数字图像处理~图像分割
数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。
实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。
3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。
通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。
2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。
遥感数字图像处理第8章 图像分割

腐蚀运算
目的:消除目标的边界点,用于消除无意义的小目标
(毛刺,小突起)
方法:
1.原点在集合B(结构元素)中
2.原点不在集合B(结构元素)中
腐蚀运算(erosion)
腐蚀运算(erosion)
A B x | ( B )x A .
对结构元素B作平移x,B全包含在A中时,
原点的集合就是计算结果
(1)直方图方法:直方图的谷底位置
最佳阈值的选择
(2)自适应阈值方法
A.将目标分割成大小固定的块
B.确定每一个块的目标峰值和背景峰值
C.第一次处理:对每一个块进行分割(边界阈值采用目标和背 景峰值的中点) D.计算每一个块的目标灰度和背景灰度平均值 E.第二次处理:对每个块再次分割(边界阈值采用目标和背景灰 度平均值的中值)
四连通 八连通
工作流程
1.确定待分割对象
2.选择敏感波段
3.选择分割方法
4.对分割的结果进行矢量化
分割原理和方法
边界(边缘)方法: 阈值分割技术,微分算子
边缘检测
假设:图像分割结果中的子区域在原来图像中有边缘存在,或
不同子区域间有边界的存在(像素值灰度不连续性)
区域方法:区域增长技术,聚类分割技术
图像分割的目的
图像分割的目标:根据图像中的物体将图像的像素分
类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割的目的
图像分割是把图像分解成构成的部件和对象的过程
把焦点放在增强感兴趣对象:汽车牌照(前景)
排除不相干图像成分:其它区域(背景)
最佳阈值的选择
实验六-图像分割

信息工程学院实验报告课程名称:数字图像处理实验项目名称:实验六图像分割实验时间:2016.12.16班级:姓名:学号:一、实验目的1. 使用MatLab 软件进行图像的分割。
使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。
2. 要求学生能够自行评价各主要算子在无噪声条件下和噪声条件下的分割性能。
能够掌握分割条件(阈值等)的选择。
完成规定图像的处理并要求正确评价处理结果,能够从理论上作出合理的解释。
二、实验内容与步骤1.边缘检测(1)使用Roberts 算子的图像分割实验调入并显示图像room.tif图像;使用Roberts 算子对图像进行边缘检测处理;Roberts 算子为一对模板:(a)450方向模板(b)1350方向模板图 1 matlab 2010的Roberts算子模板相应的矩阵为:rh = [0 1;-1 0];rv = [1 0;0 -1];这里的rh 为45度Roberts 算子,rv为135度Roberts 算子。
分别显示处理后的45度方向和135方向的边界检测结果;用“欧几里德距离”和“街区距离”方式计算梯度的模,并显示检测结果;对于检测结果进行二值化处理,并显示处理结果。
提示:先做检测结果的直方图,参考直方图中灰度的分布尝试确定阈值;应反复调节阈值的大小,直至二值化的效果最为满意为止。
(2)使用Prewitt 算子的图像分割实验(a)水平模型(b)垂直模板图2. Prewitt算子模板使用Prewitt 算子进行内容(1)中的全部步骤。
(3)使用Sobel 算子的图像分割实验使用Sobel(a)水平模型(b)垂直模板图3. Sobel算子模板(4)使用LoG (拉普拉斯-高斯)算子的图像分割实验使用LoG (拉普拉斯-高斯)算子进行内容(1)中的全部步骤。
提示1:处理后可以直接显示处理结果,无须另外计算梯度的模。
提示2:注意调节噪声的强度以及LoG (拉普拉斯-高斯)算子的参数,观察处理结果。
数字图像处理的原理与方法

数字图像处理的原理与方法数字图像处理是一种将数字信号处理技术应用到数字图像上的科学技术,它的出现极大地推动了图像处理技术的发展。
数字图像处理不仅可以用于医学图像处理、卫星图像处理、工业检测等领域,还可以应用于数字影像娱乐等方面。
数字图像处理的核心内容就是图像增强、图像恢复、图像分割、图像识别等,本文将主要探讨数字图像处理的原理与方法。
一、图像增强处理图像增强处理是对原始图像进行改善的过程,也是数字图像处理中最普遍的操作类型。
通过增强处理,可以使图像局部特征更加明显,以便进行更高级的图像分析。
常见的图像增强方法包括灰度线性变换、灰度非线性变换、空域滤波增强、频域滤波增强等。
其中,空域滤波增强是最常见的一种方法。
通过对原始图像进行高斯滤波、中值滤波等操作,可以有效去除图像中的噪声。
二、图像恢复处理图像恢复处理是指从已知的图像信息中恢复出原始图像的过程,也是数字图像处理中一种重要的方法。
在数字图像处理中,图像的失真比如模糊、噪声等是不可避免的。
而图像恢复就是通过各种手段找到原始图像中所保留的信息,以恢复图像失真前的形态。
常见的图像恢复处理方法包括逆滤波、维纳滤波、约束最小二乘滤波等。
三、图像分割处理图像分割处理是将图像分割成若干具有独立意义的子区域的过程。
图像分割处理是数字图像处理中一种热门的研究领域,其主要应用于目标提取、图像分析和模式识别等方面。
常用的图像分割方法包括基于像素的算法、基于区域的算法、边缘检测算法等。
其中,基于区域的算法应用最广。
通过对相似区域进行聚类,可以将图像分割成若干子区域,从而实现目标提取等功能。
四、图像识别处理图像识别处理是指对图像进行自动识别的过程。
图像识别处理是数字图像处理中的一大领域,它的技术含量非常高。
常见的图像识别处理方法包括特征提取、模式匹配、神经网络等。
其中,特征提取是一种重要的处理方式。
通过对图像进行特征提取,可以将图像转化为数字特征,从而实现对图像的自动识别和分类。
数字图像处理图像分割

如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值
遥感数字图像处理教程图像分割

通过直方图得到阈值 T
通过直方图得到阈值 对噪音的处理 对直方图进行平滑处理,如最小二乘法,等不过点插值。
通过边界特性选择阈值 基本思想: 如果直方图的各个波峰很高、很窄、对称,且被很深的波谷分开时,有利于选择 阈值。 为了改善直方图的波峰形状,我们只把区域边缘的像素绘入直方图,而不考虑区 域中间的像素。 用微分算子,处理图像,使图像只剩下边界中心两边的值。
通过边界特性选择阈值 基本思想: 这种方法有以下优点: 1)在前景和背景所占区域面积差别很大时,不会造一个灰度级的波峰过高,而另一个 过低 2)边缘上的点在区域内还是区域外的概率是相等的,因此可以增加波峰的对称性 3)基于梯度和拉普拉斯算子选择的像素,可以增加波峰的高度
通过边界特性选择阈值
阈值分割法 阈值分割法的特点: 适用于物体与背景有较强对比的情况,重要的是背景或物体的灰度比较单一 。(可通过先求背景,然后求反得到物体) 这种方法总可以得到封闭且连通区域的边界。
f(x0,y0) T
灰度值
通过交互方式得到阈值
基本思想:
在通过交互方式下,得到对象(或背景 )的灰度值,比得到阈值T容易得多 。
基于多个变量的阈值 基本思想:把前面的方法扩展到多维空间,则寻找波谷的过程,变为寻找点簇的过程 。 算法实现: 各维分量波谷之间进行逻辑与运算,从波谷重合的点,得到实际的阈值T。 应用场合:有多个分量的颜色模型,如RGB模型、CMYK模型、HSI模型
8.3 边缘检测 一、边缘的定义
图像中像素灰度有阶跃变化或屋顶变化的那些 像素的集合。
算法的实现:
1)对图像进行梯度计算,得到梯度图像。
2)得到梯度值最大的那一部分(比如10%)
的像素直方图
3)通过直方图的谷底,得到阈值T。
数字图像处理---图像分割

数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。
遥感数字图像处理教程_图像分割

遥感数字图像处理教程_图像分割
图像分割是指将一幅图像分成若干个具有一定语义的区域的过程。
在
遥感图像处理中,图像分割是一项重要的任务,可以用来提取地表覆盖类型、检测目标等。
图像分割方法有很多种,常见的包括基于阈值、基于边缘、基于区域
和基于特征的方法。
基于阈值的图像分割是最简单的方法之一,通过设定一个阈值,将图
像中灰度值高于或低于该阈值的像素分为不同的区域。
这种方法适用于目
标与背景之间的灰度差异明显的情况。
基于边缘的图像分割是通过检测图像中的边缘来进行分割的。
常见的
边缘检测算法有Sobel算子、Canny算子等。
通过检测边缘,可以将图像
中不同区域的边界分开。
基于区域的图像分割是将图像划分为具有一定连通性和一致性的区域。
该方法首先通过像素之间的相似性来合并区域,然后再根据区域的属性进
行进一步的合并和细分。
基于特征的图像分割是利用图像中的一些特征来进行分割,如颜色、
纹理、形状等。
通过提取图像中的特征并使用合适的分类算法,可以将图
像分割为具有不同特征的区域。
图像分割在遥感图像处理中有着广泛的应用,例如提取森林、湖泊等
地表覆盖类型,检测城市建筑、道路等目标,以及监测农作物、污染等环
境指标。
数字图像处理PPT——第七章 图像分割

p-参数法
针对已知目标物在画面中所占比例的情况。 基本设计思想 选择一个值Th,使前景目标物所占的比例 为p,背景所占比例为1-p。 基本方法 先试探性地给出一个阈值,统计目标物的 像素点数在整幅图中所占的比例是否满足 要求,是则阈值合适;否则,阈值则偏大 或者偏小,再进行调整,直到满足要求。
p-参数法算法步骤
⎧ σ b2 ⎫ η | Th* = max ⎨ 2 ⎬ ⎩σ in ⎭
局部阈值方法
提出的原因 阈值方法对于较为简单的图像(目标 与背景差别大,容易区分的图像)简 单有效,对于较为复杂的图像,分割 效果不稳定。 方法 把图像分成子块,在每个子块上再采 样前述阈值分割方法
灰度-局部灰度均值散布图法
σ 12 =
f ( x , y )∈C 1
∑
( f ( x, y ) − μ1 )2
2 σ2 =
f ( x , y )∈C 22 )2
1 μ1 = N C1
f ( x , y )∈C 1
∑
f ( x, y )
1 μ2 = NC 2
f ( x , y )∈C 2
∑
f ( x, y )
参数空间的一条直线对应xy空间的一 个点
Hough变换提取直线原理
Xy空间一条直线上的n个点,对应kb 空间经过一个公共点的n条直线 Kb空间一条直线上的n点对应于xy空 间中过一公共点的n条直线
Hough变换提取直线算法
假设原图像为二值图像,扫描图中的每一 个像素点: 背景点,不作任何处理 目标点,确定直线: b = − xk + y 参数空间上的对应直线上所有的值累加1 循环扫描所有点 参数空间上累计值为最大的点(k*,b*)为所求 直线参数 按照该参数与原图像同等大小的空白图像 上绘制直线
数字图像处理四个实验

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割实验五形态学运算3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。
遥感数字图像处理教程11图像分割PPT课件

优点
能够准确提取目标的边缘信息 。
缺点
对噪声和细节较为敏感,容易 产生伪边缘。ቤተ መጻሕፍቲ ባይዱ
基于特定理论的分割
基于特定理论或算法的分割
根据特定的理论或算法,如分形理论、小波 变换、遗传算法等,对图像进行分割。
优点
能够针对特定问题提出有效的解决方案。
适用场景
适用于特定领域的图像分割问题。
缺点
实现难度较大,运算量较大。
对复杂场景的应对能力有限
在复杂背景、光照不均、目标遮挡等情况下,现有算法的分割效果不 佳。
未来研究的方向与展望
提升算法泛化能力
研究能够适应不同场景和数据 集的图像分割算法,提高算法 的鲁棒性和泛化能力。
优化算法计算效率
通过算法优化、并行计算等技 术手段,降低计算复杂度,提 高处理速度,满足实时性要求 。
03
遥感数字图像处理中的图像分割
遥感数字图像的特点
数据量大
遥感数字图像通常覆盖大面积区域,产生大量的 数据。
多种波段
多光谱和超光谱遥感图像包含多个波段,提供更 丰富的地物信息。
动态变化
遥感数字图像可以反映地物的动态变化,如城市 扩张、植被生长等。
地理信息丰富
遥感数字图像包含丰富的地理信息,如经纬度、 高程等。
在遥感图像处理中,图像分割 技术尤为重要,因为遥感图像 通常具有较大的尺寸、复杂的 背景和多种类型的目标,需要 采用高效的图像分割方法来提 取有用的信息。
图像分割的应用领域
医学影像分析
在医学领域中,图像分割技术被广泛应用于医学影 像的预处理阶段,如X光片、CT和MRI等影像的分割 ,以便于医生对病变部位的定位和诊断。
算法泛化能力不足
数字图像处理与应用(MATLAB版)第6章 图像的分割

是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰
,
度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。
基
本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像
重
分割技术。
点
难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点检测
汽轮机叶片对 应的X光图像
点检测的结果
改变阈值 的结果
线检测
通过比较典型模板的计算值,确定一个点是否在某 个方向的线上
你也可以设计其它模板:
模板系数之和为0 感兴趣的方向系数值较大
-1 -1 -1 222 -1 -1 -1
-1 -1 2 -1 2 -1 2 -1 -1
-1 2 -1 -1 2 -1 -1 2 -1
f x
2
f y
2
其方向为 arctg f y
f x
图像经过梯度运算能灵敏地检测出边界,但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
x f x, y f x, y f x 1, y y f x, y f x, y f x, y 1
人眼图像示例
分类—连续性与处理策略
连续性:
不连续性:边界 相似性:区域
处理策略:早期处理结果是否影响后面的处理
并行:不 串行:结果被其后的处理利用
四种方法
并行边界;串行边界;并行区域;串行区域
问题
不同种类的图像、不同的应用要求所要求提取的区 域是不相同的。分割方法也不同,目前没有普遍适 用的最优方法。
相似性分割:将相似灰度级的像素聚集在一起。形成图 像中的不同区域。这种基于相似性原理的方法也称为基 于区域相关的分割技术
非连续性分割:首先检测局部不连续性,然后将它们连 接起来形成边界,这些边界把图像分以不同的区域。这 种基于不连续性原理检出物体边缘的方法称为基于点相 关的分割技术
两种方法是互补的。有时将它们地结合起来,以求得到 更好的分割效果。
灰度变化突变处进行微分,将产生高值,因此在数学 上可用灰度的导数来表示变化。
差分定义:
x f i, j f i, j f i 1, j y f i, j f i, j f i, j 1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 f x, y在点 x, y 的梯度幅值为
2 -1 -1 -1 2 -1 -1 -1 2
水平模板
45度模板
垂直模板 135度模板
线检测
用4种模板分别计算
R水平 = -6 + 30 = 24 R45度 = -14 + 14 = 0 R垂直 = -14 + 14 = 0 R135度 = -14 + 14 = 0
从这些值中寻找绝对值最大值,确定当前点更加接 近于该模板所对应的直线
人的视觉系统对图像分割是相当有效的,但十分复 杂,且分割方法原理和模型都未搞清楚。这是一个 很值得研究的问题。
研究层次
图像分割算法 图像分割算法的评价和比较 对分割算法的评价方法和评价准则的系统研究
图像分割的策略
图像分割的基本策略是基于灰度值的两个基本特性:
区域之间的不连续性 • 先找到点、线(宽度为1)、边(不定宽度) • 再确定区域
图像分割
计算机图像处理的两个目的:
产生更适合人观察和识别的图像 有计算机自动识别和理解图像
图像分割(Image Segmentation):
图像分割 阈值选择与阈值化处理 边界提取和轮廓跟踪 Hough变换 区域生长
课程内容
图像分割
图像分割的目标是重点根据图像中的物体将图像的 像素分类,并提取感兴趣目标
二阶导数:通过拉普拉斯来计算
特点:二阶微分在亮的一边是正的,在暗的一边是负 的。常数部分为零。 用途:确定边上的像素是在亮的一边,还是暗的一边, 0用于确定边的准确位置
简单边缘检测方法
最早的边缘检测方法都是基于像素的数值导数的, 在数字图像中应用差分代替导数运算。
由于边缘是图像上灰度变化比较剧烈的地方,在
则f(x,y)的梯度幅度可以=?
常用的边缘检测器
给定图像中的一个 3*3区域,使用下面的边缘检测 滤波器进行检测,它们都使用一阶导数
原始图像
边缘检测举例
水平梯度部分
垂直梯度部分
组合得到边缘图像
边缘检测问题
边缘检测中经常碰到的问题是:
图像中存在太多的细节。比如,前面例子中的砖墙 图像受到噪声的干扰,不能准确的检测边缘
图像分割是图像识别和图像理解的基本前提步骤
图像图像预处理来自图像识别图像理解
图像分割
图像分割举例
图像分割举例
图像分割是把图像分解成构成的部件和对象的过程 把焦点放在增强感兴趣对象
汽车牌照
排除不相干图像成分:
非矩形区域
形式化的定义
形式化定义
令集合R代表整个图像区域,对R的分割可看作将R分成 若干个满足以下条件的非空子集(子区域) R1, R2, R3,… Rn:
区域内部的相似性 • 通过选择阈值,找到灰度值相似的区域 • 区域的外轮廓就是对象的边
用空域的高通滤波器来检测 孤立点:
R= (-1 * 8 * 8 + 128 * 8)/9=106
可以设置阈值T = 64
若R=0,则说明?
若R > T,则说 明?
888
8 128 8
888 图像
点检测
-1 -1 -1 -1 8 -1 -1 -1 -1
111111111
555555555
111111111
边缘检测
物体的边缘是以图像局部特性的不连续性的形式出现 的,从本质上说,边缘意味着一个区域的终结和另一 个区域的开始。 图像边缘信息在图像分析和人的视觉中都是十分重要 的,是图像识别中提取图像特征的一个重要属性。 是一种并行边界技术
边缘导数
n
(1) Ri
i 1
(2)对 所 有 的i和j, i j, 有Ri Rj
(3)对i 1,2,...,n, 有P(Ri ) true (4)对i j, 有P(Ri Rj ) false (5)对i 1,2,...,n, Ri是 连 通 的 区 域
分类—分割依据
阶跃型
凸缘型
房顶型
边缘检测
边缘上的这种变化可以通过微分算子进行检测:
一阶导数:通过梯度来计算 二阶导数:通过拉普拉斯算子来计算
边界图像 截面图
边缘检测
一阶导数:用梯度算子来计算
特点:对于亮的边,边的变化起点是正的,结束是负 的。对于暗边,结论相反。常数部分为零。 用途:用于检测图像中边的存在
边缘检测
解决的一个方法是在边缘检测之前对图像进行平滑
常用的平滑滤波器为高斯(Gauss)函数: