3化学反应过程中的能量变化
化学反应中的能量变化

化学反应中的能量变化化学反应是物质转化的过程,其中伴随着能量的变化。
在化学反应中,物质的分子之间发生碰撞,导致键的形成或断裂,从而引起能量的吸收或释放。
本文将探讨化学反应中的能量变化。
一、热量的释放和吸收在化学反应中,最常见的能量变化形式是热量的释放和吸收。
一些反应会释放出热量,称为放热反应;而有些反应则需要吸收热量,称为吸热反应。
放热反应是指在反应过程中,反应物的化学键断裂,新的化学键形成,从而释放出热量。
这种反应通常伴随着物质的燃烧,如燃烧木材产生的热能。
放热反应可以用来进行加热或供应热能。
吸热反应是指在反应过程中,反应物需要吸收热量才能进行反应。
在这种反应中,化学键的形成需要吸收能量,反应物的温度会下降。
吸热反应常见的例子是物质的融化和蒸发过程,这些过程需要从周围环境中吸收热量。
二、焓变的计算化学反应中的能量变化可以用焓变(ΔH)来表示。
焓变是指在常压条件下,反应物转化为生成物时,伴随的热量变化。
焓变可以通过实验测量得到,也可以通过热力学计算得到。
常见的焓变计算方法有热平衡法和热量计法。
热平衡法是通过将反应进行到达稳定相平衡的方法来测量焓变。
热量计法则是通过测量反应物和生成物的热容和温度差来计算焓变。
焓变的值可以是正数、负数或零。
正数表示反应吸收热量,负数表示反应释放热量,零表示反应无热变化。
焓变的单位通常是焦耳(J)或千焦耳(kJ)。
三、能量图解为了更好地理解化学反应中的能量变化,我们可以绘制能量图解。
能量图解是将化学反应中的起始物质、过渡态和生成物的能量变化表示在坐标轴上。
在能量图解中,反应物的能量通常在图的左侧,而生成物的能量在图的右侧。
反应的起始状态称为起始能量,产物的能量称为终末能量。
通过绘制能量图解,我们可以直观地看到反应的能量变化。
在放热反应的能量图解中,起始能量高于终末能量,表示反应物中的化学键断裂,能量被释放出来。
而吸热反应的能量图解中,起始能量低于终末能量,表示反应物中的化学键形成,能量被吸收。
化学反应中的能量变化:内能焓与热容

化学反应中的能量变化:内能焓与热容化学反应中的能量变化:内能、焓与热容在化学反应中,物质发生变化时伴随着能量的转化和释放。
能量的变化是化学反应中重要的研究内容之一,它揭示了化学反应的动力学特征和热力学规律。
本文将介绍化学反应中的能量变化,重点讨论内能、焓与热容的概念、计算方法和实际应用。
一、内能(U)内能是指物质微观粒子的动能和势能之和,是描述系统热力学状态的重要参量。
化学反应中的内能变化可以通过实验测定或计算得到。
根据能量守恒定律,反应过程中的能量转化可表达为以下方程式:ΔU = Q - W其中,ΔU表示内能变化;Q表示系统与外界间的热量交换;W表示系统与外界间的功交换。
当Q和W都为正值时,系统吸热和做功;当Q和W都为负值时,系统放热和受到外界做功;当Q和W一正一负时,系统既吸热又放热,或既做功又受到外界做功。
内能是一个状态函数,与路径无关,只与起始状态和结束状态有关。
二、焓(H)焓是指在恒压条件下,系统与外界之间进行的热量变化,常用符号H表示。
在化学反应中,若反应为恒压反应,内能变化和焓变之间存在以下关系式:ΔH = ΔU + PΔV其中,ΔH为焓变;ΔU为内能变化;PΔV为压力与体积间的做功。
当ΔH为正值时,化学反应为吸热反应,系统获取热量;当ΔH为负值时,化学反应为放热反应,系统释放热量。
与内能不同,焓是一个状态函数,在化学反应中常用来表示反应的热力学性质。
三、热容(C)热容是指物质吸热或放热时温度变化的量度,常用符号C表示。
热容可分为恒容热容(Cv)和恒压热容(Cp)。
恒容热容指的是在等体积条件下,物质对热量的吸收或释放所引起的温度变化;恒压热容指的是在等压条件下,物质对热量的吸收或释放所引起的温度变化。
热容与物质的性质有关,同一物质在不同的物理状态下具有不同的热容。
热容可用于计算物质的温度变化和热量变化之间的关系,符合以下公式:Q = CΔT其中,Q表示吸热或放热的热量;C表示热容;ΔT表示温度变化。
化学反应中能量变化的原因

化学反应中能量变化的原因
化学反应中能量变化的原因有以下几个方面:
1. 键能变化:在化学反应中,化学键的断裂和形成会导致能量的吸收或释放。
当化学键断裂时,吸收能量,反应物的键能增加;而当化学键形成时,释放能量,生成物的键能增加。
这种键能变化是化学反应中能量变化的主要原因之一。
2. 化学反应的热效应:化学反应的过程中,系统的能量会发生变化,可以通过吸热反应和放热反应来描述。
吸热反应指的是在反应过程中系统吸收了热量,温度升高;放热反应指的是在反应过程中系统释放了热量,温度降低。
这种热效应是由于化学键的形成和断裂引起的能量变化所致。
3. 反应物和生成物之间的化学能差:反应物和生成物之间的化学键能不一样,这导致了在化学反应中能量差的产生。
当反应物的化学能高于生成物时,化学反应会释放能量;反之,化学反应会吸收能量。
总之,化学反应中能量变化是由于化学键的形成和断裂、化学反应的热效应以及反应物和生成物之间的化学能差所引起的。
化学反应过程中的能量变化

化学反应过程中的能量变化化学反应是物质发生变化的过程,而能量则是化学反应中不可忽视的重要因素。
在化学反应中,能量的变化可以是吸热的,也可以是放热的,这取决于反应物和生成物之间的化学键的形成和断裂。
一、吸热反应吸热反应是指在反应过程中吸收了外界的热量,使得反应物的能量增加,生成物的能量也相应增加。
吸热反应的典型例子是燃烧反应,例如燃烧木材时,木材与氧气发生反应,产生二氧化碳和水蒸气,并释放出大量的热能。
在吸热反应中,反应物的化学键被断裂,需要吸收能量,而生成物的化学键被形成,同样需要吸收能量。
这种能量的吸收导致反应物的内能增加,从而使反应物的温度升高。
吸热反应的能量变化可以用化学反应焓变(ΔH)来表示,ΔH为正值。
二、放热反应放热反应是指在反应过程中释放出热量,使得反应物的能量减少,生成物的能量也相应减少。
放热反应的典型例子是酸碱中和反应,例如盐酸与氢氧化钠反应生成氯化钠和水,反应过程中释放出大量的热能。
在放热反应中,反应物的化学键被断裂,释放出能量,而生成物的化学键被形成,同样释放出能量。
这种能量的释放导致反应物的内能减少,从而使反应物的温度降低。
放热反应的能量变化同样可以用化学反应焓变(ΔH)来表示,ΔH为负值。
三、能量守恒定律根据能量守恒定律,能量在化学反应中既不能被创造也不能被破坏,只能从一种形式转化为另一种形式。
在化学反应中,反应物的能量转化为生成物的能量,而反应物与生成物之间的能量差称为反应的焓变。
焓变可以通过实验测量得到,它反映了反应过程中的能量变化。
化学反应的焓变可以是吸热的,也可以是放热的,这取决于反应物与生成物之间的化学键的形成和断裂。
化学反应的焓变还可以用来判断反应的进行程度。
当焓变为正值时,表示反应是吸热反应,反应物的能量高于生成物的能量,反应难以进行;当焓变为负值时,表示反应是放热反应,反应物的能量低于生成物的能量,反应容易进行。
总结:化学反应过程中的能量变化是化学反应的重要特征之一。
化学反应中的能量变化

化学反应中的能量变化化学反应是物质发生变化的过程,它伴随着能量的变化。
在化学反应中,化学键的形成和断裂导致了能量的转化,反应物的化学键被破坏和重组,从而释放或吸收能量。
本文将探讨化学反应中的能量变化,并讨论其在生活和科学领域中的应用。
一、放热反应放热反应是指化学反应释放能量,使周围环境温度升高的过程。
这类反应通常是放热的,也称为放热反应。
常见的放热反应包括燃烧、腐蚀和酸碱中和反应。
例如,燃烧过程中,燃料和氧气反应产生热能,使物体变热。
这种能量释放对于维持生命和工业化生产至关重要。
二、吸热反应吸热反应是指化学反应吸收能量,使周围环境温度降低的过程。
这类反应通常是吸热的,也称为吸热反应。
常见的吸热反应包括融化、蒸发和化学反应中的吸热反应。
例如,冰融化时,吸收周围的热量来提供熔化过程所需的能量。
吸热反应也广泛应用于冷却系统和低温科学研究中。
三、能量变化与化学键的形成和断裂化学反应中的能量变化与化学键的形成和断裂密切相关。
在反应过程中,原有的化学键被破坏,新的化学键被形成。
这个过程需要能量来克服反应物之间的相互作用力,这被称为活化能。
活化能的大小决定了反应的速率。
当新的化学键形成时,能量被释放出来。
这被称为释放能。
释放能的大小取决于反应物的种类和反应条件。
如果释放能大于活化能,反应将会放热;如果释放能小于活化能,反应将会吸热。
四、能量变化的应用能量变化在生活和科学领域中有广泛的应用。
在工业生产中,理解反应的能量变化有助于合理利用能源,改善工艺和提高效率。
例如,通过控制放热反应的温度和时间,可以生产更高效的燃料。
在环境保护方面,了解吸热反应可以帮助我们更好地控制废气处理和温室气体减排。
通过设计能够吸收废气中有害物质的反应器,可以有效净化空气和水。
此外,能量变化的研究对于理解生物体的代谢过程以及药物的合成和分解也非常重要。
通过研究能量变化,科学家可以提高药物的疗效和减少副作用。
总结:在化学反应中,能量的变化是化学反应进行的关键。
化学反应中的能量变化与焓变知识点总结

化学反应中的能量变化与焓变知识点总结化学反应是物质发生变化的过程,不仅涉及到物质结构和性质的改变,还伴随着能量的转化。
本文将介绍化学反应中的能量变化与焓变的相关知识点。
一、能量变化的概念及表达方式能量变化指的是在化学反应中,反应物与生成物之间能量的差异。
通常用△E表示能量变化,△E为正表示反应吸热,即需要外界输入能量;△E为负表示反应放热,即系统释放能量。
二、焓变的概念及计算方法焓变描述的是化学反应过程中的能量变化,常用符号△H表示。
焓变可以通过多种方法计算,包括燃烧方法、反应热法和反应熵法等。
1. 燃烧方法:利用燃烧反应的焓变确定其他反应的焓变。
例如,将某物质燃烧得到水和二氧化碳的焓变已知,可以通过该焓变计算其他化学反应的焓变。
2. 反应热法:实验室中可以通过测量反应前后的温度变化来确定焓变。
根据热容的定义,可以使用公式△H = mc△T计算焓变,其中m 为溶液的质量,c为溶液的热容,△T为温度变化。
3. 反应熵法:根据热力学的第二定律,系统的总熵变△S等于系统的产热△Q除以温度的倒数,即△S = △Q/T。
通过测定反应的熵变,并代入公式△S = △H/T,可以求解焓变。
三、焓变与反应类型的关系化学反应可以分为吸热反应和放热反应。
焓变与反应类型的关系如下:1. 吸热反应:△H为正,表示反应需要吸收能量。
在吸热反应中,反应物的化学键被打破,需要耗费能量;同时,生成物的化学键形成,释放出热量。
吸热反应常见于蒸发、融化和化学吸收等过程。
2. 放热反应:△H为负,表示反应释放能量。
在放热反应中,反应物的化学键形成,释放出热量;同时,生成物的化学键被打破,吸收能量。
放热反应常见于燃烧、酸碱中和和氧化还原等反应中。
四、能量守恒定律与焓变计算的实际运用能量守恒定律是指在封闭系统中,能量的总量保持不变。
根据能量守恒定律,化学反应的焓变可以通过各组分的焓变进行计算。
利用焓变计算,可以评估反应的能量变化情况,为反应条件的选择和工艺的设计提供依据。
化学反应中的能量变化

化学反应中的能量变化化学反应是指由反应物转变为产物的过程,而能量是驱动化学反应发生的重要因素。
在化学反应中,能量的变化可以通过热量变化、吸收或释放的能量来衡量。
本文将探讨化学反应中的能量变化,并分析其对反应速率和反应的影响。
一、热量变化在化学反应中的重要性热量变化是化学反应中最常见的能量变化形式之一。
化学反应可以发生吸热反应或放热反应,这将直接影响到反应的热力学特性和反应速率。
1. 吸热反应吸热反应是指在反应中吸收热量的过程。
在这类反应中,反应物吸收了外界的热量,而产物的能量高于反应物。
典型的吸热反应是化学吸收剂的使用,例如化学冷包中的化学反应。
吸热反应的特点是温度升高,周围环境温度下降。
2. 放热反应放热反应是指在反应中释放热量的过程。
在这类反应中,反应物释放了热量,而产物的能量低于反应物。
常见的放热反应包括燃烧反应、酸碱中和反应等。
放热反应通常会导致反应体系温度升高,周围环境温度升高。
二、能量变化对反应速率的影响能量变化对化学反应速率有直接的影响。
通常情况下,吸热反应速率较慢,而放热反应速率较快。
1. 吸热反应的速率吸热反应吸收热量,反应物需要克服能垒才能形成产物。
因此,吸热反应的速率取决于反应物的能垒高度。
能垒越高,反应速率越慢。
此外,吸热反应需要外界提供热量,当环境温度降低时,反应速率会进一步减慢。
2. 放热反应的速率放热反应释放热量,反应物之间的键能被打破,产生新的化学键。
由于放热反应释放的能量可供反应使用,使得放热反应速率更快。
同时,放热反应会导致反应体系的温度升高,反应速率进一步增加。
三、化学反应中的能量变化应用化学反应中的能量变化对许多日常应用具有重要意义。
1. 化学能源利用化学反应中的能量变化是许多能源利用技术的基础,如燃料电池、核能发电等。
这些技术利用化学反应的能量变化来产生电能,实现能源的转化和利用。
2. 热化学反应应用热化学反应应用广泛,包括热释放剂的使用,如冷热敷、火焰、爆炸等。
化学反应过程的能量变化

化学反应过程的能量变化一、概念解析1.能量变化:化学反应过程中,反应物和生成物之间能量的差异称为能量变化。
2.活化能:化学反应中,使反应物分子变成活化分子所需的最小能量称为活化能。
3.放热反应:化学反应中,生成物的总能量低于反应物的总能量,能量差以热能形式释放,称为放热反应。
4.吸热反应:化学反应中,生成物的总能量高于反应物的总能量,能量差以热能形式吸收,称为吸热反应。
二、能量变化的原因1.化学键的断裂与形成:化学反应中,反应物化学键的断裂和生成物化学键的形成过程中,能量的吸收和释放。
2.分子轨道的重排:化学反应过程中,反应物分子轨道的重排导致能量的变化。
3.原子核之间的相互作用:化学反应中,原子核之间的相互作用导致能量的变化。
三、能量变化的计算1.焓变:化学反应过程中,系统内能的变化,用焓(ΔH)表示。
2.熵变:化学反应过程中,系统混乱度的变化,用熵(ΔS)表示。
3.自由能变化:化学反应过程中,系统自由能的变化,用自由能(ΔG)表示。
四、能量变化与反应速率1.活化能与反应速率:活化能越低,反应速率越快。
2.催化剂:降低活化能,加快反应速率。
五、能量变化与化学平衡1.吉布斯自由能:化学反应达到平衡时,系统自由能的变化。
2.勒夏特列原理:化学反应平衡时,系统总能量的变化。
六、能量变化在生活和生产中的应用1.燃烧反应:放热反应,广泛应用于加热、照明、动力等领域。
2.电池:利用化学反应过程中的能量变化,实现电能的储存和转化。
3.化学热泵:利用化学反应过程中的能量变化,实现热能的转移和利用。
七、注意事项1.掌握能量变化的基本概念,理解化学反应过程中能量的转化。
2.注意能量变化与反应速率、化学平衡之间的关系。
3.联系实际应用,认识能量变化在生活和生产中的重要性。
习题及方法:1.习题:某放热反应的反应物总能量为E1,生成物总能量为E2,则该反应的焓变ΔH为多少?解题方法:根据放热反应的定义,反应物总能量高于生成物总能量,因此焓变ΔH为负值。
化学反应中的能量变化

化学反应中的能量变化化学反应是指物质之间发生的转化,其中伴随着能量的变化。
能量在化学反应中的转化包括放出或吸收热量(热变化)以及放出或吸收光线(光变化)。
在本文中,我们将深入探讨化学反应中的能量变化以及其原因。
一、热变化热变化是化学反应中最常见的能量变化形式之一。
化学反应放热时,被称为放热反应;而吸热反应指的是化学反应吸收热量。
这种热变化与反应物的能量以及化学键的形成和断裂有关。
当化学反应中分子间的键断裂时,需要消耗能量,称为吸热反应。
相应地,当新的化学键形成时,会释放能量。
这种放热反应可以通过实验测量反应物和生成物的温度变化来观察。
如果温度升高,说明反应是放热的;如果温度降低,说明反应是吸热的。
例如,燃烧反应是一种典型的放热反应。
当燃料与氧气反应时,产生的新化学键释放出大量能量,使周围温度升高。
而在吸热反应中,常见的例子是溶解盐类物质时所观察到的温度下降现象。
二、光变化光变化是化学反应中另一种常见的能量变化形式。
在一些化学反应中,能量的转化还伴随着光线的放出或吸收。
光变化可以是可见光、紫外线、红外线或其他电磁波的辐射。
光变化是由电子在化学反应过程中跃迁能级而引起的。
特定的能级差决定了光的能量。
光变化对于许多生物化学过程至关重要,如光合作用。
光合作用是植物利用光能将二氧化碳和水转化为有机物质和释放氧气的过程。
在这个过程中,光合色素吸收光能,驱动光化学反应,并将光能转化为化学能。
除了光合作用,其他一些化学反应也伴随着光变化,如发光反应和荧光反应。
这些反应通常涉及特定的物质或分子结构,在外加能量的激发下释放光线。
三、能量变化的应用化学反应中的能量变化有着广泛的应用。
首先,热变化在生活中有着重要的作用。
例如,火焰的产生和维持是燃烧反应的结果,而燃烧反应释放出的能量被用于供暖、烹饪等方面。
其次,光变化在化学和材料科学中也有着广泛应用。
例如,发光二极管(LED)利用半导体材料的光变化原理,在电流的激发下产生可见光。
人教社高中化学必修三化学反应中的能量变化

第四节化学反应中的能量变化一、反应热前面我们主要介绍了氧化还原反应和离子反应中的物质变化。
在化学反应中,发生物质变化的同时,还伴随有能量变化,这种能量变化,常以热能的形式表现出来。
例如,在高一化学中,我们曾做过铝片与盐酸,以及氢氧化钡晶体与氯化铵晶体在迅速搅拌下反应的实验,前者反应时放出热量,为放热反应;后者反应时吸收热量,为吸热反应。
在化学反应过程中放出或吸收的热量,通常叫做反应热。
反应热用符号ΔH表示,单位一般采用kJ/mol。
许多化学反应的反应热是可以直接测量的,其测量仪器叫做量热计。
在中学化学中,一般研究的是在一定压强下,在敞开容器中发生的反应所放出或吸收的热量。
下面,我们试从微观的角度来讨论宏观反应热的问题。
实验测得1mol H2与 1mol Cl2反应生成2 mol HCl时放出 184.6 kJ的热量,这是该反应的反应热。
任何化学反应都有反应热,这是由于在化学反应过程中,当反应物分子间的化学键断裂时,需要克服原子间的相互作用,这需要吸收能量;当原子重新组合成生成物分子,即新化学键形成时,又要释放能量。
就上述反应来说,当1mol H2与1mol Cl2在一定条件下反应生成2 mol HCl时,1mol H2分子中的化学键断裂时需要吸收436 kJ的能量,1mol Cl2分子中的化学键断裂时需要吸收243 kJ的能量,而 2 mol HCl分子中的化学键形成时要释放 431 kJ/mol×2 mol=862 kJ的能量,如图3-6所示。
H 2(g)+Cl2(g)2HCl(g)的反应热,应等于生成物分子形成时所释放的总能量(862 kJ/mol)与反应物分子断裂时所吸收的总能量(679 kJ/mol)的差,即放出 183 kJ/mol的能量。
显然,这个分析结果与实验测得的该反应的反应热(184.6 kJ/mol)很接近(一般用实验数据来表示反应热)。
这说明该反应完成时,生成物释放的总能量比反应物吸收的总能量大,这是放热反应。
化学反应中的能量变化知识点及例题解析

考点3化学反应中的能量变化一、反应热1、化学反应过程中放出或吸收的热量,通常叫做反应热。
反应热用符号ΔH表示,单位一般采用kJ/mol。
当ΔH为负值为放热反应;当ΔH为正值为吸热反应。
测量反应热的仪器叫做量热计。
2、燃烧热:在101kPa时,1mol物质完全燃烧生成稳定的氧化物时放出的热量,叫做该物质的燃烧热。
3、中和热:在稀溶液中,酸跟碱发生中和反应生成1molH2O,这时的反应热叫做中和热。
中学阶段主要讨论强酸和强碱的反应。
二、热化学方程式1、书写热反应方程式应注意的问题:(1)由于反应热的数值与反应的温度和压强有关,因此必须注明,不注明的是指101kPa和25℃时的数据。
(2)物质的聚集状态不同,反应热的数值不同,因此要注明物质的聚集状态。
(3)热化学方程式中的化学计量数为相应物质的物质的量,它可以是整数,也可以是分数。
2、书写热化学方程式的一般步骤(1)依据有关信息写出注明聚集状态的化学方程式,并配平。
(2)根据化学方程式中各物质的化学计量数计算相应的反应热的数值。
(3)如果为放热反应ΔH为负值,如果为吸热反应则ΔH为正值。
并写在第一步所得方程式的后面,中间用“;”隔开。
(4)如果题目另有要求,如反应燃料燃烧热的热化学方程式和有关中和热的热化学方程式,可将热化学方程式的化学计量数变换成分数。
三、中和热的测定1、测定前的准备工作(1)选择精密温度计(精确到0.10C),并进行校对(本实验温度要求精确到0.10C)。
(2)使用温度计要轻拿轻声放。
刚刚测量高温的温度计不可立即用水冲洗,以免破裂。
(3)测量溶液的温度应将温度计悬挂起来,使水银球处于溶液中间,不要靠在烧杯壁上或插到烧杯底部。
不可将温度计当搅拌棒使用。
2、要想提高中和热测定的准确性,实验时应注意的问题(1)作为量热器的仪器装置,其保温隔热的效果一定要好。
因此可用保温杯来做。
如果按教材中的方法做,一定要使小烧杯杯口与大烧杯杯口相平,这样可以减少热量损失。
化学反应中的能量变化

化学反应中的能量变化化学反应是物质转化过程中发生的重要现象,众多化学反应都会涉及能量变化。
能量在化学反应中的变化对反应速率、反应热、反应平衡等方面都有重要的影响。
本文将探讨化学反应中的能量变化,以及其对反应过程的影响。
一、化学反应的能量变化类型在化学反应中,能量可以以不同的形式进行转化。
常见的能量变化类型有以下几种:1. 焓变(ΔH):焓变是指在常压条件下,反应中吸热或放热的过程。
当反应吸热时,焓变为正值,表示系统吸收了热量;当反应放热时,焓变为负值,表示系统释放了热量。
2. 动能变化:有些化学反应中,反应物和生成物的分子速度发生改变,导致动能的变化。
例如,爆炸反应中,反应物的分子速度突然增加,从而导致动能的增加。
3. 电能变化:在某些化学反应中,电子转移也可以导致能量的变化。
例如,电池中的反应就涉及电子的转移,从而产生电能。
二、能量变化对化学反应的影响能量变化对化学反应具有重要的影响,主要体现在以下几个方面:1. 反应速率:化学反应的速率与反应物之间的能量差有关,能量变化越大,反应速率通常越快。
这是因为能量变化可以改变反应物粒子的动能,使它们更容易克服活化能,从而提高反应速率。
2. 反应热:焓变(ΔH)反映了反应过程中的放热或吸热现象。
当反应放热时,系统释放了热量,反应是放热反应;当反应吸热时,系统吸收了热量,反应是吸热反应。
反应热的大小决定了化学反应的热效应。
3. 反应平衡:在化学反应达到平衡时,反应物与生成物的浓度不再变化。
能量变化可以影响反应平衡的位置。
根据Le Chatelier原理,当系统受到外界能量变化刺激时,系统会试图抵消这种变化,从而使平衡位置发生偏移。
三、实例分析:焙烧反应焙烧反应是指将金属矿石加热至高温,使其发生热分解,转变为金属与非金属氧化物的反应。
以焙烧铁矿石(Fe2O3)为例,化学方程式如下:2Fe2O3(s) → 4Fe(s) + 3O2(g)在这个反应中,可以观察到以下能量变化现象:1. 吸热现象:焙烧反应需要提供大量的热能,因为反应需要克服Fe2O3的化学键强度,使其分解为Fe和O2。
化学反应中的能量变化与焓

化学反应中的能量变化与焓在化学反应中,能量的变化与焓密切相关。
本文将介绍化学反应中的能量变化与焓的概念、计算方法和实际应用。
一、能量变化的概念能量是物质存在的基本属性,化学反应过程中发生的能量变化通常包括吸热(吸收热量)和放热(释放热量)两种情况。
吸热反应是指化学反应过程中系统吸收了热量,降低了周围环境的温度,而放热反应则相反。
二、焓的定义与计算焓是热力学中用来描述系统中的能量状态的物理量。
化学反应中的焓变(ΔH)可以通过实验测定或计算得到。
焓变正值表示反应放热,负值表示反应吸热。
在常压条件下,焓变可以通过以下公式计算:ΔH = q / n其中,ΔH表示焓变,q表示反应过程中的吸热或放热量,n表示反应物(或生成物)的摩尔数。
三、焓变与反应热化学反应中的焓变与反应热是两个密切相关的概念。
反应热指单位摩尔反应物参与反应时放出或吸收的热量,通常以kJ/mol表示。
焓变和反应热之间的关系为:ΔH = ΔHr × n其中,ΔH表示焓变,ΔHr表示反应热,n表示摩尔数。
四、焓变与化学平衡在化学反应中,焓变与反应的方向和反应的平衡状态密切相关。
根据化学反应的热力学原理,焓变越大,反应越倾向于放热的方向进行,反之越倾向于吸热的方向进行。
当焓变为零时,反应达到化学平衡状态。
五、焓变的实际应用焓变在日常生活和工业生产中有着广泛的应用。
例如,化学燃烧过程中的焓变可以用于计算能量的释放量,从而辅助燃料选择和能源利用效率的提高。
同时,焓变还可以用于计算溶解热、生成热和反应热等热化学性质,为化学实验的设计和反应过程的优化提供依据。
总结:化学反应中的能量变化与焓密不可分。
焓变作为描述反应热的物理量,能够准确计算和预测化学反应中的能量变化。
对于研究化学反应过程、探索能源利用和优化化学实验等方面具有重要作用。
通过理解和应用焓变的概念,可以更好地理解化学反应的本质和能量变化规律。
化学反应中的能量变化与焓变计算

化学反应中的能量变化与焓变计算化学反应是指化学物质之间发生的变化过程,其中能量的转化和变化是不可避免的。
能量变化在化学反应中具有重要的作用,它可以帮助我们理解反应的热力学性质以及反应的发生与否。
本文将介绍化学反应中的能量变化以及焓变的计算方法。
一、化学反应中的能量变化在化学反应中,反应物变为生成物的过程中,能量会发生变化。
根据热力学第一定律,能量守恒的原则,反应物的内能转化为反应物的内能和对外界做功的总和。
根据能量守恒定律,可以得到以下的能量变化公式:ΔE = q + w其中,ΔE表示系统的能量变化,q表示传热,w表示做功。
传热(q)是指热量的转移,可以是放热(exothermic)或吸热(endothermic)。
当热量从系统传递到周围环境时,系统放出热量,反应为放热反应;当热量从周围环境传递到系统时,系统吸收热量,反应为吸热反应。
做功(w)是指反应物在反应过程中对外界进行的功。
做功可以通过体积的改变引起,比如气体体积的压缩或膨胀。
当气体被压缩时,系统对外界做功;当气体膨胀时,外界对系统做功。
根据能量守恒定律,可以通过计算传热和做功来确定反应的能量变化。
二、焓变的计算方法焓变(ΔH)是指在常压下,化学反应中吸热或放热的量。
焓变可以通过测量反应物和生成物的热化学性质来进行计算。
焓变的计算方法有两种常见的形式:反应热和标准焓变。
1. 反应热(ΔHr)反应热是指在常压下,反应物转化为生成物时系统吸收或放出的热量。
反应热可以通过测量实验中反应物和生成物的热化学性质来进行计算。
通常,实验中会使用热量计量仪器(如量热器)来测量反应发生时所吸收或放出的热量。
反应热可以根据能量守恒定律来计算:ΔHr = q + w其中,q为反应物和生成物之间的能量变化,w为反应物和生成物之间进行的功。
2. 标准焓变(ΔH°)标准焓变是指在标准状态下,1 mol的物质在标准压力下,转化为其标准生成物时的焓变。
标准焓变可以通过热化学性质表中提供的数据来计算。
化学反应中的能量变化

化学反应中的能量变化化学反应是物质转化的过程,其中涉及了能量的变化。
在化学反应中,分子之间的键能会断裂或形成,从而引起能量的变化。
能量在化学反应中的变化可以以热量的形式表现出来,即放热反应或吸热反应。
本文将探讨化学反应中的能量变化以及其对反应的影响。
一、放热反应放热反应是指在化学反应中释放出热量的过程。
这种反应通常伴随着能量的释放和物质温度的升高。
例如,燃烧反应是一种典型的放热反应,其中有机物与氧气反应生成二氧化碳和水,同时释放出大量的热量。
这种热量释放可以用于加热、发电等实际应用中。
在放热反应中,反应物的化学键能较高,反应产物的化学键能较低。
在反应过程中,反应物的键能被破坏,而反应产物的键能则重新组合。
这个过程中释放出的能量差就是反应放出的热量。
放热反应的热量变化可以用反应热(ΔH)来表示,ΔH为负值。
二、吸热反应吸热反应是指在化学反应中吸收外界热量的过程。
这种反应通常伴随着能量的吸收和物质温度的降低。
例如,溶解氨氯化物的过程是一种吸热反应,需要吸收热量才能使固体氨氯化物溶解于水中,而水的温度会因为吸热反应而下降。
在吸热反应中,反应物的化学键能较低,而反应产物的化学键能较高。
在反应过程中,反应物的键能被破坏,而反应产物的键能则重新组合,这个过程中吸收的能量差就是反应吸收的热量。
吸热反应的热量变化同样可以用反应热(ΔH)来表示,ΔH为正值。
三、能量守恒定律在化学反应中,能量守恒定律始终成立。
能量守恒定律是指能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。
因此,在化学反应中,能量的总量在反应前后保持不变。
根据能量守恒定律和化学反应中的能量变化特点,可以得出以下结论:- 放热反应中,反应物的能量高于产物的能量。
- 吸热反应中,反应物的能量低于产物的能量。
- 同一化学反应,在不同条件下可能具有放热或吸热的特性。
能量变化在化学反应中发挥着重要的作用。
它不仅影响着反应的速率和方向,还与反应的热力学特性密切相关。
化学反应中的能量变化是如何发生的

化学反应中的能量变化是如何发生的化学反应是物质之间发生变化的过程,而这种变化往往伴随着能量的转化和释放。
本文将探讨化学反应中能量变化的发生机制以及常见的能量转化形式。
一、热效应:化学反应中最常见的能量变化形式之一是热效应。
当化学反应发生时,往往会伴随着放热或吸热的现象。
放热反应是指在反应过程中释放出热能,使周围环境温度升高;而吸热反应则是反应过程中吸收了热能,使周围环境温度降低。
热效应的发生与反应中化学键的形成和断裂密切相关。
在化学反应中,某些化学键的形成释放出能量,使反应放热;而某些化学键的断裂需要吸收能量,导致反应吸热。
这种能量转化与化学键的键能有关,不同化学物质之间的键能差异也导致了不同反应的热效应不同。
二、光效应:除了热效应外,化学反应还可以产生光效应,即化学反应伴随着光的吸收或释放。
光效应是一种特殊的能量转化形式,这种能量的转化主要来源于电子的跃迁。
当分子或原子处于激发态时,其电子会发生跃迁回基态,释放出能量的同时产生光。
这就是我们常见的发光反应,比如荧光、磷光等。
光效应在化学反应中具有重要的意义,不仅可以帮助我们研究反应的进行和机理,还有许多实际应用。
例如,荧光标记可以用于生物分子探测和成像,磷光材料可以用于LED等光电器件。
三、电效应:化学反应中的能量变化还可以表现为电效应,即伴随着电子的转移或电荷的传递而产生的能量变化。
在电化学反应中,化学物质之间的电子流动可以引发氧化还原反应,从而释放出电能。
这种电能可以被用于电池等设备中,实现能量的存储和转换。
四、声效应和机械效应:在某些特殊的化学反应中,还会引发声效应和机械效应。
声效应是指化学反应时产生的声音,比如爆炸声。
而机械效应则是指化学反应伴随着物质体积的变化或产生机械运动,比如气体生成时的体积膨胀或压力增加。
以上所述的热效应、光效应、电效应、声效应和机械效应只是化学反应中能量变化的几种常见形式。
实际上,化学反应中的能量变化形式多种多样,常常是多种效应的综合作用。
化学反应的能量变化

化学反应的能量变化化学反应是物质发生变化的过程,而能量则是支持化学反应进行的基础。
在化学反应中,能量可以发生转化和释放,从而导致反应物的化学键断裂和新化学键的形成。
本文将探讨化学反应中的能量变化,包括热能变化、焓变化以及化学反应的能量图。
1. 热能变化在化学反应中,热能变化是最常见的能量变化形式之一。
热能变化指的是反应体系吸收或释放的能量。
反应过程中吸收热能的反应称为吸热反应,而释放热能的反应称为放热反应。
吸热反应:吸热反应需要从周围环境中吸收热能,因此反应过程会感觉到周围变冷。
这种反应的能量变化通常用正数表示。
放热反应:放热反应会释放出热能到周围环境中,因此反应过程会感觉到周围变热。
这种反应的能量变化通常用负数表示。
热能变化可以通过热量计等实验手段进行测量和计算,用于描述反应体系中的能量变化。
2. 焓变化焓(enthalpy)是描述反应体系的热态性质,是温度和压强的函数。
焓变(enthalpy change)是指化学反应发生时,反应体系焓的变化。
焓变可以通过实验测量得到,也可以通过热力学计算进行估算。
焓变的单位通常以焦耳(J)或千焦(kJ)为标准。
焓变的表示方式通常为ΔH,正数表示吸热过程,负数表示放热过程。
当物质间的键断裂和形成过程发生时,伴随着能量变化,从而导致焓的变化。
焓变可以在化学方程式中表示为:反应物A + 反应物B → 产物C + 产物D + ΔH其中,ΔH为焓变的数值,表示反应过程中焓的变化。
3. 化学反应的能量图能量图是描述化学反应能量变化的图形表示。
能量图通常以反应进程为横轴,焓或能量为纵轴。
在能量图中,曲线通常由三个部分组成:反应物→过渡态→产物。
反应物和产物之间称为起始能量和终止能量,过渡态则表示反应过程中的能量峰值。
能量图上的能量差表示反应的能量变化,可以通过焓变与反应物与产物之间的能量差进行比较。
4. 能量变化的影响因素化学反应的能量变化受多种因素的影响,包括反应物的浓度、温度、压强和催化剂等。
化学反应中的能量变化

化学反应中的能量变化1. 引言化学反应是物质转化和变化的过程,伴随着能量的转化和变化。
在化学反应中,能量可以以不同形式表现,包括热能、电能、光能等。
本文将就化学反应中的能量变化进行探讨。
2. 反应热化学反应中最常见的能量变化形式是反应热,即化学反应伴随的热能变化。
反应热可以分为吸热反应和放热反应两种情况。
(1)吸热反应:吸热反应是指在反应过程中吸收热能,使得反应物与周围环境的温度降低。
吸热反应的典型例子是燃烧反应,如燃烧木材时,反应物(木材)吸收热能,使得周围环境的温度升高。
(2)放热反应:放热反应是指在反应过程中释放热能,使得反应物与周围环境的温度升高。
放热反应的典型例子是酸碱中和反应,如盐酸与氢氧化钠反应时,反应物释放热能,使得溶液温度升高。
3. 化学能的转化化学反应中的能量变化还可以以其他形式呈现,如化学能的转化。
(1)化学势能:化学反应中,反应物和生成物之间的化学键能发生变化,导致化学势能的转化。
一些化学反应会导致化学键的断裂或新的化学键的形成,从而使化学势能发生变化。
例如,燃烧反应中,碳氢化合物(反应物)的化学键可以断裂并与氧气(生成物)形成新的化学键,导致化学势能的转化。
(2)电能转化:在化学反应中,电子的转移也伴随着能量的转化。
一些反应中,电子可以在反应物和生成物之间进行转移,以完成反应过程。
例如,电池的充放电过程中,化学反应导致电子的转移,使得电能的转化成为可能。
4. 光能的转化化学反应也可以涉及光能的转化,即光能与化学反应相互转化。
(1)光化学反应:光化学反应是指在光的作用下发生的化学反应。
光能可以激发分子内的电子,从而改变分子的电子状态,进而促使反应的进行。
一些光化学反应具有重要的应用,如光合作用是植物利用太阳能的重要途径。
(2)化学荧光:化学反应中,有些化合物在受激后可以发出荧光。
这种荧光现象是光能与化学能的转化。
一些荧光物质被广泛应用于生物成像和标记等领域。
5. 结论化学反应中的能量变化是化学研究中的重要内容之一。
化学反应中的能量变化

化学反应中的能量变化化学反应是指物质之间发生的化学变化过程,而能量变化则是指化学反应过程中的能量的消耗或释放现象。
本文将探讨化学反应中的能量变化,并介绍与能量变化相关的基本概念和重要原理。
一、能量和化学反应在化学反应中,能量是一个至关重要的概念。
能量可以存在于物质的内部,也可以在物质之间传递。
化学反应中,能量的变化可以通过温度变化、反应物质的数量变化以及化学键的形成和断裂等方式来表现。
二、放热反应和吸热反应化学反应可以分为放热反应和吸热反应两类。
放热反应是指在反应过程中释放出能量,导致周围温度升高的反应。
吸热反应则是指在反应过程中吸收能量,导致周围温度下降的反应。
放热反应和吸热反应的能量变化可以通过反应热来描述。
反应热是指在标准条件下,单位摩尔反应物参与反应时放出或吸收的能量。
反应热可以表示为ΔH,其中Δ代表变化。
ΔH为负值时,表示放热反应;ΔH为正值时,表示吸热反应。
三、内能和焓变内能是物质所具有的全部能量,包括分子振动、转动和平动等不同形式的能量。
化学反应中,内能的变化可以通过焓变来表示。
焓变(ΔH)是指在化学反应中,反应物和产物之间内能的差异。
焓变可以通过ΔH = H(产物) - H(反应物)来计算。
当焓变为负值时,说明反应物转变为产物时内能减少,即放热反应;当焓变为正值时,说明反应物转变为产物时内能增加,即吸热反应。
四、反应热与燃烧热反应热和燃烧热是描述化学反应中能量变化的重要概念。
反应热是指在单位摩尔反应物参与反应时的能量变化,而燃烧热是指单位摩尔物质完全燃烧产生的能量变化。
燃烧反应是一种放热反应,通常伴随着明显的能量释放,例如燃烧木材会产生火焰和热量。
燃烧热可以通过测定燃烧反应的焓变来计算,它是衡量燃料的能量含量的指标,常用单位是焦耳/克或千焦/克。
五、活化能和反应速率活化能是指引起反应发生所需的最小能量,也是反应过程中的一个重要能量参数。
在化学反应中,反应物首先需要克服活化能的障碍,才能转变为产物。
化学反应中的能量变化与热力学计算实例

化学反应中的能量变化与热力学计算实例在化学反应中,能量变化是一个重要的概念。
通过热力学计算实例,我们可以更好地理解反应过程中的能量变化。
本文将介绍化学反应中的能量变化的概念,并通过实例进行具体分析。
一、化学反应中的能量变化化学反应中的能量变化指的是反应物转化为生成物过程中所涉及的能量变化。
化学反应可以放热或吸热,即反应过程中释放或者吸收能量。
1. 热放热反应热放热反应是指在反应过程中放出能量。
这种反应常常伴随着温度的升高、光、电、声等现象的产生。
例如燃烧反应就是一种典型的热放热反应,如以下反应方程式所示:2H2(g) + O2(g) → 2H2O(l) + 热在这个反应中,氢气和氧气反应生成水,过程中释放出热能。
2. 吸热反应吸热反应是指在反应过程中吸收能量。
这种反应常常伴随着温度的降低、溶解度的增加等现象。
例如,溶解氨氯化物在水中的反应可以表示为:NH4Cl(s) + H2O(l) → NH4+(aq) + Cl-(aq) + 热在这个反应中,氨氯化物吸收了周围的热量,导致溶解过程是一个吸热反应。
二、热力学计算实例为了更好地了解化学反应中的能量变化,我们可以使用热力学计算进行实例分析。
下面是一个具体的例子:考虑以下反应方程式:2H2(g) + O2(g) → 2H2O(l)我们可以通过热力学计算来确定这个反应的能量变化。
在这个过程中,我们需要知道反应物和生成物的热化学计量数据。
假设H2(g)和O2(g)的标准生成焓分别为0 kJ/mol和0 kJ/mol,H2O(l)的标准生成焓为-286 kJ/mol。
那么这个反应的标准焓变可以通过以下公式计算:ΔH = ΣnHf(生成物) - ΣnHf(反应物)其中,ΔH表示标准焓变,n表示反应物或生成物在反应方程式中的系数。
将上述数据带入公式计算,可以得到:ΔH = (2*ΔHf(H2O(l))) - (2*ΔHf(H2(g)) + ΔHf(O2(g)))= (2*-286 kJ/mol) - (2*0 kJ/mol + 0 kJ/mol)= -572 kJ/mol因此,这个反应的标准焓变为-572 kJ/mol。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、有关热化学方程式的计算
例4、在一定条件下,CO和CH4燃烧的热化学方程式 分别为: 2CO(g)+O2(g)=2CO2(g);△H=-566KJ/mol CH4(g)+2O2(g)=CO2(g)+2H2O(l);△H=-890KJ/mol 由1摩CO和3摩CH4组成的混和气在上述条件下完全燃烧 时,释放的热量为( B ) A.2912KJ B.2953KJ C.3236KJ D.3867KJ
例3、0.3 mol的气态高能燃料乙硼烷 (B2H6)在氧气中完全燃烧,生成固态 三氧化二硼和液态水,放出649.5 kJ热量, 其热化学方程式为 B2H6(g)+3O2(g)=B2O3(s)+3H2O(l);H = -2165 kJ/mol ___________________________。
则氢气的燃烧热为:__________ 285.8 kJ/mol
2、中和热:
在稀溶液中,酸和碱发生中和反应而生 成1mol水时放出的热。 研究条件:稀溶液 反应物:酸与碱 生成物及其物质的量:1mol 放出的热:57.3kJ/mol H+(aq)+OH-(aq)=H2O(l); H = -57.3 kJ/mol 注:强酸与弱碱反应,强碱与弱酸、弱酸和弱 碱反应生成1molH2O放出的热小于57.3KJ/mol
Q2:反应中为什么会有能量的变化? 微观:断键,成键作用; 宏观:能量守恒作用
小结: 1、化学键断裂,吸收能量;
化学键生成,放出能量 2、反应物总能量大于生成物总能量,放热反应, 体系能量降低, H为“-”或小于 0 反应物总能量小于生成物总能量,吸热反应, 体系能量升高, H为“+”或大于0 3、反应热 H数值上等于生成物分子形成时所 释放的总能量与反应物分子断裂时所吸收的总 能量之差
2、书写热化学方程式应注意以下几点 1)要注明温度和压强: 反应放出或吸收的热量的多少 与外界的温度和压强有关,需要注明,不注明的指 101kPa和25℃时的数据。 2)反应物和生成物要注明聚集状态: 因为物质的聚 集状态不同所含的能量也不同。
固态
吸热
吸热
液态 吸热
气态
1 H2(g)+ O2(g)=H2O(l);△H=-285.8KJ/mol 2
P(s、红磷)+5/4O2(g)=1/4P4O10(s);H2= -738.5 kJ/mol
试写出白磷转化为红磷的热化学方程式
P4(s、白磷)=4 P(s、红磷); H = -29.2 kJ/mol _____________________。
1 例7、使18g焦炭发生不完全燃烧,所得气体中CO占 3
1 H2(g)+ 2 O2(g)=H2O(g);△H=-241.8KJ/mol
1)表示什么物质参加反应,结果生成什么物质
2)反应物和生成物之间的质量比、物质的量比 3)反应物完全变成生成物后所放出或吸收的热量。
三、燃烧热和中和热
1.燃烧热:
在101kPa时,1mol物质完全燃烧生成稳定 的氧化物时所放出的热量。 研究条件:101KPa 反应程度: 完全燃烧,产物是稳定的氧化物 燃烧物的物质的量:1mol 研究内容:放出的热
§1-3 化学反应中的能量变化
基础知识
一、反应热 定义:化学反应过程中放出或吸收的热量 符号: H
放热反应 为“-”吸热反应为“+”
单位:kJ/mol
测量仪器:量热计
Q1:什么叫放热反应,什么叫吸热反应?举 例。
放热反应:中和反应、燃烧反应、金属与酸的反 应、氧化钙与水反应、大多化合反应 吸热反应:碳与H2O、CO2的反应、盐类的水解、 氢氧化钡晶体与氯化铵的反应、大多分解反应等
1 1 H2(g)+ 2 2
Cl2(g)=HCl(g);△H=-92.3KJ/mol
2H2(g)+O2(g)=2H2O(l);△H=-571.6KJ/mol 1 H2(g)+ 2 O2(g)=H2O(l);△H=-285.8KJ/mol
4) △H的表示: 热化学方程式中的△H的“+”与“-”一定要注明, “+”代表吸热, “-”代表放热 无论热化学方程式中化学计量数为多少,△H的单位 总是KJ/mol,但△H的数值与反应式中的系数成比 例 3、热化学方程式表示的意义 质→量→能
二、热化学方程式: 1、概念:表明反应所放出或吸收的热量的 化学方程式
H2(g)+Cl2(g)=2HCl(g); H = -184.6 kJ/mol
CH4(g)+2O2(g)=CO2(g)+2H2O(l); H = -890.3 kJ/mol
NaOH(aq)+HCl(aq)=NaCl(aq)+H2O(l); = -57.3 kJ/mol H
概念辨析:
1.下列各组物质的燃烧热相等的是:( B ) A.碳和一氧化碳 B.1moL碳和2moL碳 C.1moL乙炔和2moL碳 D.淀粉和纤维素 2.已知热化学方程式:
H2(g)+1/2O2(g)=H2O(g);H = -241.8 kJ/mol 2H2(g)+O2(g)=2H2O(g); H = -483.6 kJ/mol H2(g)+1/2O2(g)=H2O(l); H = -285.8 kJ/mol 2H2(g)+O2(g)=2H2O(l); H= -571.6 kJ/mol
体积,CO2占
体积, 1 O2(g)=CO(g);△H=-Q1 KJ/mol, 已知:C(S)+
2
2 3
1 CO(g)+ O2(g)=CO2(g);△H=-Q2 KJ/mo 2
与这些焦炭完全燃烧相比较,损失的热量是( D )
A、1/3Q1KJ C、1/3(Q1+Q2)KJ
B、1/3Q2KJ D、1/2Q2KJ
1 H2(g)+ 2 O2(g)=H2O(g);△H=-241.8KJ/mol
∴H2O(l)═H2O(g);△H=+44KJ/mol 3)热化学方程式中各物质前的化学计量数表示物质的量 不表示分子数,因而必要时可用分数。一般出现分数时是 以某一反应物或生成物为“1mol”时其它物质才出现的。 H2(g)+Cl2(g)=2HCl(g);△H=-184.6KJ/mol
D. S(g)+O2(g)=SO2 (g);△H=-Q1 S(s)+O2(g)=SO2 (g);△H=-Q2
四、盖斯定律及其应用(P38页)
1、定义:化学反应的反应热只与反应的始末 状态有关,而与具体的反应进行的途径无关。 2、应用:可间接求算某反应的反应热。
CO(g)+1/2O2(g)
H2 C(s)+O2(g) H1 = H3
H1
CO2(g)
H2 +
H3
例6、同素异形体相互转化但反应热相当小 而且转化速率慢,有时还很不完全,测定反 应热很困难。现在可根据盖斯提出的观点 “不管化学反应是一步完成或分几步完成, 这个总过程的热效应是相同的”。已知: P4(s、白磷)+5O2(g)=P4O10(s);H1= -2983.2 kJ/mol
[练习]1、下列变化中,属于放热反应的是( B ) A.Ba(OH)2· 2O与NH4Cl的反应 8H B.点燃的镁条在二氧化碳中继续燃烧 C.灼热的碳与二氧化碳的反应 D.氯化铝的水解
2、下列变化中,属于吸热反应的是( D ) A.氮气与氢气合成氨 B.酸碱中和 C.二氧化硫与氧气反应生成三氧化硫 D.焦炭与高温水蒸列各组热化学方程式中Q2>Q1的是
( ) B
A. H2(g)+Cl2(g)=2HCl(g);△H=-Q1 1/2H2(g)+1/2Cl2(g)=HCl(g);△H=-Q2 B. C(s)+1/2O2(g)=CO (g);△H=-Q1 C(s)+O2(g)=CO2 (g);△H=-Q2 C. 2H2(g)+O2(g)=2H2O(l);△H=-Q1 2H2(g)+O2(g)=2H2O(g);△H=-Q2
1
D. 2H2(g)+O2(g)=2H2O(g);ΔH=+484kJ· -1 mol
例2(2003· 江苏)已知在25℃、101kPa下,1g C8H18(辛烷)燃烧生成二氧化碳和液态水 时放出48.40kJ 热量。表示上述反应的热 化学方程式正确的是 ( B ) A、C8H18(l)+25/2O2(g)=8CO2(g) +9H2O(g) △H= - 48.40kJ· -1 mol B、C8H18(l)+25/2O2(g)=8CO2 (g) +9H2O(l) △H= - 5518kJ· -1 mol C、C8H18(l)+25/2O2(g)=8CO2(g) + 9H2O(l) △H= + 5518kJ· -1 mol D、C8H18(l)+25/2O2(g)=8CO2 (g)+ 9H2O(l) △H= - 48.40kJ· -1 mol
概念辨析:
1.1L1mol/LH2SO4溶液与2L1mol/LNaOH溶液 完全反应,放出114.6kJ的热量,由此推知H2SO4与 57.3kJ/mol NaOH发生中和反应的中和热为_________ 表示该中和热的热化学方程式为___________ 1/2H2SO4(aq) +NaOH(aq)=1/2Na2SO4(aq)+H2O(l); H = -57.3 kJ/mol 2. 1L1mol/LNaOH溶液中加入稀醋酸、 浓硫酸、稀硝酸,恰好完全反应时的热效应 分别为 H 1、 H 、H ;则三者的大小 2 3 关系为:_____________ 1>3>2