高一物理下册 机械能守恒定律单元试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第八章 机械能守恒定律易错题培优(难)
1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )
A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒
B .小环
C 下落到位置S 时,小环C 的机械能一定最大
C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大
D .小环C 到达Q 点时,物体A 与小环C 的动能之比为
cos 2
θ 【答案】BD
【解析】
【分析】
【详解】
A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;
B .小环
C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;
C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;
D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有 cos C T m g θ=
对A 、B 整体,根据平衡条件有
2A T m g =
故
2cos C A m m θ=
在Q 点将小环v
速度分解
可知
cos A v v θ=
根据动能212
k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122
A A
A k kQ
C m v E E m v θ== 选项
D 正确。
故选BD 。
2.如图甲所示,质量为4kg 的物块A 以初速度v 0=6m/s 从左端滑上静止在粗糙水平地面上的木板B 。
已知物块A 与木板B 之间的动摩擦因数为μ1,木板B 与地面之间的动摩擦因数为μ2,A 、B 运动过程的v -t 图像如图乙所示,A 始终未滑离B 。
则( )
A .μ1=0.4,μ2=0.2
B .物块B 的质量为4kg
C .木板的长度至少为3m
D .A 、B 间因摩擦而产生的热量为72J
【答案】BC
【解析】
【分析】
【详解】
A .以物块为研究对象有 11ma mg μ=
由图看出214m/s a =,可得
10.4μ=
将物块和木板看成一个整体,在两者速度一致共同减速时,有
22M m a M m g μ+=+()()
由图看出221m/s a =,可得
20.1μ= 选项A 错误;
B .木板和物块达到共同速度之前的加速度,对木板有
123()mg M m g Ma μμ-+=
由图看出232m/s a =,解得
4kg M =
选项B 正确;
C .由v -t 图看出物块和木板在1s 内的位移差为3m ,物块始终未滑离木板,故木板长度至少为3m ,选项C 正确;
D .A 、B 的相对位移为s =3m ,因此摩擦产热为
148J Q mgs μ==
选项D 错误。
故选BC 。
3.在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有
A .传送带的速度为x T
B .传送带的速度为22gx μ
C .每个工件与传送带间因摩擦而产生的热量为12
mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2
3mtx T
【答案】AD
【解析】
【分析】
【详解】
A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =x T
.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送
带的速度2v gx μ=,根据题目条件无法得出s 与x 的关系.故B 错误;
C .工件与传送带相对滑动的路程为
22
222v v x x v g g gT
μμμ∆=-= 则摩擦产生的热量为
Q =μmg △x =2
2
2mx T 故C 错误;
D .根据能量守恒得,传送带因传送一个工件多消耗的能量
2
2212mx E mv mg x T
μ=+∆= 在时间t 内,传送工件的个数f W E η=
则多消耗的能量 2
3mtx E nE T
'== 故D 正确。
故选AD 。
4.如图甲所示,轻弹簧下端固定在倾角37°的粗糙斜面底端A 处,上端连接质量5kg 的滑块(视为质点),斜面固定在水平面上,弹簧与斜面平行。
将滑块沿斜面拉动到弹簧处于原长位置的O 点,由静止释放到第一次把弹簧压缩到最短的过程中,其加速度a 随位移x 的变化关系如图乙所示,,重力加速度取10m/s 2,sin37°=0.6,cos37°=0.8。
下列说法正确的是 ( )
A .滑块在下滑的过程中,滑块和弹簧组成的系统机械能守恒
B .滑块与斜面间的动摩擦因数为0.1
C 13m/s
D .滑块在最低点时,弹簧的弹性势能为10.4J
【答案】BC
【解析】
【分析】 【详解】
A .滑块在下滑的过程中,除重力和弹簧的弹力做功外,还有摩擦力做功,故滑块和弹簧组成的系统机械能不守恒,故A 错误;
B .刚释放瞬间,弹簧的弹力为零,由图象可知此时加速度为a =5.2m/s 2,根据牛顿第二定律有
sin cos mg mg ma θμθ-=
解得0.1μ=,故B 正确;
C .当x =0.1m 时a =0,则速度最大,此时滑块受到的合力为零,则有
sin cos 0mg kx mg θμθ--=
解得260N /m k =,则弹簧弹力与形变量的关系为
F kx =
当形变量为x =0.1m 时,弹簧弹力F =26N ,则滑块克服弹簧弹力做的功为
11 2.60.1J 1.3J 22
W Fx ==⨯⨯= 从下滑到速度最大,根据动能定理有 ()2m 1sin cos 2mg mg x W mv θμθ--=
解得m 13v =m/s ,故C 正确; D .滑块滑到最低点时,加速度为25.2m/s a '=-,根据牛顿第二定律可得
sin cos mg mg kx ma θμθ--'=' 解得0.2m x '=,从下滑到最低点过程中,根据动能定理有
()p sin cos 00mg mg x E θμθ'--=-
解得E p =5.2J ,故D 错误。
故选BC 。
5.如图所示,物块套在固定竖直杆上,用轻绳连接后跨过定滑轮与小球相连。
开始时物块与定滑轮等高。
已知物块的质量13m kg =,球的质量25m kg =,杆与滑轮间的距离d =2m ,重力加速度g =10m/s 2,轻绳和杆足够长,不计一切摩擦,不计空气阻力。
现将物块由静止释放,在物块向下运动的过程中( )
A 53/s
B 33/s
C .物块下降的最大距离为3m
D .小球上升的最大距离为2.25m
【答案】AD
【解析】
【分析】
【详解】 AB .当物块所受的合外力为0时,物块运动的速度最大,此时,小球所受合外力也为0,则有绳的张力为小球的重力,有
250N T m g ==
对物块作受力分析,由受力平衡可知
1cos T m g θ=
对物块速度v 沿绳子的方向和垂直绳的方向分解,则沿绳方向的分速度即为小球的速度,设为v 1,则有
1cos v v θ=
对物块和小球组成的系统,由机械能守恒定律可知
221212111()tan sin 22
d d m g
m g d m v m v θθ=-++ 代入数据可得 3m/s 3v =
,13m/s v = 故A 正确,B 错误;
CD .设物块下落的最大高度为h ,此时小球上升的最大距离为h 1,则有
221h h d d =+
对物块和小球组成的系统,由机械能守恒定律可得
121m gh m gh =
联立解得
3.75m h =,1 2.25m h =
故C 错误,D 正确。
故选AD 。
【点睛】
物块与小球具有速度关联,注意物块沿绳方向的分速度大小等于小球的速度大小。
6.一辆汽车在平直的公路上由静止启动,先保持加速度不变,达到额定功率后保持额定功率不变继续行驶。
汽车所受阻力恒定,下列关于汽车运动全过程的速度、加速度、牵引力、功率的大小随时间变化的图像可能正确的是( )
A .
B .
C .
D .
【答案】AD
【解析】
【分析】
【详解】
A .汽车以恒定加速度启动,可分为三个阶段:第一个阶段,匀加速直线运动,在v t -图像中是一条通过原点的直线;第二个阶段,作加速度越来越小的加速运动;第三阶段,以最大速度作匀速直线运动,故A 正确;
B .汽车刚开始做匀加速,加速度恒定,当汽车匀加速到额定功率后,速度继续增大时,牵引力减小,加速度减小,速度继续增大,这一过程加速度减小,但加速度的变化是越来越慢,而不是变化越来越快,故B 错误;
C .0~t 1,汽车做匀加速直线运动,牵引力不变,到t 2时以最大的速度做匀速运动,此时有牵引力等于阻力,而不是为零,故C 错误;
D .0~t 1,汽车做匀加速直线运动,牵引力不变,由P Fv =可知
()()P ma f v ma f at =+=+
即P 与v 成正比,到t 1时刻功率达到额定功率,此后将保持这一额定功率运行,故D 正确。
故选AD 。
7.如图所示,倾角为的足够长倾斜传送带沿逆时针方向以恒定速率运行,一个小物块无初速度的放在传送带上端,传送带与物块间动摩擦因数tan μθ<,取传送带底端为零势能面,下列描述小物块速度v ,重力势能E P ,动能E k 和机械能E 四个物理量随物块沿传送带运动距离x 的变化趋势中正确的有( )
A .
B .
C .
D .
【答案】BCD
【解析】
【分析】
【详解】
A .小物块无初速度的放在传送带上,先向下加速,最初阶段传送带的速度大于小物体的速度,滑动摩擦力沿传送带向下,根据牛顿第二定律的小物体的加速度
1(sin cos )a g θμθ=+
由
212v a x =
得
12v a x =故v —x 图像应为向x 轴弯曲的一段曲线;
当小物体加速到与传送带的速度相等后,由于tan μθ<,重力沿斜面向下的分力大于滑动摩擦力,小物体受到的合力沿传送带向下,小物块继续向下加速;小物块的速度大于传送带的速度v 0后,摩擦力沿传送带向上,加速度
2(sin cos )a g θμθ=-
由
22022v v a x -=
解得
2022v v a x =+
故v-x 图像同样为向x 轴弯曲的一段曲线,故A 错误;
B .取传送带底端为零势能面,设初状态重力势能为E P0,重力势能表达式为
p p0sin E E mgx θ=-
E P -x 图像应为斜率为负值的一段直线,故B 正确;
C .小物块加速度为a 1时,根据动能定理有动能的表达式为
k 1E F x ma x ==⋅合
设此过程获得的动能为E k0,E k -x 图像应为斜率为正值、过原点的一段直线;小物块的速度大于传送带速度后加速度为a 2,动能表达式为
k k0k02E E F x E ma x =+=+合
故E k -x 图像应为斜率为正值的一段直线;由于12a a >,斜率变小,故C 正确。
D .小物块加速度为a 1时,摩擦力做正功,机械能增加,机械能表达式为
p0cos E E mg x μθ=+⋅
E-x 图像应为斜率为正值的一段直线,纵轴截距为初状态的机械能E P0;小物体加速到与传送带的速度相等时,机械能增加到最大值E m ,小物块的速度大于传送带速度后,摩擦力做负功,机械能表达式为
m cos E E mg x μθ=-⋅
E-x 图像应为斜率为负值的一段直线,故D 正确。
故选BCD 。
8.如图甲所示,质量为0.1 kg 的小球沿光滑的水平轨道从A 冲入竖直放置在水平地面上、半径为0.9 m 的圆轨道,小球从A 运动到C 的过程中其速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,运动一周后从A 点离开圆轨道,圆轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )
A .图乙中x 的数值为9
B .小球从从A 点离开圆轨道时的动能为1.30J
C .小球从A 到C 合外力对其做的功为-2.75J
D .小球从B 到C 损失了0.475 J 的机械能
【答案】AC
【解析】
【分析】
【详解】
A.图乙中的点(1.8,)x 表示小球到达C 点速度的平方为x ;小球恰能到达最高点C ,则有:
x mg m r
=, 代入数据得:
x =9,
故A 正确
B.物体从A 到C 的过程根据动能定理可知
2211222
f C A W m
g R mv mv --=-, 解得
0.95J f W =
若从C 再次运动到A 克服摩擦力做功和从A 到C 一样,则再次回到A 时的动能为
212 1.30J 2
k A f E mv W =-= , 但由于下降过程中的平均阻力小于上升过程中的平均阻力,所以再次回到A 点时的动能大于1.30J ,故B 错误
C. 根据动能定理可知小球从A 到C 合外力对其做的功为
2211 2.75J 22
C A W mv mv =-=- 故C 正确
D.根据功能关系可知小球从A 到C 损失的机械能为
0.95J f W =,
若摩擦力做功恒定,则从小球从B 到C 损失了0.475 J 的机械能,但由于从A 到B 的平均摩擦力大于从B 到C 的平均摩擦力,所以从B 到C 损失的机械能小于0.475 J ,故D 错误;
9.如图所示,一根劲度系数为k 的轻弹簧竖直固定在水平地面上,轻弹簧上端正上方h 高度处A 点有一个质量为m 的小球。
现让小球由静止开始下落,在B 点接触轻弹簧的上端,在C 点时小球所受的弹力大小等于重力大小,在D 点时小球速度减为零,此后小球向上运动返回到最初点,已知小球在竖直方向上做周期性运动。
若轻弹簧储存的弹性势能与其形变量x 间的关系为212
p E kx =
,不计空气阻力,重力加速度为g ,则下列说法正确的是( )
A .在D 点时小球的加速度大小大于重力加速度g 的大小
B .小球从B 点到D 点的过程中,其速度和加速度均先增大后减小
C .从A 点到C 点小球重力势能的减少量等于小球动能的增加量
D .小球在D 点时弹簧的压缩量为(2)
mg mg mg kh ++
【答案】AD 【解析】 【分析】 【详解】
A .若小球从
B 点由静止释放,则最低点应该在D ′位置且满足B
C =C
D ′,由对称可知,在D ′点的加速度为向上的g ;若小球从A 点释放,则最低点的位置在D 点,则D 点应该在D ′点的下方,则在D 点时小球的加速度大小大于在D ′点的加速度,即大于重力加速度g 的大小,选项A 正确;
B .小球从B 点到D 点的过程中,在B
C 段重力大于弹力,加速度向下且逐渐减小,速度逐渐变大;在C
D 段,重力小于弹力,加速度向上且逐渐变大,速度逐渐减小,即小球从B 点到D 点的过程中,加速度先减小后增加,速度先增加后减小,选项B 错误; C .由能量守恒定律可知,从A 点到C 点小球重力势能的减少量等于小球动能的增加量与弹簧的弹性势能的增加量之和,选项C 错误; D .由能量关系可知从A 到D 满足
21()2
mg h x kx +=
解得小球在D 点时弹簧的压缩量为
(2)
mg mg mg kh x ++=
(另一值舍掉)选项D 正确。
故选AD 。
10.如图甲所示,质量为0.1 kg 的小球从最低点A 冲入竖直放置在水平地面上、半径为0.4 m 的半圆轨道,小球速度的平方与其高度的关系图象如图乙所示.已知小球恰能到达最高点C ,轨道粗糙程度处处相同,空气阻力不计.g 取10 m/s 2,B 为AC 轨道中点.下列说法正确的是( )
A .图乙中x =4 m 2s -2
B .小球从B 到
C 损失了0.125 J 的机械能 C .小球从A 到C 合外力对其做的功为-1.05J
D .小球从C 抛出后,落地点到A 的距离为0.8 m 【答案】ACD 【解析】 【分析】 【详解】
A.当h =0.8 m 时小球在C 点,由于小球恰能到达最高点C ,故
mg =2C
mv R
所以C v gR =
2C v gR ==4 m 2·s -2
故选项A 正确;
B.由已知条件无法计算出小球从B 到C 损失了0.125 J 的机械能,故选项B 错误;
C.小球从A 到C ,由动能定理可知
W 合=
22
1122
C A mv mv -=-1.05 J 故选项C 正确;
D.小球离开C 点后做平抛运动,故
2R =
2
12
gt 落地点到A 的距离x 1=v C t ,解得x 1=0.8 m ,故选项D 正确.
11.如图所示,一小球用不可伸长的细绳(长度为l )连接悬于O 点,小球被刚性小锤打击,打击后迅速离开,两次打击才能达到最高点,且球总在圆弧上运动.两次打击均在最低点A 完成,打击的时间极短.若锤第一次对球做功为1W ,锤第二次对球做功为2W ,则
12:W W 最大值为( ).
A .1∶2
B .1∶3
C .2∶3
D .3∶2
【答案】C 【解析】 【分析】
要使摆球不脱离轨道,则有两种可能,一是摆到和圆心等高处,二是能做完整的圆周运动。
所以第一次敲击后小球摆到摆到和圆心等高处,如果第一次敲击超过了半径R 的高度 那么球就不可能是贴着圆形轨道返回。
第一次敲击后小球到达最高点做完整的圆周运动。
【详解】
要使12:W W 有最大值,则应在1W 最大而2W 最小时。
要使1W 最大,应该是第一次打击后,小球恰能运动到和圆心等高处,所以有
1W mgl =
要使2W 最小,则两次打击后,小球恰能能做完整的圆周运动,在最高点有
2
v mg m l
=
解得v gl =
在最高点具有的机械能2215
222
E mgl mv mgl =+= 所以2123
-2
W gl W E m == 因此12:=2:3W W 故选C 。
【点睛】
抓住球总在圆弧上运动,即摆球不脱离轨道的两种可能,一是摆到和圆心等高处,二是能做完整的圆周运动,这是解决此问题的关键。
12.如图,在竖直平面内有一光滑水平直轨道,与半径为R 的光滑半圆形轨道相切于B 点,一质量为m (可视为质点)的小球从A 点通过B 点进入半径为R 的半圆,恰好能通 过轨道的最高点M ,从M 点飞出后落在水平面上,不计空气阻力,则( )
A .小球在 A 点时的速度为 2gR
B .小球到达B 点时对轨道的压力大小为mg
C .小球从B 点到达M 点的过程中合力的冲量大小为6m gR
D .小球运动到与圆心等高处对轨道的压力大小为3mg 【答案】D 【解析】 【分析】 【详解】
A .小球恰好能通过半圆的最高点M ,由重力提供向心力,由牛顿第二定律得
2M
v mg m R
= 解得
M v 由A 到M ,由动能定理得
22M A 11222
mg R mv mv -⋅=
- 解得
A v 故A 错误;
B .由A 到B ,速度不变
B A v v =在B 点时,对B 点进行受力分析重力提供向心力,由牛顿第二定律得
2
B
N v F mg m R
-=
所以
2
2B
=+=6N v
F mg m mg m
mg R
R
+=
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==6N F F mg 压
故B 错误;
C .小球在B 点时速度向右,大小为B v =,在M 点时,速度向左,大小为
M v =B 点到达M 点的过程中,取向右为正,合力的冲量为动量的变化
=M B I mv mv --=-
故C 错误;
D .小球运动到与圆心等高处时,由动能定理知
22A 1122
mg R mv mv -⋅=
- 在那一点,弹力提供向心力
2
3mv F mg R
==
由牛顿第三定律得,小球到达B 点时对轨道的压力大小为
==3F F mg 压
故D 正确; 故选:D 。
13.某汽车在平直公路上以功率P 、速度v 0匀速行驶时,牵引力为F 0.在t 1时刻,司机减小油门,使汽车的功率减为P /2,此后保持该功率继续行驶,t 2时刻,汽车又恢复到匀速运动状态.下面是有关汽车牵引力F 、速度v 在此过程中随时间t 变化的图像,其中正确的是( )
A .
B .
C .
D .
【答案】A 【解析】 【分析】 【详解】
由题,汽车以功率P 、速度v 0匀速行驶时,牵引力与阻力平衡.当司机减小油门,使汽车的功率减为
P
2
时,根据P =Fv 得知,汽车的牵引力突然减小到原来的一半,即为012F F
,而阻力没有变化,则汽车开始做减速运动,由于功率保持为P
2
,随着速度的减小,牵引力逐渐增大,根据牛顿第二定律得知,汽车的加速度逐渐减小,做加速度减小的减速运动;当汽车再次匀速运动时,牵引力与阻力再次平衡,大小为0F ;由P =Fv 得知,此时汽车的速度为原来的一半.
AB .汽车功率变化后,做加速度减小的减速直至匀速;故A 正确,B 错误.
CD .汽车功率变化后,牵引力突然减小到原来的一半,然后牵引力逐渐增大(速度减小的越来越慢,牵引力增加的越来越慢),最终牵引力还原;故CD 错误.
14.小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的2倍,在下落至离地高度h 处,小球的势能是动能的2倍,则h 等于 ( ) A .
9
H B .
29
H
C .
39
H
D .
49
H
【答案】D 【解析】 【分析】
设小球受到的阻力大小恒为f ,小球上升至最高点过程,由动能定理得:
2
0102
mgH fH mv --=-
小球上升至离地高度h 处时速度设为1v ,由动能定理得:
22101122
mgh fh mv mv --=
- 又由题有:2
11 22
mv mgh =
小球上升至最高点后又下降至离地高度h 处时速度设为2v ,此过程由动能定理得:
22
2011222
mgh f H h mv mv ---=
-() 又由题有:2
2122
mv mgh ⨯
= 以上各式联立解得:49
H
h =,选项D 正确,ABC 错误. 【点睛】
在应用动能定理解题时,要灵活选择研究的过程,各个力做功的分析非常重要,本题中要注意上升和下降过程中阻力始终做负功.
15.如图所示,一竖直轻质弹簧固定在水平地面上,其上端放有一质量为m 的小球,小球可视为质点且和弹簧不拴接。
现把小球往下按至A 位置,迅速松手后,弹簧把小球弹起,小球上升至最高位置C ,图中经过位置B 时弹簧正好处于自由状态。
已知B 、A 的高度差为1h ,C 、B 的高度差为2h ,重力加速度为g ,空气阻力忽略不计。
下列说法正确的是( )
A .从A 位置上升到
B 位置的过程中,小球的动能一直增大 B .从A 位置上升到
C 位置的过程中,小球的机械能守恒 C .小球在A 位置时,弹簧的弹性势能等于()12mg h h +
D .小球在A 位置时,弹簧的弹性势能小于()12mg h h + 【答案】C
【分析】 【详解】
A .小球从A 位置上升到
B 位置的过程中,先加速,当弹簧的弹力k x mg ∆=时,合力为零,加速度减小到零,速度达到最大;之后小球继续上升,弹簧的弹力小于重力,小球做减速运动,故小球从A 上升到B 的过程中,动能先增大后减小,选项A 错误; B .从A 运动到B 的过程中,弹簧对小球做正功,小球的机械能增加。
从B 运动到
C 的过程中,只受重力,机械能守恒,选项B 错误;
CD 、根据系统的机械能守恒可知小球在A 位置时,弹簧的弹性势能等于小球由A 到C 位置时增加的重力势能,为
21p E mg h h =+()
选项C 正确,D 错误。
故选C 。