从几个生活实例看数学建模及其应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从几个生活实例看数学建模及其应用
[内容摘要] 本文通过几个生活中的事例,并运用数学建模,来分析问题,以便更方便的得出解决问题的方案。

从中通过将数学建模的抽象理论实例化,生动化,我们能够更清楚看出数学在生活中无处不在,无处不用。

[关键词] 数学建模生活数学
数学,作为一门研究现实世界数量关系和空间形式的科学,与生活是息息相关的。

作为用数学方法解决实际问题的第一步,数学建模自然有着与数学相当的意义。

在各种不同的领域中,人们一直在运用数学建模来描绘,刻画某种生活规律或者生活现象,以便找到其中解决问题的最佳方案或得到最佳结论。

例如,运用模拟近似法建模的方法,在社会科学,生物学,医学,经济些学等学科的实践中,来建立微分方程模型。

在这些领域中的一些现象的规律性仍是未知的,或者问题太过复杂,所以在实际应用中总要通过一些简化,近似的模型来与实际情况比对,从而更加容易的得出规律性。

本文通过数学模型在生活中运用的几个例子,来了解,探讨数学模型的相关知识。

一、数学模型的简介
早在学习初等代数的时候,就已经碰到过数学模型了,例如在三个村庄之间建立一个粮仓,使其到三个村子的距离只和最短。

我们可以通过建立方程组以及线性规划来解决该问题。

当然,真实实际问题的数学建模通常要复杂得多,但是建立数学建模的基本内容已经包含在解决这类代数应用题的过程中了。

那就是:根据建立模型的目的和问题的背景作出必要的简化假设;用字母表示待求的未知量;利用相应的物理或其他规律,列出数学式子;求出数学上的解答;用这个答案解释问题;最后用实际现象来验证结果。

一般来说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。

二、数学模型的意义
1)在一般工程技术领域,数学建模仍然大有用武之地。

2)在高新技术领域,数学建模几乎是必不可少的工具。

3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。

三、数学建模实例
例1、某饲养场每天投入6元资金用于饲养、设备、人力,估计可使一头60kg重的生猪每天增重2.5kg。

目前生猪出售的市场价格为12元/kg,但是预测每天会降低0.1元,问该场应该什么时候出售这样的生猪?
问题分析投入资金可使生猪体重随时间增长,但售价随时间减少,应该存在一个最佳的出售时机,使获得利润最大。

根据给出的条件,可作出如下的简化假设。

模型假设 每天投入6元资金使生猪的体重每天增加的常数为r (=2.5kg );生猪出售的市场价格每天降低常数g (=0.1元)。

模型建立 给出以下记号:t ~ 时间(天);w ~ 生猪体重; P ~ 单价(元/kg ); R ~ 出售的收入(元);Q ~ 纯利润(元);
C ~ t 天投入的资金(元)。

按照假设,60( 2.5),12(0.1).w rt r p gt g =+==-=又知道,6,R pw C t ==再考虑到纯利润应扣掉以当前价格(12元/kg )出售60kg 生猪的收入,有1260,Q R C =--⨯得到目标函数(纯利润)为
()(12)(60)6720Q t gt rt t =-+-- (1)
其中r=2.5,g=0.1 . 求(0)t ≥使()Q t 最大。

模型求解 这是求二次函数最大值问题,用代数或微分法
容易得到 6303r g t gr
--= (2) 当r=2.5 , g=0.1时,t=40,(36)324Q =,即10天后出售,可得最大纯利润324元。

例2、(渔船出海问题)讨论渔业资源的最大经济效益模型,这里用出海渔船的数量作为控制函数。

实际上,捕鱼业的具体做法是等渔场中鱼量增长到相当大以后,才派出一定数量的渔船进行捕捞。

模型假设 1、渔场鱼量()x t 的自然增长服从logistic 规律,单位时间捕捞量h 与渔船数量()u t 和渔场鱼量()x t 成正比,在捕捞条件下满足 ()()(,)x t f x h u x =- (1)
()(1)x f x rx N
=- (2) (,)()()h u x qu t x t = (3)
r ,N 同前,q 是每只渔船单位时间(如每天)的捕捞率(相对于x 而言)。

()u t 视为连续变量,非整数部分理解为在时间内进行捕捞。

2、初始时刻渔场鱼量
(0),1N x K K =>> (4)
(0)x 很小。

在时间0t τ≤≤内不派鱼船出海。

t τ>以后出海渔船的数量保持常数U ,即()u t 的形式为
{0,0,()t U t u t ττ≤≤>= (5)
而τ,U 为待定参数,捕捞期间()t τ>渔场鱼量x 保持稳定。

3、鱼的出售单价为p ,每只渔船单位时间(天)的运费为c,通货膨胀率或称折扣率因子为δ。

建模与求解 在假设1和3下,单位时间的利润(折合到初始时刻)为()t e ph cu δ--,模型的目标函数是以()u t 为控制函数的长期效益,即归纳为如下的泛函极值问题:
(())[((),())()][()]()t t J u t e ph u t x t cu t dt
e pqx t c u t dt
δδ∞
-∞-=-=-⎰⎰ (6) ()(1)()x x t rx qu t x N
=-- (7)
因为假设2给出了控制函数()u t 的形式(5),所以(6),(7)可转化为函数极值问题。

当0t τ≤≤时0,()u x t =容易由方程(7)在初始条件(4)下解出;当t τ>时,()u U x t =要保持在某一变量不变(假设2),这个常量可由(7)式令0x =得到。

于是有
,01(1)(1),()N t rt K e qU N t r x t ττ≤≤-+-->⎧⎪=⎨⎪⎩
(8) 由()x t 在t τ=时的连续性可以写出
111(1)rt qU K e r -=-+- 由此可解得
1ln[(1)(1)]r K r qU
τ=-- (9)
即()u t 中的两个参数,U τ中只有一个是独立的,以下取U 为独立变量,()U τ由(9)式确定。

将(5)(8)代入(6)式,目标泛函(())J u t 变为U 的函数,记作F (U ),则
()[(1)]t qU F U Ue pqN c dt R δτ∞
-=--⎰
()(1),r U pqNU
qU c e b b r pqN
δδ-=--= (10) 注意到,,,c p q N 的含义,可知无量量纲b 是费用—价格比下界(因为渔场鱼量取最大值N ),显然应该有1,b <否则成本高于售价,渔船不会出海并且由(10)式可是,效益()F U 为正值的条件是10,qU b r -
-> 或记作 (1)0r b U q -<< (11)
用微分法求出在条件(11)下()F U 的最大值点*U 为
*[34r U b q r δ=-+ (12) 将(12)的结果代入(9)式即得
**()U ττ= (13)
**,U τ为渔船出海的最佳数量与时刻。

例3,景区门票定价模型研究(从该例开始,仅从表述上说明可用建模来解决)。

近年来高涨的门票价格已经成为我国旅游经济效益增长的制约因素。

由于缺乏科学合理门票价格制定依据,以至于目前我国景区门票定价比较混乱,影响了景区的管理和经济效益。

那么,我们可以景区门票价格制定的各种影响因素出发,在已有的研究基础上,运用层次分析法,试图构建一种科学合理的景区门票定价模型,则或许可以在未来的研究工作上起到一定的作用。

例4、高速公路安全行车车距数学模型
目前道路交通安全形势日益严峻,在众多的交通事故中,以追尾碰撞与超车侧向碰撞事故这两种类型最为常见。

如果能够在事故发生前提醒驾驶员并采取一定的安全措施,对减少交通事故的发生是非常有用的。

汽车防撞预警系统正是基于提高车辆的主动安全性来实现在行车过程中,给驾驶员提供必要的安全装置。

车辆防碰撞技术正在不断成熟和完善。

防撞系统的应用不仅可以缩短车辆之间的安全行车距离,还可以实现安全超车,保证高速运行车辆的安全性,提高公路运输效率,促进经济的快速发展。

于是,我们可以通过实验或者模拟,来统计各种不同的数据,运用概率模型,统计回归模型以及微分方程模型来综合解决该类问题。

四、本文总结
由上文则可以看清楚的出数学模型及其运用在生活中的重要性,当然由于文本有限则所举得例子少之又少。

数学模型的运用给我们的生活带来了巨大的改变,而且随着科技的发展和社会的进步,数学迅速地向一些新的领域渗透,形成愈来愈多的交叉学科,可以预测在未来的社会发展中数学模型将会占有主导地位。

因此,我们有必要去了解,学习并会运用它。

参考文献:
1、《数学模型》(第四版)作者:姜启源谢金星叶俊
2、景区门票定价模型研究作者:高拴成
3、高速公路安全性车车距数学模型的研究作者:宋震
4、参考网络地址:
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档