(北师大版)初中数学《用尺规作角》教案(5)
北师大版数学七年级下册《4 用尺规作角》教案4
北师大版数学七年级下册《4 用尺规作角》教案4一. 教材分析《北师大版数学七年级下册》中的《4 用尺规作角》是学生在学习了直线、射线、角的基础知识后,进一步深入学习角的知识。
这一节内容通过讲解尺规作角的方法,使学生掌握角的作图技巧,培养学生的动手能力和几何思维。
教材通过详细的步骤和生动的图示,让学生在实践中掌握知识,提高学习的兴趣和效果。
二. 学情分析学生在学习这一节内容时,已经具备了直线、射线、角的基本概念和一些基本的几何作图方法。
但是,对于尺规作角这一作图技巧,学生可能还比较陌生,需要通过实践来掌握。
同时,学生在学习过程中,可能对一些作图步骤和技巧的理解和应用存在困难,需要教师的引导和讲解。
三. 教学目标1.让学生了解尺规作角的定义和原理,掌握尺规作角的基本方法。
2.培养学生动手操作能力和几何思维,提高学生解决几何问题的能力。
3.通过小组合作和讨论,培养学生的合作意识和交流能力。
四. 教学重难点1.尺规作角的定义和原理的理解。
2.尺规作角的基本方法的掌握。
3.尺规作角在实际问题中的应用。
五. 教学方法采用“引导式教学法”,教师通过提问、引导、讲解、示范等方式,激发学生的思考,引导学生自主探索和学习。
同时,结合“实践式教学法”,让学生通过动手操作,实践尺规作角的方法,加深对知识的理解和记忆。
六. 教学准备1.准备尺规作角的PPT,包括定义、原理、方法、实例等内容。
2.准备尺规作角的练习题,用于巩固所学知识。
3.准备尺规作角的工具,如直尺、圆规等,供学生实践使用。
七. 教学过程1.导入(5分钟)通过提问方式复习直线、射线、角的基本概念,引导学生思考如何用尺规作角。
2.呈现(10分钟)呈现尺规作角的PPT,讲解尺规作角的定义、原理和方法,让学生了解尺规作角的过程。
3.操练(10分钟)学生分组进行尺规作角的实践,教师巡回指导,解答学生的疑问,帮助学生掌握尺规作角的方法。
4.巩固(10分钟)学生独立完成尺规作角的练习题,检验自己对尺规作角的掌握程度。
北师大版数学七年级下册4.4《用尺规作三角形》教案
1.教学重点
-理解并掌握尺规作图的基本方法和步骤,特别是作等边三角形、等腰三角形以及给定两边和夹角的三角形。
-掌握如何使用尺规准确、快速地作出三角形,并能够识别和利用尺规作图中的关键点和线段。
-应用尺规作图解决实际问题,如构造特定长度的线段、角度的平分等。
举例解释:
-重点讲解如何通过给定三边长度作出三角形,强调任意两边之和大于第三边的原理。
其次,在新课讲授环节,我注意到学生在理解尺规作图的基本概念和步骤上存在一定的困难。尤其是圆规的使用方法,需要我在课堂上多次示范和讲解。在以后的教学中,我考虑增加一些互动环节,让学生亲自动手操作,以便更好地理解和掌握尺规作图的技巧。
在实践活动和小组讨论环节,我发现学生们表现得非常积极,他们能够将所学知识应用到解决实际问题中。但是,也有些小组在讨论过程中出现了偏离主题的现象。针对这个问题,我应该在活动开始前明确讨论的主题和目标,并在讨论过程中适时引导,确保讨论的有效性。
-在实际问题中灵活运用尺规作图,解决非标准情况下的几何问题。
举例解释:
-难点在于让学生理解为何仅用直尺和圆规就能作出各种精确图形,可以通过历史背景介绍和实际操作来加深理解。
-针对圆规的使用技巧,难点在于如何让学生掌握圆规在不同情况下的定位和画弧,可以通过反复练习和示范来帮助学生掌握。
-对于非标准情况下的尺规作图,难点在于如何引导学生分析问题,例如在给定两边和夹角时,如何确定第三边的位置。可以通过问题驱动的教学方法,让学生在尝试和讨论中找到解决策略。
2.增加课堂互动,让学生多动手、多思考,提高他们的实践能力和解决问题的能力。
3.对不同水平的学生进行分层教学,关注每个学生的个体差异,提高他们的自信心。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
北师大版七年级数学下册 3.用尺规作三角形教学设计教案
《3.4用尺规作三角形》教案学习目标:1、了解尺规作图的含义及其历史背景.2、会作一个角等于已知角,并了解作法理由.3、在分别给出的两角夹边、两边夹角和三边的条件下,能够利用尺规作三角形.4、作已知线段的垂直平分线,并了解作法理由.5、能结合三角形全等的条件与同伴交流作图过程和结果的合理性.学习重点:基本尺规作图学习难点:作一个角等于已知角,作已知线段的垂直平分线的作法分析过程.学习设计:(一)预习准备(1)预习书86~88页(2)学具:圆规、直尺(3)预习作业:1、已知:a,求作:AB,使AB=a2、已知:∠α求作:∠AOB,使∠AOB=∠αα(二)学习过程:1.作一个三角形与已知三角形全等(1)已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,∠α.求作:ΔABC,使得BC= a,AB=c,∠ABC=∠α.α作法与过程:1.作一条线段BC=a,2.以B为顶点,BC为一边,作角∠DBC=∠a;3.在射线BD上截取线段BA=c;4.连接AC,ΔABC就是所求作的三角形.给出示范和作法,让学生模仿,教师可以在黑板上做一次示范,让学生跟着一起操作,并在画完图后,让学生再自己操作一遍.而在下面的作图中,就让学生小组内讨论、交流,通过集体的力量完成,教师再给以一定的指导.(2)已知三角形的两角及其夹边,求作这个三角形.已知:线段∠α,∠β,线段c.求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c.作法与过程:1.作____________=∠α;2.在射线______上截取线段_________=c;3.以______为顶点,以_________为一边,作∠______=∠β,________交_______于点_______.ΔABC就是所求作的三角形.先让学生独立思考,探索作图的过程,对可以自己作出图形的学生,要求他们在小组内交流,用自己的语言表述作图过程.教师要注意提醒学生在作图过程中,是以哪个点为圆心,什么长度为半径作图.(3)已知三角形的三边,求作这个三角形.已知:线段a,b,c.求作:ΔABC,使得AB=c,AC=b,BC=a.在完成三个作图后,同学们要比较各自所作的三角形,利用重合等直观的方法观察所作的三角形是否全等.在此基础上,利用已经获得的三角形全等的条件来说明大家所作的三角形一定是全等的,即说明作法的合理性.。
《用尺规作角》课件
2023《用尺规作角》课件•课程简介•尺规作角的基本概念•尺规作角的基本方法•尺规作角的实际应用•总结与回顾•本章重点难点•学习建议和拓展阅读目录01课程简介尺规作图是数学几何中的基本技能之一,也是初中数学的重要知识点。
通过学习用尺规作角,学生可以进一步理解角的概念和性质,为后续学习几何打下基础。
课程背景课程目标理解作图的原理和几何证明的方法。
掌握用尺规作角的方法和步骤。
激发学生对数学几何的兴趣和热情。
培养学生对几何图形的观察和推理能力。
02尺规作角的基本概念尺规作角是指使用无刻度的直尺和圆规进行图形绘制的一种方法。
尺规作角是一种精确的几何作图方法,可以用来构造各种几何图形,如线段、角、平行线等。
尺规作角的定义尺规作角的基本规则包括:以给定的两点为端点,使用直尺连接两点;以给定的点为圆心,使用圆规画弧与另一圆心相交;使用直尺连接两个交点。
在使用尺规作角时,必须按照基本规则进行作图,不能随意绘制,以确保所得图形符合几何原理和规律。
尺规作角的基本规则03尺规作角的基本方法总结词准确、直观、简单。
详细描述通过使用直尺和圆规,可以轻松地作出已知角的角平分线。
首先,将已知角用圆规划分为两个相等的部分,然后使用直尺将两个相等部分的角连接起来,得到的就是已知角的角平分线。
作已知角的角平分线总结词快速、准确、易于理解。
详细描述首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。
接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。
最后,连接这两点与已知角的顶点,即可得到已知角的补角。
操作简单、准确、实用性强。
总结词首先,使用圆规量取已知角的大小,然后使用直尺将量取的长度标记下来。
接下来,将标记的点作为圆心,以相同的半径画出一个弧线,这个弧线会与已知角的两边相交于两点。
然后,分别连接这两点与已知角的顶点,即可得到两个等长的线段。
最后,将两条等长的线段分别作为半径,以已知角的顶点为圆心画弧线,这两个弧线相交于一点,这个点就是已知角的余角的顶点。
用尺规作角(课件)七年级数学下册(北师大版)
D C
A/ C/
∵∠EO'F在∠AOB的内部 ∴∠AOB>∠EO'F
探究新知
例2: 已知:∠1. 求作:∠MON,使∠MON=2∠1.
1
探究新知
作法:(1)作射线OM; (2)以点B为圆心,以任意长为半径画弧,交BA于点P,交BC
于点Q; (3)以点O为圆心,以BP长为半径画弧,交OM于点D ;
(4)以点D为圆心,以PQ长为半径画弧,交前面弧于点E ;
(5)过点O作射线OF,得到 ∠MOF=∠1.
C
F
Q
E
B1
P
A
D
O
M
探究新知
(6)以点B为圆心,以任意长为半径画弧,交BA于点R, 交BC于点S;
(7)以点O为圆心,以BR长为半径画弧,交OF于点G ; (8)以点G为圆心,以SR长为半径画弧,交前面弧于点H ;
随堂练习
2. 画一个钝角∠AOB,然后以O为顶点,以OA为一边,在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( D )
随堂练习
3. 下列作图语句正确的是( D ) A. 过点P作线段AB的中垂线 B. 在线段AB的延长线上取一点C,使AB=BC C. 过直线a,直线b外一点P作直线MN使MN∥a∥b D. 过点P作直线AB的垂线
随堂练习
7.已知∠α,∠β (∠α>∠β),如图。 求作∠AOB,使∠AOB=∠α-∠β.
随堂练习
作法:先作∠AOC,使∠AOC=∠α; 再以OC为一边,作∠COB,使∠COB=∠β ,并且使射线OB落在 ∠AOC的内部,则∠AOB就是所要求作的角.
课堂小结
1.作一个角等于已知角可以归纳为“一线三弧” 先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次
数学知识点七年级数学下册 2.4 用尺规作角教案2(新版)北师大版
数学知识点七年级数学下册 2.4 用尺规作角教案2(新版)北师大版用尺规作角教学目标1、能按照作图语言来完成作图动作,能用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。
2、能利用尺规作角的和、差、倍。
3、在尺规作图过程当中,积累数学活动经验,培养动手能力和逻辑分析能力。
学情分析在学习中学生已经初步理解了作图的步骤,具备了基本的作图能力,并能简单的表达作图过程,为本节课的学习奠定了良好的知识基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些尺规作图的活动,解决了一些简单的问题,感受到尺规作图在数学当中的一定作用,获得了从事尺规作图活动的一些数学活动经验;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
教学重点能按作图语言来完成作图动作,能用尺规作一个角等于已知角。
教学难点作图步骤和作图语言的叙述,及作角的综合应用。
课前准备:1、直尺、圆规。
或电子白板软件中的直尺、圆规。
2、让学生观看用尺规作图的小视频:高斯用尺规作正十七边形。
让学生理解生活中数学无处不在,并提高学生学数学的兴趣,探索数学的奥秘!教学过程一、导入:什么叫尺规作图?1、只用没有刻度的直尺和圆规作图成为尺规作图。
学生观看介绍尺规作图的短片。
2、尺规作图:延长线段BA至C,使AC=2AB。
A B全体学生参与,并可以请学生上白板演示,或者展示个别作品,教师点评。
关注学生的操作能力。
二、重点知识学习:1、作一个角等于已知角。
用尺规作一个角等于已知角教师用白板演示,学生在下面跟着画。
画图过程中可以引导学生理解以下问题:(1)要画出一个新的角,两条边都无法确定吗?学生:不是,可以事先画好一条边。
(2)另一条边一定经过哪个点?O’点。
1(3)要画出另一条边,我们要运用到什么理论?两点确定一条直线(射线)。
(4)另一个点怎么找?用到圆规和直尺。
引导学生理解所运用的理论知识,并且注意语言表达,让学生跟着老师一起说。
《用尺规作角》教案
《用尺规作角》教案第一章:引言1.1 课程背景本节课旨在让学生掌握用尺规作角的基本方法和技巧,培养学生的几何思维和动手能力。
之前,学生已经学习了用直尺和圆规画线段、圆等基本几何图形,本节课将基础上引导学生进一步学习用尺规作角。
1.2 教学目标1. 知识与技能:让学生掌握用尺规作角的方法,能够独立完成作角任务。
2. 过程与方法:通过实践操作,培养学生的动手能力和几何思维。
3. 情感态度与价值观:激发学生对几何学的兴趣,培养学生的耐心和细心。
1.3 教学重点与难点1. 重点:用尺规作角的方法。
2. 难点:如何准确地用尺规作角。
第二章:用尺规作角的工具与基本操作2.1 尺规作角的工具直尺、圆规、铅笔、橡皮。
2.2 基本操作2.2.1 画直线1. 以一点为起点,以直尺为基准,沿着直尺画线。
2. 保持直尺位置不变,移动铅笔,继续画线。
2.2.2 画圆1. 以一点为圆心,以直尺为半径,画一个圆。
2. 保持圆规位置不变,移动铅笔,继续画圆。
2.2.3 作角1. 以一点为起点,以直尺为基准,画一条射线。
2. 在射线上确定一个点,以该点为圆心,以直尺为半径,画一个圆。
3. 以另一点为圆心,以直尺为半径,画一个圆,与第一个圆相交。
4. 连接两个圆的交点与起点,即可得到所要作的角。
第三章:用尺规作角实例讲解3.1 作一个45度角1. 以一点为起点,画一条射线。
2. 在射线上确定一个点,以该点为圆心,以直尺为半径,画一个圆。
3. 以另一点为圆心,以直尺为半径,画一个圆,与第一个圆相交。
4. 连接两个圆的交点与起点,即可得到一个45度角。
3.2 作一个90度角1. 以一点为起点,画一条射线。
2. 在射线上确定一个点,以该点为圆心,以直尺为半径,画一个圆。
3. 以另一点为圆心,以直尺为半径,画一个圆,与第一个圆相交。
4. 连接两个圆的交点与起点,即可得到一个90度角。
第四章:用尺规作角的练习4.1 练习1:作一个30度角按照3.1节的步骤,自己动手作一个30度角。
北师大版数学七年级下册4.4《用尺规作三角形》教学设计
北师大版数学七年级下册4.4《用尺规作三角形》教学设计一. 教材分析《用尺规作三角形》是北师大版数学七年级下册第4章“几何图形的画法”中的一个知识点。
在此之前,学生已经学习了如何用直尺和圆规作线段、圆和角,而本节课将引导学生利用这些基本作图工具来作三角形。
教材通过具体的操作步骤和实例,让学生理解和掌握用尺规作三角形的方法和技巧。
二. 学情分析七年级的学生已经具备了一定的几何图形认知基础,对直尺和圆规的使用也不再陌生。
但他们在作图过程中可能还存在一些问题,如作图精度不高、操作不规范等。
因此,在教学过程中,教师需要关注学生的个体差异,针对不同学生提供适当的指导。
三. 教学目标1.知识与技能目标:让学生掌握用尺规作三角形的基本方法和技巧。
2.过程与方法目标:通过实践活动,培养学生动手操作能力和几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:用尺规作三角形的方法和技巧。
2.难点:如何确保作图的精度和规范性。
五. 教学方法1.引导发现法:教师通过提问、引导,让学生自主发现和总结作图方法。
2.实践操作法:让学生亲自动手操作,提高实践能力。
3.合作交流法:鼓励学生之间相互讨论、合作,共同解决问题。
六. 教学准备1.准备直尺、圆规、白纸等作图工具。
2.设计好相关教学问题和实例。
3.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)教师通过提问:“我们已经学会了用直尺和圆规作线段、圆和角,那么能否用这些工具来作三角形呢?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体展示几种常见的三角形,如等边三角形、等腰三角形等,让学生对三角形有更直观的认识。
3.操练(10分钟)教师提出具体问题,如:“请用直尺和圆规作一个边长为4cm的等边三角形。
”学生动手操作,教师巡回指导。
4.巩固(5分钟)教师提出一些有关三角形的问题,如:“已知一个三角形的两边长分别为3cm和4cm,求第三边的可能长度。
北师大版七年级数学下册《二章 相交线与平行线 4 用尺规作角》公开课教案_1
《用尺规作角》教学设计用尺规作角是北师版初中数学七年级下册第二章第四节内容,本章主要研究两直线的位置关系;本节要求掌握能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学目标【知识与能力目标】能用尺规作一个角等于已知角;理解文字语言与图形语言的转换;【过程与方法目标】经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识;【情感态度价值观目标】使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力.重点难点【教学重点】能用尺规作一个角等于已知角;【教学难点】作图步骤和作图语言的叙述.课前准备【教师准备】课件、学案(每生一份);【学生准备】直尺、圆规、铅笔、练习本.教学方法学生动手操作,小组合作交流,微课辅助教学教学过程一、导入【生活情境】设计平行四边形班级布置照片墙,需要长方形、正方形、圆形、平行四边形等各种图形的纸板. 负责设计的班长遇到了难题,平行四边形如何裁出呢?【数学问题】过一点作已知直线平行线班长找来一个长方形木板,准备在上面截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.过C点画出与AB平行的另一条边CD,你有多少种方法?【问题解决】学生尝试多种方法1.用直尺与三角板画平行线.2.用量角器画一个相等的角.(依据:同位角相等两直线平行)有其他做法,只要合理即给予肯定鼓励.小结:过直线外一点作已知直线的平行线,相当于过这点作一个与已知角相等的同位角.【问题变式】摆脱平行四边形的背景,已知一个角,让你作一个角等于这个角(已知角与所求作的角未必在一个平行四边形内,甚至未必在同一平面内),你还能用哪些方法?【问题升级】尺规作图如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?【温馨提示】“尺”“规”各有什么功能?尺—画直线、射线、线段规—画圆、弧、截取线段二、回顾【提出问题】之前的学习中,曾经用尺规作过什么图形?怎样利用没有刻度的直尺和圆规作一条线段等于已知线段?已知:线段a.求作:线段AB ,使A B=a.【尝试练习】学生独立完成,并简单交流.三、新课【学生探究】如果你只有一个圆规和一把没有刻度的直尺,你能作一个角等于已知角吗?已知:∠AOB.求作:∠A'O'B',使∠A'O'B' =∠AOB.学生先尝试独立思考,然后小组内交流探究.【温馨提示】1.为了作出这个角,显然需要先作_________.2.为了作出另一边,只需要确定_________.3.分析刚才作图的方法,如何用尺规达到同样的效果?【汇报展示】找若干小组代表上台展示,并讲解作图步骤.附:作法与示范:(1)作射线O'A' ;(2)以点O 为圆心,以任意长为半径画弧,交OA 于点C,交OB 于点D;(3)以点O' 为圆心,以OC 为半径画弧,交O'A' 于点C' ;(4)以点C' 为圆心,以CD 长为半径画弧,交前面的弧于点D' ;(5)过点D' 作射线O'B'. ∠A'O'B' 就是所求作的角.【视频总结】【问题解决】用尺规过点C作CD∥AB.四、练习【练习1】已知∠1,∠2,利用尺规作图,比较它们的大小.口述作法、保留作图痕迹.【练习2】已知∠1,∠2. 求作:∠AOB,使得∠AOB= ∠1+∠2.变式:你会作两个角的差吗?【练习3】已知∠AOB,利用尺规作∠A'O'B',使∠A'O'B' =2∠AOB.五、应用打台球时,球的反射角总是等于入射角.反弹之后,红球能被击入右下角的袋中吗?(用尺规作图检验)六、拓展【尺规作图的历史】中国--“规”就是圆规,是用来画圆的工具,在我国古代甲骨文中就有“规”这个字。
北师版初中数学七年级下册教案 第5章 生活中的轴对称 简单的轴对称图形 第3课时角平分线的性质及画法
第3课时角平分线的性质及画法教师备课素材示例●复习导入生活中有许多图形是轴对称图形,验证一个图形是不是轴对称图形可以通过对折的方式.角是轴对称图形吗?如果是,它的对称轴是什么?你是怎么验证的?交流你的想法.【教学与建议】教学:体验角平分线的简易作法,让学生亲自动手折叠一个角,为整节课的学习奠定基础.建议:通过折纸及作图过程,由学生自己去发现结论.●置疑导入不利用工具,请你将一张用纸片做的角分成两个相等的角.你有什么办法?(对折)再打开纸片,看看折痕与这个角有何关系?【教学与建议】教学:让学生动手动脑体验操作将一个角分成两个相等的角,为新课作铺垫.建议:学生自己发现结论,发挥学生的主动作用.尺规作图就是只用没有刻度的直尺和圆规画图.【例1】如图,在△ABC中,BA=BC,∠B=80°,观察图中尺规作图的痕迹,则∠DCE的度数为(B)A.60°B.65°C.70°D.75°(例1题图)(例2题图)【例2】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于12EF的长为半径画弧,两弧交于点P,作射线AP,交CD于点M.若∠ACD=120°,则∠MAB 的度数为__30°__.角平分线上的点到这个角的两边的距离相等.【例3】如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB 于点D.如果AC=3cm,那么AE+DE等于(B)A.2cmB.3cmC.4cmD.5cm(例3题图) (例4题图)【例4】如图,AB ∥CD ,BE 和CE 分别平分∠ABC 和∠DCB,AD 过点E ,且与AB 垂直,垂足为A ,交CD 于点D.若AD =4,则点E 到BC 的距离是__2__.线段垂直平分线上的点到这条线段两个端点的距离相等,角平分线上的点到这个角的两边的距离相等,综合运用这两条性质,选择合适条件和表示方法来解决问题.【例5】如图,已知△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于(C)A .10B .7C .5D .4【例6】如图,已知在Rt △ABC 中,∠A =90°,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线,试说明:BC =2AB.解:因为DE 是BC 的垂直平分线,所以BE =EC =12BC ,DE ⊥BC ,所以∠DEB=90°.因为∠A=90°,所以∠A=∠DEB.又因为BD 是∠ABC 的平分线,所以∠ABD=∠EBD,DA =DE ,所以△ABD≌△EBD(AAS),所以AB =BE ,所以AB =12BC ,即BC =2AB.高效课堂 教学设计1.经历探索角的轴对称性质的过程,理解角平分线的有关性质. 2.利用折叠的方法说明角平分线的性质,并能够利用其解决相应的问题.▲重点探索并理解角平分线的有关性质.▲难点运用角平分线的性质解决问题.◆活动1 创设情境导入新课(课件)如图,在S区有一个集贸市场P,它建在公路与铁路所成角的平分线上,要从P点建两条路,一条到公路,一条到铁路.问题1:怎样修建道路最短?问题2:往哪条路走更近呢?这节课我们来利用角平分线的性质解决这类问题.◆活动2 实践探究交流新知【探究1】角的轴对称性操作:在一张纸上任意画一个角∠AOB,如图,沿角的两边将角剪下,并将这个角对折,使角的两边重合,再打开纸片,看看折痕与这个角有什么关系?【归纳】角是轴对称图形,角平分线所在的直线是它的对称轴.强调:角平分线是一条射线,而角的对称轴是角平分线所在的直线.【探究2】角平分线的性质请同学们按下列步骤完成折叠过程:(1)在一张纸上任意画∠AOB,沿角的两边将角剪下,将这个角对折,使角的两边重合,折痕就是∠AOB的平分线;(2)在∠AOB的平分线上任意取一点C,分别折出过点C且与∠AOB两边垂直的直线,垂足分别为D,E,将∠AOB再次对折,线段CD与CE重合吗?(3)改变点C 的位置,线段CD 和CE 还相等吗?你能说明理由吗? 【归纳】角平分线上的点到这个角的两边的距离相等. 【探究3】尺规作角的平分线下面我们探究用尺规作角的平分线.已知:∠AOB.求作:射线OC ,使∠AOC=∠BOC. 作法:(1)在OA 和OB 上分别截取OD ,OE ,使OD =OE ;(2)分别以D ,E 为圆心,以大于12DE 的长为半径作弧,两弧在∠AOB内交于点C ;(3)作射线OC.OC 就是∠AOB 的平分线(如图). 你能说明这样作的道理吗?理由:连接CE ,CD.因为OD =OE ,CD =CE ,OC =OC , 所以△COD≌△COE(SSS).所以∠COD=∠COE,即OC 是∠AOB 的平分线. ◆活动3 开放训练 应用举例【例1】如图,在Rt △ABC 中,BD 是角平分线,DE ⊥AB ,垂足为E ,DE 与DC 相等吗?为什么?【方法指导】角平分线性质的运用.解:相等.理由:因为BD 平分∠ABC,DE ⊥AB ,DC ⊥BC ,根据角平分线上的点到这个角的两边的距离相等,可知DE =DC.【例2】如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,S △ABC =7,DE =2,AB =4,则AC 的长是()A .6B .5C .4D .3 【方法指导】过点D 作DF⊥AC 于F.因为AD 是△ABC 的角平分线,DE⊥AB ,所以DF =DE =2,所以S △ABC =12×4×2+12AC×2=7,解得AC =3.答案:D【例3】如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P ,作射线AP ,交CD 于点M.若∠ACD=120°,求∠MAB 的度数.【方法指导】根据AB∥CD,∠ACD =120°,得出∠CAB=60°.再根据尺规作图得出AM 是∠CAB 的平分线,即可得出∠MAB 的度数.解:因为AB∥CD,所以∠ACD+∠CAB=180°.又因为∠ACD=120°,所以∠CAB=60°. 由尺规作图知AM 是∠CAB 的平分线,所以∠MAB=12∠C AB =30°.◆活动4 随堂练习 1.用直尺和圆规作一个角的平分线如图所示,则能说明∠AOC=∠BOC 的依据是(A)A.SSS B .ASA C .AASD .角平分线上的点到角两边的距离相等2.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC,交BC 于点D.若AB =10,S △ABD =15,求CD 的长.解:CD=3.3.课本P126随堂练习.◆活动5 课堂小结与作业【学生活动】1.本节课你知道了哪些新知识?2.你还有哪些困惑?【教学说明】梳理本节课的重要方法和知识,加深对角平分线的理解和应用.【作业】课本P127习题5.5中的T1、T2、T3.课堂开始设计了折纸活动,让学生体验角的轴对称性,为学习角平分线的性质做好铺垫.通过学习尺规作图,以达到复习全等和再次验证猜想的目的,从而激发了学生学习数学的欲望和兴趣,使教学目标顺利达成.有效提高了学生对新知识的理解和感悟,教学效果较好.。
北师大版七年级数学下册《2.4 用尺规作角》教案
北师大版七年级数学下册《2.4 用尺规作角》教案一. 教材分析《2.4 用尺规作角》这一节主要让学生掌握用尺规作角的方法和技巧。
通过这一节的学习,学生能够了解尺规作角的原理,并能够运用尺规作任意大小的角。
教材通过具体的操作实例,引导学生探究用尺规作角的方法,培养学生的动手能力和观察能力。
二. 学情分析学生在学习这一节之前,已经学习了用直尺和圆规画线段、圆的基本知识。
但是,对于用尺规作角的方法和技巧,可能还比较陌生。
因此,在教学过程中,需要引导学生通过实际的操作,掌握用尺规作角的方法。
三. 教学目标1.了解尺规作角的原理,掌握用尺规作角的方法和技巧。
2.能够运用尺规作出任意大小的角。
3.培养学生的动手能力和观察能力。
四. 教学重难点1.尺规作角的原理的理解。
2.用尺规作角的方法和技巧的掌握。
五. 教学方法采用“问题引导法”和“实践操作法”。
通过提出问题,引导学生思考和探究,通过实际操作,让学生掌握用尺规作角的方法。
六. 教学准备1.准备直尺、圆规等作图工具。
2.准备相关的教学PPT或黑板。
七. 教学过程1.导入(5分钟)通过提出问题:“我们如何用直尺和圆规作出一个特定的角呢?”引发学生的思考和兴趣。
2.呈现(10分钟)通过PPT或黑板,呈现尺规作角的原理和步骤。
讲解并演示如何用尺规作角。
3.操练(10分钟)学生分组进行实践操作,尝试用尺规作出不同的角。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)学生汇报自己的操作结果,分享制作过程中的经验和问题。
教师点评并解答学生的疑问。
5.拓展(5分钟)引导学生思考:除了用尺规作角,还有没有其他方法可以作出相同的角?让学生进行思考和讨论。
6.小结(5分钟)教师引导学生总结本节课所学的知识,巩固对尺规作角的理解和掌握。
7.家庭作业(5分钟)布置相关的家庭作业,让学生进一步巩固和运用所学知识。
8.板书(5分钟)教师进行板书设计,总结本节课的主要内容和知识点。
以上是整个教学过程的设计,每个环节的时间安排如上所示。
北师大版七年级下册数学2.4《用尺规作角》教案
在上完《用尺规作角》这节课后,我进行了深入的反思。首先,我发现学生们对于尺规作角的基本概念掌握得还不错,他们能够理解并跟随我完成基本的作图步骤。然而,我也注意到在实践操作中,部分学生仍然存在一些困难。
在讲授过程中,我尽量用简洁明了的语言解释尺规作角的步骤,并通过实物演示来加深学生的理解。但我也意识到,对于一些学生来说,将理论知识应用到实际操作中仍然是一个挑战。尤其是在作图的精确性方面,一些学生难以做到精准控制圆规和尺子,导致作图结果不够准确。
2.教学难点
-理解并内化尺规作角的步骤和原理:学生需要理解每个步骤背后的几何原理,这对于初学者来说是一个挑战。
-难点举例:在作一个给定角度的倍数时,学生可能会难以理解如何通过已知的较小角度作出较大角度。
-准确地使用尺规工具:实际操作中,学生可能会遇到以下难点:
-圆规的使用技巧,如如何保持圆规两脚间的距离不变。
3.重点难点解析:在讲授过程中,我会特别强调尺规作角的基本步骤和角度传递规律这两个重点。对于难点部分,我会通过实际操作和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与尺规作角相关的实际问题,如如何用尺规作一个特定角度的倍数。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何使用尺规作出一个60°角。
-难点举例:如何通过已作出的一个角,准确地作出其补角或余角。
在教学过程中,教师应针对这些重点和难点内容,采用直观演示、步骤分解、动手实践、问题引导等多种教学方法,帮助学生透彻理解并掌握尺规作角的核心知识。同时,通过不断的练习和反馈,引导学生逐步克服难点,提高几何作图的能力。
四、教学流程
(一)导入新课(用时5分钟)
(北师大版)初中数学《用尺规作角》说课设计
(北师大版)初中数学《用尺规作角》说课设计
《尺规作图》说课稿
一、教学内容与地位
所讲的内容是《尺规作图》第二课时,它与全等知识相结合,对今后的画图作图有很大的帮助,会利用尺规作图解决实际问题。
二、教学目标
1. 学会用尺规作图作已知角的角平分线和经过一已知点作已知直线的垂线
2. 能用全等方法和类比思想探究画图过程
3.培养作图能力,语言表达能力和逻辑思维能力
三、过程与方法
1.教学过程:先利用三角形的全等引入,然后学生自主探究,教师加
以引导,再进行讲练结合加以巩固,并加以拓展延伸,最后作方法小结。
2.教学方法:引导—探究—类比—归纳
四、教学重点和难点
1.重点:作已知角的角平分线,经过一已知点作已知直线的垂线
2.难点:将几何作图与几何设计综合在一起,解决实际问题的动手作图能力。
五、教学准备
教师准备
预先准备教材、教参
学生准备
教材、同步练习册、作业本、草稿纸、作图工具等
六、教学步骤
教学流程设计
教师指导学生活动
1.引入进入新课. 1.进入学习探究状态.
2.进行引导教学归纳总结. 2.自主练习.
3.总结和指导学生练习. 3.记录相关内容,加强巩固.
教学过程设计
1、复习引入
2、探究新知
3、课时训练
4、小结
5、作业
七、课后反思
本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。
《用尺规作角》教案 (公开课)2022年
用尺规作线段和角教学案例本课时内容的设计意图:本课知识属于“空间与图形〞局部,在学会利用尺规作线段的根底上进一步运用尺规作一个角等于角。
通过这节课的学习,增强学生运用尺规作图的技能。
本课时内容的设计思路:首先展示与本课内容密切联系的问题情境,作为新知的切入点,表达“数学是现实的〞课标精神。
利用情境问题激发学生的探究意识,在探索过程中体会知识的形成过程,将新知自然渗透纳入到学生的知识体系中,在此根底上,引导学生利用所学新知解决问题,从而将数学知识转化为数学技能。
一、创设情境,激趣导入出示课件和图形,提出问题:(1)请学生拿出收集的长方形纸板模型,标出相应的线段AB和点C。
(2)请过点C画出与AB平行的另一条线。
(3)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?学生活动:对于问题(1) (2),学生自主完成;对于问题(3),学生自主探索后,引导学生进行分组讨论,产生质疑。
教师活动:利用实物投影仪展示学生完成的作业,并请学生答复作图过程,针对答复的情况,师生共同给予及时适当的评价。
(设计意图:课前要求学生从生活中寻找一些废弃的长方形纸板模型。
如牙膏盒、玩具盒、各种包装盒等,让学生体验“数学知识来源于现实生活〞,并学会从实际事物中抽象出几何模型。
在问题(3)的讨论中,引发了学生的认知冲突,从而自然导入了新课。
(二)实验探究,归纳总结:∠AOB。
求作:∠A′O′B′,使∠A′O′B′=∠AOB。
学生活动1:学生在教师的示范操作下,利用尺规进行画图实践。
教师活动:教师在黑板上用尺规引导学生一步步进行画图示范,利用实物投影仪展示学生的作业,针对学生的画图情况给予评价。
最后请学生概述自己的画图过程。
学生活动2:利用量角器验证自己所作的角与角是否相等,学生答复自己所验证的结果。
(设计意图:学生在教师的示范下,亲身实践,感受知识的形成过程,在画图操作中培养了学生的动手、动脑、动口的能力。
(三)解决问题,完善结构随堂练习第1题。
北师大版七年级下册第二单元相交线与平行线单元——用尺规作角(知识梳理与考点分类讲解)
北师大版七年级下册第二单元相交线与平行线单元——用尺规作角(知识梳理与考点分类讲解)1.尺规作图:在几何作图中,只用圆规和没有刻度的直尺来作图,称为尺规作图.2.直尺的功能:(1)在两点间连接一条线段;(2)过平面上的两点画直线;(3)作射线、线段或做延长线.3.圆规的功能:(1)以平面上任意一点为圆心,任意长为半径作圆或圆弧;(2)在直线上截取一条线段,使它等于已知线段.特别提醒:1.尺规作图是一种规定了作图工具,且能够有效地减少误差的较精确的作图方法.2.尺规作图是最基本最常见的作图方法,通常称为基本作图.【考点目录】【考点1【考点2】尺规作一个角等于已知角;【考点3】尺规作角的和与差;【考点4】过直线外一点作已知直线的平行线.【考点1】作特殊角;【例1】(2024上·安徽宿州·七年级校联考期末)利用一副三角尺能画出下列度数的角吗?如何画?试试看.(不要写出做法,要保留作图痕迹)(1)150︒.(2)15︒【答案】(1)作图见分析;(2)作图见分析【分析】(1)选用三角尺画一个60︒的角,再在这个角的外部画一个有公共顶点,有一个公共边的90︒的角即可求解;(2)先用三角尺画一个60︒的角,再在这个角的内部画一个有公共顶点、一条公共边的45︒的角即可求解.︒=︒+︒,(1)解:如图,1506090︒=︒-︒,(2)解:如图,156045【变式1】(2020上·福建三明·七年级三明市第三中学校考阶段练习)下列各度数的角,能借助一副三角尺画出的是()A.55°B.65°C.75°D.85°【答案】C【分析】一副三角板,度数有:30 、45 、60 、90 ,根据度数组合,可以得到答案.解:利用一副三角板可以画出75 的角,是45 和30 角的组合故选:C.【点拨】本题考查特殊角的画法,审题清晰是解题关键.【变式2】(2021上·黑龙江哈尔滨·七年级统考期末)用一副三角板不能画出的角是().A.75°B.105°C.110°D.135°【答案】C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。
4.2角(第三课时+尺规作角)+课件+2024—-2025学年北师大版数学七年级上册
量角器量出∠AOB大小,三角尺画出线段
问题二:(2)如果只用尺规,如何解决这个问题?请你试一试,并与同 伴进行交流。
思考1:尺规作图如何使OA与OˊAˊ重合?
OA与OˊAˊ重合,作一条线段等于已知线段
4.2
角
情景导入
问题二:(2)如果只用尺规,如何解决这个问题?请你试一试,并与同
伴进行交流。
思考2:怎么确定另一条射线的位置呢?
4.2
角
情景导入
问题一:作一个角等于已知角,角的大小由什么决定?
角的大小由角两边之间的夹角决定
问题二:们已经知道可以通过移动其中一个角的方法比较两个角的大小。 如何移动一个角呢?比如,如何将图(1)中的∠AOB移动到(2)的位置,使 OA与OˊAˊ重合?
4.2
角
情景导入
问题二:(1)请你用三角尺、量角器、圆规等工具解决这一问题
两点确定一条直线,角端点已经确定,如果能找到一点D'连接 O'D'即可,
思考3:怎么确定D'位置呢?
在图(1)中射线OB上找到一点D,使得OD=O'D' 利用圆规画出圆弧,与∠AOB两边分别交于C和D,两点,CD两 点的距离是确定的
4.2
角
情景导入
问题三:如图,已知∠AOB,用尺规作∠A'O'B',使∠A'O'B'=∠AOB
(2)如何用尺规做一条线段等于已知线段图形?
(3)角比较角的大小的方法?
(4)角平分线的定义
4.2
角
情景导入
制作一个角等于已知角的风筝
在一个晴朗的周末,小明和他的朋友们决定一起去公园放风筝。小明有一个
特别漂亮的风筝,它的形状非常独特,有一个完美的30度角在风筝的尾部。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学目标:
会用尺规作一条线段等于已知线段;作一个角等于已知角,并了解它们在尺规作图中的简单应用。
教学媒体:
圆规、直尺
教学过程:
如图,要在长方形木板上截一个平行的四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB。
(1)请过C点画出与AB平行的另一边。
(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决问题吗?
做一做
利用尺规,作一个角等于已知角
已知:∠AOB
求作:∠A’O’B’,使∠A’O’B’=∠AOB
作法与示范:
P66
随堂练习
Pபைடு நூலகம்7
作业
P68 1