概率专题研究排列组合的综合应用练习理

专题研究排列组合的综合应用1.(2017·湖北宜昌一中月考)从1到10十个数中,任意选取4个数,其中,第二大的数是7的情况共有() A .18种 B .30种 C .45种D .84种 答案 C解析 分两步:先从8、9、10这三个数中选取一个数作最大的数有C 31种方法;再从1、2、3、4、5、6这六个数中选取两个比7小的数有C 62种方法,故共有C 31C 62=45种情况,应选择C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为() A .10 B .20 C .30 D .40 答案 B解析 将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C 53C 22×2=20(种),故选B.3.(2018·广东省实验中学月考)甲、乙、丙三个部门分别需要招聘工作人员2名、1名、1名,现从10名应聘人员中招聘4人到甲、乙、丙三个部门,那么不同的招聘方法共有() A .1 260种B .2 025种 C .2 520种D .5 040种 答案 C解析 先从10人中选2人去甲部门,再从剩下的8人中选2人去乙、丙两个部门,有C 102A 82=2 520种不同的招聘方法.4.(2017·课标全国Ⅱ,理)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有() A .12种B .18种 C .24种D .36种 答案 D解析 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C42C21C11A22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).5.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每个盒子放2个,其中标号为1,2的小球放入同一个盒子中,则不同的放法共有() A .12种B .16种 C .18种D .36种 答案 C解析 可先分组再排列,所以有12C 42A 33=18(种)放法.6.(2017·安徽毛坦厂中学阶段测试)6名志愿者(其中4名男生,2名女生)义务参加宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有() A .40种B .48种 C .60种D .68种 答案 B解析 4,2分法:A 22(C 64-1)=14×2=28, 3,3分法:C 63C 33=20,∴共有48种.7.某校高一有6个班,高二有5个班,高三有8个班,各年级分别举行班与班之间篮球单循环赛,则共需要进行比赛的场数为() A .C 62C 52C 82B .C 62+C 52+C 82C .A 62A 52A 82D .C 192答案 B解析 依题意,高一比赛有C 62场,高二比赛有C 52场,高三比赛有C 82场,由分类计数原理,得共需要进行比赛的场数为C 62+C 52+C 82,选B.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为() A .18 B .24 C .30 D .36 答案 C解析 排除法.先不考虑甲、乙同班的情况,将4人分成三组有C 42=6种方法,再将三组同学分配到三个班级有A 33=6种分配方法,再考虑甲、乙同班的分配方法有A 33=6种,所以共有C 42A 33-A 33=30种分法.故选C. 9.(2018·西安五校)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有() A .80种B .90种 C .120种D .150种 答案 D解析 有二类情况:(1)其中一所学校3名教师,另两所学校各一名教师的分法有C 53A 33=60(种);(2)其中一所学校1名教师,另两所学校各两名教师的分法有C 51×C422×A 33=90(种).∴共有150种.故选D.10.(2017·河北唐山一中模拟)中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案的种数有() A .C 419B .C 389C .C 409D .C 399答案 D解析 首先每个学校配备一台,这个没有顺序和情况之分,剩下40台;将剩下的40台象排队一样排列好,则这40台校车之间有39个空.对这39个空进行插空(隔板),比如说用9个隔板隔开,就可以隔成10部分了.所以是在39个空里选9个空插入隔板,所以是C 399.11.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得-30分;选乙题答对得10分,答错得-10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是() A .24 B .36 C .40 D .44 答案 D解析 分以下四种情况讨论:(1)两位同学选甲题作答,一个答对一个答错,另外两个同学选乙题作答,一个答对一个答错,此时共有C 42×2×2=24(种);(2)四位同学都选择甲题或乙题作答,两人答对,另外两人答错,共有C 21C 42=12(种)情况;(3)一人选甲题作答并且答对,另外三人选乙题作答并且全部答错,此时有C 41=4(种)情况;(4)一人选甲题作答并且答错,另外三人选乙题作答并且全部答对,此时有C 41=4(种)情况.综上所述,共有24+12+4+4=44(种)不同的情况.故选D.12.(2017·湖南衡阳八中期末)有6名同学参加两项课外活动,每位同学必须参加一项活动且不能同时参加两项,每项活动最多安排4人,则不同的安排方法有________种(用数字作答). 答案 50解析 因为每项活动最多安排4人,所以可以有三种安排方法,即(4,2),(3,3),(2,4).当安排4,2时,需要选出4个人参加第一个项目,共有C 64=15种;当安排3,3时,共有C 63=20种;当安排2,4时,共有C 62=15种,所以共有15+20+15=50种.13.(2017·山东聊城重点高中联考)三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有________种. 答案 60解析 若每个村去一个人,则有A 43=24种分配方法;若有一个村去两人,另一个村去一人,则有C 31A 42=36种分配方法,所以共有60种不同的分配方法.14.某学校新来了五名学生,学校准备把他们分配到甲、乙、丙三个班级,每个班级至少分配一人,则其中学生A 不分配到甲班的分配方案种数是________. 答案 100解析 A 的分配方案有2种,若A 分配到的班级不再分配其他学生,则把其余四人分组后分配到另外两个班级,分配方法种数是(C 43+C42C22A22)A 22=14;若A 分配到的班级再分配一名学生,则把剩余的三名学生分组后分配到另外两个班级,分配方法种数是C 41C 31A 22=24;若A 分配到的班级再分配两名学生,则剩余的两名学生就分配到另外的两个班级,分配方法种数是C 42A 22=12.故总数为2×(14+24+12)=100.15.(2017·北京海淀区二模)某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________种不同的抽调方法. 答案 84解析 方法一:(分类法),在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C 71种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A 72种;一类是从3个车队中各抽调1辆,有C 73种.故共有C 71+A 72+C 73=84(种)抽调方法.方法二:(隔板法),由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份,故共有C 96=84(种)抽调方法.16.(2017·安徽皖北协作区联考)3个单位从4名大学毕业生中选聘工作人员,若每个单位至少选聘1人(4名大学毕业生不一定都能选聘上),则不同的选聘方法种数为________.(用具体数字作答) 答案 60解析 当4名大学毕业生全选时有C41C31A22·A 33,当选3名大学毕业生时有A 43,即不同的选聘方法种数为C41C31A22·A 33+A 43=60. 17.(2017·人大附中期末)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答). 答案 60解析 分情况:一种情况将有奖的奖券按2张,1张分给4个人中的2个人,种数为C 32C 11A 42=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 43=24,则获奖情况总共有36+24=60种.1.(2017·安徽毛坦厂中学月考)今年,我校迎来了安徽师范大学数学系5名实习教师,若将这5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有() A .180种B .120种 C .90种D .60种 答案 C解析 将5名实习教师分配到高一年级的3个班实习,每班至少一名,最多2名,则将5名教师分成三组,一组1个,另两组都是2人,有C51·C42A22=15(种)方法.再将3组分到3个班,共有15·A 33=90(种)不同的分配方案.故选C.2.计划将排球、篮球、乒乓球3个项目的比赛安排在4个不同的体育馆举办,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2个的安排方案共有() A .60种B .42种 C .36种D .24种 答案 A解析 若3个项目分别安排在3个不同的场馆,则安排方案共有A 43=24(种);若有两个项目安排在同一个场馆,另一个安排在其他场馆,则安排方案共有C 32·A 42=36(种).综上,在同一个体育馆比赛的项目不超过2个的安排方案共有24+36=60(种).故选A.3.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为() A .144 B .72 C .36 D .48 答案 C解析 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C42C21C11A22种;第二步将分好的三组分配到3个学校,其分法有A 33种.所以满足条件的分配方案有C42C21C11A22×A 33=36(种).4.(2018·衡水中学调研卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有() A .10种B .20种 C .36种D .52种 答案 A解析 将4个小球分2组,①C42C22A22=3种;②C 41C 33=4种.①中的这3种分组方法任意放均满足条件,∴3×A 22=6种放法.②中的4种分组方法各只对应1种放法.故总种数为6+4=10种.5.某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.则安排这6项工程的不同方法总数为() A .10 B .20 C .30 D .40 答案 B解析 因为工程丙完成后立即进行工程丁,若不考虑与其他工程的顺序,则安排这6项工程的不同方法数为A 55,对于甲、乙、丙、丁所处位置的任意排列有且只有一种情况符合要求,因此,符合条件的安排方法总数为A55A33=5×4=20. 6.(2018·诸暨一模)在第二届乌镇互联网大会中,为了提高安保的级别,同时为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国的人员要在a ,b ,c 三家酒店各选择一家,且每家酒店至少有一个参会国的人员入住,则这样的安排方法共有() A .96种B .124种 C .130种D .150种 答案 D解析 可以把五个参会国的人员分成三组,一种是按照1,1,3分;另一种是按照1,2,2分.当按照1,1,3分时,共有C 53A 33=60种方法;当按照1,2,2分时,共有C52C32A33A22=90种方法.根据分类加法计数原理可得安排方法共有60+90=150种.。

近年高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理(2021年整理)

近年高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理(2021年整理)

(通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(通用版)2019版高考数学一轮复习第十一章计数原理、概率、随机变量及其分布列学案理的全部内容。

第十一章计数原理、概率、随机变量及其分布列第一节排列、组合本节主要包括2个知识点:1。

两个计数原理; 2.排列、组合问题.突破点(一)两个计数原理[基本知识]1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.两个计数原理的比较名称分类加法计数原理分步乘法计数原理相同点都是解决完成一件事的不同方法的种数问题不同点运用加法运算运用乘法运算分类完成一件事,并且每类办法中的每种方法都能独立完成这件事情,要注意“类”与“类"之间的独立性和并列性.分类计数原理可利用“并联”电路来理解分步完成一件事,并且只有各个步骤都完成才算完成这件事情,要注意“步”与“步”之间的连续性.分步计数原理可利用“串联"电路来理解错误!1.判断题(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.()(2)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )答案:(1)×(2)√(3)√2.填空题(1)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N =3+3=6(种).答案:6(2)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有________个.解析:∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案:36(3)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法种数为4×5×6=120.答案:120错误!分类加法计数原理(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种(2)(2018·杭州二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10[解析](1)分两类:甲第一次踢给乙时,满足条件的有3种方法(如图),同理,甲先踢给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3= 6种传递方式.(2)①当a=0时,有x=-错误!,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)的个数为4+4+3+2=13。

新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教

新课改地区高考数学一轮复习第十一章计数原理概率随机变量及其分布112排列组合与二项式定理课件新人教

2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
10
【常用结论】 1.(a+b)n的展开式的三个重要特征 (1)项数:项数为n+1. (2)各项次数:各项的次数都等于二项式的幂指数n,即a与b的指数和为n. (3)顺序:字母a按降幂排列,从第一项开始,次数由n逐项减1直到0;字母b按 升幂排列,从第一项开始,次数由0逐项增1直到n.
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
2
内容索引
必备知识·自主学习 核心考点·精准研析 核心素养测评
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
3
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
23
结束语
同学们,你们要相信梦想是价值的源泉,相信成 功的信念比成功本身更重要,相信人生有挫折没 有失败,相信生命的质量来自决不妥协的信念, 考试加油。
(4) kCkn=nCkn- 11 . (
)
(5) C
r an-rbr是(a+b)n的展开式中的第r项.
n
(
)
(6)二项展开式中某项的系数与该项的二项式系数一定相同. ( )
新课改地区高考数学一轮复习第十一章计数原理概率随
2021/4/17
机变量及其分布112排列组合与二项式定理课件新人教B
13
提示:(1)√.
【解析】选C. (x 1 )12 的展开式的第4项
3x
T4=
C

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

2020高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课后作业理

2020高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课后作业理

【2019最新】精选高考数学一轮复习第十一章计数原理概率随机变量及其分布第二节排列与组合课后作业理一、选择题1.将甲、乙等 5 名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.18 种 B.24 种 C.36 种 D.72种2.某市委从组织机关10名科员中选3人担任驻村第一书记,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )A.85 B.56 C.49 D.283.某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为( )A.8 B.16 C.24 D.604.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数为( )A.48 B.54 C.72 D.845.将甲、乙等 5 位同学分别保送到北京大学,上海交通大学,浙江大学这三所大学就读,则每所大学至少保送一人的不同保送方法为( )A.240种 B.180种 C.150种 D.540种二、填空题6.数列{an}共有六项,其中四项为1,其余两项各不相同,则满足上述条件的数列{an}共有________个.7.如图所示,使电路接通,开关不同的开闭方式有________种.8.(2016·江苏淮海中学期中)若A,B,C,D,E,F六个不同元素排成一列,要求A不排在两端,且B,C相邻,则不同的排法有________种(用数字作答).三、解答题9.有9名学生,其中2名会下象棋但不会下围棋,3名会下围棋但不会下象棋,4名既会下围棋又会下象棋;现在要从这9名学生中选出2名学生,一名参加象棋比赛,另一名参加围棋比赛,共有多少种不同的选派方法?10.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.1.某班组织文艺晚会,准备从A,B等 8 个节目中选出 4 个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为( )A.1 860 B.1 320 C.1 140 D.1 0202.(2016·深圳模拟)某班准备从含甲、乙的7名男生中选取4人参加4×100米接力赛,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们在赛道上顺序不能相邻,那么不同的排法种数为( )A.720 B.520 C.600 D.3603.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( )A.24 B.18 C.12 D.64.将5名学生分到A,B,C三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A宿舍的不同分法有( )A.18种 B.36种 C.48种 D.60种5.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.答案一、选择题1. 解析:选C 若甲、乙在同一路口,则有CA=18种;若甲、乙与其余一名交警在同一路口,则有CA=18种,所以一共有 36 种分配方案.2. 解析:选C 由于丙不入选,相当于从9人中选派3人.法一:(直接法)甲、乙两人均入选,有CC种选法,甲、乙两人只有1人入选,有CC种选法.∴由分类加法计数原理,共有CC+CC=49种不同选法.法二:(间接法)从9人中选3人有C种选法,其中甲、乙均不入选有C种选法.∴满足条件的选派方法有C-C=84-35=49种不同选法.3. 解析:选C 根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有A=24种不同的坐法.4. 解析:选C 先把3名乘客进行全排列,有A=6种排法,排好后,有4个空,再将1个空位和余下的2个连续的空位插入4个空中,有A=12种排法,则共有6×12=72种候车方式.5. 解析:选C 5名学生分成 2,2,1或3,1,1两种形式,当 5 名学生分成 2,2,1时,共有CCA=90 种方法,当 5 名学生分成 3,1,1时,共有CA=60 种方法,根据分类加法计数原理知共有 90+60=150种.二、填空题6. 解析:在数列的六项中,只要考虑两个非1的项的位置,即得不同数列,共有A=30个不同的数列.答案:307. 解析:当第一组开关有一个接通时,电路接通有C·(C+C+C)=14种方式;当第一组有两个接通时,电路接通有C(C+C+C)=7种方式,所以共有14+7=21种方式.答案:218. 解析:由于B,C相邻,把B,C看做一个整体,有 2 种排法.这样,6个元素变成了 5 个.先排A,由于A不排在两端,则A在中间的 3 个位子中,有A=3 种方法,其余的 4 个元素任意排,有A种不同方法,故不同的排法有 2×3×A=144 种.答案:144三、解答题9. 解:设2名会下象棋但不会下围棋的同学组成集合A,3名会下围棋但不会下象棋的同学组成集合B,4名既会下围棋又会下象棋的同学组成集合C,则选派2名参赛同学的方法可以分为以下4类:第一类:A中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C·C=6种;第二类:C中选1人参加象棋比赛,B中选1人参加围棋比赛,方法数为C·C=12种;第三类:C中选1人参加围棋比赛,A中选1人参加象棋比赛,方法数为C·C=8种;第四类:C中选2人分别参加两项比赛,方法数为A=12种;由分类加法计数原理,选派方法数共有6+12+8+12=38(种).10. 解:(1)先选后排,先选可以是2女3男,也可以是1女4男,先取有CC+CC种,后排有A种,共有(CC+CC)·A=5 400种.(2)除去该女生后,先取后排,有C·A=840种.(3)先选后排,但先安排该男生,有C·C·A=3 360种.(4)先从除去该男生该女生的6人中选3人有C种,再安排该男生有C种,选出的3人全排有A种,共C·C·A=360种.1. 解析:选C 当A,B节目中只选其中一个时,共有CCA=960 种演出顺序;当A,B节目都被选中时,由插空法得共有CAA=180 种演出顺序,所以一共有1 140种演出顺序.2. 解析:选C 根据题意,分2种情况讨论.①甲乙只有其中一人参加,有CCA=480种情况;②甲乙两人都参加,有CCA=240种情况,其中甲乙相邻的有CCAA=120种情况.不同的排法种数为480+240-120=600种,故选C.3. 解析:选B 根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取2个数字排在个位与百位.∴排成的三位奇数有CA=6个.②当选数字2时,再从1,3,5中取2个数字有C种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列.∴排成的三位奇数有CCA=12个.∴由分类加法计数原理,共有18个符合条件的三位奇数.4. 解析:选D 由题意知A,B,C三个宿舍中有两个宿舍分到2人,另一个宿舍分到1人.若甲被分到B宿舍:(1)A中2人,B中1人,C中2人,有C=6种分法;(2)A中1人,B中2人,C中2人,有CC=12种分法;(3)A中2人,B中2人,C中1人,有CC=12种分法,即甲被分到B宿舍的分法有30种,同样甲被分到C宿舍的分法也有30种,所以甲不到A宿舍一共有60种不同的分法,故选D.5. 解析:(元素优先法)由题意知6必在第三行,安排6有C种方法,第三行中剩下的两个空位安排数字有A种方法,在留下的三个数字中,必有一个最大数,把这个最大数安排在第二行,有C种方法,剩下的两个数字有A种排法,根据分步乘法计数原理,所有排列的个数是CACA=240.答案:240。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时排列与组合
1.若A2n3=10A n3,则n=()
A.1B.8
C.9 D.10
答案 B
解析原式等价于2n(2n-1)(2n-2)=10n(n-1)(n-2),整理得n=8.
2.(2017·东北四市联考)甲、乙两人要在一排8个空座上就坐,若要求甲、乙两人每人的两旁都有空座,则有多少种坐法()
A.10 B.16
C.20 D.24
答案 C
解析一排共有8个座位,现有两人就坐,故有6个空座.∵要求每人左右均有空座,∴在6个空座的中间5个空中插入2个座位让两人就坐,即有A52=20种坐法.
3.(2017·广东汕头模拟)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()
A.4种B.10种
C.18种D.20种
答案 B
解析分两类:第一类是取出1本画册,3本集邮册,此时赠送方法有C41=4种;第二类是取出2本画册,2本集邮册,此时赠送方法有C42=6种,故赠送方法共有4+6=10种.
4.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()
A.324 B.328
C.360 D.648
答案 B
解析首先应考虑“0”是特殊元素,当0排在末位时,有A92=9×8=72个,当0不排在末位时,有A41A81A81=4×8×8=256个,于是由分类加法计算原理,得符合题意的偶数共有72+256=328个.
5.5名成人带两个小孩排队上山,小孩不排在一起也不排在头尾,则不同的排法种数有()
A.A55·A42种B.A55·A52种
C.A55·A62种D.A77-2A66种
答案 A
解析先排大人,有A55种排法,再排小孩,有A42种排法(插空法).故有A42·A55种不同的排法.6.(2018·山东临沂重点中学模拟)马路上有七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案共有()
A.60种B.20种
C.10种D.8种
答案 C
分析先安排四盏不亮的路灯,再利用“插入法”,插入三盏亮的路灯,即可得结果.
解析根据题意,可分两步:
第一步,先安排四盏不亮的路灯,有1种情况;
第二步,四盏不亮的路灯排好后,有5个空位,在5个空位中任意选3个,插入三盏亮的路灯,有C53=10(种)情况.
故不同的开灯方案共有10×1=10(种),故选C.
解题技巧破解此类题的关键点:一是“定元”,确定要求不相邻的元素及其个数;二是“插空”,先排无位置要求的几个元素(注意是“有序”还是“无序”),再把规定不相邻的元素插入无位置要求的元素的两端和元素之间的空位;三是“计数”,根据两个计数原理求出不同的排列总数.
易错提醒本题的易错点有两处:一是“有序”“无序”识别不清,如本题,先安排四盏不亮的路灯时误以为“有序”,得到A44种不同的排法,导致结果出错;二是插入的空位漏算头尾两处,导致出错.7.(2014·四川,理)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()
A.192种B.216种
C.240种D.288种
答案 B
解析根据甲、乙的位置要求分类解决,分两类.
第一类:甲在左端,有A55=5×4×3×2×1=120种方法;
第二类:乙在最左端,有4A44=4×4×3×2×1=96种方法.
所以共有120+96=216种方法.
8.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()
A.288个B.240个
C.144个D.126个
答案 B
解析对个位是0和个位不是0两类情形分类计算;对每一类情形按“个位——最高位——中间三位”分步计数:①个位是0并且比20 000大的五位偶数有1×4×A43=96个;②个位不是0并且比20 000大的五位偶数有2×3×A43=144个;故共有96+144=240个.本题考查两个基本原理,是典型的源于教材的题目.
9.若把英语单词“error”中字母的拼写顺序写错了,则可能出现错误的种数是()
A.20种B.19种
C.10种D.9种
答案 B
解析“error”由5个字母组成,其中3个相同,这相当于5个人站队,只要给e、o选定位置,其余三个相同的字母r,位置固定,即所有拼写方式为A52,error拼写错误的种数为A52-1=19.
10.有5列火车分别准备停在某车站并行的5条轨道上,若快车A不能停在第3道上,货车B不能停在第1道上,则5列火车不同的停靠方法数为()
A.56 B.63
C.72 D.78
答案 D
解析若没有限制,5列火车可以随便停,则有A55种不同的停靠方法;快车A停在第3道上,则5列火车不同的停靠方法为A44种;货车B停在第1道上,则5列火车不同的停靠方法为A44种;快车A停在第3道上,且货车B停在第1道上,则5列火车不同的停靠方法为A33种.故符合要求的5列火车不同的停靠方法数为A55-2A44+A33=120-48+6=78.
11.(2018·沧州七校联考)身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数共有()
A.24 B.28
C.36 D.48
答案 D
解析分类计数原理,按红红之间有蓝无蓝两类来分.
(1)当红红之间有蓝时,则有A22A42=24种;
(2)当红红之间无蓝时,则有C21A22C21C31=24种.
因此,这五个人排成一行,穿相同颜色衣服的人不能相邻,则有48种排法.故选D.
12.安排7位工作人员在10月1日到10月7日值班,每人值班一天,其中甲、乙二人都不安排在10月1日和10月2日的不同的安排方法共有__________种.
答案 2 400
解析共有A52A55=2 400种不同的安排方法.
13.一份试卷有10道考题,分为A,B两组,每组5题,要求考生选答6题,但每组最多选4题,则每位考生有________种选答方案.
答案200
解析分三类:A组4题B组2题,A组3题B组3题,A组2题B组4题.共有C54C52+C53C53+C52C54=50+100+50=200种.
14.(2017·沧州七校联考)由0,1,2,…,9这十个数字组成的无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为________个.
答案210
解析若个位数和百位数是0,8,则方法数是A22A82=112;若个位数和百位数是1,9,则由于首位不能排0,则方法数是A22C71C71=98,故总数是112+98=210.
15.(2017·四川成都二诊)各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有________种.
答案180
解析从7个专业选3个,有C73=35种选法,甲、乙同时兼报的有C22·C51=5种选法,则专业共有35-5=30种选法,则按照专业顺序进行报考的方法种数为A33×30=180.
16.用0,1,2,…,9十个数字组成五位数,其中3个奇数与2个偶数且数字不重复的五位数有________个.答案11 040
解析一类:含有数字0:C53C41C41A44=3 840.。

相关文档
最新文档