二次函数与代数问题结合,九年级上册数学二次函数与代数综合典型同步练习题及答案解析

合集下载

[初三数学]二次函数经典练习含答案

[初三数学]二次函数经典练习含答案

《二次函数》同步练习(一)一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=_________.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.3.(2分)(2012•新疆)当x=_________时,二次函数y=x2+2x﹣2有最小值.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为_________.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是_________.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是_________(填写序号)7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=_________.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是_________.10.(2分)已知二次函数,当x_________时,y随x的增大而增大.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为_________.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是_________.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x 值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有_________(请写出所有正确说法的序号).14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:_________(对称轴方程,图象与x正半轴,y轴交点坐标例外).15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=_________.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是_________cm2.17.(2分)(2009•黄石)若抛物线y=ax2+bx+3与y=﹣x2+3x+2的两交点关于原点对称,则a、b分别为_________、_________.18.(2分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的降价措施.经调查发现:如果每件衬衫降价1元,商场平均每天可多售出2件.则商场降价后每天盈利y(元)与降价x(元)的函数关系式为_________.19.(2分)(2009•莆田)出售某种文具盒,若每个获利x元,一天可售出(6﹣x)个,则当x= _________元时,一天出售该种文具盒的总利润y最大.20.(2分)(2009•湖州)已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=2,且经过点(﹣1,y1),(3,y2),试比较y1和y2的大小:y1_________y2.(填“>”,“<”或“=”)21.(2分)(2009•咸宁)已知A、B是抛物线y=x2﹣4x+3上位置不同的两点,且关于抛物线的对称轴对称,则点A、B的坐标可能是_________(写出一对即可).22.(2分)(2009•本溪)如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A (﹣1,0)和B(2,0),当y<0时,x的取值范围是_________.23.(2分)(2009•兰州)二次函数y=x2的图象如图所示,点A0位于坐标原点,A1,A2,A3,…,A2008在y轴的正半轴上,B1,B2,B3,…,B2008在二次函数y=x2第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,请计算△A0B1A1的边长=_________;△A1B2A2的边长=_________;△A2007B2008A2008的边长=_________.24.(2分)(2010•宣武区一模)如图,在第一象限内作与x轴的夹角为30°的射线OC,在射线OC上取一点A,过点A作AH⊥x轴于点H.在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是_________.25.(2分)已知抛物线y=x2﹣3x﹣4,则它与x轴的交点坐标是_________.26.(2分)抛物线y=2x2﹣5x+3与坐标轴的交点共有_________个.27.(2分)抛物线y=﹣2x2﹣4x+3的顶点坐标是_________;抛物线y=﹣2x2+8x﹣1的顶点坐标为_________.28.(2分)(2005•四川)用长度一定的绳子围成一个矩形,如果矩形的一边长x(m)与面积y(m2)满足函数关系y=﹣(x﹣12)2+144(0<x<24),则该矩形面积的最大值为_________m2.29.(2分)根据y=ax2+bx+c的图象,思考下面五个结论①c<0;②abc>0;③a﹣b+c>0;④2a﹣3b=0;⑤c﹣4b>0.正确的结论有_________.30.(2分)请写出符合以下三个条件的一个函数的解析式_________,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.31.(2分)(2008•山西)二次函数y=x2+2x﹣3的图象的对称轴是直线_________.32.(2分)(2010•南昌模拟)二次函数y=2x2﹣4x﹣1的最小值是_________.33.(2分)(2012•鞍山三模)函数y=ax2﹣(a﹣3)x+1的图象与x轴只有一个交点,那么a 的值和交点坐标分别为_________.35.(2分)将二次函数y=x2的图象向右平移1个单位,在向上平移2个单位后,所得图象的函数表达式是_________.36.(2分)(2008•南昌)将抛物线y=﹣3x2向上平移一个单位后,得到的抛物线解析式是_________.37.(2分)用铝合金型材做一个形状如图(1)所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2,y与x的函数图象如图(2)所示.观察图象,当x=_________时,窗户透光面积最大.38.(2分)(2007•呼伦贝尔)如图,二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和点(1,0),且与y轴交于负半轴,给出下面四个结论:①abc<0;②2a+b>0;③a+c=1;④b2﹣4ac>0.其中正确结论的序号是_________.(请将自己认为正确结论的序号都填上)39.(2分)(2011•宝安区三模)二次函数y=ax2+bx+c的图象开口向上,图象经过点(﹣1,2)和(1,0),且与y轴相交于负半轴.给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0.其中正确结论的序号是_________;40.(2分)如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是_________.二、解答题(共6小题,满分40分)41.(6分)已知二次函数.(1)求出抛物线的顶点坐标、对称轴、最小值;(2)求出抛物线与x轴、y轴交点坐标;42.(6分)(2009•宁波)如图抛物线y=ax2﹣5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标.(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.43.(6分)已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)求y的最大值;(3)写出当y>0时,x的取值范围.44.(6分)(2009•黔东南州)凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.(1)设每间包房收费提高x(元),则每间包房的收入为y1(元),但会减少y2间包房租出,请分别写出y1,y2与x之间的函数关系式.(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y (元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.45.(6分)(2009•哈尔滨)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值=)46.(10分)(2009•包头)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数y=kx+b的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x的范围.《第26章二次函数》2010年同步练习(一)参考答案与试题解析一、填空题(共40小题,每小题2分,满分80分)1.(2分)(2009•北京)若把代数式x2﹣2x﹣3化为(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.考点:完全平方公式.专题:压轴题;配方法.分析:根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,可知m=1.k=﹣4,则m+k=﹣3.解答:解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=(x﹣1)2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故填﹣3.点评:本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.2.(2分)(2009•安徽)已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.考点:待定系数法求二次函数解析式.专题:综合题;压轴题.分析:由于点(,)不在坐标轴上,与原点的距离为1的点有两种情况:点(1,0)和(﹣1,0),所以用待定系数法求解需分两种情况:(1)经过原点及点(,)和点(1,0),设y=ax(x+1),可得y=x2+x;(2)经过原点及点(,)和点(﹣1,0),设y=ax(x﹣1),则得y=x2+x.解答:解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况: (1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1, ∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.点评:本题主要考查二次函数的解析式的求法.解题的关键利用了待定系数法确定函数的解析式.3.(2分)(2012•新疆)当x=﹣1时,二次函数y=x2+2x﹣2有最小值.考点:二次函数的最值.分析:先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.解答:解:∵二次函数y=x2+2x﹣2可化为y=(x+1)2﹣3,∴当x=﹣1时,二次函数y=x2+2x﹣2有最小值.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.4.(2分)(2006•衡阳)抛物线y=(x﹣1)2+3的顶点坐标为(1,3).考点:二次函数的性质.分析:直接利用顶点式的特点可知顶点坐标.解答:解:顶点坐标是(1,3).点评:主要考查了求抛物线顶点坐标的方法.5.(2分)(2009•上海)将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是y=x2﹣1.考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律“上加下减,左加右减".解答:解:由“上加下减”的原则可知,将抛物线y=x2﹣2向上平移一个单位后,得以新的抛物线,那么新的抛物线的表达式是,y=x2﹣2+1,即y=x2﹣1.故答案为:y=x2﹣1.点评:本题比较容易,考查二次函数图象的平移.6.(2分)(2006•宜宾)已知二次函数y=ax2+bx+c的图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,与y轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c >0;③4a+c<0;④2a﹣b+1>0.其中正确的结论是①②③④(填写序号)考点:二次函数图象与系数的关系.专题: 压轴题.分析:先根据图象与x轴的交点及与y轴的交点情况画出草图,再由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵图象与x轴交于点(﹣2,0),(x1,0),与y轴正半轴的交点在(0,2)的下方∴a<0,c>0,又∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴在y轴左侧,对称轴为x=<0,∴b<0,∵图象与x轴交于点(﹣2,0),(x1,0),且1<x1<2,∴对称轴<<,∴a<b<0,由图象可知:当x=﹣2时y=0,∴4a﹣2b+c=0,整理得4a+c=2b,又∵b<0,∴4a+c<0.∵当x=﹣2时,y=4a﹣2b+c=0,∴2a﹣b+=0,而与y轴正半轴的交点在(0,2)的下方,∴0<<1,∴2a﹣b+1>0,∵0=4a﹣2b+c,∴2b=4a+c<0而x=1时,a+b+c>0,∴6a+3c>0,即2a+c>0,∴正确的有①②③④.故填空答案:①②③④.点评:此题主要考查了二次函数的图象与性质,尤其是图象的开口方向,对称轴方程,及于y 轴的交点坐标与a,b,c的关系.7.(2分)(2009•荆门)函数y=(x﹣2)(3﹣x)取得最大值时,x=.考点:二次函数的最值.分析:先把二次函数化为一般式或顶点式的形式,再求其最值即可.解答:解:原二次函数可化为y=﹣x2+5x﹣6=﹣(x﹣)2+,取得最大值时x=﹣=.点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.(2分)(2009•黔东南州)二次函数y=x2﹣2x﹣3的图象关于原点O(0,0)对称的图象的解析式是y=﹣x2﹣2x+3.考点:二次函数图象与几何变换.专题:压轴题.分析:利用抛物线的性质.解答:解:可先从抛物线y=x2﹣2x﹣3上找三个点(0,﹣3),(1,﹣4),(﹣1,0).它们关于原点对称的点是(0,3),(﹣1,4),(1,0).可设新函数的解析式为y=ax2+bx+c,则c=3,a﹣b+c=4,a+b+c=0.解得a=﹣1,b=﹣2,c=3.故所求解析式为:y=﹣x2﹣2x+3.点评:解决本题的关键是得到所求抛物线上的三个点,这三个点是原抛物线上的关于原点对称的点.10.(2分)已知二次函数,当x<2时,y随x的增大而增大.考点:二次函数的性质.专题:计算题.分析:根据二次函数的对称轴,结合开口方向,可确定二次函数的增减性.解答:解:由对称轴公式,二次函数的对称轴为x=﹣=2,又∵a=﹣<0,抛物线开口向下,∴当x<2时,y随x的增大而增大.故本题答案为:<2.点评:本题考查了二次函数的对称轴,开口方向与函数的增减性的关系,二次函数的增减性以对称轴为分界线,结合开口方向进行判断.11.(2分)(2009•襄阳)抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.考点: 待定系数法求二次函数解析式.分析:此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.解答:解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.12.(2分)(2009•娄底)如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是2π.考点: 二次函数的图象.专题:压轴题.分析:不规则图形面积通过对称转化为可求的图形面积.解答:解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.点评:此题主要考查了学生的观察图形与拼图的能力.13.(2分)(2012•西青区二模)二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x>1时,y随x值的增大而增大;⑤当y>0时,﹣1<x<3.其中,正确的说法有①②④(请写出所有正确说法的序号).考点:抛物线与x轴的交点;二次函数图象与系数的关系.专题:压轴题.分析:①由抛物线的开口方向可以确定a的符号,由抛物线对称轴和开口方向可以确定b 的符号;②利用图象与x轴的交点坐标即可确定方程ax2+bx+c=0的根;③当x=1时,y=a+b+c,结合图象即可判定是否正确;④由图象可以得到抛物线对称轴为x=1,由此即可确定抛物线的增减性;⑤当y>0时,图象在x轴的上方,结合图象也可判定是否正确.解答:解:①∵抛物线开口方向朝上,∴a>0,又对称轴为x=1,∴b<0,∴ab<0,故正确;②∵二次函数y=ax2+bx+c的图象与x轴交点为(﹣1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=﹣1,x2=3,故正确;③∵当x=1时,y=a+b+c,从图象知道当x=1时,y<0,∴a+b+c<0,故错误;④∵抛物线的对称轴为x=1,开口方向向上,∴当x>1时,y随x值的增大而增大,故正确;⑤∵当y>0时,图象在x轴的上方,而抛物线与x轴的交点坐标为(﹣1,0)、(3,0),∴当y>0时,x<﹣1,x>3,故错误.故正确的结论有①②④.点评:由图象找出有关a,b,c的相关信息以及抛物线的交点坐标,会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.14.(2分)(2009•临夏州)抛物线y=﹣x2+bx+c的部分图象如图所示,请写出与其关系式,图象相关的2个正确结论:答案不唯一.如:①c=3;②b+c=1;③c﹣3b=9;④b=﹣2;⑤抛物线的顶点为(﹣1,4),或二次函数的最大值为4;⑥方程﹣x2+bx+c=0的两个根为﹣3,1;⑦y>0时,﹣3<x<1;或y<0时,x<﹣3或x>1;⑧当x>﹣1时,y随x的增大而减小;或当x<﹣1时,y随x的增大而增大.等等(对称轴方程,图象与x正半轴,y轴交点坐标例外).考点:二次函数的性质.专题: 压轴题;开放型.分析:根据题意,利用二次函数的图象和限制随便写两个正确的答案则可.解答:解:∵x=0时,y=3代入抛物线解析式,∴c=3;当x=1时,y=0代入表达式得b+c=1,所以填c=3和b+c=1.点评:本题的答案很多,主要考查学生的散发性思维,比较灵活.15.(2分)(2009•鄂州)把抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,所得的图象的解析式是y=x2﹣3x+5,则a+b+c=11.考点:二次函数图象与几何变换.分析:因为抛物线y=ax2+bx+c的图象先向右平移3个单位,再向下平移2个单位,得到图象的解析式是y=x2﹣3x+5,所以y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,先由y=x2﹣3x+5的平移求出y=ax2+bx+c的解析式,再求a+b+c=11.解答:解:∵y=x2﹣3x+5=(x﹣)2+,当y=x2﹣3x+5向左平移3个单位,再向上平移2个单位后,可得抛物线y=ax2+bx+c的图象,∴y=(x﹣+3)2++2=x2+3x+7;∴a+b+c=11.点评:主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.16.(2分)(2009•包头)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是12。

(完整版)九年级二次函数综合测试题及答案,推荐文档

(完整版)九年级二次函数综合测试题及答案,推荐文档
3. 抛物线 y=2(x-3)2 的顶点在( ) A. 第一象限 B. 第二象限 C. x 轴上 D. y 轴上
2、4. 抛物线
的对称轴是( )
A. x=-2 B.x=2 C. x=-4 D. x=4 5. 已知二次函数 y=ax2+bx+c 的图象如图所示,则下列结论中,正确的是( A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<0
21.已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(-1,0),点 C(0,5),另抛物线经过点(1,8),M 为它的顶点.
我去 人 (1也)求就抛物有线的人解!析式为; UR扼腕入站内信不存在向你偶同意调剖沙
(2)求△MCB 的面积 S△MCB.
6. 二次函数 y=ax2+bx+c 的图象如图所示,则点
A. 一 B. 二 C. 三 D. 四
在第___象限( )
7. 如图所示,已知二次函数 y=ax2+bx+c(a≠0)的图象
的顶
点 P 的横坐标是 4,图象交 x 轴于点 A(m,0)和点 B,且
m>4,那么 AB 的长是( )
10.把抛物线
的图象向左平移 2 个单位,再向上
平移 3 个单位,所得的抛物线的函数关系式是( )
A.
B.
C.
D.
二、填空题(每题 4 分,共 32 分) 11. 二次函数 y=x2-2x+1 的对称轴方程是______________.
12. 若将二次函数 y=x2-2x+3 配方为 y=(x-h)2+k 的形式,则 y=________.

(新)中考数学二次函数与几何综合典型试题(附答案解析)

(新)中考数学二次函数与几何综合典型试题(附答案解析)
∵OA=OC,∠PAC=90°,
∴∠ACO=∠OAC=45°,
∵∠PAC=90°,
∴∠PAQ=45°,
∴△PAQ是等腰直角三角形,
∴PQ=AQ=x,
∴AQ+AO=x+3=-x2+2x+3,
解得: (舍去),
∴点P(1,4);
设点P1(m,-m2+2m+3),过点P1作P1D⊥ 轴于点D,
同理得△P1CD是等腰直角三角形,且点P1在第三象限,即m<0,
(新)中考数学二次函数与几何综合典型试题(附答案解析)
1.在平面直角坐标系中,点A的坐标为 ,过点A作y轴的平行线交二次函数 的图象于点B.
(1)点B的纵坐标为________(用含m的代数式表示);
(2)当点A落在二次函数 的图象上时,求m的值;
(3)当 时,若 .求m的值;
(4)当线段 的长度随m的增大而增大时,直接写出m的取值范围.
(4)利用两点间的距离公式列出二次函数解析式,由二次函数的性质解答.
【详解】
解:(1)根据题意知,点B的横坐标是m,
∴将x=m代入y=x2,得y=m2.
即点B的纵坐标为m2.
故答案为:m2;
(2)把A(m,-2m+3)代入y=x2,得-2m+3=m2.
解得m1=-3,m2=1;
(3)根据题意知:|-2m+3-m2|=2.
所以方程组的解为: 或 ,

【点睛】
本题考查的是全等三角形的判定与性质,利用待定系数法求解二次函数的解析式,旋转的性质,求解一次函数与二次函数的交点坐标,作出适当的辅助线构建全等三角形,再利用全等三角形的性质证明相等的线段,再得到点的坐标是解本题的关键.

九年级数学上册初三:二次函数专题训练(含答案)

九年级数学上册初三:二次函数专题训练(含答案)

1.如图,抛物线y =ax 2-4ax +b 交x 轴于A (1,0)、B 两点,交y 轴于C (0,3)(1) 求抛物线的解析式(2) 直线y =kx +4交y 轴与E ,交抛物线于P 、Q .若EQ =PE ,求k(3) 将直线AC 向右平移,平移后的直线交y 轴于点M ,交抛物线于点N .若AN =CM ,求点N 的坐标解:(1) y =x 2-4x +3(2) E (0,4)设P (x 1,y 1)、Q (x 2,y 2)∵EQ =PE∴x 1+x 2=0 联立⎪⎩⎪⎨⎧+=+-=4342kx y x x y ,整理得x 2-(k +4)x -1=0,∴x 1+x 2=k +4=0,k =-4 (3) 过点C 作CG ⊥MN 于G ,AH ⊥MN 于H∵MN ∥AC∴CG =AH∵AN =CM∴Rt △CMG ≌Rt △ANH (HL )∴∠CMG =∠ANH延长NA 交y 轴于点P∴∠P AC =∠ANH ,∠PCA =∠CMG∴∠P AC =∠PCA∴PC =P A设P (0,m ),则PC =3-m =P A ,在Rt △AOP 中,12+m 2=(3-m )2,m =34 ∴P (0,34) ∴直线P A 的解析式为3434+-=x y ,联立⎪⎩⎪⎨⎧+-=+-=3434342x x y x y ,解得x 1=35,x 2=1 由图可知,点N 在点A 的右侧∴x =35,∴N (9835-,)2.已知抛物线y =ax 2+2x +c 与x 轴交于A (-1,0)、B (3,0)两点,一次函数y =kx +b 的图象l 经过抛物线上的点C (m ,n )(1) 求抛物线的解析式(2) 若m =3,直线l 与抛物线只有一个公共点,求k 的值(3) 若k =-2m +2,直线l 与抛物线的对称轴相交于点D ,点P 在对称轴上.当PD =PC 时,求点P 的坐标解:(1)y =x 2+2x +3(2)l :y =kx -3k联立⎪⎩⎪⎨⎧-=++-=kkx y x x y 3322∴△=(k -2)2+4(3k +3)=0解得k =-4 (3)过点C 作CH ⊥DP 于点H∵k =-2m +2直线l 过点C (m ,n )∴n =-m 2+2m +3∴b =m 2+3∴l :y =(-2m +2)x +m 2+3点D 时直线l 与抛物线对称轴的交点当x =1时,y =-2m +2+m 2+3=8-n∴D (1,8-n )设点P (1,p ),则PD =8-n -p ,H =m -1,PH =p -n在Rt △PCH 中,PC =PD =8-n -p∴(8-n -p )2=(p -n )2+(m -1)2即(8-2n )(8-2p )=m 2-2m +1 ∵n =-m 2+2m +3∴2(4-n )(8-2p )=4-n∴2(8-2p )=1∴P =415 ∴P (1,415)3.已知二次函数y =x 2+bx -3(b 为常数)的图象经过点A (-1,0)(1) 若直线y =3x +n 与该抛物线交于点A 和点B ,求点B 的坐标(2) P (m ,t )为抛物线上的一个动点,P 关于原点的对称点为Q① 当点Q 落在该抛物线上时,求m 的值② 当点Q 落在第二象限内,QA 的平方取得最小值时,求m 的值解:(1) B (6,21)(2) 将P (m ,t )、Q (-m ,-t )代入y =x 2-2x -3中,得⎪⎩⎪⎨⎧-+=---=323222m m t m m t ,解得3±=m (2) ∵Q (-m ,-t )在第二象限∴-m <0,-t >0,得m >0,t <0∵抛物线的顶点为(1,-4)∴-4<t <0将P (m ,t )代入中,得t =m 2-2m -3∵Q (-m ,-t )、A (-1,0)∴QA 2=(-m +1)2+(-t )2=t 2+t +4=415)21(2++t 当21-=t 时,QA 2最小此时m 2-2m -3=21-,解得2142±=m ∴2142+=m 4.已知直线y =x +m 与抛物线y =x 2-2mx +m 2+2m 相交于A 、B 两点(A 在B 的左边) (1) 若m =-1① 求A 、B 两点的坐标② 点M 是抛物线上A 、B 之间的动点(不与A 、B 重合),MN ⊥x 轴,交直线y =x +m 于N .求当线段MN 取最大值时,点M 的坐标)解:(1)A (-1,-2)、B (0,-1)(2)设M (t ,t 2+2t -1)则N (t ,t -1)∴MN =-t 2-t =-(t +21)2+41 当t =-21时,MN =MNmax ∴P (-21,47)5.已知二次函数y =ax 2+bx -4a +2b(1) 二次函数图象过定点P ,则点P 的坐标为___________(2) 已知点A 的坐标为(0,1),连接AP ,将线段AP 绕点P 旋转90°得到线段BP .若点B 二次函数的图象上,求a 与b 的数量关系(3) 已知二次函数图象与一次函数y =bx -3b 的图象交于点)22(--b ab a ,,求二次函数的解析式解:(1)(-2,0)(2) ①若逆时针旋转时,B 1 (-3,2)代入解析式中2=a (-3)2+b (-3)-4a +2b∴9a -3b -4a +2b =2∴5a -b =2 (a ≠0)②若顺时针旋转时,B 2 (-1,-2)代入解析式中-2=a (-1)2+b (-1)-4a +2b∴-3a +b =2(a ≠0)(3)将2,2a b b a -⎛⎫-⎪⎝⎭分别代入y =bx -3b 和y =ax 2+bx -4a +2b 中 分别得到①2ab =2a -b 2②ab =2a ∵ab =2a ,a ≠0∴b =2 ③③代入①中∴a =-2∴ y =-2x 2+2x +126.已知抛物线l 1:y =-x 2+bx +3交x 轴于点A 、B (A 在B 的左侧),交y 轴于点C ,其对称轴为x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),与y 轴交于点D (0,-2)(1) 求抛物线l 2的函数表达式(2) P 为直线x =1上一点,连接P A 、PC .当P A =PC 时,求点P 的坐标(3) M 位抛物线l 2上一动点,过M 作直线MN ∥y 轴,交抛物线l 1于点N .求点M 从点A 运动至点E 的过程中,线段MN 长度的最大值解:(1)y =21x 2﹣2x ﹣25(2)设P 点坐标为(1,y ),由(1)可得C 点坐标为(0,3) ∴PC 2=12+(y ﹣3)2=y 2﹣6y +10,P A 2=[1﹣(﹣1)]2+y 2=y 2+4∵PC =P A∴y 2﹣6y +10=y 2+4,解得y =1∴P 点坐标为(1,1)(3)由题意可设M (x ,21x 2﹣2x ﹣25) ∵MN ∥y 轴,则N (x ,﹣x 2+2x +3),21x 2﹣2x ﹣25 令﹣x 2+2x +3=21x 2﹣2x ﹣25,可解得x =﹣1或x =311 ①当﹣1<x ≤311时 MN =(﹣x 2+2x +3)﹣(21x 2﹣2x ﹣25)=﹣23x 2+4x +211=﹣23(x ﹣34)2+649 显然﹣1<34≤311∴当x =34时,MN 有最大值649 ②当311<x ≤5时 MN =(21x 2﹣2x ﹣25)﹣(﹣x 2+2x +3)=23x 2﹣4x ﹣211=23(x ﹣34)2﹣649 显然当x >34时,MN 随x 的增大而增大 ∴当x =5时,MN 有最大值,23×(5﹣34)2﹣649=127.如图,抛物线y =ax 2+2ax +c 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),AB =4,与y 轴交于点C ,OC =OA ,点D 为抛物线的顶点(1) 求抛物线的解析式(2) 点M (m ,0)为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N ,可得矩形PQNM .如图,点P 在点Q 左边,当矩形PQNM 的周长最大时,求m 的值,并求出此时的△AEM 的面积(3) 已知H (0,-1),点G 在抛物线上,连HG ,直线HG ⊥CF ,垂足为F .若BF =BC ,求点G 的坐标解:(1) ∴y =-x 2-2x +3 (2) 直线AC 的解析式为y =x +3∵M (m ,0)∴N (-m -2,0)∴MN =-m -2-m =-2m -2∵P (m ,-m 2-2m +3)∴PM =-m 2-2m +3∴C 矩形PQNM =2(PM +MN )=-2m 2-8m +2=-2(m +2)2+10当m =-2时,C 矩形PQNM 有最大值为10此时,E (-2,1)∴S △AEM =21×1×1=21 (3) 延长FH 、CB 交于点P∵BF =BC∴B 为CP 的中点(实质为斜边中线的逆用)∴P (2,-3)直线HP 的解析式为y =-x -1联立⎪⎩⎪⎨⎧+--=--=3212x x y x y ,解得)(2171217121舍去,+-=--=x x ∴G (21172171---,)1.已知,抛物线C 1:y =x 2-mx +m 2+1的顶点为P(1) ① 抛物线C 1的顶点坐标为_____________(用含m 的式子表示)② 抛物线C 1的顶点始终在某条抛物线上运动,这条抛物线的解析式为_____________(2) 直线y =x +m 与抛物线C 1交于点M ,求点M 的坐标(3) ① 将m =2时,抛物线C 1的解析式为_____________② 将该抛物线向下平移5个单位,再向右平移1个单位,得到抛物线C 2,抛物线C 2与x 轴交于A 、B 两点(点A 在点B 的左侧) ,直线y =kx -3k +4与抛物线C 2交于E 、F 两点,求△BEF 的面积的最小值解:(1) ①P (143212+m m ,) ② y =3x 2+1(2) 联立⎪⎩⎪⎨⎧+=++-=mx y m mx x y 122,整理得x 2-(1+m )x +m 2+1-m =0 ∵△=(1+m )2-4(m 2+1-m )=-3(m -1)2≥0∴m =1方程可化为x 2-2x +1=0,解得x =1∴M (1,2)(3) ① y =x 2-2x +5② C 2的解析式为y =(x -2)2-1直线y =kx -3k +4过定点Q (3,4)∴BQ ∥y 轴∴S △BEF =21×BQ ×|x E -x F |=2|x E -x F | 联立⎪⎩⎪⎨⎧+-=+-=34432x x y k kx y ,整理得x 2-(4+k )x +3k -1=0 ∴x E +x F =k +4,x E x F =3k -1∴|x E -x F |=16)2()13(4)4(4)(222+-=--+=-+k k k x x x x F E F E当k =2时,有最小值为4,S △BEF 有最小值为8说明:最后一问还是m =22.如图,地物线y =ax 2-2ax -3与x 轴交于点A (﹣1,0)与点B ,顶点为P ,直线l :y =kx +6经过抛物线上一点C (m ,n )(1) 求抛物线的解析式(2) 若k =2m ,直线l 与抛物线交于另一点M ,过点M 作抛物线的对称轴的垂线,垂足为点G ,连接CG ,CG =MG ,求m 的值(3) 若k =m -4,直线与抛物线交于另一点D ,△PCD 的面积为6,求m 的值解:(1)y =x 2-2x -3(2)由(1)得n =m 2-2m -3,n =2m 2+b∴b =-m 2-2m -3∴l :y =2mx -m 2-2m -3联立⎪⎩⎪⎨⎧---=--=3223222m m mx y x x y 得x M =m +2,y M =m 2+2m -3 ∵CG =MG 抛物线对称轴为x =1∴(m +2-1)2=(1-m )2+(m 2+2m -3-m 2+2m +3)2解得m =0或41 (3)同(2)可得直线l 的解析式为y =(m -4)x +2m -3联立⎪⎩⎪⎨⎧-+-=--=32)4(322m x m y x x y 得x D =-2 设抛物线的对称轴与CD 交于点Q∴Q (1,3m -7)∵P (1,-4) ∴21|3m -7+4|·|m +2|=6 ∴m =-3或23.如图1,抛物线y =ax 2-2x -3与x 轴交于点A 、B (3,0),交y 轴于点C(1) 求a 的值(2) 过点B 的直线l 与(1)中的抛物线有且只有一个公共点,则直线l 的解析式为(3) 如图2,已知F (0,-7),过点F 的直线m :y =kx -7与抛物线y =x 2-2x -3交于M 、N 两点,当S △CMN =4时,求k 的值解:(1)a =1(2)x =3或y =4x -12(3)联立⎪⎩⎪⎨⎧-=--=7322kx y x x y 化简得:x 2-(2+k )x +4=0 ∴x M +x N =k +2,x M ·x N =4∵S △CMN =|S △CFN -S △CFM |=21CF |x M -x N |=4 ∴21×4×N M N M x x x x 42)(-+=4 ∴(k +2)2=20∴k =-2+25或-2-254.如图1,抛物线y =ax 2-4ax +3a (a >0)与x 轴交于A 、B 两点,与y 轴交于点C(1) 填空:A 点坐标是__________B 点坐标是__________(2) 当a =1时,如图1,将直线BC 沿y 轴向上平移交抛物线于M 、N ,交y 轴于点P ,求证:PM -PN 是定值(3) 当41=a 时,如图2,直线y =kx -3k +4与抛物线交E 、F 两点,求△BEF 的面积的最小值解:(1)A(1,0),B(3,0)(2)证明:作NF ⊥y 轴由F ,ME ⊥y 轴于Ea =1时,抛物线的解析式为y =x 2﹣4x +3 ∴BC :y =﹣x +3,设直线BC 平移后的解析式为y =﹣x +k易知△NPF ,△MEP 是等腰Rt △∴PN =2NF ,PM =2EM ,设N (x 1,y 1),M (x 2,y 2)联立⎪⎩⎪⎨⎧+-=+-=kx y x x y 342,化简得x 2﹣3x +3﹣k =0∴x 1+x 2=3 ∵PM ﹣PN =2(EM ﹣FN)=2[x 2﹣(﹣x 1)]=2(x 1+x 2)=32为定值(3)过点B 作BM ⊥AB 交EF 于M当a =41,抛物线的解析式为y =41x 2﹣x +43 ∵B (3,0)∴M (3,4),设E (x 1,y 1),F (x 2,y 2), 联立⎪⎩⎪⎨⎧+-=+-=4343412k kx y x x y 化简得x 2﹣(4+4k )x +12k ﹣13=0∴x 1+x 2=4+4k ,x 1x 2=12k ﹣13∵S △EFB =21•BM •[(x 2﹣3)+(3﹣x 1)]=2(x 2﹣x 1) =264)21(16268161624x 2221221+-=+-=-+k k k x x x )( ∴当k =21时,S △EFB min =161.如图,抛物线y =-41x 2+3x 与x 轴相交于点D ,直线y =(3-m ) x +m 2与y 轴相交于点B ,与抛物线有公共点A(1) 求证:直线AB 与抛物线只有唯一的公共点(2) 过点A 作AF ⊥x 轴于点F ,当∠ADF =60°时,求AF 的长(3) 如图2,E 为抛物线的顶点,BE 交抛物线于点H .当H 为BE 的中点时,求m 的值解:(1)﹣14x 2+3x =(3﹣m ) x +m 2 化简得x 2﹣4m x +4m 2=0 ∴△=0∴直线与抛物线只有唯一的公共点(2)由(1)知,点A 的横坐标为2m 当x =2m 时,y =﹣14 (2m )2+6m =6m -m 2∴AF =6m -m 2,OF =2m ∵D (12,0),∴FD =12-2m ∵∠ADF =60°,∴AF =3FD 即,3(12-2m )=6m -m 2 m 2-6m -23m +123=0 (m -6)(m -23)=0 m 1=6,m 2=2 3当m =6时,A (12,0)(舍)∴m =2 3 (3)点E (6,9),B (0,m 2) ∴BE :y =9-m 26x +m 2联立⎪⎪⎩⎪⎪⎨⎧+-=+-=22269341m x m y x x y 化简得﹣14 x 2+3x =692m -x +m 2 即41x 2+692m -x +m 2=0 ∵x =6是方程的一个根,设另一根为n ,则6n =4 m 2 ∴n =32m 2,即点H 的横坐标为32m 2 当H 为BE 的中点时,点E 的横坐标是H 的横坐标的2倍 ∴32m 2=9∴ m =±2232.如图,将函数y =x 2-2x (x ≥0)的图象沿y 轴翻折得到一个新的图象,前后两个图象其实就是函数y =x 2-2|x |的图象 (1) 观察思考:函数图象与x 轴有_____个交点,所以对应的方程x 2-2|x |=0有_____个实数根;方程x 2-2|x |=2有_____个实数根;关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是_____ 拓展探究:① 如图2,将直线y =x +1向下平移b 个单位,与y =x 2-2|x |的图象有三个交点,求b 的值 ② 如图3,将直线y =kx (k >0)绕着原点旋转,与y =x 2-2|x |的图象交于A 、B 两点(A 左B 右),直线x =1上有一点P ,在直线y =kx (k >0)旋转的过程中,是否存在某一时刻,△P AB 是一个以AB 为斜边的等腰直角三角形(点P 、A 、B 按顺时针方向排列).若存在,请求出k 值;若不存在,请说明理由解:(1)3,3,2,﹣1<a <0(2)①设平移后的直线的解析式为y =x +1-b当直线y =x +1﹣b 经过原点或与抛物线y =x 2+2x 只有一个交点时,与y =x 2﹣2|x |的图象有三个交点∴1﹣b =0,b =1由⎪⎩⎪⎨⎧+=-+=x x y b x y 212∴x 2+x ﹣1+b =0,由题意△=0∴1﹣4(﹣1+b)=0∴b =45∴b =1或45 (3)中,作BE ⊥直线x =1于E ,AF ⊥直线x =1于F ∵∠AFP =∠PEB =∠APB =90°∴∠APF +∠P AF =90°,∠APF +∠BPE =90° ∴∠P AF =∠BPE ∵P A =PB ∴△P AF ≌△BPE ∴AF =PE ,PF =BE由⎪⎩⎪⎨⎧+==x x y kxy 22解得⎩⎨⎧==0011y x 或⎩⎨⎧-=-=)2(222k k y k x ∴A [k ﹣2,k (k ﹣2)] 由⎪⎩⎪⎨⎧-==x x y kxy 22解得⎩⎨⎧==0011y x 或⎩⎨⎧+=+=)2(222k k y k x ∴B [k +2,k(k +2)]∴BE =PF =k +1,AF =PE =3﹣k ∴P(1,k 2﹣3k ﹣1)∴k 2+2k ﹣(k 2﹣3k ﹣1)=3﹣k ∴k =313.如图,抛物线y =ax 2+bx +c (a ≠0)与直线y =x +1相交于A (-1,0)、B (4,m )两点,且抛物线经过点C (5,0) (1) 求抛物线的解析式(2) 点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E① 当PE =2ED 时,求P 点坐标② 是否存在点P 使△BEC 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由解:(1)y =﹣x 2+4x +5(2)①设P (x ,﹣x 2+4x +5),则E (x ,x +1),D (x ,0) 则PE =|﹣x 2+4x +5﹣(x +1)|=|﹣x 2+3x +4|,DE =|x +1| ∵PE =2ED∴|﹣x 2+3x +4|=2|x +1|当﹣x 2+3x +4=2(x +1)时,解得x =﹣1(舍)或x =2 ∴P (2,9)当﹣x 2+3x +4=﹣2(x +1)时,解得x =﹣1(舍)或x =6 ∴P (6,﹣7) ∴P (2,9)或(6,﹣7)②设P (x ,﹣x 2+4x +5),则E (x ,x +1),且B (4,5),C (5,0)BE =2)51()4(22=-++-x x |x -4|,CE =2682)1()5(222+-=++-x x x x BC =26)05()54(22=++-当△BEC 为等腰三角形时,则有BE =CE 、BE =BC 或CE =BC 三种情况: 当BE =CE 时,则2|x -4|=26822+-x x ,解得x =43,此时P 点坐标为(43,16119) 当BE =BC 时,则2|x ﹣4|=26,解得x =4+13或x =4﹣13 此时P 点坐标为(4+13,﹣413﹣8)或(4﹣13,413﹣8) 当CE =BC 时,则26822+-x x =26,解得x =0或x =4(舍) 此时P 点坐标为(0,5)综上可知存在满足条件的点P ,其坐标为(43,16119)或(4+13,﹣413﹣8)或(4﹣13,413﹣8)或(0,5)4.如图,抛物线与x 轴交于点A 、B (3,0),与y 轴交于点C ,其顶点D 的坐标为(1,-4),P 为抛物线上x 轴下方一点 (1) 求抛物线的解析式(2) 若∠PCB =∠ACB ,求点P 的坐标(3) 过点P 的直线交抛物线于点E ,F 为抛物线上点E 的对称点,直线EP 、FP 分别交对称轴于点M 、N ,试探究DM 与DN 的数量关系,并说明理由解:(1) y =(x -1)2-4=x 2-2x -3(2)过点B 作BM ⊥AB 交CP 延长线于点M则△ABC ≌△MBC (SAS ) ∴BM =AB =4 ∴M (3,-4)∴y CM =-31x -3由⎪⎩⎪⎨⎧--=--=323312x x y x y 得⎪⎪⎩⎪⎪⎨⎧-==9323511y x 或⎩⎨⎧-==3022y x (舍)∴P (35,-932)(3) 设y EP =kx +b ,则M (1,k +b )由⎪⎩⎪⎨⎧--=+=322x x y bkx y 得x 2-(2+k )x -3-b =0∴x E +x p =2+k ① x E ·x P =-3-b ② 设y FP =mx +n , 则N (1, m +n )同理得x F +x P =2+m ③,x F ·x P =-3-n ④ ∵点E 、F 关于x =1对称 ∴x E +x F =2 ①+③得x P =22mk ++ ②+④得x P =26nb --- ∴2+k +m =-6-b -n 即k +m +4=-4-m -n又DM =k +m +4,DN =-4-m -n ∴DM =DN1.如图,抛物线与x 轴交于点A ,B (3,0),与y 轴交于点C ,其顶点D 的坐标为(1,-4),P 为抛物线上x 轴下方一点 (1) 求抛物线的解析式(2) 若∠PCB =∠ACB ,求点P 的坐标 (3) 若直线y =21x +a 与抛物线交于M ,N 两点,问:是否存在a 的值,使得∠MON =90°,若存在,求出a 的值;若不存在,请说明理由解:(1)y =x 2-2x -3(2)过点B 作BM ⊥AB 交CP 延长线于点M易证△ABC ≌△MBC (SAS ) ∴BM =AB =4M (3,-4)∴y CM =331--x联立⎪⎩⎪⎨⎧--=--=323312x x y x y 解得⎪⎪⎩⎪⎪⎨⎧-==9323511y x 或⎩⎨⎧-==3022y x (舍)∴P (35,932-) (3)假设a 存在,联立⎪⎩⎪⎨⎧--=+=32212x x y a x y 整理得2x 2-5x -6-2a =0 ∴x 1+x 2=25,x 1x 2=-a -3 又∵y 1=21x 1+a ,y 2=21x 2+a ∴y 1y 2=a 2+a -43 ∵∠MON =90°∴OM 2+ON 2=MN 2∴x 1x 2+y 1y 2=0 ∴-a -3+a 2+a -43=0解得a =215或-215∴存在a =215或-215使得∠MON =90°2.抛物线y =x 2+bx +c 过点A (4,5)、C (0,-3),其顶点为B (1) 求抛物线的解析式(2) P 在抛物线上,若∠BAP =45°,求P 点坐标(3) 过A 作x 轴的垂线,垂足为H ,过D (0,3)作直线,交抛物线于E 、F .若E 、F 到AH 的距离之和为7,求直线EF 的解析式解:(1)y =x 2-2x -3(2)作BH ⊥AP 于H 点∵y =x 2-2x ﹣3=(x ﹣1)2﹣4∴点B 的坐标为(1,﹣4)设H (m ,n ) AH 2=(m ﹣4)2+(n ﹣5)2,BH 2=(m ﹣1)2+(n +4)2,AB 2=(1﹣4)2+(﹣4﹣5)2=90 ∵∠BAP =45°∴△ABH 为等腰直角三角形 ∴(m ﹣4)2+(n ﹣5)2=(m ﹣1)2+(n +4)2∴m =4﹣3n∵(m ﹣4)2+(n ﹣5)2+(m ﹣1)2+(n +4)2=90∴n 2﹣n ﹣2=0,解得n 1=﹣1,n 2=2 当n =﹣1时,m =7,此时H (7,﹣1)∴AH :y =﹣2x +13 联立⎪⎩⎪⎨⎧--=+-=321322x x y x y 得⎩⎨⎧==54y x 或⎩⎨⎧=-=214y x ,此时P (﹣4,21)当n =2,m =﹣2,此时H (﹣2,2)∴AH :y =21x +3 联立⎪⎩⎪⎨⎧--=+=323212x x y x y 得⎩⎨⎧==5411y x 或⎪⎪⎩⎪⎪⎨⎧=-=492322y x ,此时P (﹣23,49)∴P (﹣23,49),(﹣4,21)(3)设EF :y =kx +3设E 、F 点的横坐标分别为x 1、x 2 ∵x 1、x 2为方程x 2﹣2x ﹣3=kx +3的两根方程整理得x 2﹣(k +2)x ﹣6=0∴x 1+x 2=k +2,x 1•x 2=﹣6 作EM ⊥MH 于M ,FN ⊥MH 于N当E 、F 点分别在直线MH 的左侧,则EM =4﹣x 1,FN =4﹣x 2 ∴4﹣x 1+4﹣x 2=7,即x 1+x 2=1 ∴k +2=1,解得k =﹣1 ∴EF :y =﹣x +3当E 、F 点分别在直线MH 的两侧(E 点在右侧),则EM =x 1﹣4,FN =4﹣x 2 ∴x 1﹣4+4﹣x 2=7,即x 1﹣x 2=7 ∴(x 1﹣x 2)2=49,即(x 1+x 2)2﹣4x 1x 2=49 ∴(k +2)2+24=49,解得k 1=﹣7(舍),k 2=3 ∴EF :y =3x +3∴EF :y =﹣x +3或y =3x +33.如图,在平面直角坐标系xOy 中,抛物线c bx x y ++-=221与x 轴交于A ,B 两点(A 左B 右),与y 轴交于点C (0,2),已知此抛物线的对称轴为直线23-=x (1) 求此抛物线的解析式(2) 如图1:已知P 为抛物线第二象限上的一点,是否存在这样的点P 使S △ACP =4,若存在,请求出点P 的坐标,若不存在,请说明理由(3) 如图2:连AB ,BC ,点Q 为抛物线第四象限上的一点,若∠QAB =∠BCO ,求点Q 的坐标3.已知抛物线y =x 2-2x -3与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C (1) 求A 、B 、C 三点的坐标(2) 经过A 、B 两点作⊙M ,交抛物线于点D (点D 在对称轴右侧).若∠DMB =90°,求点M 的坐标(3) 如图1,点Q 是抛物线对称轴上,纵坐标为415的点,点E 是对称轴上抛物线下方的动点,以点Q 为圆心,QE 为半径作圆交抛物线于点F (点F 在对称轴的右侧),求证:直线EF 抛物线有唯一公共点解:(1)A (-1,0)、B (3,0)、C (0,-3)(2)设抛物线的对称轴直线x =1与x 轴交于点N ,过点D 作DH ⊥直线x =1于点H ∴∠DHM =∠DMB =∠BNM =90°∴∠DMH =∠MBN 又∵BM =DM ∴△BNM ≌△MHD ∴BN =HM =2,设MN =DH =x ∴点D 的坐标为D (1+x ,2+x )又∵点D 在抛物线上 ∴(1+x )2-2(1+x )-3=2+x 整理得:x 2-x -6=0解得:x 1=3,x 2=-2(舍)∴x =3∴M (1,3)(3)过点F 作FH ⊥QE 于点H ,连接FQ 设F (a ,a 2-2a -3),E (1,n )则QE =QF =-415-n HQ =a 2-2a -3-(-415)=(a -1)2-41,HF =a -1在Rt △HQF 中,由勾股定理得[(a -1)2-41]2+(a -1)2=(-415-n )2 ∵QE =-415-n ,QE >0∴(a -1)2+41=-415-n ∴n =-(a -1)2-4∴E [1,-(a -1)2-4] 设EF :y =kx +b ,把点E [1,-(a -1)2-4],F (a ,a 2-2a -3)分别代入y =kx +b得:⎪⎩⎪⎨⎧--=+---=+4)1(4)1(22a b ak a b k 解得:⎪⎩⎪⎨⎧--=-=3)1(22a b a k 则直线EF 与抛物线的交点坐标即为上述方程组的解 消y 得:x 2-2ax +a 2=0 △=4a 2-4a 2=0∴直线EF 与抛物线只有唯一一个公共点4.已知抛物线C 1:y =x 2+(2m +1)x +m 2与y 轴交于点C ,顶点为点D(1) 若不论m 为何值,抛物线C 1的顶点D 均在某一函数的图形上,直接写出此函数的解析式 (2) 若抛物线C 1与x 轴的交点分别为M 、N (点M 在点N 的左边),设△MNC 的外接圆与y 轴的另一个交点为点Q ,求点Q 的坐标(3) 当m =1时,将抛物线C 1向下平移n (n >0)个单位,得到抛物线C 2,直线DC 与抛物线C 2交于A 、B 两点.若AD +CB =DC ,求n 的值解:(1) 41+=x y (2) 设△MNC 的圆心E (t m ,21--),则EF =t ,∵EN =2M N x x - ∴EN 2=41(x N -x M )2=m +41∴FN 2=EF 2+EN 2=t 2+m +41=r 2 又r 2=FC 2=(m +21)2+(t -m 2)2∴t 2+m +41=(m +21)2+(t -m 2)2,解得212+=m t∴OQ =2t -OC =m 2+1-m 2∴Q (0,1)(3) 当m =1时,抛物线的解析式为y =x 2+3x +1∴D (4523--,),C (0,1) ∴直线CD 的解析式为123+=x y ,抛物线C 2的解析式为y =x 2+3x +1-n 联立⎪⎩⎪⎨⎧+=-++=123132x y nx x y ,整理得0232=-+n x x ∴x A +x B =23,x A x B =-n ∵AD +BC =DC ∴AB =2CD =2133∴(x B -x A )2=4(x C -x D )2得9449=+n ,解得1627=n5.抛物线2812++-=bx x y (b >0)与x 轴交于A 、B 两点,交y 轴于C ,直线y =kx 与抛物线交于M 、N 两点(M 在y 轴右边,k >0),点C (0,2),点AO =2CO (1) 求此抛物线的解析式(2) 若△AMN 的面积为216时,求k 的值(3) 己知直线l :y =t (t >2),是否存在这样的t 的值,无论k 取何值,以MN 为直径的圆总与直线l 相切?若存在,求t 的值;若不存在,说明理由解:(1) y =-81x 2+2 (2)连AM 、AN ,则 S △AMN =S △AOM +S △AON=2k (x M -x N )联立⎪⎩⎪⎨⎧+-==2812x y kx y 得x 2+8kx -16=0 ∴x M +x N =-8k ,x M x N =-16 x M -x N =812+k∴16k 12+k =162解得k =1(3)∵MO =2222)281(MM N M x x y y ++-=+=2221)(--M x =81x M +2=4-y M 同理NO =4-y N ∴MN =8-(y M +y N )即r =4-2NM y y + 设圆心为G ,则y G =2N M y y +∴G 到l 的距离为d =t -2N M yy + 要使直线l 与⊙相切,则d =r ,∴t =4。

九年级数学二次函数专题训练含答案解析-精选5份

九年级数学二次函数专题训练含答案解析-精选5份

九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 4.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C 位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B 作BF ⊥l 于点F ∴BF =OE =∵BF +AE =OE +AE =OA =∴S △ABC =S △BCD +S △ACD =CD •BF +CD •AE ∴S △ABC =CD (BF +AE )=×2×=23.解:(1)∵抛物线y =﹣x 2+bx +c 交于A (﹣1,0)和B (2,3)两点 ∴,解得:, ∴抛物线解析式为y =﹣x 2+2x +3,设直线AB 的解析式为y =mx +n (m ≠0),则,解得,∴直线AB 的解析式为y =x +1; (2)令x =0,则y =﹣x 2+2x +3=3, ∴C (0,3),则OC =3,BC =2,BC ∥x 轴, ∴S △ABC =×BC ×OC ==3.九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值62.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( ) A .(0,2)B .(0,3)C .(0,4)D .(0,5)3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( ) A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( ) A .22(2)1y x =-+- B .22(2)1y x =--+ C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( ) A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3; ④当四边形ABCD 为平行四边形时,a =12.其中正确的是( ) A .①③B .②③C .①④D .①③④10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( ) A .m 1≥或0m < B .m 1≥ C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =②方程()2110ax a x -++=至少有一个整数根③若11x a<<,则()211y ax a x =-++的函数值都是负数 ④不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________. 16.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点. (1)若(1,0)A -,则b =______. (2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______. 三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y =A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到△ACD .(1)求该抛物线的函数解析式.(2)△ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得△ACE 与△ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:△抛物线经过点()1,0A -,()5,0B ,()0,5C ,△设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,△()()21545y x x x x =-+-=-++.△该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C -∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD =MBC ∴20.解:(1)对于y =x =0时,y =当y =0时,03x -=,妥得,x =3 △A (3,0),B (0,把A (3,0),B (0,2y bx c++得:+=0b c c ⎧⎪⎨=⎪⎩解得,b c ⎧=⎪⎨⎪=⎩△抛物线的解析式为:2y =(2)抛物线的对称轴为直线12b x a =-== 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,△B ,C 关于对称没对称,且对称轴与x 轴垂直,△△BC 与对称轴垂直,且BC //x 轴△在菱形BQCP 中,BC △PQ△PQ △x 轴△点P 在x =1上,△点Q 也在x =1上,当x =1时,211y△Q (1,); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,△BC //PQ ,且BC =PQ△BC //x 轴,△令y =2y 解得,120,2x x ==△(2,C△PQ=BC=22=△PB=BC=2△迠P在x轴上,△P(1,0)△Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,△抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,△点A(﹣2,0),点B(8,0),△对称轴为直线x=3,△△ACD周长=AD+AC+CD,AC是定值,△当AD+CD取最小值时,△ACD周长能取得最小值,△点A,点B关于对称轴直线x=3对称,△连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,△0=8k ﹣8,△k =1,△直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,△点D (3,﹣5);(3)存在,△点A (﹣2,0),点C (0,﹣8),△直线AC 解析式为y =﹣4x ﹣8,如图,△△ACE 与△ACD 面积相等,△DE △AC ,△设DE 解析式为:y =﹣4x +n ,△﹣5=﹣4×3+n ,△n =7,△DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, △点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( )A .y =(2x ﹣1)2B .y =(x +1)2﹣x 2C .y =ax 2D .y =2x +3 2.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( ) A .3 B .2-C .2D .2或3 3.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( )A .1,3,5a b c ==-=B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-= 5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( )A .2a ≠B .a≥0C .a=2D .a>0 6.下列函数中①31y x ;②243y x x =-;③1y x =;④225=-+y x ,是二次函数的有()A .①②B .②④C .②③D .①④ 7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠0 二、填空题9.若()2321mm y m x --=+是二次函数,则m 的值为______. 10.若22a y x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数;② 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________.三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A2.C3.B4.D5.A6.B7.B8.D9.410.2±11.012.③13. 4,-2 414. 13215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数 18.(1)m =(2)m ≠m ≠19.①a≠0;②b=0或-1,a 取全体实数③当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( )A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,。

九年级数学二次函数综合练习题及答案

九年级数学二次函数综合练习题及答案

九年级数学《二次函数》综合练习题及答案一、基础练习1.把抛物线y=2x2向上平移1个单位,得到抛物线_______,把抛物线y=-2x2•向下平移3 个单位,得到抛物线________.2.抛物线y=3x2-1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x2•向_______平移______个单位得到的.3.把抛物线2向左平移1个单位,得到抛物线_________,把抛物线x2•向右平移3个单位,得到抛物线________.4.抛物线x-1)2的开口向________,对称轴是______,顶点坐标是_________,•它是由抛物线2向______平移______个单位得到的.5.把抛物线y=-13(x+12)2向_____平移______个单位,就得到抛物线y=-13x2.6.把抛物线y=4(x-2)2向______平移_______个单位,就得到函数y=4(x+2)2的图象.7.函数y=-(x-13)2的最大值为________,函数y=-x2-13的最大值为________.8.若抛物线y=a(x+m)2的对称轴为x=-3,且它与抛物线y=-2x2的形状相同,•开口方向相同,则点(a,m)关于原点的对称点为________.9.已知抛物线y=a(x-3)2过点(2,-5),则该函数y=a(x-3)2当x=________•的时候,•有最____值______.10.若二次函数y=ax2+b,当x取x1,x2(x1≠x2)时,函数值相等,则x取x1+x2时,函数的值为________.11.一台机器原价50万元.如果每年的折旧率是x,两年后这台机器的价格为y•万元,则y与x的函数关系式为()A.y=50(1-x)2 B.y=50(1-x)2 C.y=50-x2 D.y=50(1+x)212.下列命题中,错误的是()A.抛物线x2-1不与x轴相交;B.抛物线x2-1与x-1)2形状相同,位置不同;C.抛物线y=12(x-12)2的顶点坐标为(12,0);D.抛物线y=12(x+12)2的对称轴是直线x=1213.顶点为(-5,0)且开口方向、形状与函数y=-13x2的图象相同的抛物线是()A.y=-13(x-5)2 B.y=-13x2-5 C.y=-13(x+5)2 D.y=13(x+5)214.已知a<-1,点(a-1,y1)、(a,y2)、(a+1,y3)都在函数y=12x2-2的图象上,则()A.y1<y2<y3 B.y1<y3<y2 C.y3<y2<y1 D.y2<y1<y315.函数y=(x-1)2+k与y=kx(k是不为0的常数)在同一坐标系中的图象大致为()- 1 - / 3- 2 - / 3二、整合练习1.已知反比例函数y=k x 的图象经过点A (4,12),若二次函数y=12x 2-x•的图象平移后经过该反比例函数图象上的点B (2,m ),C (n ,2),求平移后的二次函数图象的顶点坐标.2.如图,在正方形ABCD 中,AB=2,E 是AD 边上一点(点E 与点A ,D 不重合).BE•的垂直平分线交AB 于M ,交DC 于N .(1)设AE=x ,四边形ADNM 的面积为S ,写出S 关于x 的函数关系式;(2)当AE 为何值时,四边形ADNM 的面积最大?最大值是多少?3.将二次函数y=-2x 2+8x-5的图象开口反向,并向上、下平移得一新抛物线,新抛物线与直线y=kx+1有一个交点为(3,4).求:(1)这条新抛物线的函数解析式;(2)这条新抛物线和直线y=kx+1的另一个交点.答案:一、1.y=2x 2+1 y=-2x 2-32.y 轴 (0,-1) 下 13.x+1)2(x-3)24.上 直线x=1 (1,0) 右 15.右,12 6.左 4 7.0 138.(2,-3) 9.3 大 0 10.611.A 12.D 13.C14.C (因为a<-1,所以a-1<a<a+1<0,y=12x 2-2中,当x<0时,y 随x 的增大而减小,• 所以y 1>y 2>y 3) 15.B (因为抛物线y=(x-1)2+k 过原点,所以0=1+k ,k=-1,双曲线y=-1x ) 二、1.由反比例函数y=k x 的图象过点A (4,12),所以12=4k ,k=2,• 所以反比例函数的解析式为y=2x. 又因为点B (2,m ),C (n ,2)在y=2x的图象上, 所以m=22,n=22=1,设二次函数y=12x 2-x 的图象平移后的解析式为y=12(x-h )2+k ,它过点B (2,1),C (1,2),- 3 - / 3 所以平移后的二次函数图象的顶点为(52,78). 2.(1)连接ME ,设MN 交BE 交于P ,根据题意得MB=ME ,MN ⊥BE . 过N 作NG ⊥AB 于F ,在Rt △MBP 和Rt △MNE 中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,∠MBP=∠MNF ,又AB=FN ,Rt △EBA ≌Rt △MNE ,MF=AE=x .在Rt △AME 中,由勾股定理得ME 2=AE 2+AM 2,所以MB 2=x 2+AM 2,即(2-AM )2=x 2+AM 2,解得AM=1-14x 2. 所以四边形ADNM 的面积 S=22AM DN AM AF AD ++⨯=×2=AM+AM+MF=2AM+AE=2(1-14x 2)+x=-12x 2+x+2. 即所求关系式为S=-12x 2+x+2. (2)S=-12x 2+x+2=-12(x 2-2x+1)+52=-12(x-1)2+52. 当AE=x=1时,四边形ADNM 的面积S 的值最大,此时最大值是52.3.(1)y=-2x 2+8x-5=-2(x-2)2+3,将抛物线开口反向,且向上、•下平移后得新抛物线方程为y=2(x-2)2+m .因为它过点(3,4),所以4=2(3-2)2+m ,m=2,这条新抛物线方程为y=2(x-2)2+2,即y=2x 2-8x+10.(2)直线y=kx+1过点(3,4),4=3k+1,k=1,求得直线方程为y=x+1.另一个交点坐标为(32,52)。

初三数学二次函数专题训练(含答案)-

初三数学二次函数专题训练(含答案)-

初三数学二次函数专题训练(含答案)-15.如果二次函数mx x y +-=62的最小值是1,那么m 的值是 .二、选择题: 16.在抛物线1322+-=x xy 上的点是( )A.(0,-1)B.⎪⎭⎫⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x xy 212-=的交点个数是( )A.0个B.1个C.2个D.互相重合的两个 18.关于抛物线cbx axy ++=2(a ≠0),下面几点结论中,正确的有( )① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同. ④ 一元二次方程02=++c bx ax(a ≠0)的根,就是抛物线cbx ax y ++=2与x 轴 交点的横坐标.A.①②③④B.①②③C. ①②D.①19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx-3的大致图象是( )图代13-2-1221.若抛物线cbx ax y ++=2的对称轴是,2-=x 则=b a( )A.2B.21C.4D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a axy 的性质说得全对的是( )A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交 23.二次函数cbx xy ++=2中,如果b+c=0,则那时图象经过的点是( )A.(-1,-1)B.(1,1)C.(1,-1)D.(-1,1)24.函数2ax y =与xa y =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线cbx xy ++=2与y 轴交于A 点,与x 轴正半轴交于B ,C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >0 27.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为( ) A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y28.二次函数229k ykx xy ++=(k >0)图象的顶点在( )A.y 轴的负半轴上B.y 轴的正半轴上C.x 轴的负半轴上D.x 轴的正半轴上29.四个函数:x y x y x y 1,1,-=+=-=(x >0),2xy -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数cbx axy ++=2(a ≠0)的值永远小于0的条件是( )A.a >0,Δ>0B.a >0,Δ<0 C .a <0,Δ>0 D.a <0,Δ<0 三、解答题 31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a xy 的图象都经过x轴上两上不同的点M ,N ,求a ,b 的值. 32.已知二次函数cbx axy ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P,B两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-21与x轴相交于点C,且∠ABC=90°,求:(1)直线AB的解析式;(2)抛物线的解析式.图代13-3-15 图代13-3-1634.中图代13-3-16,抛物线c2交x轴正=3-xy+ax方向于A,B两点,交y轴正方向于C点,过A,B,C三点做⊙D,若⊙D与y轴相切.(1)求a,c满足的关系;(2)设∠ACB=α,求tgα;(3)设抛物线顶点为P,判断直线PA与⊙O的位置关系并证明.35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴,桥拱的DGD'部分为一段抛物线,顶点C的高度为8米,AD和A'D'是两侧高为5.5米的支柱,OA和OA'为两个方向的汽车通行区,宽都为15米,线段CD和C'D'为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD'所在抛物线的解析式及CC'的长;(2)BE和B'E'为支撑斜坡的立柱,其高都为4米,相应的AB和A'B'为两个方向的行人及非机动车通行区,试求AB和A'B'的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车载大型设备的顶部与地面的距离均为7米,它能否从OA(或OA')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m xy 与x 轴交于两点)0,(),0,(b B a A (a <b ).O为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系. 37.如果抛物线1)1(22++-+-=m x m xy 与x 轴都交于A ,B 两点,且A 点在x 轴的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b.(1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式;(3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由.38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长. (2) 当点A 在EP 上移动(点A 不与点E重合)时,①是否总有FHED AH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围. 39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为A ,B (点A 在点B 右边),与y 轴的交点为C.(1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值;(3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标.(2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线cbx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式.41.已知直线x y 21=和m x y +-=,二次函数qpx xy ++=2图象的顶点为M.(1) 若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值, 二次函数qpx xy ++=2的图象与直线m x y +-=总有两个不同的交点.(2) 在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数qpx x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数qpx xy ++=2的图象与y 轴交于点C ,与x 同 的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上.42.如图代13-3-20,已知抛物线bax x y ++-=2与x轴从左至右交于A ,B 两点,与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mxy ,∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫⎝⎛+-m x m mx时mm m34,321==.即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34mB . (1) 当AC=BC 时,94,334-=-=m m .∴ 4942+-=x y(2) 当AC=AB 时,5,4,3===AC OC AO .∴5343=-m.∴ 32,6121-==m m.当61=m 时,4611612+-=x xy ; 当32-=m 时,432322++-=x xy .(3) 当AB=BC 时,22344343⎪⎭⎫ ⎝⎛+=-m m ,∴ 78-=m . ∴ 42144782++-=x xy . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x xy .3.(1)∵)62(4)]5([222+---=∆m m)1(122222 +=++=m m m图代13-3-21∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x)3)(2(2=---m x x ,∴ 3,2221+==m x x.∴两交点中必有一个交点是A (2,0). (2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0).过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a ME b PMAB PE -====,∴ 2225)7(=+-b a .①∵点PD 在抛物线上,∴ 25)7(2--=a b .②解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1.注:求b 的值还有其他思路,请读者探觅,写出解答过程.②△ABP 为锐角三角形时,则-25≤b <-1;△ ABP 为钝角三角形时,则b >-1,且b ≠0. 同步题库 一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ;3.9)3(2-+=x y ; 4.2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1; 8.四,增大; 9.向上,向下,a b x a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ ax x221-=+,1x ·122+-=b x.∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根,∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x xy 符合题意.∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=, 二次函数1)3(22-+-+-=b x a xy 的图象的对称轴为23-=a x ,又两个二次函数图象都经过x 轴上两个不同的点M ,N ,∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a .解得 1=a . ∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y .依题意,令y=0,得1222=+-+b x x , 01222=-+--b x x .①+②得22=-b b .解得 2,021==b b.∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意.∴ a=1,b=2. 32.解:∵cbx axy ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0),∴ acx x a b x x =⋅-=+2121,.又∵132221=+x x即132)(21221=-+x x x x,∴ 132)(2=⋅--aca b .①又由y 的图象过点A (2,4),顶点横坐标为21,则有 4a+2b+c=4,②212=-a b .③解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0). 与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有 (1) 当B (-2,0),C (3,0),D (0,6)时,有6,3,2,====OD OC OB ODOPOC OB .∴OP=4,即点P 坐标为(0,4)或(0,-4). 当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或3,6,2,====OC OD OB OCOPOD OB .∴OP=1,这时P 点坐标为(0,1)或(0,-1). 当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9, 或 131+-=x y ,或 131-=x y . 33.解:(1)在直线y=k(x-4)中, 令y=0,得x=4. ∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO ,∴OBOA OC OB =,即OB 2=OA ·OC. 又∵ CO=1,OA=4, ∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为hx a y ++=2)1(,函数图象过A (4,0),B (0, 2),得⎩⎨⎧=+=+.2,025h a h a解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y .解法二:设抛物线的解析式为:cbx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5. ∴ OD=6. ∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y .34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2. ∴ x 1·x 2=c 2. 又由方程032=+-c x ax知ac x x =⋅21,∴ac c=2,即ac=1.(2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21.∵ a >0,x 2>x 1, ∴ aa ac x xAB 54912=-=-=.aAE 25=.又ED=OC=c ,∴25==DE AE tg α.(3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-aa 45,23,又∵a >0, ∴在Rt △PAE 中,a PE 45=.∴ 25==AEPEtg β.∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90° ∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为cax y +=2,由题意得G (0,8),D (15,5.5). ∴⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y .∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c ) =74(米). 答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米). 答:AB 和A 'B '的宽都是6米.(3) 在89012+-=xy 中,当x=4时,45377816901=+⨯-=y .∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过. 36.解:(1)∵⊙O 1与⊙O 2外切于原点O , ∴A ,B 两点分别位于原点两旁,即a <0,b >0. ∴方程02)4(2=+++-m x m x的两个根a ,b 异号.∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b SQO PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b SQO PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0∴方程02)4(2=+++-m x m x有两个不相等的实数根.∵ m >-2,∴ ⎩⎨⎧+=+=+.02,04 m ab m b a ∴ a >0,b >0. ∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切. 37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0,解得 m >-1. ∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m7)21(484422+-=+-=m m m当m >-1时,Δ>0, ∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0), 则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k 解得31,221==m m .∵31=m 时,3421-=+x x(不合题意,舍去),∴ m=2∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x xy 与x 轴的两个交点坐标是A (3,0),B (-1,0)与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2), ∴ MNCBCN BCMS S S∆∆∆+=.111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCMABPS S∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y . 当y=4时,P 点与M 点重合,即P (1,4), 当y=-4时,-4=-x 2+2x+3,解得 221±=x . ∴满足条件的P 点存在. P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6, ∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHEDAH AD. 证法一:连结DB ,交FH 于G , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB. 又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH. 在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形. ∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FHEDAH AD =.图代13-3-24证法二:连结DB , ∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点, ∴∠DBH=∠DFH ,∴∠EDF=∠DFH.∴ ED ∥FH.∴ FHEDAH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y. 又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EBEF ED⋅=2. ∴)6(62y x-=,即6612+-=xy .∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH. 又 12,936==+=+=PB EO PE PO ,4,=⋅==POPBOD BH PB PO BH OD ,∴ 246,4=-=-===BF EB EF BH BF , 由ED 2=EF ·EB 得12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32. (或由BH=4=y ,代入6612+-=xy 中,得32=x )故所求函数关系式为6612+-=x y (0<x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y ,∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m mB A .(1)∵△ABC 为直角三角形,∴OBAO OC ⋅=2,即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m ,化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m .∴429422=⎪⎭⎫⎝⎛+-=m mOC .∴25==BC AC .过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD. ∴ 58=AD . ∴ 545258sin ===∠ACADACB.图代13-3-25(3)CO AB SABC⋅=∆21.1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m∵ 212942≥+-=m mu ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫ ⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB , ∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴ OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a bac a b∴ 5243252++-=x xy .②当抛物线开口向上时,顶点坐标为⎪⎭⎫⎝⎛-4512,516,得 ⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a bac a b∴ 5244852+--=x xy . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y .41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y有 m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M .此时二次函数为mm x y 31322+⎪⎭⎫ ⎝⎛-=m m mx x31943422++-=.由②③联立,消去y ,有329413422=-+⎪⎭⎫⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422.013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数qpx x y ++=2的图象与直线m x y +-=总有两个 不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3), ∴ -3=0+m , ∴ m=-3. ∴M (-2,-1). ∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上,∴ ∠CPM=Rt ∠. 过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q. 由勾股定理,有222QPMQ MP +=,即222121)2(⎪⎭⎫⎝⎛+++=n n MP .22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=.202=CM.而 222CMCP MP =+, ∴20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n ,即 062252=-+n n , ∴ 012452=-+n n,)2)(65(=+-n n .∴ 2,5621-==n n.而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x的两根,∴ bx x a x x-=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB. ∵ OA=-x 1,OB=x 2, ∴ b 2=-x 1·x 2=b.∵b >0,∴b=1,∴C (0,1). (2)在Rt △AOC 的Rt △BOC 中,211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα.∴ 2=a .∴抛物线解析式为122++-=x xy.图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1, ∴点D 坐标为(-1,0). ∴ DCADPB ABPCS S S∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。

人教版九年级上册数学 二次函数 综合训练题(含答案)

人教版九年级上册数学   二次函数   综合训练题(含答案)

人教版九年级上册数学二次函数综合训练题一.选择题(共10小题)1.如图,在平面直角坐标系中2条直线为l1:y=﹣3x+3,l2:y=﹣3x+9,直线l1交x轴于点A,交y轴于点B,直线l2交x轴于点D,过点B作x轴的平行线交l2于点C,点A、E关于y轴对称,抛物线y=ax2+bx+c 过E、B、C三点,下列判断中:①a﹣b+c=0;②2a+b+c=5;③抛物线关于直线x=1对称;④抛物线过点(b,c);⑤S四边形ABCD=5,其中正确的个数有()A.5 B.4 C.3 D.22.如图,点M是抛物线y=ax2(x>0)上的任意一点,MA⊥x轴于点A,MB⊥y轴于点B,连接AB,交抛物线于点P,则的值是()B.C.D.A.3.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④ C.①②③D.①②③④4.已知二次函数y=x2﹣2ax+6,当﹣2≤x≤2时,y≥a,则实数a的取值范围是()A.B.﹣2≤a≤2 C.D.0≤a≤25.下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.1 1.2 1.3 1.4y ﹣1 ﹣0.49 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.36.在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为()A.15 B.18 C.21 D.247.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+3上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为()A.1 B.2 C.3 D.48.如图,抛物线y=x2﹣2x﹣3与y轴交于点C,点D的坐标为(0,﹣1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+B.1﹣C.﹣1 D.1﹣或1+9.二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中可能的图象为()A.B.C.D.10.二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(﹣1,﹣4)C.开口向上,顶点坐标为(1,4) D.开口向下,顶点坐标为(1,4)二.填空题(共6小题)11.已知函数y=,其图象如图中的实线部分,图象上两个最高点分别是A,B,连接AB,则图中曲四边形ABCO(阴影部分)的面积是.12.如图,在平面直角坐标系中,菱形ABCD的顶点A的坐标为(3,0),顶点B在y轴正半轴上,顶点D在x轴负半轴上.若抛物线y=﹣x2﹣5x+c经过点B、C,则菱形ABCD的面积为.13.如图,在平面直角坐标系中,抛物线y=﹣x2+4x的顶点为A,与x轴分别交于O、B两点,过顶点A分别作AC⊥x轴于点C,AD⊥y轴于点D,连接BD,交AC于点E,则△ADE与△BCE的面积和为.14 如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.15.如图,在平面直角坐标系中,抛物线y=a(x﹣3)2+2(a>0)的顶点为A,过点A作y轴的平行线交抛物线y=﹣x2﹣2于点B,则A、B两点间的距离为.16.如图,在平面直角坐标系中,正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,抛物线y=﹣x2+3bx+2b+经过B、C两点,则正方形OABC的周长为.三.解答题(共10小题)17.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.18.如图,已知抛物线y=﹣x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=﹣x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.19.如图,二次函数y=﹣x2+bx+c的图象经过坐标原点,与x轴交于点A(﹣2,0).(1)求此二次函数的顶点B的坐标;(2)在抛物线上有一点P,满足S△AOP=1,请直接写出点P的坐标.20.如图,抛物线的顶点M在x轴上,抛物线与y轴交于点N,且OM=ON=4,矩形ABCD的顶点A、B在抛物线上,C、D在x轴上.(1)求抛物线的解析式;(2)设点A的横坐标为t(t>4),矩形ABCD的周长为l,求l与t之间函数关系式.21.已知二次函数y=﹣x2﹣2x+3(1)求它的顶点坐标和对称轴;(2)求它与x轴的交点;(3)画出这个二次函数图象的草图.22.如图,二次函数y=ax2﹣2ax+3(a≠0)的图象与x、y轴交于A、B、C三点,其中AB=4,连接BC.(1)求二次函数的对称轴和函数表达式;(2)若点M是线段BC上的动点,设点M的横坐标为m,过点M作MN∥y轴交抛物线于点N,求线段MN的最大值;(3)当0≤x≤t时,则3≤y≤4,直接写出t的取值范围.23.如图1为抛物线桥洞,已知底面宽AB=16m,与拱顶M的距离4m.(1)在图2中,建立适当的坐标系,求抛物线的解析式;(2)若水深1米,求水面CD的宽度(结果用根号表示)24.如图,已知等腰直角△ABC的直角边长与正方形DEFG的边长均为8cm,EF与AC在同一条直线上,开始时点A与点F重合,让△ABC向左移动,运动速度为1cm/s,最后点A与点E重合.(1)试写出两图形重叠部分的面积y(cm2)与△ABC的运动时间x(s)之间的关系式;(2)当点A向左运动2.5s时,重叠部分的面积是多少?25.如图,对称轴为直线x=﹣1的抛物线y=x2+bx+c与x轴相交于A,B两点,其中A点的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,点C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.26.如图,抛物线y=(x+1)2﹣4与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.(1)求A、C两点的坐标;(2)抛物线的对称轴上存在一点P,使得△PBC的周长最小,求此时点P的坐标及最小周长;(3)点M是抛物线上一动点,且在第三象限,当四边形AMCO的面积最大时,求出四边形AMCO的最大面积及此时点M的坐标.答案一、选择1.C.2.A.3.C.4.C5.C.6.B.7.B.8.A9.A.10.A.二.填空题11.2.12.20.13.4.14.15.15.7.16.8.三.解答题17.解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD=S△BEC+S△BED=××(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.18.解:(1)∵抛物线y=﹣x2+mx+3过(3,0),∴0=﹣9+3m+3,∴m=2(2)由,得,,∴D(,﹣),∵S△ABP=4S△ABD,∴AB×|y P|=4×AB×,∴|y P|=9,y P=±9,当y=9时,﹣x2+2x+3=9,无实数解,当y=﹣9时,﹣x2+2x+3=﹣9,x1=1+,x2=1﹣,∴P(1+,﹣9)或P(1﹣,﹣9).19.解:(1)将A(﹣2,0)、O(0,0)代入解析式y=﹣x2+bx+c,得c=0,﹣4﹣2b+c=0,解得c=0,b=﹣2,所以二次函数解析式:y=﹣x2﹣2x=﹣(x+1)2+1,所以,顶点B坐标(﹣1,1);(2)∵AO=2,S△AOP=1,∴P点的纵坐标为:±1,∴﹣x2﹣2x=±1,当﹣x2﹣2x=1,解得:x1=x2=﹣1,当﹣x2﹣2x=﹣1时,解得:x1=﹣1+,x2=﹣1﹣,∴点P的坐标为(﹣1,1)或(﹣1+,﹣1))或(﹣1﹣,﹣1).20.解:(1)∵OM=ON=4,∴M点坐标为(4,0),N点坐标为(0,4),设抛物线解析式为y=a(x﹣4)2,把N(0,4)代入得16a=4,解得a=,所以抛物线的解析式为y=(x﹣4)2=x2﹣2x+4;(2)∵点A的横坐标为t,∴DM=t﹣4,∴CD=2DM=2(t﹣4)=2t﹣8,把x=t代入y=x2﹣2x+4得y=t2﹣2t+4,∴AD=t2﹣2t+4,∴l=2(AD+CD)=2(t2﹣2t+4+2t﹣8)=t2﹣8(t>4).21.解:(1)y=﹣x2﹣2x+3=﹣(x+1)2+4,顶点坐标为(﹣1,4),对称轴x=﹣1;(2)令y=0,得﹣x2﹣2x+3=0,解得:x1=1,x2=﹣3,故与x轴的交点坐标:(1,0),(﹣3,0)(3)画出函数的图象如图:22.解:(1)∵二次函数解析式为y=ax2﹣2ax+3,∴对称轴x=1,∵AB=4,∴A(﹣1,0),B(3,0),把(﹣1,0)代入二次函数的解析式得到a=﹣1,∴二次函数的解析式为y=﹣x2+2x+3.(2)∵直线BC的解析式为y=﹣x+3,设M(m,﹣m+3),则N(m,﹣m2+2m+3),∴NM=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,∵﹣1<0,∴m=时,MN有最大值,最大值为.(3)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标(1,4),∵y=3时3=﹣x2+2x+3,解得x=0或2,∴0≤x≤t时,则3≤y≤4,∴结合图象可知,1≤t≤2.23.解:(1)建立如图所示的坐标系,设这条抛物线的解析式为y=ax2+4(a≠0).由已知抛物线经过点B(8,0),可得0=a×82+4,有a=﹣,∴抛物线的解析式为y=﹣x2+4.(2)当y=1时,1=﹣x2+4,解得:x=±4,4﹣(﹣4)=8,∴水面CD的宽为8m.24.解(1)重叠部分的面积y与线段AF的长度x之间的函数关系式为y=x2.(2)当点A向左移动2cm,即x=2cm,当x=25时,y=×2.52=3.125(cm2).所以当点A向左移动2.5cm时,重叠部分的面积是3.125cm2.25.解:(1)∵抛物线的对称轴为x=﹣1,A点的坐标为(﹣3,0),∴点B的坐标为(1,0).(2)①将点A和点B的坐标代入抛物线的解析式得:解得:b=2,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3.∵将x=0代入得y=﹣3,∴点C的坐标为(0,﹣3).∴OC=3.∵点B的坐标为(1,0),∴OB=1.设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=4S△BOC,∴OC•|a|=OC•OB,即×3×|a|=4××3×1,解得a=±4.当a=4时,点P的坐标为(4,21);当a=﹣4时,点P的坐标为(﹣4,5).∴点P的坐标为(4,21)或(﹣4,5).②如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值=.26.解:(1)令x=0,得y=﹣3,∴点C坐标(0,﹣3).令y=0则(x+1)2﹣4=0,解得x=﹣3或1,∴点A坐标(﹣3,0),B(1,0),∴A(﹣3,0),C(0,﹣3).(2)如图1中,连接AC交对称轴于P,∵PB=PA,∴PB+PC=PB+PA,∴此时PB+PC最短,△PBC的周长最短,设直线AC解析式为y=kx+b则解得,∴直线AC解析式为y=﹣x﹣3,∵对称轴x=﹣1,∴点P坐标(﹣1,﹣2),在Rt△AOC中,∵∠AOC=90°,OA=OC=3,∴AC=3,∵BC===,∴△PBC周长的最小值为3+.(3)如图2中,设M(m,m2+2m﹣3),连接OM.∵S四边形AMCO=S△AOM+S△MOC=×3×(﹣m2﹣2m+3)+×3×(﹣m)=﹣m2﹣m+=﹣(m+)2+,∵﹣<0,∴m=﹣时,四边形AMCO面积最大,最大值为,此时点M(﹣,﹣).。

初中数学九年级上册 二次函数 练习题(含答案)

初中数学九年级上册  二次函数  练习题(含答案)

第二十二章 二次函数 22.1 二次函数的图象和性质22.1.1 二次函数01 基础题知识点1 二次函数的定义1.(兰州中考)下列函数解析式中,一定为二次函数的是(C)A .y =3x -1B .y =ax 2+bx +cC .s =2t 2-2t +1D .y =x 2+1x2.圆的面积公式S =πR 2中,S 与R 之间的关系是(C )A .S 是R 的正比例函数B .S 是R 的一次函数C .S 是R 的二次函数D .以上答案都不对3.若y =(a +2)x 2-3x +2是二次函数,则a 的取值范围是a ≠-2.4.已知二次函数y =1-3x +5x 2,则二次项系数a =5,一次项系数b =-3,常数项c =1. 5.已知两个变量x ,y 之间的关系式为y =(a -2)x 2+(b +2)x -3.(1)当a ≠2时,x ,y 之间是二次函数关系;(2)当a =2且b ≠-2时,x ,y 之间是一次函数关系.6.判断函数y =(x -2)(3-x)是否为二次函数,若是,写出它的二次项系数、一次项系数和常数项;若不是,请说明理由.解:y =(x -2)(3-x)=-x 2+5x -6,它是二次函数,它的二次项系数为-1,一次项系数为5,常数项为-6.知识点2 建立二次函数模型7.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为(C)A .y =36(1-x )B .y =36(1+x )C .y =18(1-x )2D .y =18(1+x 2)8.已知一个直角三角形两直角边的和为10,设其中一条直角边为x ,则直角三角形的面积y 与x 之间的函数关系式是(A )A .y =-12x 2+5x B .y =-x 2+10xC .y =12x 2+5x D .y =x 2+10x9.在半径为4 cm 的圆中,挖出一个半径为x cm 的圆,剩下的圆环的面积是y cm 2,则y 与x 的函数关系为(D )A .y =πx 2-4B .y =π(2-x)2C .y =π(x 2+4)D .y =-πx 2+16π10.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式y =12x 2-12x ,它是(填“是”或“不是”)二次函数.02 中档题11.如果二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是(C )A .5B .3C .3或-5D .-3或512.(周口市期中)如果函数y =(k -2)xk 2-2k +2+kx +1是关于x 的二次函数,那么k 的值是(D)A .1或2B .0或2C .2D .013.(省实验中学二模)如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是(A)A B C D14.菱形的两条对角线的和为26 cm ,则菱形的面积S(cm 2)与一对角线长x(cm )之间的函数关系为S =12x(26-x),是二次函数,自变量x 的取值范围是0<x <26.15.一辆汽车的行驶距离s(单位:m )与行驶时间t(单位:s )的函数关系式是s =9t +12t 2,经12 s 汽车行驶了多远?行驶380 m 需要多少时间?解:当t =12时,s =9×12+12×122=180.∴经12 s 汽车行驶了180 m . 当s =380时,9t +12t 2=380.解得t 1=20,t 2=-38(不合题意,舍去).∴该汽车行驶380 m 需要20 s .16.一块矩形的草地,长为8 m ,宽为6 m ,若将长和宽都增加x m ,设增加的面积为y m 2.(1)求y 与x 之间的函数关系式;(2)若要使草地的面积增加32 m 2,长和宽都增加多少米? 解:(1)y =(8+x)(6+x)-8×6,即y =x 2+14x. (2)当y =32时,x 2+14x =32. 解得x 1=2,x 2=-16(舍去).答:长和宽都增加2米.17.如图,有一个长为24米的篱笆,一面利用墙(墙的最大长度a 为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式;(2)如果要围成面积为45平方米的花圃,AB 的长为多少米?解:(1)S=x(24-3x),即S=-3x2+24x.(2)当S=45时,-3x2+24x=45.解得x1=3,x2=5.又∵当x=3时,24-3x=15>10(舍去),∴x=5.答:AB的长为5米.03综合题18.如图,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,设运动的时间为x s,四边形APQC的面积为y mm2.(1)求y与x之间的函数关系式;(2)求自变量x的取值范围;(3)四边形APQC的面积能否等于172 mm2.若能,求出运动的时间;若不能,说明理由.解:(1)由运动可知,AP=2x,BQ=4x,则y=12BC·AB-12BQ·BP=12×24×12-12·4x·(12-2x),即y=4x2-24x+144.(2)∵0<AP<AB,0<BQ<BC,∴0<x<6.(3)当y=172时,4x2-24x+144=172.解得x1=7,x2=-1.又∵0<x<6,∴四边形APQC的面积不能等于172 mm2.22.1.2 二次函数y =ax 2的图象和性质01 基础题知识点1 二次函数y =ax 2的图象1.下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数y =-2x 2的图象上的是(-1,-2). 2.点A(12,b)在二次函数y =x 2的图象上,则b =14.3.函数y =axa 2是二次函数,当a =2时,其图象开口向上;当a =-2时,其图象开口向下.4.填写下列抛物线的开口方向、对称轴、顶点坐标及最值.抛物线 开口方向 对称轴[来源学科网]顶点 坐标 最值 y =x 2 向上 y 轴 (0,0) 最小值0 y =-x 2 向下 y 轴 (0,0) 最大值0 y =15x 2 向上 y 轴 (0,0) 最小值0 y =-15x 2向下y 轴(0,0)最大值05.已知二次函数y =ax 2的图象经过点A(-1,-12).(1)求这个二次函数的解析式并画出其图象; (2)请说出这个二次函数的顶点坐标、对称轴. 解:(1)y =-12x 2.图象如图.(2)顶点坐标为(0,0),对称轴是y 轴.知识点2 二次函数y =ax 2的性质6.(毕节中考)抛物线y =2x 2,y =-2x 2,y =12x 2的共同性质是(B )A .开口向上B .对称轴是y 轴C .都有最高点D .y 随x 的增大而增大 7.关于函数y =3x 2的性质表述正确的一项是(C )A .无论x 为任何实数,y 的值总为正B .当x 值增大时,y 的值也增大C .它的图象关于y 轴对称D .它的图象在第一、三象限内8.(周口市期中)已知点A(1,y 1),B(3,y 2),C(2,y 3),都在二次函数y =-12x 2的图象上,则(A)A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 1>y 3>y 29.分别求出符合下列条件的抛物线y =ax 2的解析式:(1)经过点(-3,2);(2)与y =13x 2开口大小相同,方向相反.解:(1)∵y =ax 2过点(-3,2), ∴2=a·(-3)2,则a =29.∴y =29x 2.(2)∵y =ax 2与抛物线y =13x 2开口大小相同,方向相反,∴a =-13.∴y =-13x 2.02 中档题10.已知二次函数y =x 2和y =2x 2,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当x>0时,它们的函数值y 都是随着x 的增大而增大;④它们开口的大小是一样的.其中正确的说法有(C )A .1个B .2个C .3个D .4个 提示:①②③正确,④错误.11.(宁夏中考)已知a ≠0,在同一直角坐标系中,函数y =ax 与y =ax 2的图象有可能是(C )12.(深圳中考)给出一种运算:对于函数y =x n ,规定y′=nx n -1.例如:若函数y =x 4,则有y′=4x 3.已知函数y =x 3,则方程y′=12的解是(B )A .x 1=4,x 2=-4B .x 1=2,x 2=-2C .x 1=x 2=0D .x 1=23,x 2=-2 313.若函数y =(1-m)xm 2-2+2是关于x 的二次函数,且抛物线的开口向上,则m 的值为-2.14.二次函数y =ax 2(a<0)的图象对称轴右侧上有两点A(x 1,y 1),B(x 2,y 2),若y 1>y 2,则x 1-x 2<0.(填“>”“<”或“=”)15.下列四个二次函数:①y =x 2;②y =-2x 2;③y =12x 2;④y =3x 2,其中抛物线开口从大到小的排列顺序是③①②④.16.(菏泽中考)如图,平行于x 轴的直线AC 分别交函数y 1=x 2(x ≥0)与y 2=x 23(x ≥0)的图象于B 、C 两点,过点C作y 轴的平行线交y 1的图象于点D ,直线DE ∥AC ,交y 2的图象于点E ,则DEAB=3-3.17.二次函数y =ax 2与直线y =2x -1的图象交于点P(1,m).(1)求a ,m 的值;(2)写出二次函数的解析式,并指出x 取何值时,该解析式的y 随x 的增大而增大?(3)指出抛物线的顶点坐标和对称轴. 解:(1)将(1,m)代入y =2x -1,得 m =2×1-1=1.∴P 点坐标为(1,1).将P(1,1)代入y =ax 2,得1=a·12, 解得a =1.故a =1,m =1.(2)二次函数的解析式为y =x 2, 当x>0时,y 随x 的增大而增大.(3)顶点坐标为(0,0),对称轴为y 轴.03 综合题18.已知二次函数y =ax 2(a ≠0)与一次函数y =kx -2的图象相交于A ,B 两点,如图所示,其中A(-1,-1),求△OAB 的面积.解:∵点A(-1,-1)在抛物线y =ax 2(a ≠0)上,也在直线y =kx -2上, ∴-1=a·(-1)2, -1=k·(-1)-2.解得a =-1,k =-1.∴本二次函数的解析式为y =-x 2, 一次函数的解析式为y =-x -2.由⎩⎨⎧y =-x 2,y =-x -2,解得⎩⎨⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=2,y 2=-4.∴点B 的坐标为(2,-4).∵y =-x -2与y 轴交于点G ,∴G(0,-2). ∴S △OAB =S △OAG +S △OBG =12×(1+2)×2=3.22.1.3二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质01基础题知识点1二次函数y=ax2+k的图象1.在抛物线y=-x2+1上的一个点是(A)A.(1,0) B.(0,0)C.(0,-1) D.(1,1)2.抛物线y=x2+1的图象大致是(C)3.(河南中考改编)在平面直角坐标系中,将抛物线y=x2-4向上平移2个单位长度,得到的抛物线解析式为(D) A.y=(x+2)2B.y=x2+2C.y=(x-2)2D.y=x2-24.填写下列抛物线的开口方向、对称轴、顶点坐标以及最值.抛物线开口方向对称轴顶点坐标最值y=2x2+2 向上y轴(0,2) 最小值2y=-5x2-3 向下y轴(0,-3) 最大值-3y=15x2+1 向上y轴(0,1) 最小值1y=-12x2-4 向下y轴(0,-4) 最大值-45.在同一直角坐标系中画出y=-2x2,y=-2x2+3的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=-2x2+3与抛物线y=-2x2的图象有什么关系?解:如图所示:(1)抛物线y=-2x2开口方向向下,对称轴为y轴,顶点坐标为(0,0).抛物线y=-2x2+3开口方向向下,对称轴为y轴,顶点坐标为(0,3).(2)抛物线y=-2x2+3可由抛物线y=-2x2的图象向上平移3个单位长度得到.知识点2二次函数y=ax2+k的性质6.(河池中考)已知点(x1,y1),(x2,y2)均在抛物线y=x2-1上,下列说法中正确的是(D) A.若y1=y2,则x1=x2B .若x 1=-x 2,则y 1=-y 2C .若0<x 1<x 2,则y 1>y 2D .若x 1<x 2<0,则y 1>y 27.对于二次函数y =3x 2+2,下列说法错误的是(B )A .最小值为2B .图象与y 轴没有公共点C .当x <0时,y 随x 的增大而减小D .其图象的对称轴是y 轴8.抛物线y =2x 2-1在y 轴右侧的部分是上升(填“上升”或“下降”).9.二次函数y =3x 2-3的图象开口向上,顶点坐标为(0,-3),对称轴为y 轴,当x>0时,y 随x 的增大而增大;当x<0时,y 随x 的增大而减小.因为a =3>0,所以y 有最小值,当x =0时,y 的最小值是-3.10.能否通过适当地上下平移二次函数y =13x 2的图象,使得到的新的函数图象过点(3,-3),若能,说出平移的方向和距离;若不能,说明理由.解:设平移后的函数关系式为y =13x 2+k ,把(3,-3)代入,得-3=13×32+k ,解得k =-6.∴把y =13x 2的图象向下平移6个单位长度,新的图象经过点(3,-3).02 中档题11.(周口市期中)在同一直角坐标系中,二次函数y =-x 2+m 与一次函数y =mx -1(m ≠0)的图象可能是(C)A BC D12.已知y =ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是(A )A .a>0B .a<0C .a ≥0D .a ≤013.若二次函数y =ax 2+c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值为(D )A .a +cB .a -cC .-cD .c14.(郑州外国语中学质检)已知抛物线y =x 2-k 的顶点为P ,与x 轴交于点A ,B ,且△ABP 是正三角形,则k 的值是3.15.若抛物线y =ax 2+k(a ≠0)与y =-2x 2+4关于x 轴对称,则a =2,k =-4. 16.把y =-12x 2的图象向上平移2个单位长度.(1)求新图象的函数解析式、顶点坐标和对称轴; (2)画出平移后的函数图象;(3)求平移后的函数的最大值或最小值,并求对应的x 的值.解:(1)y =-12x 2+2,顶点坐标是(0,2),对称轴是y 轴.(2)略.(3)x =0时,y 有最大值,为2.03 综合题17.(大连中考改编)如图,在平面直角坐标系xOy 中,抛物线y =x 2+14与y 轴相交于点A ,点B 在y 轴上,且在点A 的上方,AB =OA.(1)填空:点B 的坐标是(0,12);(2)过点B 的直线y =kx +b(其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB =PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由.解:∵B 点坐标为(0,12),∴设直线的解析式为y =kx +12.令y =0,得kx +12=0,解得x =-12k ,∴OC =-12k .∵PB =PC ,∴点P 只能在x 轴上方.过B 作BD ⊥l 于点D ,设PB =PC =m ,则BD =OC =-12k ,CD =OB =12,∴PD =PC -CD =m -12.在Rt △PBD 中,由勾股定理可得PB 2=PD 2+BD 2, 即m 2=(m -12)2+(-12k )2,解得m =14+14k 2,∴PB =14+14k2.∴P 点坐标为(-12k ,14+14k2).当x =-12k 时,代入抛物线的解析式可得y =14+14k 2,∴点P 在抛物线上.第2课时二次函数y=a(x-h)2的图象和性质01基础题知识点1二次函数y=a(x-h)2的图象1.(沈阳中考改编)在平面直角坐标系中,二次函数y=a(x-2)2(a≠0)的图象可能是(D)2.(河南中考改编)在平面直角坐标系中,将抛物线y=x2向右平移4个单位长度,则得到的抛物线解析式为(C ) A.y=(x+4)2B.y=x2+4C.y=(x-4)2D.y=x2-43.抛物线y=-3(x+1)2不经过的象限是(A)A.第一、二象限B.第二、四象限C.第三、四象限D.第二、三象限4.将抛物线y=ax2向左平移2个单位长度后,经过点(-4,-4),则a=-1.5.在同一平面直角坐标系中,画出函数y=x2,y=(x+2)2,y=(x-2)2的图象,并写出对称轴及顶点坐标.解:图象如图:抛物线y=x2的对称轴是直线x=0,顶点坐标为(0,0).抛物线y=(x+2)2的对称轴是直线x=-2,顶点坐标为(-2,0).抛物线y=(x-2)2的对称轴是直线x=2,顶点坐标为(2,0).知识点2二次函数y=a(x-h)2的性质6.(台州模拟)描点法画函数图象是研究陌生函数的基本方法.对于函数y=(x-2)2,下列说法:①图象经过(1,1);②当x=2时,y有最小值0;③y随x的增大而增大;④该函数图象关于直线x=2对称.其中正确的是(B)A.①②B.①②④C.①②③④D.②③④7.如果二次函数y=a(x+3)2有最大值,那么a<0,当x=-3时,函数的最大值是0.8函数开口方向对称轴顶点坐标增减性最值y=-2x2向下y轴(0,0) 当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大.y最大=0y=-2(x-5)2向下直线x=5(5,0)当x>5时,y随x的增大而减小;当x<5时,y随x的增大而增大.y最大=0y=3(x+3)2向上直线x=- 3(-3,0) 当x>-3时,y随x的增y最小=0大而增大;当x <-3时,y 随x 的增大而减小.9.已知抛物线y =-2(x -3)2,当x 1>x 2>3时,y 1<y 2.(填“>”或“<”)10.已知抛物线y =a(x -h)2,当x =2时,有最大值,此抛物线过点(1,-3),求抛物线的解析式,并指出当x 为何值时,y 随x 的增大而减小.解:当x =2时,有最大值,∴h =2. 又∵此抛物线过(1,-3),∴-3=a(1-2)2.解得a =-3.∴此抛物线的解析式为y =-3(x -2)2. 当x >2时,y 随x 的增大而减小.02 中档题11.二次函数y =-14(x -2)2的图象与y 轴(B )A .没有交点B .有交点C .交点为(1,0)D .交点为(0,14)12.在同一直角坐标系中,一次函数y =ax +c 和二次函数y =a(x +c)2的图象大致为(B )13.若抛物线y =a(x -1)2上有一点A(3,5),则点A 关于对称轴的对称点A′的坐标为(-1,5).14.已知点P 在抛物线y =(x -2)2上,设点P 的坐标为(x ,y),当0≤x ≤3时,y 的取值范围为0≤x ≤4.15.已知A(-4,y 1),B(-3,y 2),C(3,y 3)三点都在二次函数y =-2(x +2)2的图象上,则y 1,y 2,y 3的大小关系为y 3<y 1<y 2.16.已知二次函数y =2(x -1)2的图象如图所示,则△ABO 的面积是1.17.已知一抛物线与抛物线y =-12x 2+3形状相同,开口方向相反,顶点坐标是(-5,0),根据以上特点,试写出该抛物线的解析式.解:∵所求的抛物线与y =-12x 2+3形状相同,开口方向相反,∴其二次项系数是12.又∵顶点坐标是(-5,0),∴所求抛物线的解析式为y =12(x +5)2.18.二次函数y =a(x -h)2的图象如图,已知a =12,OA =OC ,试求该抛物线的解析式.解:由题意,得C(h ,0),y =12(x -h)2.∵OA =OC ,∴A(0,h).将点A(0,h)代入抛物线的解析式,得12h 2=h.∴h 1=2,h 2=0(不合题意,舍去). ∴该抛物线的解析式为y =12(x -2)2.03 综合题19.如图,直线y 1=-x -2交x 轴于点A ,交y 轴于点B ,抛物线y 2=ax 2+bx +c 的顶点为A ,且经过点B.(1)求该抛物线的解析式;(2)直接写出当y 1≥y 2时x 的取值范围.解:(1)∵直线y 1=-x -2交x 轴于点A ,交y 轴于点B , ∴点A 的坐标为(-2,0),点B 的坐标为(0,-2). ∵抛物线y 2=ax 2+bx +c 的顶点为A , 设抛物线的解析式为y 2=a(x +2)2, ∵抛物线过点B(0,-2), ∴-2=4a ,a =-12.∴y 2=-12(x +2)2=-12x 2-2x -2.(2)x ≤-2或x ≥0.第3课时二次函数y=a(x-h)2+k的图象和性质01基础题知识点1二次函数y=a(x-h)2+k的图象1.(呼伦贝尔中考)二次函数y=(x+2)2-1的图象大致为(D)2.(洛阳市月考)抛物线y=-(x+2)2-5的顶点坐标是(C)A.(-2,5) B.(2,5)C.(-2,-5) D.(2,-5)3.(新疆中考)对于二次函数y=(x-1)2+2的图象,下列说法正确的是(C)A.开口向下B.对称轴是x=-1C.顶点坐标是(1,2)D.与x轴有两个交点4.(周口市期中)把抛物线y=12(x-1)2+2向左平移1个单位长度,再向下平移2个单位长度,则所得抛物线的解析式为y=12x 2.5.如图是二次函数y=a(x+1)2+2图象的一部分,该图象在y轴右侧与x轴交点的坐标是(1,0).6.画出函数y=(x-1)2-1的图象.解:列表:x …-2 -1 0 1 2 3 4 …y …8 3 0 -1 0 3 8 …描点并连线:知识点2二次函数y=a(x-h)2+k的性质7.(台州中考)设二次函数y=(x-3)2-4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是(B) A.(1,0) B.(3,0)C.(-3,0) D.(0,-4)8.(义马市期中)若抛物线y =(x -m)2+(m +1)的顶点在第一象限,则m 的取值范围为(B)A .m >1B .m >0C .m >-1D .-1<m <09.(河南中考)已知点A(4,y 1),B(2,y 2),C(-2,y 3)都在二次函数y =(x -2)2-1的图象上,则y 1,y 2,y 3的大小关系是y 2<y 1<y 3.10.说出下列抛物线的开口方向、对称轴及顶点:抛物线 开口方向 对称轴 顶点 y =-4(x +3)2+5 向下 直线x =-3 (-3,5) y =3(x +1)2-2 向上 直线x =-1 (-1,-2) y =(x -5)2-7 向上 直线x =5 (5,-7) y =-2(x -2)2+6向下直线x =2(2,6)02 中档题11.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有(A )A .1个B .2个C .3个D .4个12.若二次函数y =(x -m)2-1,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是(C )A .m =1B .m >1C .m ≥1D .m ≤1 13.如图,把抛物线y =x 2沿直线y =x 平移2个单位长度后,其顶点在直线上的A 处,则平移后抛物线的解析式是(C )A .y =(x +1)2-1B .y =(x +1)2+1C .y =(x -1)2+1D .y =(x -1)2-114.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位长度,再向上平移4个单位长度,得到二次函数y =12(x+1)2-1的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a(x -h)2+k 的开口方向,对称轴和顶点坐标.解:(1)原二次函数解析式为y =12(x +1-2)2-1-4,即y =12(x -1)2-5, ∴a =12,h =1,k =-5.(2)它的开口向上,对称轴为直线x =1,顶点坐标为(1,-5).15.在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象向右平移几个单位长度,可使平移后所得的图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.解:(1)设二次函数的解析式为y =a(x -1)2-4. ∵二次函数的图象过点B(3,0),∴0=4a -4.解得a =1.∴二次函数的解析式为y =(x -1)2-4,即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0, 解得x 1=3,x 2=-1.∴二次函数的图象与x 轴的两个交点坐标分别为(3,0)和(-1,0). ∴二次函数的图象向右平移1个单位长度后经过坐标原点,平移后所得的图象与x 轴的另一个交点的坐标为(4,0).03 综合题16.(黄石中考)科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x 表示科技馆从8:30开门后经过的时间(分钟),纵坐标y 表示到达科技馆的总人数.图中曲线对应的函数解析式为y =⎩⎨⎧ax 2(0≤x ≤30),b (x -90)2+n (30≤x ≤90),10:00之后来的游客较少可忽略不计. (1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?解:(1)由图象可知,300=a ×302,解得a =13,n =700,b ×(30-90)2+700=300,解得b =-19.∴y =⎩⎨⎧13x 2(0≤x ≤30),-19(x -90)2+700(30≤x ≤90).(2)由题意,得-19(x -90)2+700=684,解得x =78. ∴684-6244=15(分钟). ∴15+30+(90-78)=57(分钟). 答:馆外游客最多等待57分钟.周周练(22.1.1~22.1.3)(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.二次函数y =ax 2的图象过点P(-2,4),则该图象必经过点(A )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)2.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是(C )A .-3B .-1C .2D .33.(兰州中考)在下列二次函数中,其图象的对称轴为直线x =-2的是(A )A .y =(x +2)2B .y =2x 2-2C .y =-2x 2-2D .y =2(x -2)24.(河南模拟)如图,抛物线顶点坐标是P(1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是(C)A .x >3B .x <3C .x >1D .x <15.形状、开口方向与抛物线y =12x 2相同,但是顶点为(-2,0)的抛物线解析式为(B )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x -2)2D .y =-12(x +2)26.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是(A )7.已知某二次函数的图象如图所示,则这个二次函数的解析式为(A )A .y =-3(x -1)2+3B .y =3(x -1)2+3C .y =-3(x +1)2+3D .y =3(x +1)2+38.如图是相同对称轴的两条抛物线,下列关系不正确的是(B )A .h =mB .k =nC .k >nD .h >0,k >0二、填空题(每小题4分,共24分)9.已知y =mxm 2+1的图象是不在第一、二象限的抛物线,则m =-1.10.(舟山中考)把抛物线y =x 2先向右平移2个单位长度,再向上平移3个单位长度,平移后抛物线的解析式是y =(x -2)2+3.11.把二次函数y =x 2+6x +4配方成y =a(x -h)2+k 的形式,得y =(x +3)2-5,它的顶点坐标是(-3,-5). 12.已知点A(x 1,y 1),B(x 2,y 2)为函数y =-2(x -1)2+3图象上的两点,若x 1>x 2>1,则y 1,y 2的大小关系是y 1<y 2. 13.已知点A(x 1,10),B(x 2,10)是函数y =3x 2+18图象上不同的两点,当x =x 1+x 2时,函数值y =18.14.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 与x 轴平行的直线交抛物线y =13x 2于点B 、C ,则BC 的长为6.三、解答题(共44分)15.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出此函数图象与y =12x 2的图象的关系.解:(1)抛物线的开口方向向上,顶点坐标为(-1,4),对称轴为直线x =-1.(2)图象略,将二次函数y =12(x +1)2+4的图象向右平移1个单位长度,再向下平移4个单位长度可得到y =12x 2的图象.16.(10分)如图,已知▱ABCD 的周长为8 cm ,∠B =30°,若边长AB 为x cm .(1)写出▱ABCD 的面积y (cm 2)与x(cm )的函数关系式,并求自变量x 的取值范围; (2)当x 取什么值时,y 的值最大?并求出最大值.解:(1)过A 作AE ⊥BC 于E , ∵∠B =30°,AB =x , ∴AE =12x.又∵▱ABCD 的周长为8 cm , ∴BC =4-x.∴y =AE·BC =12x(4-x),即y =-12x 2+2x(0<x <4).(2)y =-12x 2+2x =-12(x -2)2+2,∵a =-12,∴当x =2时,y 有最大值,其最大值为2.17.(12分)已知二次函数y =2x 2+m.(1)若点(-2,y 1)与(3,y 2)在此二次函数的图象上,则y 1<y 2(填“>”“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD 的顶点C 、D 在x 轴上,A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和.解:∵二次函数y =2x 2+m 的图象经过点(0,-4),∴m =-4. ∵四边形ABCD 为正方形,又∵抛物线和正方形都是轴对称图形,且y 轴为它们的公共对称轴, ∴OD =OC ,S 阴影=S 矩形BCOE . 设点B 的坐标为(n ,2n)(n >0).∵点B 在二次函数y =2x 2-4的图象上, ∴2n =2n 2-4.解得n 1=2,n 2=-1(舍去). ∴B(2,4).∴S 阴影=S 矩形BCOE =2×4=8.18.(12分)已知:如图,二次函数的图象与x 轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.(1)求二次函数的解析式;(2)设此二次函数图象的顶点为C ,与y 轴交点为D ,求四边形ABCD 的面积.解:(1)由抛物线的对称性知,它的对称轴是直线x=-2+42=1.又∵函数的最大值为9,∴抛物线的顶点坐标为(1,9).设抛物线的解析式为y=a(x-1)2+9,将B(4,0)代入,得a=-1. ∴二次函数的解析式是y=-(x-1)2+9,即y=-x2+2x+8.(2)当x=0时,y=8,即抛物线与y轴的交点D的坐标为(0,8).过C作CE⊥x轴于E点.∴S四边形ABCD=S△AOD+S四边形DOEC+S△BCE=12×2×8+12×(8+9)×1+12×3×9=30.22.1.4 二次函数y =ax 2+bx +c 的图象和性质 第1课时 二次函数y =ax 2+bx +c 的图象和性质01 基础题知识点1 二次函数y =ax 2+bx +c 的图象和性质1.(禹州市校级月考)抛物线y =-x 2+4x -4的对称轴是(B)A .直线x =-2B .直线x =2C .直线x =4D .直线x =-42.(怀化中考)二次函数y =3x 2+6x -1的开口方向、顶点坐标分别是(A )A .开口向上,顶点坐标为(-1,-4)B .开口向下,顶点坐标为(1,4)C .开口向上,顶点坐标为(1,4)D .开口向下,顶点坐标为(-1,-4)3.(河南中考)在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是(A )A .x<1B .x>1C .x<-1D .x>-14.(天水中考)二次函数y =ax 2+bx -1(a ≠0)的图象经过点(1,1),则a +b +1的值是(D )A .-3B .-1C .2D .35.(枣庄中考)已知二次函数y =ax 2+bx +c 的x 、y 的部分对应值如下表:x -1 0 1 2 3 y51-1-11则该二次函数图象的对称轴为(D )A .y 轴B .直线x =52C .直线x =2D .直线x =326.(广东中考)二次函数y =ax 2+bx +c(a ≠0)的大致图象如图所示,关于该二次函数,下列说法错误的是(D )A .函数有最小值B .对称轴是直线x =12C .当x<12,y 随x 的增大而减小D .当-1<x<2时,y>07.(兰州中考)点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =-x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是(D )A .y 3>y 2>y 1B .y 3>y 1=y 2C .y 1>y 2>y 3D .y 1=y 2>y 38.(安阳市月考)抛物线y =ax 2+bx +c(a ≠0)过第二、三、四象限,则abc ≤0.9.(周口市期末)如图,已知抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为直线x =2.10.(安阳月考)已知,在同一平面直角坐标系中,正比例函数y =-2x 与二次函数y =-x 2+2x +c 的图象交于点A(-1,m).(1)求m ,c 的值;(2)求二次函数图象的对称轴和顶点坐标.解:(1)∵点A(-1,m)在函数y =-2x 的图象上, ∴m =-2×(-1)=2. ∴点A 坐标为(-1,2). ∵点A 在二次函数图象上,∴-1-2+c =2. 解得c =5.(2)∵二次函数的解析式为y =-x 2+2x +5, ∴y =-x 2+2x +5=-(x -1)2+6.∴对称轴为直线x =1,顶点坐标为(1,6).知识点2 二次函数y =ax 2+bx +c 的图象变换11.(临沂中考)要将抛物线y =x 2+2x +3平移后得到抛物线y =x 2,下列平移方法正确的是(D )A .向左平移1个单位长度,再向上平移2个单位长度B .向左平移1个单位长度,再向下平移2个单位长度C .向右平移1个单位长度,再向上平移2个单位长度D .向右平移1个单位长度,再向下平移2个单位长度12.(洛阳月考)抛物线y =2x 2+3x -1向右平移2个单位长度,再向上平移3个单位长度,得到新的抛物线解析式是y =2(x -54)2+78.02 中档题13.(安阳市月考)把抛物线y =x 2+bx +c 向右平移3个单位长度,再向下平移2个单位长度,得到抛物线y =x 2-3x +5,则有(A)A .b =3,c =7B .b =-9,c =-15C .b =3,c =3D .b =-9,c =2114.(义马市期中)对于二次函数y =-x 2+2x.有下列四个结论:①它的对称轴是直线x =1;②设y 1=-x 21+2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为(C)A .1B .2C .3D .415.(广元中考)设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为(A )A .-1B .1C .-1-52D .-1+5216.如图,抛物线y =ax 2-5ax +4a 与x 轴相交于点A 、B ,且过点C(5,4).(1)求a 的值和该抛物线顶点P 的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把点C(5,4)代入抛物线y =ax 2-5ax +4a ,得25a -25a +4a =4,解得a =1. ∴该二次函数的解析式为y =x 2-5x +4. ∵y =x 2-5x +4=(x -52)2-94,∴顶点坐标为P(52,-94).(2)答案不唯一,如:先向左平移3个单位长度,再向上平移4个单位长度,得到的二次函数解析式为y =(x -52+3)2-94+4=(x +12)2+74,即y =x 2+x +2.03 综合题17.(大连中考)如图,抛物线y =x 2-3x +54与x 轴相交于A 、B 两点,与y 轴相交于点C ,点D 是直线BC 下方抛物线上一点,过点D 作y 轴的平行线,与直线BC 相交于点E.(1)求直线BC 的解析式;(2)当线段DE 的长度最大时,求点D 的坐标.解:(1)令y =x 2-3x +54=0,可得x =12或x =52,∴A(12,0),B(52,0).令x =0,则y =54,∴C(0,54).设直线BC 的解析式为y =kx +b ,则 ⎩⎨⎧52k +b =0,b =54,解得⎩⎨⎧k =-12,b =54.∴直线BC 的解析式为y =-12x +54.(2)设点D(m ,m 2-3m +54),则E(m ,-12m +54).设DE 的长度为d ,∵点D 是直线BC 下方抛物线上一点,则d =-12m +54-(m 2-3m +54)=-m 2+52m=-(m -54)2+2516.∵a =-1<0,∴当m =54时,d 最大=2516.此时D 点的坐标为(54,-1516).第2课时 用待定系数法求二次函数的解析式01 基础题知识点1 利用“三点式”求二次函数的解析式1.若二次函数y =ax 2+bx +c 的x 与y 的部分对应值如下表:x -7 -6 -5 -4 -3 -2 y-27-13-3353则此二次函数的解析式为y =-2x -12x -13.2.(河南中考)已知A(0,3),B(2,3)是抛物线y =-x 2+bx +c 上两点,该抛物线的顶点坐标是(1,4).3.已知二次函数y =ax 2+bx +c ,当x =0时,y =1;当x =-1时,y =6;当x =1时,y =0.求这个二次函数的解析式.解:由题意,得⎩⎨⎧a +b +c =0,a -b +c =6,c =1,解得⎩⎪⎨⎪⎧a =2,b =-3,c =1.∴二次函数的解析式为y =2x 2-3x +1.4.(禹州校级月考)已知抛物线y =-x 2+bx +c 经过点A(3,0),B(-1,0).(1)求抛物线的解析式; (2)求抛物线的顶点坐标.解:(1)∵抛物线y =-x 2+bx +c 经过点A(3,0),B(-1,0), ∴抛物线的解析式为y =-(x -3)(x +1), 即y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4, ∴抛物线的顶点坐标为(1,4).知识点2 利用“顶点式”求二次函数的解析式5.已知某二次函数的图象如图所示,则这个二次函数的解析式为(D )A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8D .y =2(x -1)2-86.已知抛物线的顶点坐标是(3,-1),与y 轴的交点是(0,-4),求这个二次函数的解析式.解:∵抛物线的顶点坐标是(3,-1),∴设二次函数解析式为y =a(x -3)2-1. 又∵图象过(0,-4),∴-4=a(0-3)2-1,解得a =-13.∴二次函数的解析式为y =-13(x -3)2-1.知识点3 利用“交点式”求二次函数的解析式 7.如图所示,抛物线的解析式是(D )A .y =12x 2-x +4B .y =-12x 2-x +4C .y =12x 2+x +4D .y =-12x 2+x +48.(河南校级模拟)如图所示,抛物线y =ax 2+bx +c(a ≠0)过点(-1,0)和点(3,0),则抛物线的顶点横坐标是1.9.已知抛物线与x 轴交于点A(-3,0),对称轴是直线x =-1,且过点(2,4),求抛物线的解析式.解:∵抛物线与x 轴交于点A(-3,0),对称轴是直线x =-1, ∴抛物线与x 轴的另一点坐标为(1,0). 设抛物线的解析式为y =a(x -1)(x +3), 将点(2,4)代入,得4=a(2+3)(2-1),解得a =45.∴抛物线的解析式为y =45(x +3)(x -1),即y =45x 2+85x -125.02 中档题10.(南市期末)如图:抛物线y =ax 2+bx +c(a ≠0)的图象与x 轴的一个交点是(-2,0),顶点是(1,3).下列说法中不正确的是(C)A .抛物线的对称轴是x =1B .抛物线的开口向下C .抛物线与x 轴的另一个交点是(2,0)D .当x =1时,y 有最大值是311.(河南一模)二次函数的图象如图所示,则其解析式为y =-x 2+2x +3.12.已知抛物线y =ax 2+bx +c(a ≠0)的对称轴为直线x =1,且抛物线经过A(-1,0),B(0,-3)两点,则这条抛物线所对应的函数关系式为y =x 2-2x -3.13.(杭州中考)设抛物线y =ax 2+bx +c(a ≠0)过A(0,2),B(4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的解析式为y =18x 2-14x +2或y =-18x 2+34x +2.14.(安阳月考)如图,抛物线y =-x 2+5x +n 经过点A(1,0),与y 轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求点P 的坐标.解:(1)由题意,得-1+5+n =0, 解得n =-4.∴抛物线的解析式为y =-x 2+5x -4. (2)∵y =-x 2+5x -4=-(x -52)2+94,∴抛物线对称轴为直线x =52,顶点坐标为 (52,94).(3)∵点A 的坐标为(1,0),点B 的坐标为(0,-4),∴OA =1,OB =4.在Rt △OAB 中,AB =OA 2+OB 2=17, ①当PB =AB 时,PB =17, ∴OP =PB -OB =17-4.此时点P 的坐标为(0,17-4), ②当PA =AB 时,OP =OB =4, 此时点P 的坐标为(0,4).综上:点P 的坐标为(0,17-4)或(0,4).03 综合题15.(凉山中考)如图,已知抛物线y =ax 2+bx +c(a ≠0)经过A(-1,0)、B(3,0)、C(0,-3)三点,直线l 是抛物线的对称轴.(1)求抛物线的解析式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标.。

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案九年级数学第22章《二次函数》同步练一、选择题1.已知反比例函数y=k/x的图象如图,则二次函数y=2kx^2-4x+k^2的图象大致为()2.(2020•牡丹江)抛物线y=3x^2+2x-1向上平移4个单位长度后的函数解析式为().A。

y=3x^2+2x-5B。

y=3x^2+2x-4C。

y=3x^2+2x+3D。

y=3x^2+2x+43.“一般的,如果二次函数y=ax^2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax^2+bx+c=0有两个不相等的实数根.--苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x^2-2x=(1/x)-2实数根的情况是()A。

有三个实数根B。

有两个实数根C。

有一个实数根D。

无实数根4.已知二次函数y=ax^2+bx+c自变量x与函数值y之间满足下列数量关系:x=2.y=45;x=37.y=374.那么 (a+b+c)/2a的值为()A。

24B。

20C。

10D。

45.对于二次函数y=(x-1)^2+2的图象,下列说法正确的是()A。

开口向下B。

对称轴是x=-1C。

顶点坐标是(1,2)D。

与x轴有两个交点6.(2020•天水)二次函数y=ax^2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是()A。

-3B。

-1C。

2D。

37.将函数y=x^2+6x+7进行配方正确的结果应为()A。

y=(x+3)^2+2B。

y=(x-3)^2+2C。

y=(x+3)^2-2D。

y=(x-3)^2-28.抛物线y=(1/2)(x-2)^2-3的顶点坐标是()A。

(2,-3)B。

(2,3)C。

(-2,3)D。

(-2,-3)二、填空题29.如图,是二次函数y=ax+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,2),则由图象可知,不等式ax+bx+c<0的解集是()。

10.已知函数y=-x^2+ax-(2/a),当-1≤x≤1时的最大值是2,则实数a的值为()。

初中九年级数学上册《二次函数》同步测试 附加答案

初中九年级数学上册《二次函数》同步测试 附加答案

二次函数22.1__二次函数的图象和性质__ 22.1.1 二次函数 [见B 本P12]1.下列函数是二次函数的是( C )A .y =2x +1B .y =-2x +1C .y =x 2+2D .y =x -22.二次函数y =3x 2-2x -4的二次项系数与常数项的和是( B ) A .1 B .-1 C .7 D .-63.自由落体公式h =12gt 2(g 为常量)中,h 与t 之间的关系是( C )A .正比例函数B .一次函数C .二次函数D .以上答案都不对4.已知二次函数y =3(x -2)2+1,当x =3时,y 的值为( A ) A .4 B .-4 C .3 D .-35.如图22-1-1所示,在直径为20 cm 的圆形铁片中,挖去了四个半径都为x cm 的圆,剩余部分的面积为y cm 2,则y 与x 间的函数关系式为( C )图22-1-1A .y =400π-4πx 2B .y =100π-2πx 2C .y =100π-4πx 2D .y =200π-2πx 2【解析】 S 剩余=S 大圆-4S 小圆=π·⎝⎛⎭⎫2022-4πx 2=100π-4πx 2,故选C.6.二次函数y =2x (x -3)的二次项系数与一次项系数的和为( D ) A .2 B .-2 C .-1 D .-4【解析】 y =2x (x -3)=2x 2-6x ,所以二次项系数与一次项系数的和=2+(-6)=-4,故选D.7.下列函数关系式,可以看作二次函数y =ax 2+bx +c (a ≠0)模型的是( D ) A .圆的周长与圆的半径之间的关系B .我国人口年自然增长率为1%,我国人口总数随年份的变化关系C .在一定距离内,汽车行驶速度与行驶时间的关系D .正方体的表面积与棱长的关系【解析】 A 中,圆的周长C 与圆的半径r 是一次函数C =2πr ;B 中,若我国原有人口为a ,x 年后人口数为y =a (1+1%)x 也不属于二次函数;C 中距离一定,速度与时间为反比例函数;只有D 中表面积S 与棱长a 的关系为S =6a 2,符合二次函数关系式.8.二次函数y =ax 2中,当x =-1时,y =8,则a =__8__. 【解析】 将x =-1,y =8代入y =ax 2中,解得a =8.图22-1-29.如图22-1-2所示,长方体的底面是边长为x cm 的正方形,高为6 cm ,请你用含x 的代数式表示这个长方体的侧面展开图的面积S =__24x __,长方体的体积为V =__6x 2__,各边长的和L =__8x +24__,在上面的三个函数中,__V =6x 2__是关于x 的二次函数. 【解析】 长方体的侧面展开图的面积S =4x ×6=24x ;长方体的体积为V =x 2×6=6x 2;各边长的和L =4x ×2+6×4=8x +24,其中,V =6x 2是关于x 的二次函数. 10.若y =x m 是关于x 的二次函数,则(m +2 011)2=__2__013__.【解析】 由y =x m 是关于x 的二次函数,得m =2,所以(m +2 011)2=( 2 013)2=2 013. 11.已知函数y =(a +2)x 2+x -3是关于x 的二次函数,则常数a 的取值范围是__a ≠-2__. 【解析】 ∵二次函数中,二次项系数不能为0,∴a +2≠0,即a ≠-2. 12.已知函数y =(k 2-4)x 2+(k +2)x +3, (1)当k __≠±2__时,它是二次函数; (2)当k __=2__时,它是一次函数.【解析】 根据一次函数、二次函数定义求解. (1)k 2-4≠0,即k ≠±2时,它是二次函数.(2)∵⎩⎪⎨⎪⎧k 2-4=0,k +2≠0, ∴⎩⎪⎨⎪⎧k =±2,k ≠-2. ∴k =2. 13.把8米长的钢筋,焊成一个如图22-1-3所示的框架,使其下部为矩形,上部为半圆形.请你写出钢筋所焊成框架的面积y (平方米)与半圆的半径x (米)之间的函数关系式.图22-1-3解:半圆面积:12πx 2,矩形面积:2x ×12×(8-2x -πx )=8x -(2+π)x 2,∴y =12πx 2+8x -(2+π)x 2,即y =-⎝⎛⎭⎫12π+2x 2+8x .14.若y =(m -1)xm 2+1+mx +3是二次函数,则m 的值是( B )A .1B .-1C .±1D .2【解析】 根据题意得⎩⎪⎨⎪⎧m 2+1=2,m -1≠0,解得⎩⎪⎨⎪⎧m =±1,m ≠1,∴m =-1,故选B. 15.如果函数y =(m -3)xm 2-3m +2+mx +1是二次函数,求m .解:依题意得⎩⎪⎨⎪⎧m 2-3m +2=2,m -3≠0,解得m =0.16.如图22-1-4,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为20 cm ,AC 与MN 在同一条直线上,开始时点A 与点N 重合,让△ABC 以2 cm/s 的速度向左运动,最终点A 与点M 重合,求(1)重叠部分的面积y (cm 2)与时间t (s)之间的函数关系式和自变量的取值范围.(2)当t =1,t =2时,重叠部分的面积.图22-1-4解:(1)∵△ABC 是等腰直角三角形, ∴重叠部分也是等腰直角三角形, 又∵AN =2t ,∴AM =MN -AN =20-2t , ∴MH =AM =20-2t ,∴重叠部分的面积为y =12(20-2t )2=2t 2-40t +200.所以自变量的取值范围为0≤t ≤10. (2)当t =1时,y =162(cm 2) 当t =2时,y =128(cm 2).17.如图22-1-5,小亮家去年建了一个周长为80 m 的矩形养鱼池. (1)如果设矩形的一边长为x m ,那么另一边的长为________m ;(2)如果设矩形的面积为y m 2,那么用x 表示y 的表达式为y =________,化简后为y =________;(3)根据上面得到的表达式填写下表:x 5 10 15 20 25 30 35 y(4)请指出上表中边长x 为何值时,矩形的面积y 最大.图22-1-5【解析】 S 矩形=长×宽,(1)另一边长为12(80-2x )=(40-x )m.解:(1)40-x .(2)x (40-x ),-x 2+40x .(3)175,300,375,400,375,300,175. (4)当x =20时,y 最大为400 m 2.18.如图22-1-6,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,求y 与x 之间的函数关系式.图22-1-6第18题答图解:如图,把△ABC 绕A 逆时针旋转90°到△ADE ,则BC =DE ,AC =AE . 设BC =k ,则AC =AE =4k ,DE =k , 过D 作DF ⊥AC 于F ,则AF =DE =k , CF =3k ,DF =4k ,由勾股定理得CF 2+DF 2=CD 2, ∴(3k )2+(4k )2=x 2, ∴x 2=25k 2,∴k 2=x 225. y =S 四边形ABCD =S 梯形ACDE =12(DE +AC )·AE =12(k +4k )·4k =10k 2=10×x 225=25x 2, 故y 与x 之间的函数关系式为y =25x 2.数学选择题解题技巧1、排除法。

九年级数学二次函数专项训练含答案精选5篇

九年级数学二次函数专项训练含答案精选5篇

九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( ) A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),答:若降价2元,则每天的销售利润是1040元;(2)设每斤“阳光玫瑰葡萄”应降价x元,根据题意得:(30﹣15﹣x)(60+10x)=1100,整理得:x2﹣9x+20=0,解得x1=4,x2=5,∵为了尽快减少库存,∴x=5,此时30﹣x=25,答:每斤“阳光玫瑰葡萄”的售价应降至每斤25元;(3)设水果商每天获得的利润为y元,根据题意得:w=(30﹣x﹣15)(60+10x)=﹣10x2+90x+900=﹣10(x﹣)2+1102.5,∵﹣10<0,∴当x=时,y有最大值,最大值为1102.5,此时30﹣x=30﹣4.5=25.5,答:将商品的销售单价定为25.5元时,商场每天销售该商品获得的利润w最大,最大利润是1102.5元.21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.解:(1)把A(﹣1,0)、B(4,0)代入得:,解得,∴抛物线的解析式为y=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣)2﹣,∴抛物线的对称轴是直线x=,在y=x2﹣x﹣2中,令x=0得y=﹣2,∴C(0,﹣2),①若线段DE与线段BC关于点K成中心对称,C的对应点D在对称轴上,B的对应点在抛物线上,如图:设D(,m),E(n,n2﹣n﹣2),而B(4,0),C(0,﹣2),∵K是DC的中点,也是BE的中点,∴,解得,∴D(,);②若线段DE与线段BC关于点T成中心对称,B的对应点D在对称轴上,C的对应点在抛物线上,如图:设D(,m'),E(n',n'2﹣n'﹣2),而B(4,0),C(0,﹣2),∵T是EC的中点,也是BD的中点,∴,解得,∴D(,);综上所述,落在对称轴上的点的坐标为(,)或(,);(3)由B(4,0),C(0,﹣2)可得直线BC解析式为y=x﹣2,设M(t,t2﹣t﹣2),由M(t,t2﹣t﹣2),C(0,﹣2)可得直线MC解析式为:y=(t﹣)x﹣2,由MN∥BC设直线MN解析式为y=x+p,将M(t,t2﹣t﹣2)代入得:t2﹣t﹣2=t+p,∴p=t2﹣2t﹣2,∴直线MN解析式为y=x+t2﹣2t﹣2,由得或,∴N(﹣t+4,t2﹣t),由B(4,0),N(﹣t+4,t2﹣t)可得直线NB的解析式为y=(﹣t+)x+2t﹣10,解(﹣t+)x+2t﹣10=(t﹣)x﹣2得x=2,∴P的横坐标为2.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2);(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.解:(1)∵﹣5<0,∴y'=﹣y=2,∴点(﹣5,﹣2)的“可控变点”坐标为(﹣5,2),故答案为:(﹣5,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上.∵“可控变点”Q的纵坐标y′是7,∴当﹣x2+16=7时,解得x=3;当x2﹣16=7,解得x=﹣;综上所述“可控变点”Q的横坐标为或3;(3)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数的图象上,∵﹣16≤y'≤16,∴﹣16=﹣x2+16,∴x=,当x=﹣5时,x2﹣16=9,当y'=9时,x=,∴a的取值范围是.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为y=x+4,点M的坐标为(﹣2,﹣2).(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.解:(1)把A(﹣4,0),C(2,6)代入y=x2+bx+c得:,解得,∴抛物线解析式为y=x2+2x;(2)设直线AB解析式为y=mx+n,把A(﹣4,0),C(2,6)代入得:,解得,∴直线AB解析式为y=x+4,∵y=x2+2x=(x+2)2﹣2,∴抛物线的顶点M坐标为(﹣2,﹣2);故答案为:y=x+4,(﹣2,﹣2);(3)∵A(﹣4,0),A,A'关于y轴对称,∴A'(4,0),设直线A'Q解析式为y=m'x+n',把A'(4,0),M(﹣2,﹣2)代入得:,解得,∴直线A'Q解析式为y=x﹣,令x=0得y=﹣,∴Q(0,﹣);(4)存在点N,使以点A,O,C,N为顶点的四边形是平行四边形,理由如下:设N(p,q),又A(﹣4,0),O(0,0),C(2,6),①若AN,OC为对角线,则AN,OC的中点重合,∴,解得,∴N(6,6);②若ON,AC为对角线,则ON,AC的中点重合,∴,解得,∴N(﹣2,6);③若CN,AO为对角线,则CN,AO的中点重合,∴,解得,∴N(﹣6,﹣6).综上所述,N的坐标为(6,6)或(﹣2,6)或(﹣6,﹣6).九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,。

代数综合问题(含答案)

代数综合问题(含答案)

代数综合问题1、二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.2、如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3、如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C (0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.(1)求该二次函数的解析式;(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE 面积S的最大值;(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.4、如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交B,与二次函数的图象交另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.5、如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx 经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.6、如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D 是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.7、如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b 的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.8、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,在平面直角坐标系xOy中,抛物线y=(x﹣m)2﹣m2+m的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.(1)当m=2时,求点B的坐标;(2)求DE的长?(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以A,B,D,P为顶点的四边形是平行四边形?参考答案1、方法一:解:(1)由直线y=﹣x+1可知A(0,1),B(﹣3,),又点(﹣1,4)经过二次函数,根据题意得:,解得:,则二次函数的解析式是:y=﹣﹣x+1;(2)设N(x,﹣x2﹣x+1),则M(x,﹣x+1),P(x,0).∴MN=PN﹣PM=﹣x2﹣x+1﹣(﹣x+1)=﹣x2﹣x=﹣(x+)2+,则当x=﹣时,MN的最大值为;(3)连接MC、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,则MN=BC,且BC=MC,即﹣x2﹣x=,且(﹣x+1)2+(x+3)2=,解x2+3x+2=0,得:x=﹣1或x=﹣2(舍去).故当N(﹣1,4)时,BM和NC互相垂直平分.方法二:(1)略.(2)设N(t,﹣),∴M(t,﹣t+1),∴MN=NY﹣MY=﹣+t﹣1,∴MN=﹣,当t=﹣时,MN有最大值,MN=.(3)若BM与NC相互垂直平分,则四边形BCMN为菱形.∴NC⊥BM且MN=BC=,即﹣=,∴t1=﹣1,t2=﹣2,①t1=﹣1,N(﹣1,4),C(﹣3,0),∴K NC==2,∵K AB=﹣,∴K NC×K AB=﹣1,∴NC⊥BM.②t2=﹣2,N(﹣2,),C(﹣3,0),∴K NC==,K AB=﹣,∴K NC×K AB≠﹣1,此时NC与BM不垂直.∴满足题意的N点坐标只有一个,N(﹣1,4).2、解:(1)依题意得:,解得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).3、解:(1)∵B(1,0),C(0,3),∴OB=1,OC=3.∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.∴OA=OC=3,∴A(﹣3,0),∵点A,B,C在抛物线上,∴,∴,∴二次函数的解析式为y=﹣x2﹣2x+3,(2)设点P(x,0),则PB=1﹣x,∵A(﹣3,0),B(1,0),∴AB=4,∵C(0,3),∴OC=3,∴S△ABC=AB×OC=6,∵PE∥AC,∴△BPE∽△BAC,∴,∴S△PBE=(1﹣x)2,∴S△PCE=S△PBC﹣S△PBE=PB×OC﹣(1﹣x)2=(1﹣x)×3﹣(1﹣x)2=﹣(x+1)2+,当x=﹣1时,S△PCE的最大值为.(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标(﹣1,4),∵△OMQ为等腰三角形,OM为底,∴MQ=OQ,∴=,∴8x2+18x=7=0,∴x=,∴y=或y=,∴Q(,),或(,).4、方法一:解:(1)如图,过点C作CM∥OA交y轴于M.∵AC:BC=3:1,∴=.∵CM∥OA,∴△BCM∽△BAO,∴===,∴OA=4CM=4,∴点A的坐标为(﹣4,0);(2)∵二次函数y=ax2+bx(a<0)的图象过A点(﹣4,0),∴16a﹣4b=0,∴b=4a,∴y=ax2+4ax,对称轴为直线x=﹣2,∴F点坐标为(﹣2,﹣4a).设直线AB的解析式为y=kx+n,将A(﹣4,0)代入,得﹣4k+n=0,∴n=4k,∴直线AB的解析式为y=kx+4k,∴B点坐标为(0,4k),D点坐标为(﹣2,2k),C点坐标为(﹣1,3k).∵C(﹣1,3k)在抛物线y=ax2+4ax上,∴3k=a﹣4a,∴k=﹣a.∵△AED中,∠AED=90°,∴若△FCD与△AED相似,则△FCD是直角三角形,∵∠FDC=∠ADE<90°,∠CFD<90°,∴∠FCD=90°,∴△FCD∽△AED.∵F(﹣2,﹣4a),C(﹣1,3k),D(﹣2,2k),k=﹣a,∴FC2=(﹣1+2)2+(3k+4a)2=1+a2,CD2=(﹣2+1)2+(2k﹣3k)2=1+a2,∴FC=CD,∴△FCD是等腰直角三角形,∴△AED是等腰直角三角形,∴∠DAE=45°,∴∠OBA=45°,∴OB=OA=4,∴4k=4,∴k=1,∴a=﹣1,∴此二次函数的关系式为y=﹣x2﹣4x.方法二:(1)略.(2)∵A(﹣4,0),x=﹣=﹣2,∴b=4a,∴抛物线:y=ax2+4ax,∴C(﹣1,﹣3a),F(﹣2,﹣4a),∵△FCD∽△AED,∠AED=90°,∴AC⊥FC,则K AC×K FC=﹣1,∵A(﹣4,0),C(﹣1,﹣3a),F(﹣2,﹣4a),∴=﹣1,∴a2=1,∴a1=1(舍),a2=﹣1,∴此时抛物线的解析式为:y=﹣x2﹣4x.5、解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点P(a,﹣2a2+6a),则OG=a,PG=﹣2a2+6a.∵S梯形DOGP=(OD+PG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGP=AG•PG=﹣a3+4a2﹣3a,∴S△PDA=S梯形DOGP﹣S△ODA﹣S△AGP=﹣a2+a﹣.∴当a=时,S△PDA的最大值为.∴点P的坐标为(,).6、解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴,解得,,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图1,连接PC、PE,x=﹣=﹣=1,当x=1时,y=4,∴点D的坐标为(1,4),设直线BD的解析式为:y=mx+n,则,解得,,∴直线BD的解析式为y=﹣2x+6,设点P的坐标为(x,﹣2x+6),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y=﹣2×2+6=2,∴点P的坐标为(2,2);(3)设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=,当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(,0),(,0),(,0),(,0).7、解:(1)∵抛物线的对称轴为x=1,∴﹣=1,解得:m=.将点A(2,3)代入y=﹣x2+x+n中,3=﹣1+1+n,解得:n=3,∴抛物线的解析式为y=﹣x2+x+3.(2)∵P、A、B三点共线,PA:PB=3:1,且点A、B位于点P的同侧,∴y A﹣y P=3y B﹣y P,又∵点P为x轴上的点,点A(2,3),∴y B=1.当y=1时,有﹣x2+x+3=1,解得:x1=﹣2,x2=4,∴点B的坐标为(﹣2,1)或(4,1).将点A(2,3)、B(﹣2,1)代入y=kx+b中,,解得:;将点A(2,3)、B(4,1)代入y=kx+b中,,解得:.∴一次函数的解析式y=x+2或y=﹣x+5.(3)假设存在,设点C的坐标为(1,r).∵k>0,∴直线AP的解析式为y=x+2.当y=0时,x+2=0,解得:x=﹣4,∴点P的坐标为(﹣4,0),当x=1时,y=,∴点D的坐标为(1,).令⊙与直线AP的切点为F,与x轴的切点为E,抛物线的对称轴与直线AP的交点为D,连接CF,如图所示.∵∠PFC=∠PEC=90°,∠EPF+∠ECF=∠DCF+∠ECF=180°,∴∠DCF=∠EPF.在Rt△CDF中,tan∠DCF=tan∠EPF=,CD=﹣r,∴CD=CF=|r|=﹣r,解得:r=5﹣10或r=﹣5﹣10.故当k>0时,抛物线的对称轴上存在点C,使得⊙C同时与x轴和直线AP都相切,点C的坐标为(1,5﹣10)或(1,﹣5﹣10).8、解:由抛物线y=﹣x2+2x+3可知,C(0,3),令y=0,则﹣x2+2x+3=0,解得:x=﹣1,x=3,∴A(﹣1,0),B(3,0);∴顶点x=1,y=4,即D(1,4);∴DF=4设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;,解得,∴解析式为;y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴EF=2,∴DE=DF﹣EF=4﹣2=2.(2)设直线MN的解析式为y=kx+b,∵E(1,2),∴2=k+b,∴k=2﹣b,∴直线MN的解析式y=(2﹣b)x+b,∵点M、N的坐标是的解,整理得:x2﹣bx+b﹣3=0,∴x1+x2=b,x1x2=b﹣3;∵|x1﹣x2|====,∴当b=2时,|x1﹣x2|最小值=2,∵b=2时,y=(2﹣b)x+b=2,∴直线MN∥x轴.(3)如图2,∵D(1,4),∴tan∠DOF=4,又∵tan∠α=4,∴∠DOF=∠α,∵∠DOF=∠DAO+∠ADO=∠α,∵∠DAO+∠DPO=∠α,∴∠DPO=∠ADO,∴△ADP∽△AOD,∴AD2=AO•AP,∵AF=2,DF=4,∴AD2=AF2+DF2=20,∴OP=19,同理,当点P在原点左侧,OP=17.∴P1(19,0),P2(﹣17,0).9、解:(1)当m=2时,y=(x﹣2)2+1,把x=0代入y=(x﹣2)2+1,得:y=2,∴点B的坐标为(0,2).(2)延长EA,交y轴于点F,∵AD=AC,∠AFC=∠AED=90°,∠CAF=∠DAE,∴△AFC≌△AED,∴AF=AE,∵点A(m,﹣m2+m),点B(0,m),∴AF=AE=|m|,BF=m﹣(﹣m2+m)=m2,∵∠ABF=90°﹣∠BAF=∠DAE,∠AFB=∠DEA=90°,∴△ABF∽△DAE,∴=,即:=,∴DE=4.(3)①∵点A的坐标为(m,﹣m2+m),∴点D的坐标为(2m,﹣m2+m+4),∴x=2m,y=﹣m2+m+4,∴y=﹣•++4,∴所求函数的解析式为:y=﹣x2+x+4,②作PQ⊥DE于点Q,则△DPQ≌△BAF,(Ⅰ)当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:(﹣m2+m+4)﹣(m2)=﹣m2+m+4,把P(3m,﹣m2+m+4)的坐标代入y=﹣x2+x+4得:﹣m2+m+4=﹣×(3m)2+×(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8.(Ⅰ)当四边形ABPD为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:(﹣m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=﹣x2+x+4得:m+4=﹣m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=﹣8,综上所述:m的值为8或﹣8.。

初三数学同步练习及代数综合测试题附参考答案

初三数学同步练习及代数综合测试题附参考答案

初三数学同步练习及代数综合测试题附参考答案初三数学同步练习之代数综合测试题汇编2021石景山1月期末24如图,二次函数的图象与一次函数的图象交于,两点. C为二次函数图象的顶点.1求二次函数的解析式;2定义函数f:当自变量x任取一值时,x对应的函数值分别为y1或y2,若y1y2,函数f的函数值等于y1、y2中的较小值;若y1=y2,函数f的函数值等于y1或y2. 当直线k 0与函数f的图象只有两个交点时,求的值.24. 解:1设抛物线解析式为,由抛物线过点,可得2分2可得直线k 0与函数f的图象只有两个交点共有三种情况:①直线与直线:平行,此时;3分②直线过点,此时; 4分③直线与二次函数的图象只有一个交点,此时有得,由可得.5分综上:,,2021西城1月期末8若抛物线m是常数与直线有两个交点,且这两个交点分别在抛物线对称轴的两侧,则的取值范围是A.B.C.D.23.已知:二次函数m为常数.1若这个二次函数的图象与x轴只有一个公共点A,且A点在x轴的正半轴上.①求m的值;②四边形AOBC是正方形,且点B在y轴的负半轴上,现将这个二次函数的图象平移,使平移后的函数图象恰好经过B,C两点,求平移后的图象对应的函数解析式;2 当02时,求函数的最小值用含m的代数式表示.23.解:1①∵ 二次函数的图象与x轴只有一个公共点A,.1分整理,得.解得,,.又点A在x轴的正半轴上,.m=4.2分②由①得点A的坐标为.∵ 四边形AOBC是正方形,点B在y轴的负半轴上,点B的坐标为,点C的坐标为.3分设平移后的图象对应的函数解析式为b,c为常数.解得平移后的图象对应的函数解析式为.4分2函数的图象是顶点为,且开口向上的抛物线.分三种情况:ⅰ当,即时,函数在02内y随x的增大而增大,此时函数的最小值为;ⅱ当02,即04时,函数的最小值为;ⅲ当,即时,函数在02内y随x的增大而减小,此时函数的最小值为.综上,当时,函数的最小值为;当时,函数的最小值为;当时,函数的最小值为.7分2021海淀1月期末23已知抛物线.1求抛物线与轴的交点坐标;2若抛物线与轴的两个交点之间的距离为2,求的值;3若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.23. 本小题满分7分解:1令,则.∵,解方程,得 .,.抛物线与x轴的交点坐标为1,0,,0. 2分2 ∵, .由题意可知,. 3分[来源:ZXXK]解得,.经检验是方程的解且符合题意..4分3∵一次函数的图象与抛物线始终只有一个公共点,方程有两个相等的实数根.整理该方程,得,,解得 . 6分一次函数的解析式为.7分2021东城1月期末23已知二次函数a, m为常数,且a0.1求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;2设该函数的图象的顶点为C,与x轴交于A,B两点,当△ABC是等腰直角三角形时,求a的值.23. 解:1证明:..1分..2分∵不论a与m为何值,该函数的图象与x轴总有两个公共点...3分24分当y=0时,解得x1 = m,x2 = m + 2.AB=m + 2- m = 2. ..5分当△ABC是等腰直角三角形时,可求出AB边上高等于1... ..7分2021昌平1月期末24已知二次函数y = x2 kx + k 1 k2.1求证:抛物线y = x2 kx + k - 1 k2与x轴必有两个交点;2抛物线与x轴交于A、B两点点A在点B的左侧,与y轴交于点C,若,求抛物线的表达式;3以2中的抛物线上一点Pm,n为圆心,1为半径作圆,直接写出:当m取何值时,x 轴与相离、相切、相交.24.1证明:∵, 1分又∵,.即.抛物线y = x2 kx + k - 1与x轴必有两个交点. 2分2 解:∵抛物线y = x2 kx + k - 1与x轴交于A、B两点,令,有.解得:. 3分∵,点A在点B的左侧,.∵抛物线与y轴交于点C,. 4分∵在Rt中, ,, 解得.抛物线的表达式为. 5分3解:当或时,x轴与相离. 6分当或或时,x轴与相切. 7分当或时,x轴与相交. 8分2021门头沟1月期末23已知抛物线的顶点在x轴上,且与y轴交于A点. 直线经过A、B两点,点B的坐标为3,4.1求抛物线的解析式,并判断点B是否在抛物线上;2如果点B在抛物线上,P为线段AB上的一个动点点P与A、B不重合,过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长为h ,点P的.横坐标为x.当x为何值时,h取得最大值,求出这时的h值.23.1∵抛物线的顶点在x轴上,.b=2 . 1分抛物线的解析式为或 .2分将B3,4代入,左=右,[来源:ZXXK]点B在抛物线上.将B3,4代入,左右,点B不在抛物线上.3分2∵A点坐标为0 ,1,点B坐标为3,4,直线过A、B两点. 4分.∵点B在抛物线上.设P、E两点的纵坐标分别为yP和yE .PE=h=yP-yE=x+1-x2-2x+1=-x2+3x .5分即h=x2+3x 0当时,h有最大值 6分最大值为 7分2021延庆1月期末23 在平面直角坐标系中,抛物线与x轴的交点分别为原点O和点A,点B4,n在这条抛物线上.1求B点的坐标;2将此抛物线的图象向上平移个单位,求平移后的图象的解析式;3在2的条件下,将平移后的二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象有两个公共点时,的取值范围.23.解:1抛物线过原点=01分∵m12分3分∵点B4,n在这条抛物线上n=4B4,4 4分2将此抛物线的图象向上平移个单位,平移后的图象的解析式;5分3的取值范围是:或 7分感谢您的阅读,祝您生活愉快。

最新九年级上册数学二次函数练习题及答案优秀名师资料

最新九年级上册数学二次函数练习题及答案优秀名师资料

九年级上册数学二次函数练习题及答案精品文档九年级上册数学二次函数练习题及答案一,选择题2+3的图象的顶点坐标是A,B, C,D,.下列函数中,y随x的增大而减小的是 A,y=2x B,y=-2x+ C,y=-23X3,把二次函数y=x-2x-1配方成顶点式为22D,y=-x+2x-12A,y= B,y=-2C,y=+1 D,y=-24,二次函数y=x2+bx+c的图象上有两点和,则此抛物线的对称轴是直线 A,x= B,x=3C,x=- D,x=-15,二次函数y=2x2的图象向右平移3个单位,得到的新图象的函数解析式是A,y=2x2+B,y=2x2-3C,y= D,y=26,小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下列信息:1,a 7,正方形的面积S与边长t的函数图象大致是SS1 / 16精品文档AB C D-38,下列图形中,阴影部分面积相等的是求a,b,c的值,并填表;求二次函数y= ax2+bx+c图象的顶点坐标与对称轴。

218,已知二次函数y= x-2x。

画出该二次函数的图象,并标出图象与x轴的交点的横坐标; 观察图象,x在什么范围内取值时,y>0,219,如图,二次函数y= ax+bx+c的图象与x轴交于a,b两点,其中点A,点C,点D都在抛物线上,M为抛物线的顶点。

求抛物线的函数解析式;求直线CM的解析式;求?MCB的面积。

20,如图,某大桥横截面的三个桥拱都呈抛物线,两小桥拱的形状大小都相同。

处于正常水位时,大桥拱水面宽度AB等于20米,顶点M距水面6米,小桥拱顶点N距水面4.5米。

当水位上涨刚好淹没小桥拱时,利用图中的平面直角坐标系,求此时大桥拱的水面宽度EF。

21,某汽车城销售某种型号的汽车,每辆进货价为25万元。

市场调研表明:当销售价为29万元时,平均每周能2 / 16精品文档售出8辆;而当销售价每降低0.5万元时,平均每周能多售出4辆。

设每辆汽车降价x万元,每辆汽车的销售利润为y万元。

中考数学二次函数综合练习题附答案解析

中考数学二次函数综合练习题附答案解析

中考数学二次函数综合练习题附答案解析一、二次函数1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC .(1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 【解析】试题分析: (1)利用待定系数法求二次函数的解析式;(2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC V V 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L , ∵直线BC 经过B (4,0),C (0,3),设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩ 解得:343k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +, ∵PE ⊥x 轴,PE ∥OC ,∴∠BDE=∠BCO ,∵∠BDE=∠PDF ,∴∠PDF=∠BCO ,∵∠PFD=∠BOC=90°,∴△PFD ∽△BOC , ∴=PED PD BOC BCV V 的周长的周长, 由(1)得:OC=3,OB=4,BC=5,故△BOC 的周长=12, ∴2334125m m L -+=, 即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD ,∴∠PCQ=∠CPD ,∴∠PCD=∠CPD ,∴CD=PD ,∴CD=DP=PQ=QC ,∴四边形CDPQ 是菱形,过D 作DG ⊥y 轴于点G ,设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|, ∵PD=CD ,∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.如图所示,抛物线2y ax bx c =++的顶点为()2,4M --,与x 轴交于A 、B 两点,且()6,0A -,与y 轴交于点C .()1求抛物线的函数解析式;()2求ABC V 的面积;()3能否在抛物线第三象限的图象上找到一点P ,使APC V 的面积最大?若能,请求出点P 的坐标;若不能,请说明理由.【答案】()1 2134y x x =+-;()212;()27334APC x S =-V 当时,有最大值,点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【解析】【分析】 (1)设顶点式并代入已知点()6,0A -即可;(2)令y=0,求出A 、B 和C 点坐标,运用三角形面积公式计算即可;(3)假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F ,线段PF 的长度即为两函数值之差,将APC V 的面积计算拆分为APF CPF S S +V V 即可.【详解】()1设此函数的解析式为2()y a x h k =++,∵函数图象顶点为()2,4M --,∴2(2)4y a x =+-,又∵函数图象经过点()6,0A -,∴20(62)4a =-+- 解得14a =, ∴此函数的解析式为21(2)44y x =+-,即2134y x x =+-; ()2∵点C 是函数2134y x x =+-的图象与y 轴的交点, ∴点C 的坐标是()0,3-,又当0y =时,有21304y x x =+-=, 解得16x =-,22x =,∴点B 的坐标是()2,0,则11831222ABC S AB OC =⋅=⨯⨯=V ; ()3假设存在这样的点,过点P 作PE x ⊥轴于点E ,交AC 于点F .设(),0E x ,则21,34P x x x ⎛⎫+- ⎪⎝⎭,设直线AC 的解析式为y kx b =+,∵直线AC 过点()6,0A -,()0,3C -,∴603k b b -+=⎧⎨-=⎩,解得123k b ⎧=-⎪⎨⎪=-⎩, ∴直线AC 的解析式为132y x =--, ∴点F 的坐标为1,32F x x ⎛⎫-- ⎪⎝⎭, 则221113332442PF x x x x x ⎛⎫=---+-=-- ⎪⎝⎭, ∴1122APC APF CPF S S S PF AE PF OE =+=⋅+⋅V V V 2221113393276(3)22424244PF OA x x x x x ⎛⎫=⋅=--⨯=--=-++ ⎪⎝⎭, ∴当3x =-时,APC S V 有最大值274, 此时点P 的坐标是153,4P ⎛⎫--⎪⎝⎭. 【点睛】 本题第3问中将所求三角形拆分为两个小三角形进行求解,从而将面积最大的问题转化为PF 最大进行理解.3.如图,在平面直角坐标系xOy 中,A 、B 为x 轴上两点,C 、D 为y 轴上的两点,经 过点A 、C 、B 的抛物线的一部分C 1与经过点A 、D 、B 的抛物线的一部分C 2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C 的坐标为(0,),点M 是抛物线C 2:2y mx 2mx 3m =--(m <0)的顶点.(1)求A 、B 两点的坐标;(2)“蛋线”在第四象限上是否存在一点P ,使得△PBC 的面积最大?若存在,求出△PBC 面积的最大值;若不存在,请说明理由;(3)当△BDM 为直角三角形时,求m 的值.【答案】(1)A (,0)、B (3,0).(2)存在.S △PBC 最大值为2716 (3)2m 2=-或1m =-时,△BDM 为直角三角形. 【解析】【分析】 (1)在2y mx 2mx 3m =--中令y=0,即可得到A 、B 两点的坐标.(2)先用待定系数法得到抛物线C 1的解析式,由S △PBC = S △POC + S △BOP –S △BOC 得到△PBC 面积的表达式,根据二次函数最值原理求出最大值.(3)先表示出DM 2,BD 2,MB 2,再分两种情况:①∠BMD=90°时;②∠BDM=90°时,讨论即可求得m 的值.【详解】解:(1)令y=0,则2mx 2mx 3m 0--=,∵m <0,∴2x 2x 30--=,解得:1x 1=-,2x 3=.∴A (,0)、B (3,0).(2)存在.理由如下:∵设抛物线C 1的表达式为()()y a x 1x 3=+-(a 0≠),把C (0,32-)代入可得,12a =. ∴C1的表达式为:()()1y x 1x 32=+-,即213y x x 22=--. 设P (p ,213p p 22--), ∴ S △PBC = S △POC + S △BOP –S △BOC =23327p 4216--+(). ∵3a 4=-<0,∴当3p 2=时,S △PBC 最大值为2716. (3)由C 2可知: B (3,0),D (0,3m -),M (1,4m -),∴BD 2=29m 9+,BM 2=216m 4+,DM 2=2m 1+.∵∠MBD<90°, ∴讨论∠BMD=90°和∠BDM=90°两种情况:当∠BMD=90°时,BM 2+ DM 2= BD 2,即216m 4++2m 1+=29m 9+,解得:12m =22m =(舍去). 当∠BDM=90°时,BD 2+ DM 2= BM 2,即29m 9++2m 1+=216m 4+,解得:1m 1=-,2m 1=(舍去) .综上所述,2m2=-或1m=-时,△BDM为直角三角形.4.如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+n与x轴、y轴分别交于B、C两点,抛物线y=ax2+bx+3(a≠0)过C、B两点,交x轴于另一点A,连接AC,且tan∠CAO=3.(1)求抛物线的解析式;(2)若点P是射线CB上一点,过点P作x轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出d与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)在(2)的条件下,当点P在线段BC上时,设PH=e,已知d,e是以y为未知数的一元二次方程:y2-(m+3)y+14(5m2-2m+13)="0" (m为常数)的两个实数根,点M在抛物线上,连接MQ、MH、PM,且.MP平分∠QMH,求出t值及点M的坐标.【答案】(1) y=-x2+2x+3;(2)223(03){3(3)d t t td t t t=-+<<=->;(3)t=1,2,2)和(12,2).【解析】【分析】(1)当x=0时代入抛物线y=ax2+bx+3(a≠0)就可以求出y=3而得出C的坐标,就可以得出直线的解析式,就可以求出B的坐标,在直角三角形AOC中,由三角形函数值就可以求出OA的值,得出A的坐标,再由待定系数法建立二元一次方程组求出其解就可以得出结论;(2)分两种情况讨论,当点P在线段CB上时,和如图3点P在射线BN上时,就有P点的坐标为(t,-t+3),Q点的坐标为(t,-t2+2t+3),就可以得出d与t之间的函数关系式而得出结论;(3)根据根的判别式就可以求出m的值,就可以求出方程的解而求得PQ和PH的值,延长MP至L,使LP=MP,连接LQ、LH,如图2,延长MP至L,使LP=MP,连接LQ、LH,就可以得出四边形LQMH是平行四边形,进而得出四边形LQMH是菱形,由菱形的性质就可以求出结论.【详解】(1)当x=0,则y=-x+n=0+n=n ,y=ax 2+bx+3=3,∴OC=3=n .当y=0,∴-x+3=0,x=3=OB ,∴B (3,0).在△AOC 中,∠AOC =90°,tan ∠CAO=33OC OA OA==, ∴OA=1,∴A (-1,0).将A (-1,0),B (3,0)代入y=ax2+bx+3,得 9330{30a b a b ++=-+=, 解得:1{2a b =-= ∴抛物线的解析式:y=-x 2+2x+3;(2) 如图1,∵P 点的横坐标为t 且PQ 垂直于x 轴 ∴P 点的坐标为(t ,-t+3),Q 点的坐标为(t ,-t 2+2t+3).∴PQ=|(-t+3)-(-t 2+2t+3)|="|" t 2-3t |∴223(03){3(3)d t t t d t t t =-+<<=->; ∵d ,e 是y 2-(m+3)y+14(5m 2-2m+13)=0(m 为常数)的两个实数根, ∴△≥0,即△=(m+3)2-4×14(5m 2-2m+13)≥0 整理得:△= -4(m -1)2≥0,∵-4(m -1)2≤0,∴△=0,m=1,∴ PQ 与PH 是y 2-4y+4=0的两个实数根,解得y 1=y 2=2∴ PQ=PH=2,∴-t+3=2,∴t="1,"∴此时Q是抛物线的顶点,延长MP至L,使LP=MP,连接LQ、LH,如图2,∵LP=MP,PQ=PH,∴四边形LQMH是平行四边形,∴LH∥QM,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴LH=MH,∴平行四边形LQMH是菱形,∴PM⊥QH,∴点M的纵坐标与P点纵坐标相同,都是2,∴在y=-x2+2x+3令y=2,得x2-2x-1=0,∴x1=1+2,x2=1-2综上:t值为1,M点坐标为(1+2,2)和(1-2,2).5.抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.【答案】(1)y=x2﹣2x﹣3;(2)C(0,﹣3),D(0,﹣1);(3)P(2,﹣2).【解析】【分析】(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得抛物线解析式.(2)当x=0时可求C点坐标,求出直线AB解析式,当x=0可求D点坐标.(3)由题意可知P点纵坐标为﹣2,代入抛物线解析式可求P点横坐标.【详解】解:(1)把A(﹣1,0)、B(2,﹣3)两点坐标代入y=ax2+bx﹣3可得30 4233 a ba b--=⎧⎨+-=-⎩解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3) 设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入23k b k b -+=⎧⎨+=-⎩解得11k b =-⎧⎨=-⎩∴y =﹣x ﹣1 ∴D (0,﹣1)(3)由C (0,﹣3),D (0,﹣1)可知CD 的垂直平分线经过(0,﹣2) ∴P 点纵坐标为﹣2, ∴x 2﹣2x ﹣3=﹣2解得:x =∵x >0∴x =. ∴P (,﹣2) 【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x =0代入二次函数解析式和一次函数解析式可求图象与y 轴交点坐标,知道点P 纵坐标带入抛物线解析式可求点P 的横坐标.6.函数()2110,>02y x mx x m =-++≥的图象记为1C ,函数()2110,>02y x mx x m =---<的图象记为2C ,其中m 为常数,1C 与2C 合起来的图象记为C .(Ⅰ)若1C 过点()1,1时,求m 的值; (Ⅱ)若2C 的顶点在直线1y =上,求m 的值; (Ⅲ)设C 在42x -≤≤上最高点的纵坐标为0y ,当0392y ≤≤时,求m 的取值范围. 【答案】(Ⅰ)12m =;(Ⅱ)2m =;(Ⅲ)912m ≤≤. 【解析】 【分析】(Ⅰ)将点C 的坐标代入1C 的解析式即可求出m 的值;(Ⅱ)先求出抛物线2C 的顶点坐标,再根据顶点在直线y 1=上得出关于m 的方程,解之即可(Ⅲ)先求出抛物线1C 的顶点坐标,结合(Ⅱ)抛物线2C 的顶点坐标,和x 的取值范围,分三种情形讨论求解即可; 【详解】解:(Ⅰ)将点()1,1代入1C 的解析式,解得1m .2=(Ⅱ)抛物线2C 的顶点坐标为2m m,12⎛⎫-- ⎪⎝⎭, 令2m 112-=,得m 2,=± ∵m>0,∴m 2.=(Ⅲ)∵抛物线1C 的顶点2m P m,12⎛⎫+ ⎪⎝⎭,抛物线2C 的顶点2m Q m,12⎛⎫-- ⎪⎝⎭, 当0m 2<≤时,最高点是抛物线G 1的顶点∴203m y 1922≤=+≤,解得1m 2.≤≤ 当2m 4<≤时,G 1中(2,2m-1)是最高点,0y =2m-1 ∴32≤2m-19≤,解得2m 4.<≤ 当m>4时,G 2中(-4,4m-9)是最高点,0y =4m-9. ∴32≤4m-99≤,解得94m 2<≤. 综上所述,91m 2≤≤即为所求. 【点睛】本题考查二次函数综合题,待定系数法、不等式组等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,利用数形结合的思想解决问题,属于中考压轴题.7.红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的 日销售量(件)与时间(天)的关系如下表: 时间(天) 1 3 6 10 36 … 日销售量(件)9490847624…未来40天内,前20天每天的价格y 1(元/件)与t 时间(天)的函数关系式为:y 1=t+25(1≤t≤20且t 为整数);后20天每天的价格y 2(原/件)与t 时间(天)的函数关系式为:y 2=—t+40(21≤t≤40且t为整数).下面我们来研究这种商品的有关问题.(1)认真分析上表中的数量关系,利用学过的一次函数、二次函数、反比例函数的知识确定一个满足这些数据之间的函数关系式;(2)请预测未来40天中那一天的销售利润最大,最大日销售利润是多少?(3)在实际销售的前20天中该公司决定每销售一件商品就捐赠a元利润(a<4)给希望工程,公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求a的取值范围.【答案】(1)y=﹣2t+96;(2)当t=14时,利润最大,最大利润是578元;(3)3≤a<4.【解析】分析:(1)通过观察表格中的数据日销售量与时间t是均匀减少的,所以确定m与t是一次函数关系,利用待定系数法即可求出函数关系式;(2)根据日销售量、每天的价格及时间t可以列出销售利润W关于t的二次函数,然后利用二次函数的性质即可求出哪一天的日销售利润最大,最大日销售利润是多少;(3)列式表示前20天中每天扣除捐赠后的日销售利润,根据函数的性质求出a的取值范围.详解:(1)设数m=kt+b,有,解得∴m=-2t+96,经检验,其他点的坐标均适合以上析式故所求函数的解析式为m=-2t+96.(2)设日销售利润为P,由P=(-2t+96)=t2-88t+1920=(t-44)2-16,∵21≤t≤40且对称轴为t=44,∴函数P在21≤t≤40上随t的增大而减小,∴当t=21时,P有最大值为(21-44)2-16=529-16=513(元),答:来40天中后20天,第2天的日销售利润最大,最大日销售利润是513元.(3)P1=(-2t+96)=-+(14+2a)t+480-96n,∴对称轴为t=14+2a,∵1≤t≤20,∴14+2a≥20得a≥3时,P1随t的增大而增大,又∵a<4,∴3≤a<4.点睛:解答本题的关键是要分析题意根据实际意义准确的求出解析式,并会根据图示得出所需要的信息.同时注意要根据实际意义准确的找到不等关系,利用不等式组求解.8.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档